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DiffDomain enables identification of
structurally reorganized topologically
associating domains

Dunming Hua1,2,7, Ming Gu1,2,7, Xiao Zhang 1,2,7, Yanyi Du1,2,7, Hangcheng Xie1,2,
Li Qi3, Xiangjun Du 1,2, Zhidong Bai 4, Xiaopeng Zhu 5,6 & Dechao Tian 1,2

Topologically associating domains (TADs) are critical structural units in three-
dimensional genome organization of mammalian genome. Dynamic reorga-
nizations of TADs between health and disease states are associated with
essential genome functions. However, computational methods for identifying
reorganized TADs are still in the early stages of development. Here, we present
DiffDomain, an algorithm leveraging high-dimensional random matrix theory
to identify structurally reorganized TADs using high-throughput chromosome
conformation capture (Hi–C) contact maps. Method comparison using mul-
tiple real Hi–C datasets reveals that DiffDomain outperforms alternative
methods for false positive rates, true positive rates, and identifying a new
subtype of reorganized TADs. Applying DiffDomain to Hi–C data from
different cell types and disease states demonstrates its biological relevance.
Identified reorganized TADs are associated with structural variations and
epigenomic changes such as changes in CTCF binding sites. By applying to a
single-cell Hi–C data from mouse neuronal development, DiffDomain can
identify reorganized TADs between cell types with reasonable reproducibility
using pseudo-bulkHi–Cdata from as few as 100 cells per condition.Moreover,
DiffDomain reveals differential cell-to-population variability and hetero-
geneous cell-to-cell variability in TADs. Therefore, DiffDomain is a statistically
sound method for better comparative analysis of TADs using both Hi–C and
single-cell Hi–C data.

The recent development of mapping technologies such as Hi–C1 that
probes the 3D genome organization reveals that a chromosome is
divided into topologically associating domains (TADs)2,3. TADs are
genomic regions where chromatin loci more frequently interact with
other chromatin loci within the TAD than with those from outside of
the TAD. TADs are functional units for transcriptional regulation by

constraining interactions between enhancers and promoters4, for
example. Although TADs are stable between cell types as revealed by
earlier studies2,5, there is growing evidence for TAD reorganization in
diseases6–8, cell differentiation5,9,10, somatic cellular reprogramming11,
between neuronal cell types12, and between species13,14. For example,
extensive reorganizations of TADs are observed during somatic cell
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reprogramming, associating with dynamics of transcriptional regula-
tion and changes in cellular identity11. TADs are also variable among
individual cells, as revealed by single-cell studies15–20 and live-cell
imaging21. Thus, it is important to identify reorganized TADs through
comparative analysis to further understand the functional relevanceof
3D genomeorganization, amajor priority of current work in the field22.

Themajority of current methods call a reorganized TAD if at least
one of its two boundaries changed between two conditions11,12,23–28.
These methods enable easy integration with other analysis pipelines
and identify reorganized TADs with clear biological interpretation.
However, they fail to identify reorganized TADs without changes in
boundaries, in addition to lacking statistical tests to differentiate ran-
dom perturbations and significant structural reorganization of a TAD.
Only a few nonparametric statisticalmethods are proposed to call TAD
reorganization29–32. These methods define the structural similarity of a
TAD by statistics from twoHi–C contactmatrices, such as the stratum-
adjusted correlation coefficient used by DiffGR30. Distributions of the
statistics on pairs of simulated Hi–C matrices are then used to com-
pute empirical P values. However, these nonparametric statistical
methods are conservative (see our own comparison later). TADs
in high-resolution Hi–C data are relatively small. The median size
of TADs is 185 kb33. The small size feature of TADs poses another
computational challenge for identifying structurally rewired TADs
using low-resolution Hi–C data. Importantly, identifying reorganized
TADs using emerging single-cell Hi–C (scHi–C) data is largely under-
explored. Other methods are developed for comparing Hi–C
matrices at different scales and for different purposes: quantifying
similarities of genome-wide Hi–C contact matrices34,35, identifying
differential A/B compartments36, and identifying differential chroma-
tin interactions37–39. However, these methods are not tailored to com-
pare Hi–C contact matrices at the TAD level, which is not optimal
for identifying reorganized TADs (see our own comparison later).
Therefore, new algorithms are needed to fill these gaps.

Here, we develop DiffDomain, a new parametric statistical
method for identifying reorganized TADs. Its inputs are two Hi–C
contact matrices from two biological conditions and a set of TADs
called in biological condition 1. This setting enables straightforward
integration of DiffDomain with other analysis pipelines of Hi–C data,
such as TAD calling and integrative analysis of multi-omics data.
For each TAD, DiffDomain directly computes a difference matrix and
then normalizes it properly, skipping the challenging normalization
steps for individual Hi–C contact matrices. DiffDomain then borrows
well-established theoretical results in random matrix theory to com-
pute a P value. We show that the assumptions of DiffDomain are rea-
sonable. Method comparisons on real data reveal that DiffDomain has
substantial advantages over alternative methods in false positive rates
and accuracy in identifying truly reorganized TADs. Reorganized TADs
identified by DiffDomain are biologically relevant in different human
cell lines and disease states. Application to scHi–C data reveals that
DiffDomain can identify reorganized TADs between cell types and
TADs with differential variabilities among individual cells within the
same cell type. Moreover, DiffDomain can quantify cell-to-cell varia-
bility of TADs between individual cells. Together, these analyses
demonstrate the power of DiffDomoain for better identification of
structurally reorganized TADs using both bulk Hi–C and single-cell
Hi–C data.

