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Differential perovskite hemispherical
photodetector for intelligent imaging and
location tracking

Xiaopeng Feng 1, Chenglong Li1, Jinmei Song1, Yuhong He1, Wei Qu 1,
Weijun Li1, Keke Guo1, Lulu Liu1, Bai Yang 1,2 & Haotong Wei 1,2

Advanced photodetectors with intelligent functions are expected to take an
important role in future technology. However, completing complex detection
tasks within a limited number of pixels is still challenging. Here, we report a
differential perovskite hemispherical photodetector serving as a smart locator
for intelligent imaging and location tracking. The high external quantum
efficiency (~1000%) and low noise (10−13 A Hz−0.5) of perovskite hemispherical
photodetector enable stable and large variations in signal response. Analysing
the differential light response of only 8 pixels with the computer algorithm can
realize the capability of colorful imaging and a computational spectral reso-
lution of 4.7 nm in a low-cost and lensless device geometry. Through machine
learning tomimic the differential current signal under different applied biases,
onemore dimensional detection information can be recorded, for dynamically
tracking the running trajectory of an object in a three-dimensional space or
two-dimensional plane with a color classification function.

Intelligent and low-cost photodetectors with advanced functions are
the inevitable trend for the rapid development of modern
technology1–3. Advances in photon detection involve diverse informa-
tion such as photon efficiency4, wide-angle vision1,5–8, image
effectiveness1,9,10, color classification1,11–17, object location18,19, trans-
mission of digital information20, and so on. However, conventional
technology in optical imaging often includes redundant, duplicate,
andunrelated information, andmatrix sensors in a camera also impose
additional cost and complexity in imaging systems. To realize multi-
function under different imaging scenes such as wide-angle, night
vision, etc, conventional practice in a smartphone is to integrate sev-
eral cameras, utilizing an individual different camera under different
circumstances or requirements. The complex optical components and
repeat pixel matrix components are actually a waste of space and cost.
Fourier transform-based single-pixel imaging partially solves this
issue9,10. A 2D image is converted into frequency domains by the
Fourier transform, and only one single-pixel photodetector can record
the image information by monitoring the photocurrent variations

caused by the reflected light of an object. The object image can be
reconstructed according to the Fourier spectrum coefficients through
inverse Fourier transformwith the assistance of the Fourier algorithm.

Realizing a 2D imagewith a single-pixel device in a limited space is
a good starting point for intelligent photodetectors, which require
more and more functions to meet the requirements of modern tech-
nology. This also provides space to integrate pixel arrayswith different
functions, although coordination of algorithm and data processing
between device pixel arrays is challenging. Machine learning has laid
the foundation for intelligent technologies, which gradually innovate
knowledge and modern products1,19. The inherent advantages of
machine learning to accurately process large amounts of data enable
reliable and fast development of artificial intelligence, which also
provides a possibility to realize lensless color imaging with higher
wavelength resolution even superior to human eyes. The advent of
computational spectrometers based on computer algorithms has
greatly reduced the size and cost of the spectrometer12,17,21–24. The basic
principle to reconstruct the fine spectrum lies in the accurate
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relationship between the detector’s response variation and the light
wavelength12,17,25. Therefore, machine learning of the responsivity var-
iations at different wavelengths with external bias, gate voltage, and
electrode positions is expected to be able to process the data pool for
high-performance computational spectrometers17. However, the lim-
itation of developing intelligent photodetector through machine
learning stems from the tiny variations among the pixel arrays under
different circumstances.

Hemispherical surface possesses varying curvature and detection
distance, which results in larger responsivity variations to the dis-
tribution of incident light intensity, wavelength, object distance
information, and so on5,18,26. In addition, hemispherical photodetectors
exhibit innate advantages of wide-angle detection in lensless systems
to mimic the compound eye structure of small arthropods5,18,19,26.
Experiments have shown that spray-coated perovskite films on a
hemispherical substrate show the charge collection narrow-band
(CCN) effect and wide-angle response by controlling the film compo-
sition, thickness, and charge carrier dynamics14,26–30. However, the
photon detection mode remains rigid, which yields monotonous
information, far from the ideal intelligent imaging to deliver much
information.

