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Machine learning-based high-frequency
neuronal spike reconstruction from low-
frequency and low-sampling-rate recordings

Nari Hong 1,2, Boil Kim 3, Jaewon Lee1,2, Han Kyoung Choe3,
Kyong Hwan Jin 1,4 & Hongki Kang 1,2

Recording neuronal activity usingmultiple electrodes has been widely used to
understand the functional mechanisms of the brain. Increasing the number of
electrodes allows us to decode more variety of functionalities. However,
handling massive amounts of multichannel electrophysiological data is still
challenging due to the limited hardware resources and unavoidable thermal
tissue damage. Here, we present machine learning (ML)-based reconstruction
of high-frequency neuronal spikes from subsampled low-frequency band sig-
nals. Inspired by the equivalence between high-frequency restoration and
super-resolution in image processing, we applied a transformer ML model to
neuronal data recorded from both in vitro cultures and in vivo male mouse
brains. Even with the x8 downsampled datasets, our trainedmodel reasonably
estimated high-frequency information of spiking activity, including spike
timing, waveform, and network connectivity. With our ML-based data reduc-
tion applicable to existing multichannel recording hardware while achieving
neuronal signals of broad bandwidths, we expect to enable more compre-
hensive analysis and control of brain functions.

Multichannel recordingof neuronal activity is the key tobrain-machine
interfaces (BMIs), enabling the decoding of motor intentions or brain
functional connectivity1–3. Extracellular signals such as spikes and local
field potentials (LFPs) recorded bymultiple implanted electrodes have
been used for BMI technologies. Recent advancements in neural
recording hardware have focused on increasing the number of simul-
taneous recording electrodes to obtain richer information for detailed
network analysis4–7. The more electrode data we record, the wider
variety of functions we can classify for the precise associated opera-
tion. Simultaneously, numerous efforts have been made to implement
untethered and wireless data transfer for efficient long-term implan-
tation of recording systems8. With these efforts, a wireless device has
been demonstrated to show real-time operation in implanted
primates9. Despite these advances, current BMI technologies have

limitations in processing large amounts of neural data. Most BMI sys-
tems adopt single-unit spiking activity for enhanced decoding per-
formance; however, in order to capture individual spikes that typically
occur in a millisecond timescale, the recording instrument needs a
sampling rate of at least 10 kHz or higher. Moreover, higher numbers
of electrodes require larger storage memory and induce higher power
consumption in recording and wireless communication, resulting in
significant heat dissipation. Such heating should be avoided in
implantable BMIs because it can cause thermal damage to surrounding
biological tissues, especially for CMOS-based active neural probes that
multiplexing electronics are integrated into the probe shank5 or for
wireless neural sensors that are fully implanted10–12.

To ease these constraints by reducing the recording data
volumes, several techniques to lower data samplings such as adaptive
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sampling13,14, compressed sensing15, spiking-band power-based
decoding16, downgrading signal qualities17, on-chip compression18,19,
and on-chip spike detection20 have been suggested. While these
approaches have shown promising results in significant data reduc-
tion, their applications in advanced BMIs are still limited. Broader
bandwidths of neuronal signals, not only high-frequency band spikes
but also lower-frequency band signals such as LFPs, strongly correlate
with brain functions that are essential for BMIs21. In addition, recent
techniques using LFPs alone or in combination with spikes have been
proposed to compensate for the major limitations of spike-based
BMIs: the difficulty of consistent long-termmeasurement and the need
for high-sampling recording22–25. However, the existing data reduction
algorithms are designed to focus primarily on spiking activities,
thereby challenging to apply to lower-frequency signals and providing
limited information. Moreover, existing approaches often require
custom-designed recording hardware for on-chip signal pre-
processing before data transmission, such as encoders for imple-
menting individual algorithms or additional circuitries for detecting
spikes by identifying threshold-crossing events or characterizing spike
waveforms and for converting spikes into binary form. This also limits
universal applicability to state-of-the-art BMI technologies. Therefore,
there is a strong need to develop a neural data reduction algorithm
that is universally applicable without constraints on signal types and
compatible with common recording hardware.

In this work, we present a machine learning (ML) framework for
reconstructing high-frequency neuronal spikes from subsampled low-
frequency signals (Fig. 1). Our approach can reduce neural recording
data volume through low-pass filtering and simple downsampling of
acquired neuronal signals. Feeding this downsampled low-passfiltered
(LPF) data into an ML model combined with signal interpolation can
restore high-frequencyneuronal signalswith high temporal resolution.
It enables recording data reduction while simultaneously obtaining
neuronal signals of broad bandwidths. We hypothesized that the ML
models introduced for the image super-resolution task,which recovers
high-quality images from low-resolution images by restoring high-
frequency details26, can fit into our spike restoration problem. To test
this hypothesis, we leveraged a transformer, one of the state-of-the-art
MLmodels for image super-resolution, to build a spike reconstruction
ML model named Spk-Recon that uses subsampled low-frequency
neural recording data as an input. We applied the Spk-Reconmodel to
multichannel neural recording datasets from in vitro hippocampal
neurons and in vivo mouse brains. Through conventional quantitative
spike analyses for timing and waveform, we demonstrated that our

Spk-Reconmodel could reconstruct accurate spikes from significantly
downsampled low-frequency neuronal signals, with a hit rate of spike
occurrence approaching 0.8−0.9 and a clustering accuracy of spike
sorting over 96%.