Results
Overview of DiffDomain
The workflow of DiffDomain is illustrated in Fig. 1. Its input is a set of
TADs called in biological condition 1 and their corresponding Hi–C
contact matrices from biological conditions 1 and 2 (Fig. 1a). In this
paper, TADs are called by Arrowhead33 and Hi–C contact matrices are
KR-normalized, unless otherwise stated (Supplementary Method 1).
Our goal is to test if each TAD identified in biological condition 1 has

significant structural reorganization in biological condition 2. The core
of DiffDomain is formulating the problem as a hypothesis testing
problem, where the null hypothesis is that the TAD doesn’t undergo
significant structural reorganization in condition 2. To achieve this
goal, for each TAD with N bins, DiffDomain extracts the N ×N KR-
normalized Hi–C contact matrices specific to the TAD region from the
two biological conditions, which are denoted as A1 and A2 (Fig. 1a).
Note that A1 and A2 are N ×N submatrices of the genome-wide Hi–C
contactmatrices. DiffDomain first log-transform them to adjust for the
exponential decay of Hi–C contacts with increased 1D distances
between chromosome bins. Their difference logðA1Þ � logðA2Þ is cal-
culated and denoted by D (Fig. 1b). D is further normalized by a 1D
distance-stratified standardization procedure, similar to the proce-
dures in HiC-DC+38 and SnapHiC40. Specifically, each d-off diagonal
part of D is subtracted by its sample mean and divided by its sample
standard deviation (Fig. 1c), −N + 2 ≤ d ≤N − 2, reducing 1D distance-
dependence of values inD and differences caused by variation in read
depths between two biological conditions (see Supplementary Fig. 1
for two more detailed visualization). Intuitively, if a TAD is not sig-
nificantly reorganized, normalized D would resemble a white noise
random matrix, enabling us to borrow theoretical results in random
matrix theory. Under the null hypothesis, DiffDomain assumes
that D=

ffiffiffiffi

N
p

is a generalized Wigner matrix (Fig. 1d), a well-studied
random matrix model. Its largest eigenvalue λN is proved to be fluc-
tuating around 2. Armed with this fact, DiffDomain reformulates the
reorganized TAD identification problem into the hypothesis testing
problem:

H0 : λN = 2 vs. H1 : λN > 2: ð1Þ

The key theoretical results empowering DiffDomain is that
θN =N2/3(λN − 2), a normalized λN, asymptotically follows a Tracy-
Widom distribution with β = 1, denoted as TW1. Thus, θN is chosen as
the test statistic, and the one-sided P value is calculated as
PTW 1

ðθN ≥ xÞ. H0 is rejected if the P value is less than a predefined
significant level α, which is 0.05 in this paper (Fig. 1e). The pseudocode
is shown in Supplementary Method 2. For a set of TADs, P values are
adjusted for multiple comparisons using the Benjamini–Hochberg
(BH) method as the default. Once DiffDomain identifies the subset of
reorganized TADs, it further classifies them into six subtypes based on
changes in their boundaries, which is beneficial for downstream
biological analyses and interpretations (Fig. 1f, Supplementary
Method 3). TAD reorganization subtypes are verified by aggregation
peak analyses (APA) onmultiple real datasets (Supplementary Fig. 2). A
few reorganized TADs in real Hi–Cdata are shown in Fig. 1g. Details are
described in the Methods section.

Note that although each biological condition may have multiple
Hi–C replicates, DiffDomain takes the combined Hi–C contact matrix
from the replicates as the input, which is a common practice to gen-
erate a large number of Hi–C interactions33. Correlations among Hi–C
interactions lead to correlations among entries in the D=

ffiffiffiffi

N
p

matrix,
violating the independent assumption among upper diagonal entries
of generalized Wigner matrix. However, the violation of the indepen-
dence assumption does not substantially alter the properties ofD=

ffiffiffiffi

N
p

and DiffDomain based on empirical analysis results, suggesting
that assumptions of DiffDomain are appropriate (see Methods
section, Supplementary Note 1, Supplementary Fig. 3). When N = 10,
theTracy-WidomdistributionTW1 is anadequate approximation of the
exact distribution of θN

41. Under common 10 kb resolution Hi–C data,
N = 10 refers to TADs with 100 kb in length, much smaller than the
median TAD length of 185 kb33. Thus DiffDomain only computes the
P value for TADs with at least 10 chromosome bins, a practical con-
straint. DiffDomain is robust to a varied number of sequencing reads,
Hi–C resolution, and different TAD callers (Supplementary Note 2,
Supplementary Figs. 4 and 5).

Article https://doi.org/10.1038/s41467-024-44782-6

Nature Communications |          (2024) 15:502 2



DiffDomain consistently outperforms alternative methods in
multiple aspects
First, we assess the false positive rate (FPR) which is the ratio of the
number of false positives to the number of true negatives. A smaller
FPRmeans that the identified significantly reorganized TADs are more
likely to be true. Due to the lack of gold-standard data, we resort to
analyzing the proportions of significantly reorganized TADs between
five different Hi–C replicates from the GM12878 cell line. These Hi–C
replicates are generated by different experimental procedures and
have a highly varied total number of Hi–C contacts (Supplementary
Table 1). However, the TADs are expected to have few structural
changes between these Hi–C replicates. The proportion of identified

reorganized TADs is treated as an estimate of FPR (Supplementary
Method 4) and is expected to be small. The Hi–C resolution is chosen
as 10 kb. Comparing GM12878 Hi–C replicates primary and replicate,
we find that DiffDomain, TADCompare31, and HiCcompare42 have FPRs
that are close to the given significant level of 0.05, suggesting good
controls of FPR. In contrast, DiffGR30, DiffTAD29, and HiC−DC+38 have
inflated FPRs (more than two-fold higher than 0.05), indicating poor
controls of FPR (Fig. 2a). Similar results are observed by repeating the
above analysis to other GM12878 Hi–C replicates and 25 kb resolution
Hi–C data (Supplementary Fig. 6).

Good control in FPR does not necessarily represent high
power in detecting reorganized TADs between biological conditions.
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Fig. 1 | DiffDomainworkflowandexampleoutputs. a Input are aTAD in condition
1 and its two Hi–C contactmatrices (A1 and A2) in two biological conditions 1 and 2.
b Difference between log-transformed A1 and A2, which is denoted as D.
cNormalization ofD by a 1D distance-stratified standardization procedure. Its d-off
diagonalpart is normalizedbyd-off diagonal part-specific samplemeanand sample
standarddeviation.dD is transformedbydividing

ffiffiffiffi

N
p

. Under the null hypothesis, it
is assumed to be a generalized Wigner matrix. e One-sided P value is calculated
based on the fact that θN, normalized largest eigenvalue ofD, follows Tracy-Widom
distribution with β = 1 (denoted as TW1 distribution). A TAD is identified as a reor-
ganized TAD if P value ≤0.05. f Reorganized TADs are classified into six subtypes
based on changes in TAD boundaries. The heatmap diagram illustrates TADs in