In this article, we report a differential perovskite hemispherical
photodetector with 8 differential pixels to construct an intelligent
detection system. The differential pixel size, position, and responsivity
under different applied biases, along with the Fourier transform
algorithm and neural network fitting (NNF) assisted machine learning,
enable compatibly integrate functions of interest for a wide range of
applications such as computational spectrometers, wide-angle ima-
ging, color classification, location tracking, and so on.

Results
Nanoparticles assisted film formation and device gain
To deposit perovskite layers on a non-flat substrate, we previously
established a facile and compatible pneumatic spraying process which
has been well-established in themanufacturing industry. However, the
spray-coated hemispherical perovskite device exhibits a photovoltaic
response with a limited external quantum efficiency (EQE) of ~10%,
despite the narrow-band response in color imaging being an essential
feature in intelligent imaging. To improve the device performance, we
synthesized an amphiphilic molecule naphthoguanidinium iodide
(NGAI) to form supramolecular aggregates, which are composed of
hydrophilic guanidinium and hydrophobic naphthalene. Supramole-
cular aggregates are a class of materials with good dynamics, homo-
geneity, and accurate molecular structure31–34. The molecules are
recrystallized in a hydroiodic acid solution to precipitate needle-like
white crystals. Through X-ray single crystal diffraction, the stacked
structure is obtained and is shown in Fig. 1a. The NGAI is a monoclinic
crystal (P21/c), with the lattice parameters of a = 1.33 nm, b = 0.59 nm,
c = 14.63 nm, α = γ = 90°, β = 92.27. The naphthalene groups form a
layered structure driven by π-π accumulation, while several guanidi-
nium cations are combined with iodine ions in the form of chelates
(Supplementary Fig. 2d). The transmission electronmicroscopy (TEM)
study in Fig. 1b shows that the NGAI exists in the form of a nanosheet
structure. The stacking model of the nanosheet structure is similar to
the single-crystal structure of NGAI. When lead iodide (PbI2) is present
in the solution, the morphology of the supramolecular aggregates
changes into the nanoparticle structures (Fig. 1c), indicating the
interaction between NGAI and PbI2. The average diameter of nano-
particles is ~4.7 nm (Fig. 1c)35. The formation scheme is shown in Fig. 1d,
[NGA]+ non-polar naphthalene groups aggregate together in a polar
solvent to form a dimer, and then stack laterally to form nanosheet
structures, which can further evolve into nanoparticles with the pre-
sence of PbI2 by forming the covered structures with [NGA]+ ions.

The introduction of NGAI supramolecular aggregates is of vital
importance to the device performance of differential perovskite

detectors. On one hand, the NGAI serving as an additive improves the
quality and manipulates the crystalline rates of the perovskite film
from spray-coated processes36–38. We monitored the crystallization of
formamidinium lead iodide (FAPbI3) perovskite precursor solutions
with different equivalents of NGAI (0–30%mol relative to Pb2+) on the
substrate by time-dependent absorbance spectroscopy (700 nm,
80 °C). The addition of NGAI can effectively slow down the film crys-
tallization rate by wrapping the [PbI6]

4− in solution (Figs. 1e, f)36,39,
which results in a larger grain than that film without NGAI (Supple-
mentary Fig. 4e). On the other hand, the nanoparticles can induce the
charges injection from the external circuit to output a device gain40,41.
The EQE spectra of the photodetectors are performed to confirm the
existence of device gain in Fig. 1g, and the device gain shows up with
the addition of 5%mol NGAI, and the maximum EQE value of ~1000% is
observed once 10%mol ~ 20%mol NGAI is employed. The device perfor-
mance of differential detectors depends on their responsivity varia-
tions. The large EQE value provides a wide range of correlations
between device responsivity and light signals for differential detectors
to acquiremoredetection information. It shouldbe alsonoted that the
addition of NGAI promotes the crystalline orientation to the stable
(111) phase as evidenced by the XRD spectra (Fig. 1h) and the mor-
phology graph (Supplementary Fig. 4e)42.