Results
ML framework for high-frequency neuronal spike
reconstruction
The pipeline of our proposed approach for neuronal spike recon-
struction is as follows:multichannel neural recording of low-frequency
signalswith low temporal resolution (Fig. 1a) andML-based restoration
of high-frequency spikes with high temporal resolution (Fig. 1b). First,
neuronal data is collected under in vitro or in vivo conditions, and
lower frequencyband signals with the reduced resolution are obtained
through low-passfiltering and sampling at a low sampling rate (Fig. 1a).
These low-frequency signals contain typical frequency components of
LFPs; it is possible to apply fundamental spectral analyses to the
acquired datasets for characterizing brain dynamics. To realize the
neural recording of low-frequency and low-resolution signals, we
measured electrical signals, sampled at 25 kHz, from in vitro rat hip-
pocampal cultures using a planar microelectrode array (MEA) and
in vivo mouse brains using a penetrating depth probe. The recorded
signals were passed through a fourth-order Butterworth low-pass filter
(cutoff frequencyof 200Hz) and then subsampledby apredetermined
downsampling factor (M in Fig. 1a: 1, 8, 16, or 25). Here, we recorded
neuronal signals with a wide frequency range at a high sampling rate
and then filtered and subsampled them to obtain downsampled LPF
inputs for the ML model. This was intended to get the corresponding
high-frequency and high-sampled ground truth (GT) signals for model
training and reconstruction performance assessment. The actual
situation in which we apply the model would be recording low-
frequency signals at a low sampling rate.

Next, the acquired low-frequency and low-resolution data is fed
into an ML model, Spk-Recon, based on a transformer architecture to
reconstruct high-frequency and high temporal resolution neuronal
signals (Fig. 1b). Themain difference from previous transformer-based
works for image super-resolution is that our approach has a pre-
interpolation process before putting the data into themodel. This is to
enhance the resolution of the downsampled LPF signals to a desired
higher temporal resolution, which will be the output resolution. Lastly,
high-frequency, high-resolution neuronal signals are predicted by
forwarding the pre-interpolated signals to the Spk-Recon model.
Detecting spikes in these output signals allows classical spike train

Fig. 1 | Reconstruction of high-frequency neuronal spikes from downsampled
low-frequency band datasets using a machine learning model. a Multichannel
neural recording of low-frequency (Low freq. band) signals with low temporal
resolution (Low res.). The low-pass filter used is a fourth-order Butterworth filter,

which is realistic. b Machine learning (ML)-based restoration of high-frequency
(High freq. band) spikes with high temporal resolution (High res.). The pre-
interpolation is performed by the Fourier method27. The Spk-Recon ML model is
based on a Swin transformer28,29.
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analyses such as spike rate, sorting, and functional connectivity. To
implement these processes, we first interpolated the downsampled
LPF datasets via the Fourier method27. The interpolation factor (L in
Fig. 1b) was set equal to the downsampling factor (M in Fig. 1a) so that
the temporal resolution of the final reconstructed signals through the
model was the same as that of the original high-sampled signals before
thedownsampling inFig. 1a. The restoredoutputswere comparedwith
high-frequency GT spikes measured at the high sampling rate to
evaluate the performance of our proposed framework.

The model architecture of the Spk-Recon is based on an image
restoration transformer model, SwinIR28, consisting of the multi-head
self-attention-based Swin transformer29 (Fig. 2). In the SwinIR, illu-
strated in Fig. 2a, the downsampled LPF signal (low-resolution data) is
directly sent to themodel as an input, and its resolution is increased by
an upsampling block at the end of the model network. On the other
hand, in our Spk-Recon, the temporal resolution of the downsampled
LPF signal is enhanced in advance via the pre-interpolation process,
and then the interpolated input is fed into themodel. Thus, as depicted
in Fig. 2b, unlike the SwinIR, the Spk-Recon comprises consecutive
residual Swin transformer blocks (RSTBs) without a layer for upsam-
pling. In addition, we devised a window selection method of model
training focusing on neuronal spikes for improved reconstruction
performance: spike-focusedwindowselection (SFWS) (Fig. 2c). Spiking
events generate within a short period (about a few ms) and occur
sparsely. For this reason, if a training batch is randomly selected,many
windows would not contain spikes, resulting in inefficient learning of
the spike features. To achieve a more accurate restoration of spike
information, half of each training batch was selected around spikes so
that the windows (5.12ms) always contain at least one spike, as shown
in Fig. 2c. The details of network architecture andwindow selection are
described in the Methods.

Evaluation of Spk-Recon on in vitro neuronal datasets
To demonstrate the spike restoration ability of the Spk-Recon model,
we applied the Spk-Recon to an in vitro neuronal dataset. Spontaneous

electrical activities from in vitro rat hippocampal cultures were
recorded using two MEAs, namely MEA1 and MEA2, with a sampling
rate of 25 kHz (Fig. 3a and Supplementary Fig. 1). All signals were fil-
tered by a low-pass filter (zero-phase fourth-order Butterworth filter,
cutoff frequency of 200Hz), followed by subsampling (M: 1, 8, 16, or
25). The downsampled LPF signals were re-upsampled using the
Fourier method by the same factor (L=M) to obtain interpolated
inputs for the Spk-Recon. In implementing our algorithm, the com-
putation time for this pre-interpolation wasmuch shorter than that for
signal reconstruction from the Spk-Recon model (pre-interpolation:
0.09ms vs. signal reconstruction: 36.29ms; mean computation time
over 300 repetitions for a single data sequence with a downsampling
factor of 8), having little impact on total running time. The original
high-sampled recording signals were high-pass filtered (HPF) with a
200Hz cutoff frequency and were used as the GTs of spike recon-
struction. For model training, signal pairs of LPF inputs and HPF GTs
from 100electrodes of theMEA1wereutilized. Those from theother 13
electrodes of the MEA1 and 16 electrodes of the MEA2 were applied
only for evaluation.