condition 1 (Top) and condition 2 (Bottom), with lines representing TAD regions of
the same condition sharing the same color. g Example of the subtypes of reorga-
nized TADs. Data are from two studies33,74. Top: upper and lower triangularmatrices
represent Hi–C data in conditions 1 and 2, with blue triangles representing TADs
and yellow triangles representing reorganized TADs;Middle: TAD regions from the
sameconditionare represented by lines of the samecolor;Bottom:upper triangular
section of the normalized differencematrix D=

ffiffiffiffi

N
p

computated from the two Hi–C
matrices in the Top section. Red and blue boxes represent the maximum and
minimum values in the visualized matrices. The score and one-sided P value are
computed by DiffDomain. P values smaller than 2.22 × 10−16 are denoted by
P < 2.22 × 10−16.
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To investigate this, we compare TADs between two blood cell lines,
GM12878 and K562. DiffDomain identifies that 30.771% of GM12878
TADs are reorganized in K562. In contrast, TADCompare, HiCcompare,
and HiC-DC+ only identify ≤8.256% of GM12878 TADs that are reor-
ganized in K562 (Fig 2b), suggesting that they are too conservative in
identifying reorganized TADs between biological conditions. Similar
results are observed by repeating the above analysis to other human
cell lines and 25 kb resolution Hi–C data (Supplementary Table 2,
Supplementary Fig. 7), demonstrating the robustness of the observa-
tions. Conservation of TADCompare is because it is designed to
scan every chromatin loci for potential reorganized TAD boundaries.

But this analysis uses a given list of TADs, a common practice in Hi–C
data analysis, which sharply narrows down the search space of TAD-
Compare. Conservations of HiCcompare and HiC−DC+ are because
they aredesigned for detectingdifferential chromatin interactions, not
specifically tailored for identifying reorganized TADs.

Compared with TADsplimer which specifically identifies split and
mergeTADs25, DiffDomain identifies similar numbers of split andmerge
TADs between multiple pairs of human cell lines (Supplementary
Fig. 8). Importantly, DiffDomain identifies that the majority (minimum
43.137%, median 81.357%, maximum 98.022%) of the identified reor-
ganized TADs are the other four subtypes (Supplementary Fig. 9),
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Fig. 2 | Benchmarking DiffDomain against alternative methods. a FPRs of Diff-
Domain and alternative methods in comparing two GM12878 Hi–C replicates (pri-
mary and replicate). FPRs in comparing other Hi–C replicates of GM12878 are
shown in Supplementary Fig. 6. FPR equals the ratio of the number of identified
reorganized TADs to the number of TADs in GM12878. b Proportions of identified
reorganized TADs by DiffDomain and alternative methods when comparing blood-
related cell lines GM12878 and K562. TADs are GM12878 TADs. Results on other
pairs of human cell lines are reported in Supplementary Fig. 7. c Percentages of the
subtypes of reorganized TADs when comparing GM12878 and K562. Results on
other pairs of human cell lines are reported in Supplementary Fig. 9. d Heatmaps
showing Hi–C contact matrices of four truly reorganized TADs. Upper and lower
triangular matrices represent Hi–C data in conditions 1 and 2. The scores and
unadjusted one-sided P value below the heatmap are computed by DiffDomain.
Among them, three are correctly identified as such by DiffDomain (unadjusted

P ≤0.05, true positives), and one is missed by DiffDomain (unadjusted P >0.05,
false negative). Truly reorganized TADs are manually collected and treated as the
gold standard positives (see Supplementary Method 5 for more details). e Barplot
showing TPRs of DiffDomain and alternative methods. TPR equals the ratio of the
number of reorganized TADs that are identified as such (true positives) to the
number of reorganized TADs (positives). fHeatmap showing unadjusted one-sided
P values computed by DiffDomain for testing truly reorganized TADs. The purple
dot with a white border represents P <0.05. g Scatter points of unadjusted one-
sided P values by DiffDomain (y-axis) and SCCs34 (x-axis) when testing the truly
reorganized TADs. Detailed information, including reference, TAD region, data
accession number, and species for the truly reorganized TADs (Fig. 2e, f), is pre-
sented in Supplementary Method 5 and Supplementary Table 3. P values smaller
than 2.22 × 10−16 are denotedby P < 2.22 × 10−16. Abbreviation: SCC stratum-adjusted
correlation coefficient.
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which can not be detected by TADsplimer. For example, among the
GM12878 TADs that are identified as reorganized in K562 by DiffDo-
main, strength-change is the leading subtype of reorganized TADs,
consistent with the fact that both GM12878 and K562 are blood cell
lines (Fig 2c). These results demonstrate that DiffDomain has sub-
stantial improvements over TADsplimer.

We next investigate the true positive rate (TPR). A higher TPR
means that more truly reorganized TADs are correctly identified as
reorganized TADs. Through an extensive literature search, we collect
65 TADs that are reorganizedbetween 146pairs of biological conditions
in 15 published papers (Supplementary Table 3, Supplementary
Method5).Weuse theseTADs as the gold standarddata to compute the
TPR (Supplementary Method 4) and also call these TADs truly reorga-
nized TADs. Four truly reorganized TADs, either correctly identified or
missed byDiffDomain, are shown in Fig. 2d. HiCcompare andHiC−DC+,
designed for identifying differential chromatin interactions, are not
directly applicable to the only testing reorganization of one single TAD
and thus are excluded from the analysis. We find that the TPR of Diff-
Domain is 68.493%, which is 1.639, 2.703, and 16.665 times higher than
that of alternative methods DiffGR, DiffTAD, and TADCompare,
respectively (Fig. 2e). Compared with DiffDomain, DiffGR, DiffTAD, and
TADCompare only uniquely identify 11, 10, and 1 truly reorganized
TADs, respectively (Supplementary Fig. 10). Closer examination
shows that DiffDomain has much smaller P values than other methods
(Wilcoxon rank-sum test, P ≤ 2.31 × 10−8, Fig. 2f), demonstrating that
DiffDomain has stronger statistical evidence in favor of truly reorga-
nized TADs. Based on the depictions of TAD changes reported in the
publications, the truly reorganized TADs are broadly categorized into
three groups: domain-level change, boundary-level change, and loop-
level change (Supplementary Method 5). These groups have decreased
reorganization levels with increased stratum-adjusted correlation
coefficient (SCC) scores34 between biological conditions (Supplemen-
tary Fig. 11a). Across the groups, DiffDomain consistently achieves the
highest TPRs, while the second-best method varies (Supplementary
Fig. 11b), further demonstrating the advantages of DiffDomain over
alternative methods. DiffDomain still misses 31.507% of possible pair-
wise comparisons of truly reorganizedTADs.One reason is that someof
the missed truly reorganized TADs have highly similar Hi–C contact
matrices between biological conditions. For example, the missed truly
reorganized TAD, chr11:1500000–2200000 (Fig. 2d), has the SCC score
at 0.998. Generally, missed truly reorganized TADs have significantly
(P =8.26 × 10−6) higher SCC scores than those correctly identified reor-
ganizedTADsbyDiffDomain (Fig. 2g). Similar results areobservedwhen
stratifying by the groups of truly reorganized TADs (Supplementary
Fig. 11c). Because DiffGR uses SCC as the test statistic, these results also
partially explain the low TPR (41.781%) of DiffGR and highlight that SCC
alone is not optimal for identifying reorganizedTADs. Another reason is
that the resolutions of some Hi–C data are low since P values are
moderately negatively associated with the maximum values of Hi–C
contact matrices (Spearman’s rank correlation coefficient ρ = −0.534).