Differential external quantum efficiency for computational
spectrometer
The large device differential EQE/responsivity allows us to resolve the
tiny difference in light wavelength number through a computer algo-
rithm for spectrometer application. Figure 2a shows the EQE spectra to
the incident light of different wavelength numbers as a function of
applied reverse bias conditions. As the increase of applied reversebias,
the EQE value is greatly improved, and the short wavelength range has
a larger contribution to the photocurrent, resulting in a good differ-
ential response to light wavelength. The maximum EQE value of
~1000% in Fig. 2b also yields a wide range of variations for signal
simulation and machine learning to resolve two beams of light with
similar wavelength numbers. Characteristic curves between the
reverse bias and current density are shown in Fig. 2c under the same
irradiance (50μW cm−2), and the signal difference can be clearly dis-
tinguished and learned under different biases. To better understand
and simulate the EQE variations versus applied reverse bias, we
describe the mechanism of bias dependent charge carrier collection
process in Fig. 2d. At lowbias conditions, the charge carrier drift length
is smaller than the film thickness, leading to a narrow-band response in
EQE spectra due to the penetration depth difference between short-
and long-wavelength light. Under high bias conditions, all the charge
carriers can be collected regardless ofwhere the charge is generated in
the film due to the extension of charge carrier drift length across the
film.Therefore, the entire range of the EQE spectra hasbeen improved.
We employed the device architecture of Cr/PTAA/Perovskites/C60/
BCP/Cr/Au, and the photodetector performance is evaluated in Sup-
plementary Fig. 7. The current density (J) - voltage (V) curve of the
photodetector exhibits a high responsivity of 5.1 AW−1 under the
reverse bias of -1 V and the irradiance of 10 μWcm−2, corresponding to
a high EQE value of 1180% (Supplementary Fig. 7a). The gain of the
photodetector was caused by the nanoparticles induced charges
injection within the perovskite film, resulting in a large specific
detectivity (D*) of 2 × 1013 Jones based on the measured low noise
current of ~10−13 AHz−0.5 (Supplementary Fig. 7e). The response range
from 350nm to 850 nm enables the spectrometer application from
UV-visible to near-infrared.

To realize the bias-dependent computational spectrometer with
the differential photodetector, a computational reconstruction algo-
rithmwas applied17. Figure 2e shows the reconstruction spectra of four
beams of monochromatic lights with the same full width at half max-
imum (FWHM) of ~5 nm but at different wavelengths, and the
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simulated spectra overlap with that of incident lights. The FWHM is
calculated by the reciprocal linear dispersion of the instrument, and
the step size of the center wavelength is 5 nm. The corresponding
resolution of the computational spectrometer was evaluated to be
better than 4.7 nm in Supplementary Fig. 8a. The quasi-
monochromatic light generated by a 520 nm laser with the FWHM of
5.8 nm is also reconstructed in Fig. 2f, matching well with its emission
spectra. To simulate a complex situation, a polychromatic light with a
white spectrum from a light-emitting diode (LED) is employed, and the
differential detector can also reproduce the spectra reconstruction in
Fig. 2g. Considering the influence of the irradiance, the responsivity
maps with the reverse bias and wavelength are shown in Supplemen-
tary Fig. 8c–e. The reconstructionof polychromatic light with arbitrary
irradiance/wavelength is feasible by building the relationship between
the irradiance, wavelength, reverse bias, and current density.

