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Investigating the etiologies of non-malarial
febrile illness in Senegal using metagenomic
sequencing

Zoë C. Levine 1,2,3, Aita Sene4,5, Winnie Mkandawire1,6, Awa B. Deme5,
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Doudou Sene7, Marietou Faye Paye1, Bronwyn L. MacInnis 1,8,
Stephen F. Schaffner 1,8,9, Daniel J. Park 1, Aida S. Badiane4,5,
Andres Colubri1,6, Mouhamadou Ndiaye4,5, Ngayo Sy10,
PardisC. Sabeti 1,8,9,11,13 , DaoudaNdiaye4,5,13 &Katherine J. Siddle 1,12,13

Theworldwidedecline inmalaria incidence is revealing the extensive burdenof
non-malarial febrile illness (NMFI), which remains poorly understood and dif-
ficult to diagnose. To characterize NMFI in Senegal, we collected venous blood
and clinical metadata in a cross-sectional study of febrile patients and healthy
controls in a low malaria burden area. Using 16S and untargeted sequencing,
we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI
cases. Bacteria were the most common, with relapsing fever Borrelia and
spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four
viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also
detected undiagnosed Plasmodium, including one putative P. ovale infection.
We developed a logistic regression model that can distinguish Borrelia from
NMFIs with similar presentation based on symptoms and vital signs (F1 score:
0.823). These results highlight the challenge and importance of improved
diagnostics, especially for Borrelia, to support diagnosis and surveillance.

Febrile illness is a significant cause of morbidity and mortality in West
Africa. While malaria remains the most common single pathogen
causing febrile illness, its incidence has decreased sharply in the last
two decades; in Senegal, for example, control measures decreased
malaria incidence from 122 per 1000 in 2006 to 59 per 1000 in 20211,2.
With declining incidence and increased use ofmalaria rapid diagnostic
tests, the importanceof non-malarial febrile illness (NMFI) has become

more apparent. Unlike malaria, however, many of the pathogens
causing NMFI are not the target of robust surveillance programs, and
rapid diagnostic tests (RDTs), the backbone of both clinical care and
surveillance in peripheral care settings, are not available3.

In the absence of comprehensive surveillance efforts that capture
multiple pathogen types, appropriate public health interventions are
hindered by our limited understanding of the full landscape of
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common causes of NMFI at the community level. Untargeted
sequencing, also known as metagenomic sequencing (mNGS), is a
powerful tool for detection of microbial nucleic acids in clinical sam-
ples without a priori knowledge of a pathogen4,5 and is increasingly
used for surveillance in regions at high risk of emerging and reemer-
ging disease6–8. As mNGS sequences all RNA or DNA in a sample, these
techniques are typically less sensitive for detecting any single patho-
gen than targeted approaches (e.g., PCR), due to the abundance of the
host relative to pathogen nucleic acids4,5. In order to achieve higher
sensitivity and reduce the cost of deep sequencing, mNGS can be
applied to cell-free fluids, which have lower host backgrounds, but this
can limit the detection of intracellular pathogens. Untargeted
approaches are complemented by more targeted strategies, such as
16S sequencing for bacterial pathogens, that specifically amplify
pathogen nucleic acids, reducing required sequencing depth and
simplifying interpretation. This technique has been applied to detect
bacterial bloodstream infections9,10 and tick-borne bacterial illness11.

A broad range of pathogens across kingdoms can cause NMFI, but
surveillance studies often focus on oneor a fewpathogens or are limited
to hospitalized patients and, therefore, are limited in their ability to
detect all causes of disease. Surveillance studies of severely ill hospita-
lized patients have identified bacterial pathogens, including several
vaccine-preventable illnesses such as Streptococcus pneumoniae and
Neisseria meningitidis12,13. Arboviruses, such as Dengue virus and Chi-
kungunya virus have been detected in time-limited outbreaks in
Senegal14,15. Community and clinic-based studies of patients with fever
have revealed bacterial zoonoses are a common cause of ambulatory
febrile illness in Senegal, including tick-borne relapsing fever, Rick-
ettsioses, Q fever, and Bartonella16–21. However, no unbiased surveillance
of outpatient febrile illness has been done in Senegal to date.

This study aimed to determine and characterize causes of
ambulatory NMFI in Thiès, Senegal, a peri-urban community with
overall low malaria incidence where malaria transmission dynamics
have been deeply characterized22. We collected plasma samples from a
population of acutely febrile patients presenting to the Service de
Lutte Anti Parasitaire (SLAP) outpatient clinic and healthy controls
from the surrounding neighborhoods during the dry and rainy seasons
of 2018 and 2019. We aimed to provide insights on clinical presenta-
tions of NMFI that can guide providers at the point of care and geno-
mic characterization to inform the design of new detection tools for
clinical diagnosis and public health surveillance.

Results
Characterization of NMFI reveals viral, bacterial, and eukaryotic
pathogens
We first characterized the pathogens inplasma samples collected from
acutely febrile patients suspected of malaria and healthy controls
across the dry (febrile: n = 100, healthy: n = 54) and rainy (febrile:
n = 104, healthy: n = 50) seasons in 2019 using both untargeted and
targeted approaches (Supplementary Fig. 1a, Supplementary Fig. 1b).
All febrile patients received a malaria RDT; 39.4% (41/104) of patients
tested positive for malaria in the wet season and no cases were
detected in the dry season. Febrile cases were roughly equally split
between children and adults (54% ≥ 18 yrs). Age distribution was simi-
lar (p = 0.98, Mann–Whitney, two-sided) across case and control
groups, but there were more male febrile cases (Male: n = 111, Female:
n = 93) and more female controls (Male: n = 47, Female: n = 57, p =0.15
Fisher exact two-sided, Supplementary Fig. 1a).

We detected viral, bacterial, and eukaryotic pathogens by
sequencing. To detect viral pathogens, we performed RNA-mNGS. We
also evaluated the ability of RNA-mNGS to detect non-viral pathogens,
including malaria and fungi. To detect bacterial infections, we
sequenced the v1–2 region of the 16S rRNA gene, which permitted us
to classify the bacterial taxa present in sampleswith high bacterial load
[seemethods].We detected at least one pathogen in the plasma in 23%

(38/163) of RDT-negative acutely febrile patients and co-infections in
7% (3/41) of RDT-positive acutely febrile patients (Fig. 1b). The most
common febrile pathogen was Borrelia, which was found across the
dry (n = 8) and rainy (n = 10) seasons and in both RDT-negative (n = 17)
and RDT-positive (n = 1) patients.We also detected bacterial infections
with Rickettsia and Arcobacter (Fig. 1d). Bacterial pathogens found as
co-infections included two Borrelia/Rickettsia co-infections, two
Borrelia/Plasmodium co-infections, and three Plasmodium/Rickettsia
co-infections (Fig. 1e). We did not detect any viral/bacterial or viral/
Plasmodium coinfections.