Additionally, DiffDomain is efficient in memory usage and
acceptable in computation time compared with alternative methods
(Supplementary Note 3, Supplementary Fig. 12).

In summary, compared with alternative methods, DiffDomain has
multiple improvements, including FPRs, proportions of identified
reorganizedTADsbetweendifferent biological conditions, subtypes of
reorganized TADs, and TPRs.

Reorganized TADs are associated with epigenomic changes
Armed with the advantages of DiffDomain over alternative methods,
we explore the connections between TAD reorganization and epi-
genomic dynamics. We first showcase a GM12878 TAD that is sig-
nificantly reorganized in K562 and classified as a strength-changeTAD
by DiffDomain (Fig. 3). The TAD covers a 445 kb region on chromo-
some 6. The TAD structural changes involve the vascular endothelial

growth factor gene VEGFA, which is a major tumor angiogenic gene
that is over-expressed in leukemia (see reviews43,44 for more details),
consistent with the fact that K562 cells are chronic myelogenous
leukemia cells. We find that the reorganized TAD has K562-specific
functional annotations. The genomic region covered by the TAD is
more accessible (1.71 times higher DNase peak coverage) in K562
than in GM12878 (Fig. 3b). The H3K27ac and H3K4me1 peak cov-
erages of the TAD region in K562 are 3.24 and 3.28 times higher than
the coverages in GM12878, respectively. In contrast, the H3K4me3
and H3K36me3 peak coverages of the TAD in K562 are only 1.31 and
1.25 times higher than the coverages in GM12878, respectively. Four
regions in the TAD are annotated as super-enhancers45 only in K562
(Fig. 3b). Note that the TAD region is in A compartments in both cell
types, suggesting that the A/B compartments switch is not the reason
for the gain in accessibility and histone modifications that are asso-
ciated with gene activation. The normalized difference matrix D
between Hi–C contact matrices of the TAD highlights that super-
enhancer SE2 has increased Hi–C contacts with the VEGFA gene in
K562 (Fig. 3c). To gain further insights into structural differences of
the TAD in the two cell types, we compare the 3D structural repre-
sentations of the TAD region. We run Chrom3D46 100 times to con-
struct 100 possible 3D structures in each cell type for statistical
comparisons. Two possible 3D structures with each per cell type
illustrate the 3D structural differences of the TAD between GM12878
and K562 (Fig. 3d, e). Overall, the super-enhancer SE2, but not SE3
(Fig. 3b), is much spatially closer (P < 2.22 × 10−16) to VEGFA in K562
than in GM12878 (Supplementary Fig. 13). These results show that the
reorganized GM12878 TAD in K562 has K562-specific chromatin
organization and potential biological functions.

Generally, comparative analyses across multiple pairs of human
normal and disease cell lines reveal that strength-change reorganized
TADs with increased contact frequencies have significant increase in
the number of CTCF binding sites at TAD boundaries compared with
other TADs, whereas lost TAD boundaries associated with loss, zoom,
and merge TADs have significantly fewer number of CTCF binding
sites, consisting with enrichment of CTCF binding sites in TAD
boundaries (Supplementary Note 4, Supplementary Fig. 14). Across
diverse human cell lines, while TADs remain relatively stable, their
proportions of reorganized TADs vary depending on the cell type,
and these variations can cluster cell lines with similar cell identities
(Supplementary Note 5, Supplementary Figs. 7 and 15). GM12878
(normal lymphoblastoid cell line) TADs that are reorganized in K562
(chronic myeloid leukemia cell lines) are enriched (P = 0.01) in dis-
ease genes in chronic myelogenous leukemia. Across pairs of cell
types, reorganized TADs tend to gain in chromatin accessibility and
active transcription signals H3K27ac and K3K4me1. Particularly, TAD
reorganization subtypes have distinct associations with chromatin
accessibility as well as histone modifications. Specifically, TAD reor-
ganization subtypes strength-change-up, zoom, split, and complex are
associated with increased chromatin accessibility and histone mod-
ification signals marking active transcription activities. Conversely,
TAD reorganization subtypes loss, strength-change-down, and merge
are associated with decreased histone modifications signals marking
active transcription activities, emphasizing the importance of TAD
reorganization subtypes in investigating genome activity and func-
tionality (Supplementary Note 6, Supplementary Figs. 16–18). Com-
pared to normal human astrocytes (NHA), patient-derived diffuse
intrinsic pontine glioma cell lines DIPG007 and DIPGXIII share a
substantial proportion (73.46%) of reorganized TADs, some harbor-
ing potential oncogenes and super-enhancers, while dBET6 treat-
ment demonstrates a stronger effect on TAD reorganization than
BRD4 inhibition (Supplementary Note 7, Supplementary Figs. 19–21,
Supplementary Table 4). Together, these results demonstrate the
functional relevance of reorganized TADs in multiple human normal
and disease cell lines.
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Reorganized TADs are enriched with structural variations (SVs)
SVs can contribute todiseases by rewiring 3Dgenomeorganization. To
further demonstrate the biological relevance of reorganized TADs, we
systematically investigate the associations between SVs and reorga-
nized TADs. High-resolution SVs, including deletions and duplications,
from erythroleukemia (K562 cell line) and pediatric high-grade glioma
(DIPG007 and DIPGXIII cell lines) are downloaded from Wang et al.47.
Because Arrowhead TADs does not necessarily cover the whole gen-
ome, SVs are filtered by keeping only thosewith their genomic regions
overlapping with TADs (illustrated by two examples in Fig. 4a). The
number of SVs and paired normal Hi–C data are summarized in Sup-
plementary Table 5.