Color imaging with differential single-pixel detectors
Due to the detector’s capability in color recognition, there exists sig-
nificant potential in full-spectrum color imaging without the use of
optical filters. This potential lies in the detector’s ability to discern
subtle color differences in objects. Building upon this capability, we
present a design for multi-color imaging. The utilization of two-
dimensional structured light patterns in conjunction with Fourier
single-pixel imaging has presented a highly promising avenue for
exploration. To enable single-pixel imaging with simplified device
architecture and limited space, The Fourier transforms phase shift
technique is adopted for high-resolution imaging9,10. Briefly, the set
patterns were illuminated on the object through a projector, and we
collected the current signal of the single-pixel device induced by the
reflected light under different patterns (Fig. 3a). The collected current
signal consists of the 2D image information, which can be
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Fig. 1 | The formationofnanoparticles and their influence ondevice gain. aThe
crystal structure of the NGAIwhere NGAI is 1-(naphthalen-2-yl)guanidinium iodide.
b The TEM image of the nanosheet structure aggregated by NGAI without adding
PbI2, scale bar: 200nm. cThe TEM image of the nanoparticles aggregated byNGAI-
PbI2 complex, scale bar: 20nm.d Schematic diagramof the self-assembly of [NGA]+

in the polar solvent (w/o and w PbI2) where [NGA]+ is the 1-(naphthalen-2-yl)gua-
nidinium cation. The guanidinium of [NGA]+ was exposed to the outside.

e Schematic diagramof theprocess of crystallization of perovskite (FAPbI3wNGAI)
during spray-coating and annealing. f The crystalline processes of the FAPbI3 films
were monitored by the absorbance at 700nm with different amounts of NGAI
under 80 °C.gThe EQEof FAPbI3 (w0%mol ~ 40%molNGAI) photodetectors at−1.0 V
bias condition. h The XRD spectra of FAPbI3 (w 0%mol ~ 30%mol NGAI) films fabri-
cated by spray-coating.
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reconstructed through the Fourier transform algorithm. However, the
reconstructedgray2D imagedoesn’t include any color information. To
further explore the advantages of differential detectors, bias voltage-
dependent signal variations versus light wavelengths are also included
in the algorithm. Since the reflected light of objects of different colors
is different in the spectrum, the difference can be refined through the
single-pixel imaging of objects under different reverse biases, and
finally realize color imaging. In this context, we opted for a smooth
Rubik’s Cube as the imaging object, disregarding variations in the
reflected light intensity across different positions on the Rubik’s
Cube’s surfaces. The Rubik’s cube, as shown in Fig. 3a and Supple-
mentary Fig. 9d, was photographed by single-pixel imaging under
different bias pressures (–0.1 to –0.9 V). Supplementary Fig. 9c shows
the gray images of the Rubik’s cube under different bias voltages.
Images are optimized by reducing the noise and linear weight. The

gray-scale map of 2D images is displayed in Fig. 3b. The K-Nearest
Neighbor (KNN) algorithm is used to classify the collected images
(Fig. 3a and Supplementary Software 1). We select 121 pixels in the
color area of each image as the training set. The gray value of a pixel at
different reverse biases represents an element in an n-dimensional
vector. Here, the element includes 9 dimensions referring to 9 differ-
ent reverse biases. The classification accuracy obtained from the
training set reaches 100%, and the confusion matrix is shown in Sup-
plementary Fig. 10a, which yields accurate mathematical functions to
classify the colors in an image in Fig. 3c. The accuracy of color classi-
fication depends on the large differential response between the
responsivity and light wavelength under different reverse biases, and
more refined recognition can be realized through the optimization of
algorithm. While differences in reflected light intensity may pose a
potential interference in color identification, the integration of
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Fig. 2 | The computational spectrometer by differential photodetectors. a The
EQE mapping of the differential photodetector at different reverse biases and
wavelengths (The irradiance of light is shown in Supplementary Fig. 8b Condition
1).bThe EQE curves of the photodetector at different reverse biases (–0.2 V, –0.6V,
–1.0 V) and wavelength. c The current density of the photodetector at different
reverse biases and wavelengths under the constant irradiance of 50μWcm−2. d The

schemed principle of the wavelength classification by differential photodetectors
at different reverse biases. e The reconstructed spectra of four monochromatic
lights by differential photodetectors match well with the reference spectra. f The
reconstructed spectrum of the quasi-monochromatic light from a 520 nm laser.
g The reconstructed spectrum of the polychromatic light.
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spectral recognition principles and the establishment of a matrix
relationship between light intensity and response hold the promise of
achieving more precise color identification.