We first restored high-frequency and high-resolution signals from
LPF input signals of the MEA1 using the SwinIR and Spk-Recon with
different downsampling factors. As shown in the representative raw
traces of a single electrode in Fig. 3b, both ML models successfully
reconstructed all the voltagefluctuations, including spiking events and
even noise signals, in both timewindows exhibiting burst behavior and
tonic firing. The overall signal amplitudes decreased as the down-
sampling factor increased in both models. Figure 3c presents the
average waveforms of the correctly restored spikes detected from the
same electrode for each downsampling factor. Neuronal spikes were
detected by setting the threshold of –6 standard deviation (SD) of the
noise level of the GT signal. Among the reconstructed spikes, the spike
timestampswithin ±500μs ofGT spike timestampswereconsidered to
be correctly restored in timing. The average waveforms of the two
models shifted proportionally to the downsampling factor, but the
outputs of the Spk-Recon were much less distorted than those of the

Fig. 2 | Schematics of Spk-Recon model architectures and training. a SwinIR
model architecture for the downsampled low-pass filtered (LPF) input signal. Conv:
convolutional layer.b Spk-Reconmodel architecture for the interpolated LPF input

signal. RSTB residual Swin transformer block. c Spike-focusedwindow selection for
model training. The window size W of the Spk-Recon was set to 128 data points,
which is 5.12ms.

Article https://doi.org/10.1038/s41467-024-44794-2

Nature Communications |          (2024) 15:635 3



SwinIR. In particular, there was no time delay of spike timestamps in
the case of the Spk-Recon waveforms in Fig. 3c up to the down-
sampling factor of 16. For the multiple electrodes of the MEA1, the
mean time delays of spike timestamps were –7.39 ± 2.05μs,
10.80 ± 5.22μs, 23.88 ± 23.08μs (mean ± SD, n = 13 electrodes) for
downsampling factors of 1, 8, and 16, respectively, which were smaller
than the sampling period (40μs) of the high-resolution signals.

We next applied the Spk-Recon on the MEA2 dataset, which was
not used for the model training, to see if the spikes restoration could
be done at a different neuronal culture. In addition, we also compared
the performance of our transformer-based model against convolu-
tional neural network (CNN)-based models: a temporal convolutional
network (TCN)30 and an enhanced deep super-resolution network
(EDSR)-Baseline31. Figure 4a shows representative reconstructed sig-
nals using four different ML models with a downsampling factor 16.
Among the models, the Spk-Recon restored the most accurate spikes
in occurrence times and waveforms. To quantify the spike recon-
struction performance, we calculated a hit rate of detected spikes and
a normalized root mean square error (NRMSE) of the waveforms. The

hit rate is defined as the ratio of the number of correctly restored
spikes (true positive) to that of GT spikes (true positive + false nega-
tive). The NRMSE of waveforms is computed through a point-by-point
comparisonof timewindows from–1 to 2msof theGT timestamps and
normalization by the peak-to-peak amplitude. As shown in Fig. 4b, c,
the Spk-Recon showed the highest mean hit rates in all factors for the
datasets from both MEAs. The mean values of the MEA1 were
0.99 ±0.01, 0.78 ±0.14, 0.65 ± 0.21, and 0.44± 0.24 (mean ± SD, n = 13
electrodes) for the downsampling factors of 1, 8, 16, and 25, respec-
tively (Fig. 4b). Those of the MEA2 were 1.00 ±0.01, 0.91 ± 0.06,
0.80 ±0.16, and 0.51 ± 0.30 (n = 16 electrodes) for the downsampling
factors of 1, 8, 16, and 25, respectively (Fig. 4c). As shown in Fig. 4d, e,
theNRMSE values of the Spk-Reconwere significantly lower than those
of all the othermodels in the entire condition. ThemeanNRMSE values
of the MEA1 were 0.02, 0.07, 0.12, and 0.16 (Fig. 4d), and those of the
MEA2 were 0.02, 0.06, 0.11, and 0.16 (Fig. 4e) for the downsampling
factors of 1, 8, 16, and 25, respectively. Additionally, we figured out the
precision of spike detection (Supplementary Table 1), which is defined
as the ratio of thenumberof correctly restored spikes (truepositive) to

Fig. 3 | Signal reconstruction on in vitro datasets. a Signal processing for model
training and evaluation.bRepresentative raw traces of low-passfiltered (LPF) input,
ground truth (GT), and restored signals from a single electrode using SwinIR and

Spk-Reconwithdifferent downsampling factors. Except for the LPF input signals, all
others are plotted using the same scales. cAveragewaveformsof correctly restored
spikes detected from the same electrode with (b).
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that of spikes detected in the reconstructed signal (true positive + false
positive). The mean precision values of the Spk-Recon were high in all
conditions, ranging from 0.89 to 0.97, implying that most detected
spikes occurred at correct timings. Taken together, the results
demonstrated that the Spk-Recon achieved the best performance in
reconstructing the accurate spike timings andwaveformsonbothMEA
datasets. In particular, for the downsampling factor of 1, 16, and 25, the
hit rates of Spk-Recon were significantly higher than those of CNN-
based TCN and EDSR or transformer-based SwinIR.Moreover, the Spk-
Recon showed significant improvement in reconstructing spike
waveforms compared to theothermodels across all the downsampling
factors.