If an SV regionoverlapswith one reorganizedTAD,we consider the
SV to have an associated reorganized TADs. We find that the majority
(72.2%) of the SVs have such associations (Fig 4b), with proportions
significantly higher than those of randomly sampled, equal-numbered
reorganized TADs (Supplementary Fig. 22). SVs are associated with
distinct abnormal patterns in Hi–C contact maps and are categorized
into four types: deletions and duplications with 5′ to 3′ fusion, 5′ to 5′
fusion, and 3′ to 3′ fusion47. When stratified by SV types, the majority
(>55%) of SVswith the same type alsohave associated reorganizedTADs
(Fig 4b). However, each type of SVs has distinct associations with the

subtypesof reorganizedTADs. For example, in thecomparisonbetween
GM12878 and K562 cell lines, the reorganized TADs associated with the
four types of K562 SVs have differential distributions over their sub-
types (Fig. 4c). The leading subtype of reorganized TADs, strength-
change, is consistently observed across the four types of SVs. However,
the second leading subtype of reorganized TADs varies among the four
types of SVs (Fig. 4c). This observation is further emphasized by evident
differences in the APA plots (Fig. 4d). Importantly, the association
between SV type and TAD reorganization subtype is disease-specific,
supported by the clear distinctions in both the APA plots and the sub-
type distributions of reorganized TADs across K562, DIPG007, and
DIPGXIII cell lines (Fig. 4c, d). Particularly, leading reorganized TAD
subtypes associated with SVs vary among cell types, with strength-
change and loss in K562; strength-change, zoom, and split in DIPG007;
and loss in DIPGXIII (Fig. 4c). This variability may be due to the sub-
stantial differences in SV lengths among these cell types (Fig. 4e).
Notably, small proportions (17.4–27.7%, 8 in K562, 10 in DIPG007, and 4
in DIPGXIII) of SVs lack associated reorganized TADs (Fig. 4b). Upon
visual examination through theNucleome Browser, in total, 13 SVs have
reorganized TADs that are not detected by DiffDomain, implying that
the remaining 9 SVs in the three cell types may lack associated TAD
reorganization (Supplementary Figs. 23–25). Nevertheless, these results
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significantly enhance our understanding of the relationship between
SVs and TADs compared to the previous study47, further highlighting
the biological relevance of reorganized TADs.

DiffDomain improves profiling of TAD reorganization related to
SARS-CoV-2 infection
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused
over 640 million confirmed coronavirus disease 2019 (COVID-19)
cases, including over 6.6 million deaths, worldwide as of December 2,
2022, posing a huge burden to global public health. Wang et al.48 is the

first Hi–C study into the effects of SARS-CoV-2 infection on host 3D
genome organization, finding a global pattern of TAD weakening after
SARS-CoV-2 infection. However, the analysis uses aggregation domain
analyses which cannot directly identify individual weakened TADs, in
addition to missing other subtypes of TAD reorganization.

To further demonstrate the biological applications of DiffDomain,
we reanalyze the data. We find that 20.58% (840 in 4082) mock-
infected A549-ACE2 TADs are reorganized in SARS-CoV-2-infected
A549-ACE2 cells. Among the reorganized TADs, strength-change TADs
are the leading subtype (64.64%) (Fig. 5a), which is consistent with the
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global pattern of TAD weakening48, verifying the reorganized TADs
identified by DiffDomain. The following most frequent subtypes are
merge TADs and complex TADs (18.45% and 10.95%, Fig. 5a), refining
the characterization of TAD reorganization after SARS-CoV-2 infection.
These reorganizedTADs also enable refinedprofiling of transcriptional
regulation in response to SARS-CoV-2 infection. Compared with the
other TADs, the reorganized TADs have significantly higher numbers
of upregulated genes and downregulated genes (P ≤ 1.27 × 10−4, Fig. 5b,
Supplementary Fig. 26a). Similar significant patterns are observed
comparing strength-change TADs and split TADs with the other TADs
(P ≤ 8.07 × 10−3, Supplementary Fig. 26b), highlighting that the two
subtypes have stronger connections with differentially expressed
genes thanother subtypes of reorganizedTADs. In contrast, compared
to the other TADs, the six subtypes of reorganized TADs have sig-
nificantly higher numbers of both enhanced and weakened peaks of
H3K27ac, SMC3, and RAD21 where H3K27ac is a marker for active
enhancers and SMC3 and RAD21 are two critical cohesin subunits that
regulate 3D genome organization (Supplementary Note 8, Fig. 5c–e,
Supplementary Fig. 26c–e). Gene-centric analysis shows that differ-
entially expressed genes in reorganized TADs have stronger connec-
tions with differential chromatin interactions than in other TADs. In
particular, the strength-change subtype has a 3-fold higher proportion
(9.73%) of downregulated genes with both enhanced and weakened
chromatin interactions compared to other TADs (Supplementary
Note 9, Supplementary Fig. 27). These results suggest that, after SARS-
CoV-2 infection, the subtypes of reorganized TADs all have strong
associations with epigenome reprogram, and strength-change TADs
and split TADs have strong associations with deregulation of gene
expression, highlighting the importance of subtypes of reorganized
TADs identified by DiffDomain.

DiffDomain characterizes cell-to-population and cell-to-cell
variability of TADs using scHi–C data
Recent advances in scHi–C sequencingmethods enable profiling of 3D
genome organization in individual cells, revealing intrinsic cell-to-cell
variability of TADs among individual cells. However, quantifying the
variability is challenging due to the properties of scHi–C data, such as
high sparsity, low genomecoverage, and heterogeneity49,50. As a proof-
of-concept, we apply DiffDomain to a moderate-sized scHi–C dataset
from mouse neuronal development (median number of contacts per
cell at 400,000)51.