We identified four known vertebrate viruses: Dengue virus
(DENV, n = 2), Hepatitis B virus (HBV, n = 2), Parvovirus B19 (n = 2),
and Human immunodeficiency virus 1 (HIV-1, n = 1) as well as a
human virus not currently believed to cause disease, Human pegi-
virus 1 (HPgV-1, n = 4) (Fig. 1c). Four febrile patients and one healthy
control exhibited a high proportion of fungal RNA reads in the
plasma, as compared to healthy controls (>99th percentile reads/
million raw reads (rpm) for healthy controls), but these reads did
not map to any specific fungal pathogen (Supplementary Fig. 2). We
did not detect any vertebrate viruses in healthy controls, but we did
detect Borrelia (n = 1/35 samples sequenced) and Rickettsia (n = 1/
35) (Supplementary Table 1).

RNA-mNGS identifies viral pathogens known to circulate in
Senegal
We next considered the genetic diversity of detected viral patho-
gens to determine their relationship to other circulating strains in
West Africa. Phylogenetic analysis of complete DENV, HBV, and
Parvovirus B-19 genomes indicated that in all three cases, the two
genomes were different genotypes and thus not closely related
(Supplementary Table 2). Notably, there was a DENV outbreak
across Senegal, including Thiès, in 2018. Whole genome phyloge-
netic analysis revealed the closest relatives to the 2019 DENV3
genome from this study were DENV3 genomes from patients pre-
senting to the SLAP clinic during that outbreak14 (Supplementary
Fig. 3a). Conversely, the DENV1 genome in this study was more
closely related to other genomes from West Africa than to the
DENV1 genomes from the 2018 outbreak (Supplementary Fig. 3a).
The HIV-1 genome could not be assembled or genotyped due to low
read count (mean coverage 0.2), but reads mapped across the
reference genome including in the gag, pol, and env genes.

While HPgV-1 is known to infect asymptomatic individuals across
the world, we only detected HPgV-1 in febrile patients. The prevalence
of HPgV-1 has not been well studied in Senegal; we found infection in
only 1.3% (4/307) of plasma samples sequenced, lower than the 4–11%
reported in blood-donor surveys from Sub-Saharan Africa23,24. All four
genomes were clustered with publicly available genomes from human
hosts in Sierra Leone, Uganda, and Cameroon and belonged to Gen-
otype I (Supplementary Fig. 3b), themost commonly circulatingHPgV-
1 genotype in West Africa25.

In order to identify divergent viral species missed at the read
level, we performed a translated nucleic acid search of de novo
contigs, which identified RNA-dependent RNA Polymerase (RdRp)
sequences for two candidate novel viruses, one in the Naranviridae
family and one in the Reoviridae family. We detected a Reoviridae
RdRp sequence across 18 febrile patients, 12 healthy controls, and 4
non-template controls, suggesting a likely contaminant (Supple-
mentary Fig. 4). However, given that Reoviruses have been isolated
from ill patients26, we further investigated these sequences. The
Reovirus RdRp sequences from this study clustered together but
were distant from mammalian Orthoreoviruses. Given the distance
from mammalian Orthoreovirus species and presence in non-
template controls, these sequences were likely from a con-
taminated reagent rather than true human infections. We also
identified a Narnaviridae RdRp sequence across 5 febrile patients
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and 1 healthy control (Supplementary Fig. 5), none of whom had any
other identifiable pathogen. Because viruses in the Narnaviridae
family, which infect plants and fungi, have not been reported as
human pathogens and we detected this novel Narnavirus species in
both febrile cases and a healthy control, the role of this virus in
disease, if any, is unclear.

Untargeted RNA sequencing detects Plasmodium cases
missed by RDT
If RNA-mNGS is to be employed as a tool for the diagnosis of febrile
illness in malaria-endemic regions, we also need to understand the
ability of RNA-mNGS to detect malaria as compared to clinical diag-
nostics.Weknow thatRDTshave limited sensitivity, detectonly certain
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Plasmodium species, and are susceptible to false negatives in geneti-
cally diverse parasites, so we evaluated our RNA-mNGS reads for evi-
dence of Plasmodium infections.

RNA-mNGS detected abundant Plasmodium nucleic acids
(>550 rpm) in 6.1% (10/163) of RDT-negative acutely febrile
patients and one healthy control (1/104), suggesting these were false
negatives. Among RDT positive patients, there was a wide range in the
abundance of Plasmodium reads (mean 1.7 × 104 rpm, range
1.5 × 102 − 2.6 × 105 rpm) (Supplementary Fig. 6a). Overall, 63% of RDT
positive patients (26/41) and 77% of smear-positive patients (17/22)
were also positive by untargeted RNA sequencing (>550 rpm) (Sup-
plementary Fig. 6c). In patients with detectable parasitemia by blood
smear examination, Plasmodium reads did not correlate strongly with
parasite density (Pearson’s R =0.49, Supplementary Fig. 6b).

In order to determine why 11 samples were negative by RDT but
positive by RNA-mNGS, we first confirmed the results with a pan-
Plasmodium qPCR. We found that 8/11 samples were positive by
pan-Plasmodium qPCR, and the cycle threshold (CT) correlated with
Plasmodium RNA-mNGS rpm (Supplementary Fig. 6d). Next, we
determined whether any samples belonged to species other than
Plasmodium falciparum, the target species of the RDTs, using both
RNA-mNGS reads and a P. falciparum-specific qPCR. As previous work
has demonstrated, Kraken2 is inaccurate for species-level classification
of parasites27; we used DIAMOND to identify one sample with a contig
(771 bp) that matched perfectly (100% nucleotide identity, 100% cov-
erage) to Plasmodium ovale cytochrome oxidase subunit 1 (Accession:
KP050416.1), suggesting a likely P. ovale infection. This sample was
positive on the pan-Plasmodium qPCR assay but negative on the
P. falciparum qPCR, confirming it as a case of non-falciparum malaria
(Supplementary Table 3, Supplementary Fig. 6e).

Additionally, we assessed expression levels of histidine-rich pro-
tein 2 (PfHRP-2), the target antigen of the RDTs used in this study.
Deletions in pfhrp2 have been detected in Senegal and demonstrated
to cause decreased antigen expression and consequently false nega-
tive RDT results28,29. The number of RNA-mNGS rpm aligned to pfhrp2
was significantly different between patients who were RDT positive
and RNA-mNGS positive (RDT+/mNGS+) and patients who were RDT
negative but Plasmodium RNA-mNGS positive (RDT-/mNGS+) (Sup-
plementary Fig. 6f, Mann Whitney two-sided, p =0.038). To assess for
the presence of deletions at common breakpoints, we amplified two
targets, one in exon 2 of pfhrp2 gene and one in a flanking gene, which
can also be included in deletions30. Amplification of both targets was
intact in all qPCR-confirmed P. falciparum infections (7/7, Supple-
mentary Fig. 6g), suggesting none of these parasites had deletions in
these targets consistent with the low frequency of pfhrp2 deletion in
Senegal, previously estimated at 2.4%29.