Using multichannel spikes reconstructed via the Spk-Recon, we
assessed how the spatiotemporal information is restored for BMI
systems: functional connectivity analysis and spike sorting. Figure 5a
shows raster plots for different downsampling factors. The number of
missing spikes, marked with red stamps, increased as the down-
sampling factor rose in overall electrodes, which is consistent with the
hit rate reduction shown in Fig. 4b, c. To examine the functional
connectivity of the neuronal networks, Pearson correlation coeffi-
cients for all spike train pairs of multiple electrodes were computed32,
and the correlation matrices were constructed (Fig. 5b). Despite some
missing spikes and slightly shifted timestamps, the correlation matri-
ces for the downsampling factors up to 8were similar to that of the GT

Fig. 4 |Model validationon anunseendataset and comparisonwithCNN-based
models. a Restored signals of the MEA2 with the downsampling factor of 16 and
enlarged spike waveforms of the timewindow highlighted in the raw traces. Except
for the low-pass filtered (LPF) input signal, all others are plotted using the same
scale.bHit rate of spike detection on theMEA1 with the differentmodels. Note that
a hit rate of 1 means that all the ground truth (GT) spikes are correctly recon-
structed in timing. c Hit rate of the MEA2 with the different models. d Normalized

rootmean square error (NRMSE) between the restored and actualwaveformsof the
MEA1. Note that anNRMSE of 0means that spike waveforms are perfectly restored.
e NRMSE of the MEA2. The box represents the interquartile range (IQR), with
median and mean values indicated by a horizontal line and ‘▫’, respectively. The
whiskers extend to 1.5 times the IQR. One-way ANOVA with Tukey’s post-hoc test.
n = 13 and 16 electrodes forMEA1 andMEA2, respectively. Source data are provided
as a Source Data file.
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Fig. 5 | Neuronal spike train analysis. a Raster plots of ground truth (GT) and
restored spikes using Spk-Recon with different downsampling factors. Red time-
stamps represent missing spikes. b Correlation coefficient matrices between spike
trains from multiple electrodes. c Spike sorting of GT and restored spikes with a
downsampling factor of 8 by principal component analysis-based feature extrac-
tion and K-Means clustering (2-cluster case). A black circle in the principal

component space (PC1 vs. PC2) shows an incorrectly classified spike. Clustering
accuracy of the reconstructed spikes: 99.23% (129/130 spikes). d Spike sorting (3-
cluster case). Black circles in the principal component space (PC1 vs. PC2) show
incorrectly grouped spikes. Clustering accuracy of the reconstructed spikes: 96%
(144/150 spikes).
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without significant differences in the coefficients (p =0.7243, 0.1542,
0.0131, and <0.0001 for the factor 1, 8, 16, and 25, respectively; Two-
tailed two-sample t test for the coefficients comparedwith thoseof the
GT), indicating that the spatial network connectivity was reasonably
well re-established. This accurate restoration ability is essential for
detecting significant changes in functional connectivity to identify
differences in brain states between normal and pathological
conditions33,34 or to clarify the effect of external stimulation and
manipulation on network connectivity35,36.

Next, weperformed spike sorting of the reconstructed spikeswith
a downsampling factor of 8 through principal component analysis-
based feature extraction and K-Means clustering37. Figure 5c presents
the clustering result of the GT and reconstructed spikes from a single
electrode with two clusters. The spikes sorted into different clusters
were visualized with different colors in the principal component (PC)
space and waveform plots. All the spikes were correctly clustered
except one (black circled in the PC space), showing an accuracy of
99.23% (129/130 spikes). The spike clustering result for a 3-cluster case
(Fig. 5d) also achieved a high clustering accuracy of 96% (144/
150 spikes), with only a few spikes incorrectly grouped. As a result, we
found that the Spk-Reconmodel could reasonably restore the intrinsic
information contained in network connectivity and waveform fea-
tures, implying good applicability to advanced BMIs.

To better understand how the Spk-Recon is able to reconstruct
high-frequency neuronal spikes, we next performed two ablation
experiments for Butterworth filtering (BW)-based signal processing
and SFWS. First, we hypothesized that our model mainly functions to
recover spike information from the residual high-frequency

components in the LPF input signals. In our approach, the LPF inputs
were processed using a Butterworth filter, which is a non-ideal filter,
and this inevitably made that frequency components above the cutoff
frequencywerenot completely removed (Fig. 2a, b andSupplementary
Fig. 2). To ablate this effect, we used a dataset of input and GT signals,
whose frequency bands were completely split through the ideal fil-
tering (IF). Figure 6a, b show the restored signals of the downsampling
factor of 16 with the realistic Butterworth filtering (BW( + SFWS)) and
the ideal filtering (IF( + SFWS)). The amplitude of the signals in the IF
case wasmuch smaller than that of the BW case (a reduction of 77.67%
in zero-to-peak amplitude), with a larger time delay (time delay from
the minimum peak of GT; BW( + SFWS): 80μs vs. IF( + SFWS): 480μs).
In the quantitative results, the reconstructed outputs of the IF case
(IF( + SFWS)) showed an extensive reduction of the hit rate (Fig. 6c)
and greater error of the signals (Fig. 6d) for all downsampling factors.