We first ask how many individual cells are sufficient to identify
reorganized TADs between cell types with high reproducibility using
pseudo-bulk Hi–C data (Supplementary Method 6.1). To do this, we
design a sampling experiment to gradually increase the number of
used individual cells, and the reproducibility in identified reorganized
TADs is quantified using the Jaccard index (Supplementary
Method 6.2). We find that DiffDomain can identify reorganized TADs
between cell types with reasonable reproducibility (average Jaccard
index ≥ 0.104) using as few as one hundred sampled cells (Fig. 6b, c).
For example, DiffDomain consistently identifies that a neuronal TAD,
harboring neuronal marker genes GM24071, LRFN2, MOCS1, and
1700008K24RIK51, is reorganized in oligodendrocytes with numbers of
cells starting at 100 (Fig. 6a). Consistent of DiffDomain on other
example genomic regions are shown in Supplementary Fig. 28. On
average, DiffDomain identifies that 19.25% neuronal TADs are reorga-
nized in oligodendrocytes using only 250 sampled cells from each cell
type, consistent (average Jaccard index at 0.49) with the identified
reorganized TADs using all available cells in both cell types (Fig. 6b).
Similar results are observed when identifying neonatal neuron 1 (the
youngest structure type) TADs that are reorganized in cortical L2–5
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Fig. 5 | Mock-infected A549-ACE2 TADs that are reorganized in SARS-CoV-2-
infected A549-ACE2. a Pie chart showing the percentages of subtypes of reorga-
nized TADs inA549-ACE3 after SARS-CoV-2 infection. Strength-changeTADs are the
leading subtype. b Barplot comparing the number of upregulated genes in the
reorganized TADs and the other TADs. x-axis represents TADs categorized based
on the number of upregulated genes located within them, y-axis represents the
proportion of TADs. Boxplots comparing the numbers of enhanced H3K27ac peaks
c enhanced SMC3 peaks d and weakened RAD21 peaks e per 100kb. Left: com-
paring reorganized TADs with the other TADs (x-axis); right: comparison stratified

by the subtypes of reorganized TADs (x-axis). y-Axis represents the number of
differential peaks per 100kb within TADs. P values are computed using one-sided
Mann–Whitney U test, a nonparametric test dealing with asymmetric distributions.
The number (n) of reorganized TADs in each subtype is presented in (a). In the box
plots, themiddle line represents themedian; the lower and upper lines correspond
to the first and third quartiles; and the upper and lower whiskers extend to values
no farther than 1.5 × IQR. P values smaller than 2.22 × 10−16 are denoted by
P < 2.22 × 10−16.
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pyramidal cells (adult type) (Fig. 6c, d). Jointly increasing the numbers
of sampled cells in both cell types improves the performance of Diff-
Domain, as expected (Fig. 6b). In contrast, only increasing the number
of sampled cells in one cell type has a limited boost in performance.
For example, oligodendrocytes have only 257 cells, but neurons have
1380 cells. Further increasing the number of sampled neurons from
250 to 500 has a slight performance improvement (Fig. 6b). The
observation is further confirmed when comparing neuronal subtypes
neonatal neuron 1 and neonatal cortical L2–5 pyramidal cells, in which
the number of sampled cells in the latter subtype is no more than 150
(Fig. 6c) or 228 (Fig. 6d). Repeating the analysis by using bulk Hi–C
data52,53 to create gold-standard reorganized TADs, we observed simi-
lar patterns in neuronal TADs that are reorganized in astrocytes. For
example, sampling 150cells in each cell type identifies 12.40%neuronal
TADs that are reorganized in astrocytes on average. Among the reor-
ganized TADs, 62.55% are also identified as reorganized TADs when
bulk Hi–C data are used (Fig. 6e). Considering the median number of
contacts per cell at 400000, the merged Hi–C data from hundreds of
cells are ultra-sparse pseudo-bulk Hi–C data. These results demon-
strate that DiffDomain can work with ultra-sparse Hi–C data.

Next, we move to quantify the cell-to-population variability of
TADs, that is, comparing TADs in individual cells to the population
average. To do this, scHi–C data with 50kb resolution from neonatal
neuron 1 cells is imputed by scHiCluster54. For each TAD, DiffDomain
compares the imputedHi–C contactmapof the TAD in each cell to the
pseudo-bulk Hi–C contact map. Resulted P values reflect cell-to-
population variability of TADs and thus are used by hierarchical clus-
tering to divide TADs into three categories: high, median, and low cell-
to-population variational TADs (Fig. 7a). We find that TADs have clear
differential cell-to-population variability. One example high cell-to-
population variational TAD and its adjacent median cell-to-population
variational TADs in 9 cells are shown in Fig. 7c. Among the 2146 neo-
natal neuron 1 TADs, 8.90% (191) are high cell-to-population variational

TADs, 7.50% (161) and 83.60% (1794) are median and low cell-to-
population variational TADs (Fig. 7b). They are distributed across
chromosomes (Fig. 7d). Similar results are observed in other cell types
(Supplementary Fig. 29). These results demonstrate that TADs have
clear differential variability between individual cells and the popula-
tion average, consistent with earlier observations26,55.

Next, we move to investigate the cell-to-cell variability of TADs.
Requiring only one Hi–C contact matrix from each condition, DiffDo-
main can directly quantify cell-to-cell variability of TADs between
individual cells using imputed scHi–C data. Note that, similar to other
methods, pairwise comparison of TADs using scHi–C data from
thousands of individual cells leads to exponential growth in runtime
and thus is computationally expensive49. As a proof of concept, we
apply DiffDomain to scHi–C data from randomly selected 50 cortical
L2–5 pyramidal cells and 50 adult astrocytes. We find that the cell-to-
cell variability of TADs is heterogeneous. The heterogeneity is con-
sistent among the pairwise comparisons but quite different from those
from random scenarios in which equal-numbered reorganized TADs
are randomly assigned in pairwise comparisons. The proportion of
reorganized TADs is consistent among the 2500 pairs of individual
cells, ranging from 46.0% to 75.7% (Fig 7e). Across the 50 cortical L2–5
pyramidal cells, the proportions of TADs that are reorganized in a
varied number of adult astrocytes are fairly consistent (Fig. 7f).
Moreover, the proportions of TADs that are either low in cell-to-cell
variability (reorganized in nomore than 10 adult astrocytes) or high in
cell-to-cell variability (reorganized in more than 40 adult astrocytes)
are much higher than those from random scenarios (Fig. 7f, Supple-
mentary Fig. 30), consistent with differential cell-to-population varia-
bility of TADs as reported in the previous paragraph. This observation
is also in concordance with the randomized placement of TAD-like
blocks in individual cells but with a strong preference for TAD
boundaries observed in bulk Hi–C data18, further demonstrating the
utilization of DiffDomain.
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Fig. 6 | Application of DiffDomain on scHi–C data to identify reorganized TADs
between cell types. a Visualization of the pseudo-bulk Hi–C contact maps and the
identified neuronal TADs that are reorganized in oligodendrocytes (dark pink
horizontal bars) using varied numbers of randomly sampled individual cells. Gene
track shows four neuronalmarker genes. b Scatter plot showing the proportions of
neuronal TADs that are reorganized in oligodendrocytes using varied numbers (k1,
k2) of randomly sampled individual cells from the two cell types. Their agreements
with the set of reorganized TADs identified using all cells in each cell type are