16S sequencing confirms a high burden of relapsing fever
Borrelia and spotted fever Rickettsia
As bacteria were the most common cause of NMFI in our 2019 study
population, we extended our 16S sequencing to detect bacterial
infections across the complete study population from 2018 to 2019
and further investigated the species causing the disease. Among all
high bacterial load samples that underwent 16S sequencing [see
methods], we detected Borrelia in 15.5% (33/213) and Rickettsia in 3.8%
(8/213) of febrile patients (Fig. 1d, Supplementary Fig. 7c). 16S
sequencing also identified other bacterial genera containing known
pathogens, including Brevibacterium, Arcobacter, and Veillonella,
across both years (Supplementary Fig. 7c). However, given the limited
taxonomic resolution of v1-2 16S sequencing, we were unable to
determine whether these sequences represented pathogenic species
or harmless commensals.

Phylogenetic clustering of Borrelia v1–2 16S sequences showed
that all Borrelia sequences from this study were similar to each other
and fell within the relapsing fever (RF) group, and the majority were

most similar to B. crocidurae (Supplementary Fig. 8a). RF Borrelia cir-
culate worldwide and are known to cause febrile illness in Senegal16–20.
TheRickettsial v1–2 16S rRNAgene sequences fromour study clustered
within the Spotted Fever group, most closely related to R. felis (Sup-
plementary Fig. 8c). Spotted fever Rickettsia, including R. felis21 and R.
africae17 have been previously detected in febrile Senegalese patients.

To validate the 16S v1–2 phylogeny, a subset of 6 Borrelia positive
samples were typed by amplicon sequencing of the 16S–23S intergenic
spacer (IGS)31. All sample sequences were Borrelia crocidurae, in
agreement with the 16S v1–2 phylogeny (Fig. 2c, Supplementary
Fig. 8b). Sequences from this study were more similar to published
sequences from humans and Ornithodoros sonrai in Southern Senegal
(unpublished), and Ornithodoros sonrai ticks in Mali32 than sequences
from Ornithodoros erraticus in Tunisia33 and Morocco34 (Fig. 2c).

Sensitive detection of Borrelia by 16S and RNA-mNGS
We assessed the ability of RNA–mNGS to detect bacterial infections
based on samples that underwent both sequencing methods. Bor-
relia RNA–mNGS reads were detected in 68% (13/19) of 16S positive
samples and 100% (17/17) of pan-Borrelia qPCR positive samples
(Supplementary Fig. 7i). Conversely, Rickettsia RNA–mNGS reads
were not detected in any Rickettsia positive samples. Acute RF
Borrelia infection is known to cause high titers of bacteria in the
blood during febrile episodes, while Rickettsia is an obligate intra-
cellular pathogen and, therefore, has low titers in the cell-free
plasma35. To assess the extent to which plasma titers impacted the
sensitivity of RNA-mNGS to tick-borne bacterial pathogens, we
quantified bacterial abundance by the percent of total v1–2 16S
sequences from a given sample classified as Borrelia or Rickettsia,
respectively11. We observed Borrelia abundances ranging from 5% to
98%, while Rickettsia abundances were lower, ranging from 5% to
16%. RNA–mNGS only detected Borrelia in samples with abundance
>20% (Supplementary Fig. 7f). Taken together, these data suggest
that plasma RNA-mNGS can detect high titer bacterial pathogens
but will miss less abundant intracellular species.

We compared the sensitivity of our 16S sequencing to qPCR and
Giemsa stained blood smear examination, the current gold standard
for clinical diagnosis of RF Borrelia36. We examined smears from a
subset of RF Borrelia patients. 28.6% (4/14) of examined smears were
positive; all 4 positive patients had a high RF Borrelia load (≥90%,
Mann–Whitney two-sided p = 0.002 compared to 16S positive/smear
negative) (Supplementary Fig. 7b, d). Although blood smear exam-
ination is the most widely used diagnostic, qPCR diagnostics are
known to have higher sensitivity36,37. Using a pan-Borrelia qPCR assay
previously used for the detection of Borrelia in patient blood
samples38, 79% (27/34) of Borrelia samples were confirmed by qPCR,
while six samples that were negative by 16S sequencing were positive
by qPCR. Bacterial load measured by qPCR and 16S abundance cor-
related well (Pearson’s R =0.72, Supplementary Fig. 7g). While 16S
sequencing was done only on a subset of samples, pan-Borrelia qPCR
was performed on all febrile cases and healthy controls in 2019 and all
febrile cases in 2018. An additionalfive cases ofBorreliawere identified
in febrile patients by qPCR in samples that did not undergo 16S
sequencing.

Borrelia infection presents similarly to other febrile illnesses but
can be distinguished by key features
We sought to assess the clinical syndrome associated with qPCR-
confirmed Borrelia infections, compared to RDT-confirmed malaria
and non-Borrelia NMFI (“other febrile”), to guide differential diagnosis
at the point of care. Borrelia infections occurred in a consistent pro-
portion of the study population in the two years (Fisher exact p =0.61)
and in both seasons (Fisher exact p = 0.24). Borrelia infections occur-
red across all ages (t-test compared to all other febrile p =0.45)
(Fig. 2b) and at similar rates in male and female patients (Fisher exact
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p =0.87), while male patients were more likely to test positive for
malaria (Fisher exact p = 1.6e − 7).

A high proportion of Borrelia-positive patients reported general-
ized symptoms thatwere common across all febrile patients, including
headache (100%), body aches (59%), and dizziness (46%), as reported
in previous studies of RF Borrelia (Fig. 3a)36. Borrelia infection was
distinguished by vomiting (49%), which was observed more often in
Borrelia-positive patients (stat = 2.8, p = 0.0026, Fisher Exact two-
sided). Borrelia-positive patients were less likely than other febrile
patients to report sore throats (7.7%, stat = 0.21, p = 0.0039, Fisher
Exact two-sided). Notably, RF Borrelia can invade the central nervous

system in severe cases; while we did not observe neurological symp-
toms such as seizures or loss of consciousness, one Borrelia-positive
patient reported eye pain, a potential symptom of neuroinvasive
infection not observed in any other febrile patients36,39. A high pro-
portion of Borrelia-positive patients reported contact with a febrile
person (38%), contact with rats (57%), and prior travel (32%), but these
exposures were common acrossmalaria and other febrile patients and
were not associated with Borrelia infection in particular (Fig. 3b).