Next, we evaluated the effect of the SFWS on the reconstruction
performance. As described in the previous section, the minibatch for
model training was set so that half of them included at least one spike
within their window (Fig. 2c). To remove this effect, we chose the batch
by randomly picking out windows across the entire time series
(-SFWS). Using the Butterworth filtering (BW(-SFWS) in Fig. 6a, b)
resulted in a 25.97% decrease in the zero-to-peak amplitude compared
to the BW( + SFWS) in the downsampling factor 16. Moreover, the
training without the SFWS on the dataset produced by ideal filtering
(IF(-SFWS)) causes a dramatic failure to recover signals. As shown in
Fig. 6c, d, quantitative performance degradations were observed
across all downsampling factors. To sum up, we confirmed that the
residual high-frequency components in the LPF inputs highly

Fig. 6 | Ablation study results. a Raw traces and (b) average waveform profiles of
restored outputs from the signals processed by the Butterworth filter (BW) or ideal
filter (IF). The spike reconstruction was conducted with a downsampling factor of
16 with or without spike-focused window selection (+SFWS and -SFWS, respec-
tively). Except for the low-pass filtered (LPF) input signals, all others are plotted
using the same scale. cHit rate and (d) normalized rootmean square error (NRMSE)
for different ablated conditions. Note that a hit rate of 1 means that all the ground

truth (GT) spikes are correctly reconstructed in timing, and an NRMSE of 0 means
that spike waveforms are perfectly restored. The box represents the interquartile
range (IQR), with median and mean values indicated by a horizontal line and ‘▫’,
respectively. The whiskers extend to 1.5 times the IQR. One-way ANOVA with
Tukey’s post-hoc test. n = 13 electrodes. Source data are provided as a Source
Data file.
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enhanced overall signal reconstruction performance. The model
training with the SFWS improved the restoration capability, especially
regarding accurate spike waveforms.

Applying Spk-Recon to in vivo neuronal datasets
Finally, we applied the Spk-Recon to the datasets collected from
mouse brains to investigate the applicability of our model to in vivo
datasets. We measured neuronal signals from the cortex (Ctx) and
hippocampus (Hippo) of anesthetized mice using a penetrating depth
probe with 16 electrodes at a sampling rate of 25 kHz (Fig. 7a). The
in vivo datasets were processed by low-pass filtering, downsampling,
and pre-interpolationwith a downsampling factor of 8 in the sameway
as the in vitro signals. Signal pairs of LPF inputs and HPF GTs from 12
electrodes of each recording were used for model training, and those
of the other 4 or 3 electrodes from Ctx and Hippo recordings,
respectively, were utilized for evaluation. Figure 7b presents a LPF and
downsampled signal of spontaneous activity measured from the Ctx
and a time-frequency spectrogramobtained from the signal. Using the
downsampled LPF signal acquired in our proposed approach, tem-
poral and spectral information of brain activity can be examined,
especially in the low-frequency band covering typical LFPs, while sig-
nificantly reducing the recording data volume. In Fig. 7b, it showed
relatively high LFP power at low frequencies (<40Hz) for the entire
10 s, and transient power increases in both low and higher frequency
bands (40–100Hz) at times when large voltage fluctuations occurred.

We restored high-frequency neuronal activity from the down-
sampled LPF signals of the Ctx and Hippo through the pre-
interpolation process and reconstruction by the Spk-Recon model.
We used three Spk-Recon models trained on different datasets: (1) in
vitro MEA, (2) in vivo Ctx, and (3) in vivo Hippo datasets. As shown in
the raw traces and average spike waveforms (Fig. 7c), the high-
frequency signals of theCtx test dataset exhibiting spiking eventswere
well reconstructed, regardless of the training datasets. The recon-
struction performances for the Ctx test dataset were comparable to
the in vitro test results (Fig. 4), having similar ranges of the hit rate and
NRMSE. The hit rates for the Spk-Recon models trained on in vitro
MEA, in vivo Ctx, and in vivo Hippo datasets were 0.87 ±0.06,
0.97 ± 0.04, and0.94 ±0.03 (mean± SD,n = 4 electrodes), respectively
(Fig. 7d). ThemeanNRMSEvalueswere0.07, 0.07, and0.09 for in vitro
MEA, in vivo Ctx, and in vivo Hippo datasets, respectively (Fig. 7e). In
the reconstruction results of the Hippo test dataset showing con-
tinuous and frequent spiking activity (Fig. 7f), the overall signal traces
and spike waveforms were restored similarly to that of GT; however,
the hit rate using the model trained on in vitro MEA dataset was
0.54± 0.15, which is much lower than the model trained on in vivo
datasets that were 0.80 ±0.05 and 0.81 ± 0.06 for in vivo Ctx and
in vivoHippo, respectively (n = 3 electrodes) (Fig. 7g). This implies that
the model trained under the in vivo condition performs better at the
signal reconstruction of in vivo recordings, which are typically noisier
than those from in vitro. ThemeanNRMSE values were 0.09, 0.08, and
0.10 for in vitro MEA, in vivo Ctx, and in vivo Hippo datasets, respec-
tively (Fig. 7h).