Intelligent detection and tracking bydifferential detector arrays
The spray coating method not only provides adjustable thickness and
optoelectronic properties of the photodetector but also possesses the
advantage of fabrication on non-planar surfaces. This feature enables
the realization of a position localization system based on hemi-
spherical detectors. To further enlarge the differential signals for
intelligent detection in 3D space, we develop differential electrodes on
hemispherical devices, since the effective incident flux intensity of the
hemispherical surface at different positions is different compared to
the planar surface26. Firstly, we calculate the effective incident light
intensity at the surface of the hemispherical detector and planar
detector depending on the different positions of the light source
(Fig. 4a). d and h represent the horizontal distance and vertical dis-
tance between the light source and the devices’ geometry center
(hemisphere and disc), respectively. r is the radius of the hemisphere
and disc. l is the distance between the light source and the device
geometry center. The effective incident light intensity is uniformly
distributed on the planar surface with little difference, whereas it
exhibits significant variations on the hemispherical surface. Five devi-
ces with different positions (The distance from the center of the
objects to the point is from 0.2 r to 1.0 r) were set on the hemi-
spherical/planar substrates as shown in Fig. 4b to study the dependent
relationship between the differential signals of the five devices as
changing the horizontal distance (d) of the light source. The changing
curves of the effective incident flux intensity at different positions of
the planar surface are almost coincident. However, the differential
signals at different positions of the hemispherical surface are different
and asymmetric. Therefore, the differential photodetector could
capture the location information of the light source.

To further realize the feature of location tracking, we designed a
differential photodetector with two kinds of differential electrodes in
Fig. 4c. The electrode at the bottom of the photodetector was divided
into eight parts (The interval is 45°) by a mask to collect light signals
fromdifferent directions as differential pixels. Two kinds of electrodes
were designed to enhance the difference of the signals from different
positions and improve the accuracy of the computer algorithm for
location tracking. The theoretical simulation in Supplementary Fig. 12
shows the differences between the long electrode and the short elec-
trode design in resolving the differential signals with different pixels.
The hemispherical photodetectorwas integrated onto a printed circuit
board (PCB) as a portable device prototype for a location tracker
(Supplementary Fig. 13). Figure 4d shows the processes of machine
learning and data reconstruction based on differential perovskite
hemispherical photodetector. During the learning process, signals (x1,
x2,…, x8) fromeachpositionof the light sourcewerecollectedby every
differential pixel to fit the mathematical model of Bayesian regular-
ization (Supplementary Software 1). To simulate the location tracking
function, the signals (x’1, x’2,…, x’8) from the light source at a series of
unknown positions were collected by each differential pixel to
reconstruct the position/running trajectory of the object. A LED was
fixed on a precise X-Y electric multi-axis displacement table to finely
control the position of the light source. Then, the differential hemi-
spherical photodetector was placed under the light source to record
the running trajectory of the LED. There are 20 steps × 20 steps in the
X-Y plane with each moving step size of 3mm to develop a signal
matrix in an area of 6 × 6 cm2 for 8 differential pixels. Figure 4e records
the mapping results of the signal matrix by 8 differential pixels with
different shapes regarding the object location tracking within a plane
range,which serves as input data to build themathematicalmodel. The
accuracyof themodel generated from the neural network fitting (NNF)
during the learningprocess can be evaluatedby the characterizationof
the correlation coefficient in Supplementary Fig. 14. The correlation
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coefficient of the training group, test group, and all groups are
0.99976, 0.99967, and 0.99976, respectively. To verify the device
performance and strategy availability, we defined the trajectory of an
object in Fig. 4f (Original trace, top panel) and realized the process
emersion of the motion trajectory in Fig. 4f (Result trace, top panel)
and Supplementary Movie 1. The detailed trajectory reconstruction is
shown in Supplementary Fig. 15.