Borrelia patients showed significant differences in temperature
and blood glucose. On average, Borrelia-positive patients had a higher
fever (mean = 38.6 °C, SD = 1.1 °C) than other febrile patients (mean =
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38.0 °C, SD = 1.0 °C, Mann–Whitney two-sided p =0.0011). Borrelia
patients (mean= 1.07 g/L, sd =0.19) were also hypoglycemic com-
pared toother febrile patients (Other febrile:mean= 1.22 g/L, sd = 3.97,
Mann–Whitney two-sided p = 1.204e −02) (Fig. 3c).

We assessed whether the addition of a complete blood cell count
with differential could help distinguish RF Borrelia from other febrile
diseases. Borrelia-positive patients exhibited abnormal blood
counts, including lymphopenia (mean 1.5 × 109 cells/L, std 1.04),
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Mann–Whitney–Wilcoxon two-sided test. Source data are provided as a Source
Data file.
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granulocytosis (mean 7.47 × 109 cells/L, std 4.23), and thrombocyto-
penia (148 × 109 cells/L, std 66) (Fig. 3d). However, this hematologic
response was not significantly different from the response observed in
other febrile patients. On a subset of patients, we measured 20 cyto-
kines and chemokines to further distinguish Borrelia from other
infections (Fig. 3e). Borrelia-positive patients were distinct from viral
infections in elevated CRP (Mann–Whitney two-sided, p = 0.030), IL-10
(p = 0.00038), and MIP-1Beta (p =0.0048) and decreased IP-10
(p = 0.00028), IFN-alpha (p =0.0022), and MCP-1
(p = 0.00038) (Fig. 3e).

Given the highly overlapping presentation of the disease, we
developed aweighted logistic regressionmodel to distinguish Borrelia
infection fromother NMFI based on clinical symptoms, vital signs, and
key demographic information. We evaluated the performance of the
model with bootstrapping and found the model was able to predict
Borrelia infection with high performance (recall: 0.861, 95% CI
[0.837–0.910], precision: 0.792, 95% CI [0.696–0.892], and F1-score:
0.823, 95% CI [0.766–0.900]) (Fig. 4a). The model identified features
that were significant in univariate analysis, including vomiting, tem-
perature, blood glucose, and sore throat. Common symptoms that
were observed across all febrile patients, such as headache, body ache,
and dizziness, were not useful predictors on their own but were
associated with an increased risk of Borrelia when evaluated in the
context of other symptoms and exposures. To test whether additional
laboratory tests might further increase the performance of the model,
we incorporated complete blood count with differential (CBC) values.
The addition of CBC values moderately increased model performance
(Supplementary Fig. 9), but the difference was not significant, and the
test dataset was small (n = 163). When blood biomarkers were incor-
porated, decreased platelet count was an important predictor of
Borrelia.

Discussion
In this study, we employed untargeted RNA–mNGS and targeted 16S
sequencing to understand the causes of acute febrile illness at an
ambulatory clinic in Thiès, Senegal. As the first unbiased investigation
of causes of fever in Senegal, our findings highlight the importance of
looking across many pathogen types simultaneously to understand
their contributions—both individually and as co-infections—to disease
and enable comparison of the strengths of genomic tools as well as
clinical and epidemiological data to support disease characterization.

Our results confirm that arthropod-borne bacterial pathogens,
particularly relapsing fever Borrelia, are the major identifiable causes
of NMFI but remain underdiagnosed. The frequency of these patho-
gens is broadly consistent with previous findings in targeted studies
from other regions of Senegal17–20. Borrelia spp. associated with human
and zoonotic infection have been identified in ticks across West
Africa16,36,40,41, but human surveillance has not been done.

Our broad approaches and sampling illuminated co-infections
andmissed diagnoses thatmay be clinically relevant. Both Borrelia and
Rickettsia occurred frequently as co-infections in our study. Borrelia/
Plasmodium co-infections have been previously detected in Senegal42,
andmurine model evidence suggests co-infection increases the risk of
severe malarial illness43. Rickettsia was detected more often as a co-
infection with Plasmodium (n = 3) or Borrelia (n = 2) than as a stand-
alone infection (n = 3). Plasmodium/R. felis co-infections have been
previously identified in Senegal44, and Anopheles gambaie, the primary
malaria vector in Senegal, may be able to transmit R. felis45. Alter-
natively, Labruna and Walker proposed that R. felis may not be a
pathogen itself but rather a symbiont of parasites that infect humans,
suchasprotozoa andhelminths35.WhetherRickettsia is contributing to
pathogenesis or simply co-transmitting in the Rickettsia/Plasmodium
co-infections detected in this study remains an open question. More
research is needed to understand the interactionbetween Plasmodium
and R. felis. Given the common occurrence of bacterial/Plasmodium
co-infections and the potential for negative outcomes without proper
treatment of both pathogens, it is important thatboth surveillance and
diagnostic approaches do not stop at detection of the first pathogen.

Despite using multiple methods and searching across kingdoms,
we did not find any pathogen in over 70% of NMFI cases in this study.
Although our enrollment criteria focused on suspicion of malaria,
many of these patients reported sore throat and difficulty breathing
(2019: 35%, 40/113) or abdominal pain (4.4%, 5/113). Given that only
cell-free plasma was sequenced, our approach may have missed
infections restricted to other body compartments, including the
respiratory tract and digestive tract, and may have limited our ability
to detect intracellular pathogens. Though we did detect some intra-
cellular pathogens (e.g., Rickettsia), we did not observe other intra-
cellular bacterial pathogens, particularly Salmonella spp., which are a
commoncause of febrile illness in hospitalizedpatients in Sub-Saharan
Africa12,13,46. Studies from elsewhere in Sub-Saharan Africa suggest a
lower incidence of bacteremia in outpatients consistent with our
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tion from other NMFI using clinical data, including demographics, symptoms,
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study12,47–49. however, we cannot rule out that other intracellular bac-
terial infections were present at low titers in the blood and, therefore
not detected by plasma 16S and RNA–mNGS. Additionally, fever can
persist beyond the acute viremic or bacteremic phase, limiting our
ability to detect the causative pathogen. Lastly, noncommunicable
diseases, such as cancer or autoimmune disease, can also cause fever.
In clinical samples, negative mNGS results are common, but it can be
difficult to determine whether these represent false negatives due to
limited sensitivity or true negatives7. As the burden of non-
communicable disease rises in West Africa50, the approach to diag-
nosing febrile illness must consider non-infectious etiologies.