Next, to examine whether the Spk-Recon is also applicable to
pathological conditions, we acquired the neuronal signals from an
anesthetizedmouse in which seizure was induced via acute kainic acid
(KA) injection (Fig. 7a). We recorded the signals in the hippocampus
(KA-Hippo), which is known as the site of seizure induction in the KA-
treated mouse38. LPF inputs of 4 electrodes were fed into the pre-
trained model on in vitroMEA, in vivo Ctx, and in vivo Hippo datasets.
Figure 7i shows the restored signals, representing similar traces and
waveforms to those of the GT signal, but there was a noticeable error,
especially in the Spk-Recon trained on the in vitro dataset, at the time
when the LPF input greatly fluctuated over 1mV (1–2 s in Fig. 7i).
Consistent with the Hippo result under the condition without KA

injection, the hit rate using the Spk-Recon trained on the in vitro
dataset was 0.55 ± 0.10 (n = 4 electrodes) (Fig. 7j). The hit rates were
highly improved by training the Spk-Recon model with the in vivo Ctx
and Hippo datasets that were 0.81 ± 0.09 and 0.78 ±0.11, respectively
(Fig. 7j), comparable to the reconstruction performance on the in vitro
test datasets (Fig. 4b, c). ThemeanNRMSE values ranged from 0.09 to
0.11, which were sufficiently low (Fig. 7k). Taken together, we have
successfully demonstrated the broad applicability of the Spk-Recon,
which allowed spike reconstruction on both in vitro and in vivo data-
sets from different brain regions, and even from the seizure-induced
disease animal model.

Discussion
In this study, we have developed an ML framework, the Spk-Recon
model coupled with the pre-interpolation, to reconstruct neuronal
spikes with high temporal resolution from downsampled lower-
frequency neural recordings. By evaluating the reconstruction per-
formance on multichannel neural datasets, we demonstrated the
superiority of the Spk-Reconmodel in restoring high-resolution spikes
from significantly downsampled signals with accurate spike timings
and waveforms. The reconstructed spikes maintained the spatio-
temporal information, resulting in comparable functional connectivity
and spike sorting outcomes to the conventionally high-sampled HPF
GT signals. We further showed that our trained Spk-Recon model
worked well not only on in vitro datasets but also on in vivo datasets
from different brain regions (cortex and hippocampus) and different
pathological conditions (healthy and seizure-induced), empirically
implying the feasibility and generality of our proposed framework.
Although we used subsampled LPF inputs initially recorded at a high
sampling rate, followed by low-pass filtering and downsampling, for
comparison with the conventional high-sampled HPF GT spikes, the
pre-trained model would be applied to low-frequency signals directly
acquired on recording hardware at a low sampling rate in practical
situations.

Our Spk-Recon-based restoration can simultaneously acquire
abundant neuronal signals over a wide frequency range from LFPs to
spikes: low-frequency band LFPs by direct recording at a low sampling
rate and high-frequency band spikes by ML-based reconstruction.
Previous works in data reduction techniques limitedly focused on
obtaining only high-frequency bands of spikes14–20. Although there
have been several studies to estimate spikes from low-frequency band
LFPs using linear or nonlinearmodels39–43, they were still at the level of
only inferring firing rates or obtaining spike timings, not the entire
spike waveform characteristics. Being capable of taking both LFPs and
spikes, our method can provide richer neuronal information that
facilitates the analyses of LPF-spike correlations44–47 or brain functional
connectivity48–50 based on spike-triggered averaging of LFPs. In parti-
cular, the ability to even restore waveform features with the high
temporal resolution required for spike sorting would be useful for
developing advanced BMIs using both LFPs and single-unit spikes51–53.
All of these can be achieved with low recording data volume by con-
ventional neural recording hardware.

From a hardware application point of view, our method of redu-
cing the volume of neuronal data has high universality. We acquired
the low-frequency band signals with uniformly lower sampling rates by
a typical neural recording hardware and restored the high-sampling
spikes through the ML-based software. That is, the signal acquisition
with the reduced data volume for applying our model can be imple-
mented in various commercial or customized systems ofmultichannel
neural recordingwithout additional hardwaremodification.Moreover,
considering the recent efforts to increase the number of recording
electrodes4–6, it would allow the collection of neuronal signals from
more electrodes or for a longer duration within the same hardware
resources. We expect it opens a new direction in developing next-
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Fig. 7 | Signal restoration on in vivo datasets with the downsampling factor of
8. a Signalprocessingof cortex (Ctx), hippocampus (Hippo), andKA-treatedmouse
hippocampus (KA-Hippo) datasets for model training and evaluation. b Raw trace
and spectrogram of the downsampled low-pass filtered (LPF) signal obtained from
the Ctx before the interpolation process. c Reconstructed Ctx signals and their
average spike waveforms using the Spk-Recon models trained on three different
datasets (Trained on (1) in vitro MEA, (2) in vivo Ctx, or (3) in vivo Hippo datasets).
Except for the LPF input signals, all other signals are plotted using the same scales.
Scale bar: 200μV. d Hit rate of spike detection and (e) normalized root mean
square error (NRMSE) between the restored and actual waveforms of the Ctx
dataset. n = 4 electrodes. Note that a hit rate of 1 means that all the ground truth
(GT) spikes are correctly reconstructed in timing, and an NRMSE of 0 means that

spike waveforms are perfectly restored. f Reconstructed Hippo signals and their
average spike waveforms. Except for the LPF input signals, all other signals are
plotted using the same scales. Scale bar: 100μV. g Hit rate of spike detection and
(h) NRMSE between the restored and actual waveforms of the Hippo dataset. n = 3
electrodes. i Reconstructed KA-Hippo signals of the KA-treated mouse and their
average spike waveforms. Except for the LPF input signals, all other signals are
plotted using the same scales. Scale bar: 200μV. Insets display the same traces of
the LPF input and the restored signal (1) on different y-axis scales (y-axis of the LPF
input: –2–2mV; y-axis of the restored signal (1): –500−400μV). j Hit rate of spike
detection and (k) NRMSE between the restored and actual waveforms of the KA-
Hippo dataset. n = 4 electrodes. Data are presented as mean ± SD. Source data are
provided as a Source Data file.
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generationBMIs capableofmore in-depth analysis and control ofbrain
functions with reduced hardware resources and minimal thermal tis-
sue damage.