Since all the planar location tracking was completed under a
constant bias voltage, we can establish one more dimension differ-
ential signal with different biases to realize more detection informa-
tion such as motion tracking with color classification feature or
location tracking in 3D space. To demonstrate the color-
distinguishable motion tracking, a series of signal matrixes including
object color and position in the X-Y plane were built under different
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Fig. 4 | The differential hemispherical photodetector for intelligent detection.
a The normalized effective incident flux on the hemispherical and planar surfaces
with varying light source positions. b The changing curves of normalized effective
incident flux at different points on the hemispherical and planar surfaces (d =0.2
r ~ 1.0 r) of light at different horizontal positions. The height of the light source is
constant. c The device structure of the hemispherical photodetector. d The

process for building the model by NNF and trace reconstruction. e The signal
matrix of the differential pixels distributing different positions (x1, x2,…, x8) of the
photodetector. f The trace reconstruction of the light source w/o color classifica-
tion and with color classification. g The spatial trace reconstruction in 3D space
enabled by the differential hemispherical photodetector.
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biases with a correlation through NNF. Finally, the trajectories (Sup-
plementaryMovie 2) of the red, green, and blue are reconstructedwith
three groups of bias (–0.30 V, –0.35 V, –0.40 V), and more fine colors
can be resolved if more detailed differential signals are correlated.
Similarly, controlling the external bias of the photodetector can also
realize location tracking in 3D space with spatial coordinates. A simple
trace in a 3D array of 20× 20 × 3 was designed for proof of concept.
Figure 4g (toppanel) shows theoriginalmotion traceof anobject in 3D
space. The reconstructed trace at the bottom panel and Supplemen-
tary Movie 3 in 3D space is realized by this differential hemispherical
photodetector, in consistent with the original trace.

Discussion
In summary, we successfully proposed a differential hemispherical
photodetector with spray-coated perovskite film to realize intelligent
functions of color imaging, computational spectrometers, and loca-
tion tracking in a 3D space or 2D plane with a color classification
capability. The low noise (~10−13 AHz−0.5), high EQE (~1000%), and
hemispherical device architecture enable the large differential signals
to collect more information of interest. Combining the advantages of
differential photodetectorswithmachine learningwithNNFprocesses,
themost advancedphotodetectors canbe further enhanced. The facile
design not only saves the space and cost to construct complex
detector arrays, but also pushes the detector performance towards
intelligence. However, the data acquisition and analysis processes still
require robust computing power, which may delay the result time-
liness or impair the result accuracy. Further model design and algo-
rithm optimization are still needed to improve the maturity of
differential detectors by showing advancements in intelligent perfor-
mance. Through integratingdifferential hemispherical detector arrays,
most of the advanced photodetectors can be further intelligentized
and miniaturized for future artificial intelligence applications.

Methods
Films and devices fabrication
Films fabrication: The precursor solution based on FAPbI3 perovskite
was prepared in the followingmethod. formamidine hydroiodide (FAI)
34mg (0.2mmol), PbI2 101mg (0.22mmol), methylamine hydro-
chloride (MACl) 4.0mg (0.06mmol), L-ascorbic acid (L-AA) 0.9mg
(0.025mmol), NGAI 0–18.7mg (0–0.06mmol, 0–30%mol relative to
Pb2+) was dissolved in a mixed solvent of 1mL DMF: 2-Me: ACN= 1: 1: 3
(v/v). The mixed solution was stirred at room temperature until com-
pletely dissolved resulting in the precursor solution for spray coating.
The substrate is heated to ~100 °C, and a certain volume of solution is
added to the spray gun (S-120 0.2mm nozzle). The spray speed is
3μL s−1. After spraying, films were placed on a hot table at 120 °C and
annealed for 15min.