Our results also demonstrate the difficulty of using RNA–mNGS to
detect pathogens with different nucleic acids and cellular composi-
tions, limiting our ability to do truly comprehensive surveillance.
Several of the bacterial infections in this study population, particularly
those with low abundance in the blood, were detected by 16S but
missed by RNA–mNGS. Similarly, we were not able to resolve putative
fungal hits to a suitable level of taxonomic resolution; to capture
fungal pathogens, extractionmethods should be optimized for lysis of
fungal cells, andmore targetedmethods such as ITS sequencing could
be used. We observed wide variations in the number of Plasmodium
reads among RDT-positive patients and a weak correlation with para-
site density, suggesting that factors beyond parasite burden affect the
number of reads recovered. There are also still many challenges in
interpreting RNA–mNGS data. In particular, RNA–mNGS is highly
susceptible to contamination, such as the novel Reoviridae RdRp
sequences we detected across febrile cases, healthy controls, and non-
template controls. This type of contamination, which likely differs
between sample types and labs, can only be evaluated when negative
controls are processed alongside samples51.

We find that combinations of clinical signs and symptoms can
increase suspicion for Borrelia and support targeting diagnostic test-
ing and clinical care. Due to the lack of available point-of-care tests,
many clinics in LMICs rely on malaria RDTs as the primary diagnostic
for febrile illness and may give blanket antibiotic treatment to RDT-
negative patients52. Concerns have been raised about this practice3,
including driving antibiotic resistance and exposing patients without
evidence of bacterial infection to unnecessary risks or side effects.
Even in patients with a bacterial infection, tetracycline antibiotic
treatment—the recommended therapeutic for Borrelia and Rickettsial
infections—poses the risk of Jarisch–Herxheimer reaction (JHR), a
severe inflammatory response to spirochete lysis53. Without accurate
diagnosis of spirochetal infections, including Borrelia, patients and
providers cannot effectively anticipate and monitor for this compli-
cation. We identify a number of clinical and immunological features
that could bolster support for a Borrelia diagnosis. Our weighted
logistic regressionmodel indicates that when larger study populations
and diverse data types are aggregated, Borrelia can be differentiated
from other NMFI with reasonable accuracy. The addition of laboratory
measures, such as CBC, did not substantially improve differential
diagnosis. Further, data from a subset of our study population sup-
ports the hypothesis that a chemokine panel including TRAIL, IP-10,
and CRP, previously employed for the detection of bacterial infections
in hospitalized children54, could apply more broadly and help distin-
guish bacterial infections such as Borrelia from other causes of febrile
illness in the ambulatory setting. However, none of these approaches
are currently actionable as point-of-care tests, and their lower preci-
sion would still necessitate confirmatory diagnostic testing.

The challenge of quickly and accurately differentiating Borrelia
infections underscores the need for improved diagnostics. The diag-
nostic gold standard forBorrelia remains themicroscopic examination
of blood smears, which is highly dependent on a trained practitioner
and has low sensitivity in our study and others36. Further, smears
cannot distinguish species. Louse-borne relapsing fever agent B.
recurrentis has a higher fatality rate and risk of JHR than tick-borne

relapsing fever species, but with smear alone, clinicians cannot dis-
tinguish which disease they are treating unless the history of vector
exposure is known. In LymeDisease,molecular surveillance has shown
that different species have different clinical presentations and
severities55. Species-specific surveillance at scale could reveal analo-
gous differences between relapsing fever Borrelia. Our study showed
that molecular methods, including 16S sequencing and mNGS, can
detect and distinguish Borrelia infections but are not practical in the
clinical setting. Increased availability of qPCR assays and improved
point-of-care nucleic acid diagnostics could enable the detection and
treatment of Borrelia across differently resourced clinical settings and
improve our understanding of the geographic range and diversity of
this pathogen.

Decreased malaria transmission coupled with changes in the
range and incidence of other pathogens—influenced in part by global
climatic changes—is shifting the burden of pathogens causing febrile
disease56. New technologies have greatly increasedour ability to detect
both established and emerging pathogens. Fully understanding this
landscape will require surveillance systems utilizing untargeted
approaches that have been validated for viral, bacterial, and eukaryotic
pathogens and diverse sample types. In tandem, for Borrelia and other
pathogens known to frequently cause NMFI, the development and
availability of diagnostic tests that are cheap, rapid and sensitivewill be
key to enable appropriate clinical treatment at the point of care and
support deeper investigations of the pathophysiology of disease.

Methods
Sample collection
We performed a cross-sectional study of febrile and healthy indi-
viduals. Febrile cases were selected from patients presenting to the
SLAP outpatient clinic in Thiès, Senegal, during the collection per-
iod under local IRB (SEN15/46) and Harvard IRB (IRB19-0023).
During times when the study personnel were onsite, all patients who
met the following inclusion criteria and gave consent were enrolled:
(1) Febrile symptoms within the 3 days up to and including the day
of presentation, (2) Age 2–75 years, and (3) Ambulatory with no
signs of severe malaria (glucose <2.2 mM, hemoglobin <5 gms/dL).
Healthy controls were recruited via a call for participants. All
volunteers who met the following inclusion criteria and consented
were enrolled: (1) No febrile symptoms within the 3 days up to and
including the day of presentation and (2) Age 2–75 years. In each
season, enrollment continued until approximately the desired
number of participants was reached. In order to detect pathogens
present at 1% or greater prevalence, we aimed for 200 febrile cases
and 200 healthy controls in each season in 2018. In 2019, to avoid
the overrepresentation of healthy individuals, we aimed for 100
febrile cases and 50 healthy controls in each season.

Informed consent was obtained for all enrollees (febrile and
healthy); for minors under 18 years of age or individuals unable to
provide their own consent, the consent of a parent or legal guardian
was obtained. The study team explained to potential participants that
their participation was strictly voluntary and that they could withdraw
from the study at any timewithout any penalties or consequences, and
translations weremade for potential participants (or their parent/legal
guardian) who do not understand or cannot read the language in
which the consent form was produced. A subset of DENV-positive
samples from 2018 were previously sequenced and published14 and
were excluded from this study other than being used as a viral out-
group in the chemokine/cytokine analyses. At the time of enrollment, a
structured interview including personal information, demographics,
and self-reported symptoms was completed, vital signs were mea-
sured, and blood was drawn by a trained practitioner. P. falciparum
RDT (Bioline Malaria Ag P.f., Abbott), thick blood smear, and thin
blood smear were performed, and blood glucose (HemoCue 201/301)
and hemoglobin (HemoCue Glucose 201) were measured.
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Sample processing
Blood samples were stored on ice upon collection (maximum 8h). In
the lab, blood samples were split into two aliquots. In total, 200 µl of
the first aliquot was used for an automated blood count with differ-
ential (Mindray BC 20 s), and 200 µL was used for a blood spot
(Whatmanfilter paper). The remaining aliquotwas centrifuged at 800×
g for 10min to separate plasma, buffy coat, and red blood cells. 140 µL
of plasma was transferred to a tube containing 560 µL of inactivation
buffer (AVL, Qiagen). The remaining plasma was stored without inac-
tivation. Red blood cells, buffy coat, plasma, and inactivated plasma
were flash-frozen and stored at −80 °C until further processing. Total
nucleic acids were extracted with Qiagen QIAmp Viral Mini RNA
according to the manufacturer’s protocol. Total nucleic acids were
split into two aliquots and treated with Lucigen RNAse I or Ambion
TURBO DNase to obtain purified DNA and RNA, respectively. DNA was
extracted from dried blood spots with QIAmp DNA Blood Mini Kit
(QIAGEN) according to the manufacturer’s protocol.