Lastly, the Spk-Recon can provide a versatile framework for signal
estimation between various types of neural recordings. The results
with thedownsampling factor 1 in Fig. 3bdemonstrated the functionof
our framework in restoring high-frequency information from lower-
frequency band signals. This capability could be applied to neuronal
activities measured with different recording modalities like intracor-
tical recording, electrocorticography (ECoG), and electro-
encephalography (EEG). For example, low-frequency to high-
frequency signal restoration could be possible from ECoG to spike
or from EEG to ECoG. In addition, by utilizing the latest MEA tech-
nologies that enable network-wide intracellular recording54, the
reconstruction of intracellular neuronal signals, such as action
potentials or subthreshold synaptic signals, from extracellular
recordings could also be achieved. This could enable even higher
performance in BMIs by developing new systemsbased onmultimodal
or multiscale signals with less physical invasiveness55,56.

Methods
Neuronal dataset acquisition and processing
All experimental procedures were approved by the Institutional Ani-
malCare andUseCommittee (IACUC)ofDaeguGyeongbuk Institute of
Science and Technology (DGIST), and all experiments were performed
in accordancewith the guidanceof the IACUCofDGIST (DGIST-IACUC-
22102605-0004).

We acquired in vitro neuronal signals from dissociated cultures
using MEAs with 120 electrodes (120MEA100/30iR-ITO, 120MEA200/
30iR-Ti; Multi Channel Systems, Germany). Before cell seeding, the
surface of the MEAs was coated with 0.05mg/mL of poly-D-lysine
(A3890401; Gibco; Thermo Fisher Scientific, MA, USA) diluted in Dul-
becco’s Phosphate-Buffered Saline (LB001-02; WELGENE, South
Korea) to make it cell-adhesive. Rat hippocampi isolated from
embryonic day 18 Sprague-Dawley rats (DBL, South Korea) were dis-
sociated in Hank’s buffer salt solution (LB003-02; WELGENE), and the
cell pellet was obtained by centrifugation. The pellet was resuspended
in a medium composed of Neurobasal medium (21103049; Gibco),
B-27 supplement (17504044; Gibco), 2mM GlutaMAX supplement
(35050061; Gibco), 1% penicillin-streptomycin (15140122; Gibco), and
12.5 μM L-glutamine (25030081; Gibco), followed by neuron seeding
on the MEAs with the density of 1000 cells/mm2. Two weeks after the
cultivation in an incubator at 37 °C and 5% CO2, the spontaneous
activities of the cultured neurons were measured from multiple elec-
trodes and sampled at 25 kHz by a DAQ card (band-pass filter: 0.1 Hz
−3.5 kHz; MEA2100-Mini-Systems; Multi Channel Systems).

We collected in vivo neuronal datasets from three C57BL/6 J mice
using neural probes that have 16 electrodes (A1x16−3mm-50-703;
NeuroNexus,MI, USA).Mice, born and reared in standardmouse cages
with food andwater, weremaintained at a temperature of 22 ± 1 °C and
a humidity of 40–60% with a 12:12-h light/dark cycle at the DGIST
animal facility. Male mice aged 11−12 weeks were used for the study,
and all surgeries were carried out under aseptic conditions. The mice
were anesthetized through intraperitoneal injection of urethane (1.5 g/
kg) and placed in a stereotaxic apparatus (RWDLife Science, China) for
acute recording. After incising the skin and drilling holes in the skull,
the neural probe was implanted in the auditory cortex (AP –3mm,
ML + 3.83mm, DV –2.5mm) or hippocampus (AP –1.6mm, ML + 1.6
mm, DV –1.7mm). Reference and ground wires were inserted into the
cerebellum. Particularly, for the recording in the seizure-induced hip-
pocampus, kainic acid (10mg/kg; K0250; Sigma-Aldrich,MA, USA)was
treated for inductionof seizures. Using a DAQ system (band-pass filter:
0.98Hz–7.60 kHz with a notch filter of 60Hz; RHS Stim/Recording
System; Intan Technologies, CA, USA), signals were recorded at a
sampling rate of 25 kHz.

Both in vitro and in vivo neuronal signals were separated into LPF
input and HPF GT signals using zero-phase fourth-order Butterworth
filters with a cutoff frequency of 200Hz. Each signal pair was nor-
malized to the maximum absolute values of the background noise of
the HPF signal. To obtain downsampled and interpolated LPF inputs,
LPF signals were subsampled by factors of 1, 8, 16, or 25 and then re-
upsampled using the Fourier method27 by the same factor. All signal
processing was performed in Python 3.8.8 using the SciPy library.

Network architecture and implementation details
We constructed the Spk-Recon model based on a transformer-based
SwinIRmodel28 (Common SwinIR Block in Fig. 2a, b), initially proposed
for image restoration. Given an input signal ISpk�Recon with a length T ,
a shallow feature of the same length with C channels is extracted by
convolving the input signal with 1D kernels (kSF �ð Þ : RT × 1 ! RT ×C ;
First ‘Conv’ in Fig. 2b). By passing the feature through several con-
secutive RSTBs, each of which is composed of multi-head self-
attention-based Swin transformer layers (STLs)29, followed by an
additional convolution layer, a deep feature with the same size as the
input feature is obtained (kDF �ð Þ : RT ×C ! RT ×C). The shallow and
deep features are combined with a skip connection.