Hemispherical device fabrication: After washing with water,
acetone, and isopropyl alcohol (IPA), the hemispherical substrate was
deposited with chromium (Cr) electrode vacuum evaporation where
the hemispherical glass was masked by patterned polyimide (PI) tape
to split electrodes or define the effective area (0.1 cm2). The dried
substrate was treated with ultraviolet ozone for 20min. The hemi-
spherical substrate was fixed on the stainless steel plate and heated to
100 °C. PTAA was prepared into 0.5mgmL−1 toluene solution and
sprayed onto the hemispherical substrate. The amount of spray solu-
tion is adjusted by referring to 25 µL cm−2. After spraying, the Cr/PTAA
substrate was thermally annealed at 100 °C for 10min and then
transferred to the plasma treatment chamber for air-plasma treatment
for 2min. The resulting film is again fixed on the stainless steel plate
and heated to 100 °C. The perovskite precursor solution was sprayed
onto the Cr/PTAA substrate, and after each spray deposition, nitrogen
(N2) was used to assist in the crystallization of the surface of the per-
ovskite. After spraying, the devicewas thermally annealed at 130 °C for
15min. The annealed device did not require any additional post-

processing and deposited the materials directly by vacuum evapora-
tion with 25 nm C60, 8 nm BCP, 5 nm Cr and 5 nm Au.

Fourier single-pixel imaging and color classification
The Fourier single-pixel imagingwas realized by themethodpublished
by Zhang and Mai et al.9,10 (Additional details are presented in
the Supplementary Materials.). The projector is used to project the
pre-designed two-dimensional Fourier transform pattern onto the
object. The detector is connected to theKeithley 2400 sourcemeter to
measure the light reflected by the object as Fig. 3a shows. The signal
measured by the source meter corresponding to the first m two-
dimensional patterns was input to the computer (m = 10000), and was
calculated to obtain the corresponding image through the algorithm.
The image is obtained by Fourier transformof the photocurrent signal
of the device under different bias voltages and shown in Supplemen-
tary Fig. 9. The images were optimized by background subtraction,
noise reduction, and smoothing before linear weighting operation.
The optimized images are shown in Fig. 3b with the labels V1, V2,……,
and Vn. Here, wedefine the RGB as different color blocks as (1, 0, 0), (0,
1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 0) and the algorithm is Fine KNN. The
sample size is 121 × 5. A certain number of pixels in the image are
selected as samples, and machine learning classification is carried out
through the machine learning APP in Matlab. Through the existing
learning results, each pixel in the picture is classified.

The calculation of effective incident flux intensity
The light intensity density (I) was defined by the following function to
describe the spherical diffused light (Eq. (1)):

I =
IO

4πR2
ð1Þ

whereR is thedistancebetween theobject and thepoint light source. IO
is initial light intensity. Considering the symmetry of the sphere, the
effective light intensity flux distribution (dφ) can be simplified to ver-
tical incidence as Supplementary Fig. 12 shows. The effective incident
flux intensity (dφ) can be calculated in Eq. (2) by the law of cosines.

dφ= I � dS = I cosβ1dS=
IO

4πR2

l2 � R2 � r2

2rR
dS ð2Þ

where l is the distance between the point of the light source and the
center of the sphere. r is the radius of the sphere. β1 is the angle between
the incident light and the line between the point on the surface of the
sphere and the center of the sphere (Supplementary Fig. 12). S is the
area of the surface. Similarly, R can be converted into the coordinate
parameter (θ), which is the angle between the perpendicular line of the
equatorial plane of the sphere and the line between the point on the
surface of the sphere and the center of the sphere. The effective inci-
dent flux intensity can be calculated with the parameter of θ (Eq. (3)).