Untargeted RNA sequencing
Library preparation and sequencing. Untargeted RNA sequencing
libraries were prepared as described previously57. Briefly, cDNA
synthesis was performed from DNAse-treated RNA using random pri-
mers (Invitrogen) and SSIV. Libraries were prepared from cDNA using
Nextera XT (Illumina) and UD index primers (IDT/Illumina) with the
following modifications to account for low cDNA input: the volume of
ATM was decreased from 1 µL to 0.5 µL per 10 µL reaction and PCR
cycles were increased to 17 cycles. Libraries were purified using
AMPure XP (Agilent), quantified using KAPA Biosystems Universal
Library Quantification, and pooled equally for 75 bp paired-end
sequencingonNovaSeqSP toobtain at least 2million readsper sample.

Taxonomic classification of RNA–mNGS reads. Untargeted RNA
sequencing reads were processed using viral-ngs v2.1.33.16 (https://
github.com/broadinstitute/viral-ngs)58. Briefly, reads were demulti-
plexed, adapter sequences were trimmed, sliding-window quality fil-
tering was performed, and human reads were filtered out using the
viral-ngs demux_only [https://dockstore.org/workflows/github.com/
broadinstitute/viral-pipelines/demux_only:master] and classify_single
[https://dockstore.org/workflows/github.com/broadinstitute/viral-
pipelines/classify_single:master?tab=info] workflows. Cleaned reads
wereuploaded toNCBI SRAunder BioProjectPRJNA662334 (Accession
numbers: SRR24622550-SRR24622641, SRR24995052-SRR24995258).
Sampleswith insufficient reads (<2million)were removed from further
analysis (n = 1, SHC1064, Accession: SRR24995248).

Taxonomic classification of human-depleted reads was per-
formed using Kraken259 with the PlusPF database (https://
benlangmead.github.io/aws-indexes/k2, downloaded 12-13-2022).
Kraken2 results were thresholded to consider only viral genera with at
least 5 reads/million raw reads. Results were filtered to remove viral
taxa detected in non-template controls (at least one non-template
control) and healthy patients (at least 2 healthy patients). Further, viral
genera with non-vertebrate hosts were filtered out.

To verify Kraken2 classifications, we performed a protein-
sequence similarity search using DIAMOND v2.0.1560. Cleaned, de-
duplicated reads were used for de novo contig assembly with SPAdes
andDIAMOND-blastxwas run on all de novo contigs >100 bp longwith
the complete nr database (downloaded December 2022). The least
common ancestor of the top e-value hits was identified using a custom
script (lakras/bio-helper-scripts/blast/retrieve_top_blast_hits_LCA_for_-
each_sequence.pl). A classification was considered verified by DIA-
MOND if the cumulative length of contigs with a high identity match
(mean identity of top e-value hits ≥ 95%) to the expected viral genus
was at least 1 kb. After DIAMOND-blastx verification, raw reads were
aligned to the NCBI Virus RefSeq and assessed for evenness and depth
of coverage.

To assess for the presence of divergent viral taxa that are not well
represented in the database and may be missed by Kraken2,
DIAMOND-blastx results were filtered for viral hits with low identity
(20–80% amino acid identity). Results were filtered for viral families
with a per-sample cumulative de novo contig length ≥ 500bp. Narna-
viridae and Reoviridae sequences were aligned with all available RdRp
sequences for each family in nr using MAFFT v1.5.0 and trimmed with
trimAl61. Maximum likelihood phylogenetic trees were generated in IQ-
TREE v1.6.1262 with bootstrapping (n = 1000) and visualized in FigTree
v1.4.463.

Viral genome assembly and phylogenetic analysis. For virus-
positive samples, reference-guided de novo assembly was performed
using viral-ngs v2.1.33.1658 assemble de novo workflow [https://
dockstore.org/workflows/github.com/broadinstitute/viral-pipelines/
assemble_denovo:master?tab=info]. The NCBI Virus RefSeq, as well as
any >80% complete genomes available fromSenegal, were provided as
references. For samples with near-complete or complete (>80%) gen-
omes, genotype was determined with GenomeDetective (https://www.
genomedetective.com/, DENV, HBV) or by the phylogenetic tree
(Parvovirus B-19, HPgV-1). Phylogenetic trees were generated with all
>80% complete references from Africa downloaded fromNCBI viruses
(DENV1, DENV3, HBV), or all global >80% complete genomes available
in NCBI virus (Parvovirus B-19, HPgV-1). Sample sequences and refer-
ence sequences were aligned using MAFFT v1.5.0 v7, and alignments
were trimmed with trimAl v1.4.rev15 to remove any bases with cover-
age in <80% of sequences. Maximum likelihood phylogenetic trees
were generated in IQ-TREE v1.6.12 with a GTR-gamma substitution
model and bootstrapping (n = 1000). Visualizations were generated
with FigTree v1.4.463.

Plasmodium RNA–mNGS analysis. In order to quantify Plasmodium
rpm, the number of reads classified as Plasmodium at the genus level by
Kraken2 was divided by the raw read count in millions. The cut-off for
considering a sample positive for PlasmodiumbymNGSwas determined
by calculating the 99th percentile for healthy control samples, 550
Plasmodium rpm. Cleaned deduplicated reads were aligned to the P.
falciparum pfhrp2 [https://plasmodb.org/plasmo/app/record/gene/
PF3D7_0831800] with the viral-ngs align_and_count workflow [https://
dockstore.org/workflows/github.com/broadinstitute/viral-pipelines/
align_and_count_multiple_report:master].

Fungal RNA–mNGS analysis. In order to detect possible fungal
infections, we calculated the rpm classified as Fungi by Kraken2 at the
kingdom level and determined the 99th percentile for healthy con-
trols, 3399 rpm.We identified 5 samples (4 febrile, 1 control) with high
fungal reads. We attempted taxonomic classification of these reads
with Kraken2 at the genus level and sawhits acrossmultiple genera for
many samples (Supplementary Fig. 2b). To try to improve fungal
classification,weperformedanucleic acid searchof all de novo contigs
from these 5 samples with megablast against nt (Supplementary
Fig. 2b) and a translated nucleic acid search with DIAMOND-blastx (as
described above). For both searches, we found the least common
ancestor of the top hits (as described above) and filtered hits in the
kingdom Fungi (taxid: 4751) with >90% identity and >30% coverage.