Unlike the SwinIR, the input for the Spk-Recon is a pre-
interpolated signal with the same temporal resolution as the output
signal to be reconstructed. This results in amajor difference in the last
partof thenetworkarchitecture: the absenceof a layer for upsampling.
The last layer of the Spk-Recon is a 1D convolution
(kC �ð Þ : RT ×C ! RT × 1; Last ‘Conv’ in Fig. 2b) to generate a one-channel
output signal ey, replacing the sub-pixel convolution layer for upsam-
pling in the SwinIR (‘PixelShuffle 1D’ in Fig. 2a). The final output signal ey
is formulated as

ey= kC ðFSF +FDFÞ, ð1Þ

where FSF = kSF ISpk�Recon

� �
and FDF = kDF FSF

� �
:

The input length and the kernel size of 1D convolution were set to
128 and 3 data points, respectively. The corresponding GT for super-
vised learning had the same length as the input, 128 data points. The
number of feature channels, RSTBs, and STLs were 180, 6, and 6, the
same as the previous study28. Different networks were trained in indi-
vidual downsampling factors (M: 1, 8, 16, and 25) for 200 epochs with a
batch size of 16. Ameansquared error loss and anAdamoptimizerwith
a fixed learning rate of 1e-4 were utilized for optimization. In the eva-
luation process, 128 data points were sequentially presented to the
trained network by sliding the window by 64 data points.

As baseline models for comparison, we used transformer-based
SwinIR28, CNN-based enhanceddeep super-resolutionnetwork (EDSR)-
Baseline31, and CNN-based TCN30. The input for the SwinIR and EDSR-
Baseline was the downsampled LPF signals, whereas that of TCN was
the pre-interpolated LPF signal, the same as the Spk-Recon. To make
the numbers of parameters similar to our Spk-Recon, the hyperpara-
meters of the baseline models were set as follows: SwinIR (input
length: 128; GT length: 128M; kernel size: 3; the number of channels,
RSTBs, STLs: 180, 6, 6), EDSR-Baseline (input length: 128; GT length:
128M; kernel size: 3; the number of channels, residual blocks: 262, 16),
and TCN (input length: 127; GT length: 1; kernel size: 3; the number of
channels, stacked blocks: 554, 6). All models were implemented in
Python (Supplementary Code 1) using PyTorch 1.7.1 and were trained
and evaluated on NVIDIA GeForce RTX 3090.

Spike-focused window selection for model training using spike
jittering
We constructed a minibatch with a batch size of B and a GT window
size ofW : at least one spike is included in the window for the first half
of the batch, and their minimum peak is placed on a random position
within the window by jittering the spike timing as follows (Fig. 2c). Let
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us assume that a time series data yk 2 RN , which is a high-frequency

and high-resolution signal from electrode k, has sk spikes (k = 1, . . . ,K).
For the i-th spike of the electrode, nk

i denotes the time point where the

minimumpeak of the spike waveform is located (i= 1, . . . ,sk). To select

windows of the first half batch, we chose B
2 peaks n

kj

ij
, by picking out the

electrodes and their corresponding spikes {kj , ij} (j = 1, . . . ,
B
2) and the

equal number of jitters τj in the interval �W
2

�
,W2

�
at random. With the

chosen variables, the data within the time interval

n
kj

ij
+ τj � W

2

h
,n

kj

ij
+ τj +

W
2

�
is sampled as the j-th window. The other

windows in the secondhalf batch are randomly sampledusing the time
series data of N time points from K electrodes.

Neuronal data analysis
We detected neuronal spikes by setting the threshold –6 SD of the
background noise of the GT signals and identifying time points
crossing the threshold as spike timestamps. The restored spikeswhose
timestamps were located within ±500μs from GT spike timestamps
were defined as correctly reconstructed.

To construct the correlation matrices for assessing functional
connectivity (Fig. 5b), rate histograms with 50ms-bin width were
obtained for individual electrodes. Then, a Pearson correlation coef-
ficient, an element of the correlation matrix, was computed between
the rate histograms of each electrode pair. To sort the detected spikes
(Fig. 5c, d), features of the spike waveforms were extracted by calcu-
lating principal component (PC) scores. For the clustering, the
K-Means algorithm, inwhich the number of clusterswas determined to
be 2 or 3, was applied to the first two PCs (PC1 and PC2).

The time-frequency spectrogram (Fig. 7b) of the downsampled
LPF signal, sampled at 3125 Hz, was generated by a short-time Fourier
transform using a Hamming window of 1250 samples, an overlap of
1125 samples, and the number of FFT points of 616. All data analyses
were carried out using MATLAB R2022b (MathWorks, MA, USA)
(Supplementary Code 1), and all statistical data were plotted and tes-
ted using OriginPro 2021 (OriginLab, MA, USA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The test datasets of in vitroMEA, in vivo Ctx, in vivo Hippo, and in vivo
KA-Hippo and the pre-trained models using in vitro MEA, in vivo Ctx,
and in vivoHippo trainingdatasets generated in this study are available
on Zenodo at https://zenodo.org/records/1011312657. The processed
data supporting the findings of this study are available in the Source
Data file. Source data are provided with this paper.

Code availability
The custom Python and MATLAB codes for the machine learning and
the data analyses reported in this study are provided in Supplemen-
tary Code 1.
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