quantified by the Jaccard index (x-axis). The vertical dashed line is JI= 1/3, repre-
senting that two equal-sized sets share half of reorganized TADs. c, d Scatter plots
showing the proportions of neonatal neuron 1 TADs that are reorganized in cortical
L2–5 pyramidal cells. Up to 228 and 150 cortical L2–5 pyramidal cells are randomly
sampled, respectively. e Scatter plot showing the agreements between sets of
reorganized TADs that are identified using (1) pseudo-bulk Hi–C data and (2) bulk
Hi–C data.

Article https://doi.org/10.1038/s41467-024-44782-6

Nature Communications |          (2024) 15:502 9



In summary, DiffDomain works on scHi–C data to identify reor-
ganized TADs between cell types, identify TADswith differential cell-to-
population variability, and characterize cell-to-cell variability of TADs.

Discussion
In this work, we present a statistical method, DiffDomain, for com-
parative analysis of TADs using a pair of Hi–C datasets. Extensive
evaluation using real Hi–C datasets demonstrates clear advantages of
DiffDomain over alternative methods for controlling false positive
rates and identifying truly reorganized TADs with much higher accu-
racy. Applications of DiffDomain to Hi–C datasets from different cell
lines and disease states demonstrate that reorganized TADs are enri-
ched with structural variations and associated with CTCF binding site
changes and other epigenomic changes, revealing their condition-
specific biological relevance. By applying it to a scHi–C dataset from
mouse neuronal development, DiffDomain can identify reorganized
TADs between cell types with considerable reproducibility using
pseudo-bulk Hi–C data from as few as a hundred cells. Moreover,
DiffDomain can reliably characterize the cell-to-population and cell-to-
cell variability of TADs using scHi–C data.

The major methodological contribution of DiffDomain is directly
characterizing the differences between Hi–C contact matrices using
high-dimensional random matrix theory. First, DiffDomain makes no
explicit assumption on the input chromatin contact matrices, directly
applicable to both bulk and single-cell Hi–C data. Second, DiffDomain
computes the largest eigenvalue λN of a properly normalized differ-
ence contactmatrixD, enabling the quantification of the differences of
a TAD using all chromatin interactions within the TAD. Third, lever-
aging the asymptotic distribution of λN, DiffDomain computes theo-
retical P values, which is much faster in computation than simulation
methods used in alternative methods. The model assumptions are
realistic (Methods). Last but not least, the normalized difference con-
tact matrix D can help pinpoint genomic regions with increased or
decreased chromatin interactions within the reorganized TAD,
enabling model interpretation and refined integrative analysis with
other genomic and epigenomic data.

There is room for improvement. First, DiffDomain has the highest
accuracy in detecting truly reorganized TADs, but it misses some truly
reorganized TADs that only show subtle structural changes (see exam-
ple in Fig. 2d, g). Developing more powerful model-based methods is
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Fig. 7 | Application of DiffDomain on scHi–C data to characterize cell-to-
population and cell-to-cell variability of TADs. a Heatmap showing high,
median, and low cell-to-population variational TADs. P value is from comparing
scHi–C contact map of a TAD in an individual cell to the pseudo-bulk Hi–C contact
map that represents the population average. Classification of TADs is done by
hierarchical clustering. b Pie chart showing the percentages of the high, median,
and low cell-to-population variational TADs. c Heatmaps visualizing one high cell-
to-population variational TAD (middle red rectangular box) and twomedian cell-to-
population variational TADs (top-left and bottom-right blue rectangular boxes).
d Chromosome map showing the genomic locations of high, median, and low cell-
to-population variational TADs. e Histogram showing the percentages of reorga-
nizedTADs in 2500pairwise comparisons of 50cortical L2–5pyramidal cells and 50

adult astrocytes. f Stacked bar graph showing the number (the percentage) of the
cortical L2–5 pyramidal TADs that are reorganized in a varied number (0–50) of
adult astrocytes. y-Axis represents the selected 50 cortical L2–5 pyramidal cells,
indexed from 1 to 50.When comparing a specific cortical L2–5 pyramidal cell, such
as cell 1, with 50 adult astrocytes, each cortical L2–5 pyramidal TAD is reorganized
in a different number of adult astrocytes. x-Axis (top of the plot) is the number
(proportion) of the cortical L2–5 pyramidal TADs that are reorganized in 0–5 adult
astrocytes, 6–10 adult astrocytes, and subsequent ranges (legend). Averaging the
data in the stacked bar graph across the 50 cortical L2–5 pyramidal cells (y-axis)
results in the first stacked bar graph below, labeled as “Average” on the right. The
subsequent stacked bar graph below is the average computed in random scenarios
(Supplementary Fig. 30), labeled as “Average in random scenarios" on the right.
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future work. The manually created list of gold-standard reorganized
TADs is deposited in the GitHub repository that hosts the source code,
which would benefit the research community for better method devel-
opment. Second, because of the hierarchy of TADs and sub-TADs2,33,
generalizations of DiffDomain to explicitly consider dependencies
among TADs to further refine reorganized TADs identification and
classification is future work. Third, it would be desirable to generalize
DiffDomain to compare other TAD-like domains56–61. scHi–C data is
imputed by scHiCluster54 for the characterization of cell-to-population
and cell-to-cell variability of TADs. Benchmarking the effects of different
imputation algorithms, including Higashi26,62 and scVI-3D63, on quanti-
fying cell-to-population andcell-to-cell variability ofTADs is futurework.