PCR and qPCR assays
All qPCRs were performed on the QuantStudio 6 Flex ReadTime PCR
(Applied Biosystems). Primer sequences and sources are described in
Supplementary Table 4. All qPCRs were performed with a standard
curve using a synthetic DNA standard (see Supplementary Table 5).
Samples were tested in triplicate and considered positive if all three
wells had a cycle threshold of less than 40.

Total bacterial load was quantified from extracted plasma DNA
with primers targeting the V1–2 regionwith Power SYBR Green PCR
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MasterMix (Thermo Fisher) under the following conditions: 300nM
each V1–2-F/R primer, 95 °C hold for 10min, 40 cycles of 95 °C for 15 s,
50 °C for 1min, 75 °C for 30 s. Pan-Borrelia qPCR was performed on
DNA extracted from plasma with Power SYBR Green PCR MasterMix
(ThermoFisher) under the following conditions: 400nMeachBorrelia-
F/R primer, 95 °C hold for 10min, 40 cycles of 95 °C for 15 s, 60 °C for
1min. Pan-Plasmodium qPCR was performed on DNA extracted from
dried blood spots (DBS) with Power SYBR Green PCR MasterMix
(ThermoFisher) under the following conditions: 600nM each Spp-F/R
primer, 95 °C hold for 10min, 40 cycles of 95 °C for 15 s, 60 °C for
1min. Plasmodium falciparum specific qPCR was performed on DNA
extracted from DBS with TaqMan Fast Advanced Master Mix (Applied
Biosystems) under the following conditions: 450nM each Fal-F/R pri-
mer and 125 nMFal probe, 95 °C hold for 20 s, 40 cycles of 95 °C for 1 s,
60 °C for 30 s on the fast setting.

Amplification of pfhrp2 exon 2 was performed on DNA extracted
from DBS with Q5 HighFidelity 2× Master Mix (NEB) under the fol-
lowing conditions: 500nM each Pf3D7_0831800-F/R primer, 98 °C
hold for 30 sec, 40 cycles of 98 °C for 10 s, 60 °C for 30 s, 72 °C for 30 s,
followed by 72 °C hold for 2min. Amplification of the flanking gene
was performed with Q5 HighFidelity 2× Master Mix (NEB) under the
following conditions: 500nM each Pf3D7_0831700-F/R, 98 °C hold for
30 s, 40 cycles of 98 °C for 10 sec, 64 °C for 30 s, 72 °C for 30 s, fol-
lowed by 72 °C hold for 2min. PCR products were visualized on E-Gel
EX 2%Gel (ThermoFisher)with the E-Gel 1 kbplusDNA ladder (Thermo
Fisher), and images were captured with FluorChem E imager
(ProteinSimple).

16S sequencing
Library preparation and sequencing. Samples with high bacterial
load (V1–2 qPCR CT < 31.5) were selected for 16S sequencing (2019:
febrile n = 129, healthy n = 35, 2018: febrile n = 84). Libraries were
generatedby amplificationwith taileduniversal primers Tail-V1–2F and
Tail-V1-2R (Supplementary Table 4) targeting variable regions 1–2.
Amplification was performed on 5 µl of RNAse-treated DNA using Q5
high fidelity polymerase (NEB) with forward and reverse primers at
100nM each with the following cycling conditions: 98 °C for 30 s; 35
cycles of 95 °C for 15 s and 63 °C for 2min, 4 °C hold. PCR products
were cleaned using Ampure XP (Agilent) with a 0.7× ratio to remove
primer dimers. Adapters and barcodes (BroadDuplex Seq) were added
with a second PCR reaction using Q5 polymerase and the following
cycling conditions: 98 °C for 30 s; 18 cycles of 95 °C for 15 s, 60 °C for
15 S, 72 °C for 30 S, followed by 72 °C for 5min, 4 °C hold. A subset of
libraries was visualized with hsDNA BioAnalyzer (Agilent), and all
libraries were quantified with KAPA Biosystems Universal Library
Quantification Kit before pooling equally across samples and 250 bp
paired-end sequencing on Illumina MiSeq v2 with 40% PhiX, given the
low diversity of the single-amplicon library.

Analysis. Sequencing reads were demultiplexed using viral-ngs
v2.1.33.1658, and demultiplexed FASTQ files were imported into
qiime2 v2022.2.064 for further analysis. Demultiplexed reads were
uploaded to NCBI SRA under BioProject PRJNA662334. Briefly, after
sliding window quality filtering and adapter trimming with cut-adapt
(minimum-length 20), paired readswere joinedwith vsearch (tuncqual
15, minlen 35, minovlen 10, maxdiffs 3), and ASVs were generated with
Deblur (trim-length 280). ASVs were taxonomically classified by blastn
search of ASV sequences against the NCBI 16S rRNA db (downloaded
June 2023). The least common ancestor of the top e-value hits was
determined using a custom script (lakras/bio-helper-scripts/blast/
retrieve_top_blast_hits_LCA_for_each_sequence.pl). Results were fil-
tered to include onlyASVs that had identity≥94.5% to the closest hit, as
this has been proposed as a rational cutoff for 16S rRNA diversity
within genera65. Abundance was calculated by dividing the number of
ASVs in each genus by the total number of ASVs in each sample.

Abundance data was filtered to show only taxa accounting for greater
than 5% of ASVs. Taxa detected in non-template controls (n ≥ 1) and
healthy controls (n ≥ 2) were filtered out.

For Borrelia and Rickettsia positive samples, sample ASVs were
aligned with MAFFT v1.5.066 (Geneious v2022.0.2) with curated con-
textual sequences for relapsing fever Borrelia spp. and Rickettsia spp.
known to infect humans. When available for a given species, the high-
quality 16S sequencing from the NCBI 16S rRNA BioProject [https://
www.ncbi.nlm.nih.gov/bioproject/33175] was used. For species not
included in the NCBI 16S rRNA BioProject, all available sequences from
the SilvaNRRef small subunit database were downloaded, sequenced
with complete coverage of the v1–2 region were selected, and a
representative sequence was selected randomly for each species.
Alignments were trimmed manually in Geneious v2022.0.2 to include
only the v1–2 region, and amaximum-likelihood phylogenetic tree was
generated using IQ-TREE v1.6.12 with bootstrapping (n = 1000) and
annotated with FigTree v1.4.463.