R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 + r2 � 2xr cosθ

q
ð3Þ

If the light source isplaced in anarbitraryposition, l canbeobtainedby
the horizontal distance (d) and perpendicular distance (h). l can be
calculated by Eq. (4).

l2 =h2 +d2 ð4Þ

In a rectangular coordinate system, the point (x, y, z) on the sur-
face of the sphere is limited by Eq. (5).

x2 + y2 + z2 = r2 ð5Þ
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After the transformation of the coordinates in Supplementary
Fig. 12, the distribution of effective incident flux intensity (dφ) only
suffers the influence of z (Eq. (6)).

cosθ=
z
r

ð6Þ

In Fig. 4a, we normalized the light intensity flux distribution (dφ)
in the condition of h = 20 r,d =0 r, which is close to the experimental
conditions.

The point (x, y, z) at the surface of the plane is limited by Eqs. (7)
and (8).

x2 + y2 ≤ r2 ð7Þ

z =0 ð8Þ

β2 is the angle between the line through the point (x, y, z) at the surface
of the plane and the position of the light source (d, 0, h) and the line
through the point (x, y, z) at the surface of the plane and the foot point
of the light source (d, 0, 0) (Supplementary Fig. 12). The effective
incident flux intensity (dφ) can be calculated in Eq. (9).

dφ= I � dS = I cosβ2dS= I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

R2

s
dS ð9Þ

where R is the distance between the point (x, y, z) and the point light
source and can be calculated by Eq. (10).

R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � dð Þ2 +h2

q
ð10Þ

Artificial intelligence-assisted location
The (LED 520 nm, 3W) is fixed on the X-Y two-dimensional (2D) dis-
placement platform, and the mobile platform is controlled by the
computer to move within an area of 6 cm×6 cm on the plane. The
length of each step is 0.3 cm. The hemispherical array detector is
connected in parallel to the NI9205 acquisition card. The operating
voltage of the photodetector is –0.3 V. The signal of each pixel is
recorded by the computer when the LED was placed in each position.
The data matrix is obtained by the different values of the response of
each pixel to the light signal at different positions (Fig. 4d, e). The data
matrix is learned by Neural Net Fitting in Matlab, where the input is a
400× 8 matrix representing the data: 400 samples of 8 elements. The
8 elements correspond to the signal collectedby 8pixels. The output is
a 400 × 2 matrix that represents the data: 400 samples of 2 elements.
The 2 elements correspond to the coordinate (X, Y) of the light source.
The hidden layer contains 10 neurons, and the output layer contains 2
neurons. The fitting method is Bayesian Regularization. After that, the
X-Y 2D displacement platform is used to move the LED following the
prescribed route, and the signal of each detector is read by the
acquisition card. The detector signal changes are brought into the
NNF-fitted model for position prediction, and the corresponding
coordinates are output. To realize the function of color classification,
the LEDwas changed into 3 colors (450nm, 520 nm, 660 nm, 3W), and
the constant reverse bias is changed into a bias group (–0.3V, –0.35 V,
–0.40V). Thus, the data input is a 400× (8 × 3) matrix. The output is a
400× 3 matrix where 2 elements correspond to the coordinate (X, Y)
of the light source, and 1 element corresponds to the color of the LED.
To realize the function of spatial orientation, the height of the LEDwas
changed into 4 positions (9.5 cm, 9.8 cm, 10.1 cm, 10.4 cm) and the
constant reverse bias is changed into a bias group (–0.3 V, –0.35 V).
Thus, the data input is a 400× (8× 2) matrix. The output is a 400× 3

matrix where 3 elements correspond to the coordinate (X, Y, Z) of the
light source.

Data availability
The data that support the plots within this paper are available from the
corresponding author upon request. The data generated in this study
are provided in the Supplementary Information/Source Data file. The
X-ray crystallographic coordinates for structures reported in this study
have been deposited at the Cambridge Crystallographic Data Center
(CCDC), under deposition numbers: 2313935. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Center via www.ccdc.cam.ac.uk/data_request/cif. Source data are
provided with this paper.

Code availability
The source code related to the findings presented in thismanuscript is
available in GitHub: https://github.com/fengwind1/NCOMMS-23-
43328.git.
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