IGS sequencing
The intergenic spacer (IGS) region was amplified using a nested-PCR.
First, the regionwas amplified from 5uL of extractedDNAwith primers
targeting the IGS region (IGS-outer F/R, see Supplementary Table 4)
using Q5 polymerase and the following cycling conditions: 98 °C for
30 s; 35 cycles of 94 °C for 30 s, 66 °C for 30 S, 74 °C for 60 s, followed
by 74 °C for 2min, 10 °C hold. After a 0.75× AMPure XP cleanup to
remove excess primer, a nested PCRwasperformed (IGS-inner F/R, see
Supplementary Table 4) using Q5 polymerase and the following
cycling conditions: 98 °C for 30 s; 30 cycles of 94 °C for 30 s, 67 °C for
30 S, 74 °C for 60 s, followed by 74 °C for 2min, 10 °C hold. Amplified
product was cleaned with AMPure XP (0.75×), visualized with BioA-
nalyzer TapeStation and bi-directional Sanger sequencing was per-
formed (Azenta). Paired Sanger sequencing traces were analyzed in
Geneious v2022.0.2 to generate a consensus sequenced and aligned
with all available reference sequences for B. crocidurae, B. duttonii, and
B. recurrentis usingMAFFT v1.5.0. Amaximum-likelihood phylogenetic
tree was generated using IQ-TREE v1.6.12 and annotated with FigTree
v1.4.463.

Blood smear examination
Thick and thin blood smears were fixed with methanol and stained
with 3mL10%Giemsa for 10min. Stained smearswere examinedunder
a brightfield microscope for evidence of Borrelia. Slides were first
scanned at low (40×) magnification and then at high (100×) magnifi-
cation with oil immersion to quantify organisms per field (repre-
sentative image, Supplementary Fig. 7b).

Serology
We assessed levels of common cytokines and chemokines using the
Luminex platform on plasma from a subset of patients and controls.
Specifically, we selected 10 healthy controls and 30 cases representing
10 each with a confirmed diagnosis of; malaria (based on malaria RDT
administered at enrollment), Borrelia (based on pan-Borrelia qPCR38),
or viral infection. Samples with a viral infection were all confirmed to
haveDengue virus and are a subset of those cases previously described
elsewhere14. Cases were selected randomly within those meeting each
criteria. All samples were collected in 2018. We used the Inflammation
20-Plex Human ProcartaPlex™ Panel (Invitrogen) according to the
manufacturer’s instructions. Two of the assays (IFN-gamma and GM-
CSF) did not generate results due to errors during data collection. We
additionally performed a 2-plex assay forHumanCRP andTRAIL (using
CRP and TRAIL ProcartaPlex™ simplex kits from Invitrogen); two
markers previously found to differentiate bacterial infections in hos-
pitalized children54, as these were not included on the predefined
panel. All samples were run in duplicate on a Luminex MAGPIX®
instrument in Senegal. We confirmed that standards showed the

Article https://doi.org/10.1038/s41467-024-44800-7

Nature Communications |          (2024) 15:747 10

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA662334
https://www.ncbi.nlm.nih.gov/bioproject/33175
https://www.ncbi.nlm.nih.gov/bioproject/33175


expected values and calculated the average across duplicates, which
we reported in the text.

Multivariate model
Wedeveloped aweighted logistic regressionmodel that considered 46
candidate predictors based on clinical symptoms, vital signs, and key
demographic information to predict Borrelia infection. Before mod-
eling, the dataset underwent the following preprocessing steps:
imputation of missing values with the Multivariate Imputation by
Chained Equations (MICE) algorithm from the fancyimpute67 Python
library, one hot-encoding of categorical features, and standardization
of continuous features using the StandardScaler from the scikit-learn
library. Given that normal heart rate varies significantly with age, heart
rates were binned and treated as a categorical variable. Heart rate
categories were high, low, or normal based on the Pediatric Advanced
Life Support guidelines as follows: for ages 3–5, normal range of
80–120; ages 6–11, normal range of 75–118; for age 12+, normal range
60–10068.

The sample size was relatively small, with 526 patients and only 38
q-PCR-confirmed cases of Borrelia infection. Given this inherent class
imbalance in the dataset, a combination of techniques was employed
to address this challenge. The Synthetic Minority Oversampling
Technique (SMOTE) was applied to generate synthetic samples for the
minority class (q-PCR confirmed Borrelia case)69. This technique miti-
gates class imbalance by interpolating between existing samples and
creating synthetic instances of the minority class. During model
training, class weights were also applied to adjust the influence of each
class. The class weights were inversely proportional to the class fre-
quencies, with higher weights assigned to the minority class.

A logistic regressionmodel was chosen for its interpretability and
ability to estimate the probabilities of class membership. After a uni-
variate screening for statistically significant predictors using a chi-
squared test (p-value < 0.05), several Feature Selection techniques
were applied to construct the final set of predictors in the model.
Before training the model, feature importance was assessed using a
combination of three different feature selection methods; mutual
information classification70, Recursive Feature Elimination71, and Lasso
L1 regularization72,73 to ensure consistent elimination of redundant
variables. The selected features were used in the finalweighted logistic
regression model to analyze the performance of Borrelia prediction.
The regularization parameter from Lasso was tuned using cross-
validation of different alpha values, and the best alpha value was used
to train the final model and evaluate its performance on the test set.

Model performance was evaluated with bootstrapping and five-
fold cross-validation to quantify optimism and generalizability. The
optimism-corrected metrics include F1-score, precision, recall, area
under the ROC curve (AUC-ROC), and area under the precision-recall
curve (AUC-PR). Odds ratios and their corresponding confidence
intervals for all the model coefficients were calculated to assess the
impact of predictor variables on the odds of the outcome. All pre-
dictive analyses were conducted using the Python programming lan-
guage. The scikit-learn library was utilized for preprocessing, model
training, and evaluation. Statistical analyses and visualization of odds
ratios and confidence intervals were done using the R statistical
package.

Inclusion and ethics statement
This study was designed, implemented, and analyzed in close colla-
boration between US-based researchers and Senegalese researchers at
Cheikh Anta Diop University/CIGASS, the SLAP outpatient clinic, and
the National Malaria Control Program. All study team members are
included as authors, and their contributions are detailed in the CRediT
statement. The protocol was approved by the Harvard IRB as well as
the IRB of the Ministry of Health in Senegal, and all co-authors who
worked directly with samples in Senegal or the U.S. received

appropriate biosafety training. Sequencing and analysis were con-
ducted at the Broad Institute due to the higher capacity for high-depth
sequencing. Sample aliquots are stored at both CIGASS and the Broad
Institute, and all sequencing data and sample-associated data are
accessible to study teams at both locations. Relevant research from
other local teams is cited as appropriate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA–mNGS short read sequence data and 16S v1–2 amplicon sequence
data have been deposited in NCBI’s SRA databases under BioProject
PRJNA662334. Viral genomes have been deposited in NCBI’s Genbank
(see Supplementary Table 2 for BioSample identifiers). Source data are
provided in this paper.

Code availability
The Python source code for themultivariate Borrelia predictionmodel
is available at github.com/colabobio/borrelia-diagnosis-prediction-
models. The custom scripts used to retrieve the least common
ancestor of top blast/DIAMONd hits are available at lakras/bio-helper-
415 scripts/blast/retrieve_top_blast_hits_LCA_for_each_sequence.pl.
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