As a subset of TADs, the identified reorganized TADs could be a
critical unit for refined integrative analyses of multi-omics data. We
demonstrate this type of application on different human cell lines and
disease states, including SARS-CoV-2-infected A549-ACE2 cells.
Applying DiffDomain to investigate the connections between TAD
reorganization and changes in H3K27me3 modification, a marker
recently implicated indevelopment anddisease64,65, is a valuable future
work. Notably, future work integrating multiple types of omics data
and functional perturbation experiments66 is necessary to elucidate
the causal relationships between TAD reorganization and disease.

DiffDomain is an interpretable statistical method for enhanced
comparative analysis of TADs and it works for both bulk and single-cell
Hi–C data. The accelerated application of Hi–C and scHi–C mapping
technologies would generate ever-growing numbers of bulk and
single-cell Hi–C data from different health and disease states. DiffDo-
main and its future generalizations would be an essential part of the
Hi–C analysis toolkit for the emerging comparative analysis of TADs,
which in turnwould advanceunderstandingof the genome’s structure-
function relationship in health and disease.

Methods
In this section, we first introduce the first part of DiffDomain: a model-
based method to identify reorganized TADs. We state the model
assumptions and their verification using real Hi–C data before
reporting the second part of DiffDomain: classification of reorganized
TADs into six subtypes. Last is missing value imputation.

Model-based method to identify reorganized TADs
In this paper, our aim is to identify a subset of TADs that are reorga-
nized between two biological conditions, such as a pair of healthy and
diseased cell lines/tissues. Specifically, given a set of TADs identified in
one biological condition, we aim to identify the subset of TADs that are
reorganized in another biological condition. To achieve this goal, we
develop DiffDomain that takes a set of TADs and their Hi–C contact
matrices as the input. The TADs are identified using the Arrowhead
method33 (Supplementary Method 1), and Hi–C contact matrices spe-
cific to each TAD region are extracted from the genome-wide KR-
normalized Hi–C contactmaps unless specified otherwise. The core of
DiffDomain is converting the comparison of Hi–C contact matrices
into a hypothesis-testing problem on their difference matrix. This
difference matrix is modeled as a symmetric randommatrix, enabling
DiffDomain to borrow well-established theoretical results in high-
dimensional random matrix theory.

Before explaining the hypothesis testing problem, we first intro-
duce some mathematical notations and normalization operations. For
each TAD in biological condition 1, let N denote the number of con-
secutive and equal-length chromosome bins within the genomic region
covered by the TAD. Let A1 = ðAð1Þ

ij Þ 2 RN ×N
≥0 represent the symmetric KR-

normalizedHi–Ccontactmatrix, whereAð1Þ
ij represents thenon-negative

Hi–C contact frequency between chromosome bins i and j (1 ≤ i, j≤N) in
the TAD region in condition 1. In other words, A1 serves as the Hi–C
contact matrix specific to the TAD region in biological condition 1,
forming a submatrix within the genome-wide Hi–C contact matrix.

Similarly, A2 = ðAð2Þ
ij Þ 2 RN ×N

≥0 denotes the KR-normalized Hi–C contact
matrix corresponding to the same TAD region but in biological condi-
tion 2. It is well-known that theHi–C contact frequencyAij exponentially
decreaseswith an increased linear distance betweenbins i and j.Wefirst
log-transform the Hi–C contact matrices A1 and A2 and compute their
entry-wise differences, denoted by D, as shown in Eq. (2).

D = logðA1Þ � logðA2Þ: ð2Þ

Values in Hi–C contact matrices A1 and A2 could have large differences
because of variations in reading depths. For example, the GM12878
Hi–C experiment has 4.76 times more Hi–C contacts than the K562
Hi–C experiment (Supplementary Table 2). Among the 889 GM12878
TADs on Chromosome 1, the averages in the 889 Ds range from 1.479
to 2.611, with a median at 2.229. To adjust for the differences due to
variations in read depths, we normalize D= ðDijÞNi,j = 1 by standardizing
each of its k-off diagonal blocks by

ðDij � μ̂kÞ=σ̂k , ð3Þ

where k = j − i, 2 −N≤k≤N − 2, μ̂k and σ̂k are the sample mean and
standard deviation of ðDmnÞ1≤m,n≤N,n�m= k . Here, without abuse of
notations, we continue to use D to denote the resulted normalized
differencematrix. Note that the normalization is TAD-specific because
two different TADsmost likely have different μ̂k and σ̂k , 2 −N ≤ k N − 2.
Besides visualization in Fig. 1a–c, the effects of the above procedures
for both bulk and single-cell Hi–Cmatrices from the sameTAD are also
visualized in Supplementary Fig. 1.

Intuitively, if a TAD does not undergo structural reorganization
from biological condition 1 to biological condition 2, the differences
between A1 and A2 are caused by multiple factors, including variations
in read depths and random perturbations of 3D genome organization.
Thus, we assume that entries in D follow a standard Gaussian dis-
tribution, resulting in D being a symmetric random noise matrix with
entries that follow a standard Gaussian distribution. Scaling D by

ffiffiffiffi

N
p

,
where N represents the number of bins in the TAD, results in D=

ffiffiffiffi

N
p

exhibiting characteristics typical of a well-studied random matrix
known as a generalized Wigner matrix. With the justifications pre-
sented in the next subsection, we assume that D=

ffiffiffiffi

N
p

is a generalized
Wigner matrix. The problem of identifying reorganized TADs is
reformulated as the following hypothesis testing problem:

H0 : D=
ffiffiffiffi

N
p

resembles a generalizedWignermatrix,

H1 : D=
ffiffiffiffi

N
p

does not resemble a generalizedWignermatrix:

The largest eigenvalue of D=
ffiffiffiffi

N
p

, denoted by λN, converges to 2 with
increased N67. This result helps us to reformulate the hypothesis test-
ing problem as the following:

H0 : λN = 2 vs: H1 : λN > 2: ð4Þ

Under H0, θN =N2/3(λN − 2), a normalized λN, converges in distribution
to Tracy-Widom distribution with index β = 1, denoted as TW1

68.

θN !d TW 1: ð5Þ

In other words, under H0, a TAD does not undergo structural reorga-
nization in biological condition 2. Then, the fluctuations of θN is gov-
erned by Tracy–Widom distribution TW1. Thus, we choose θN as the
test statistic and compute a one-sided P value by

P value =PTW 1
ðθN ≥ xÞ: ð6Þ

A smaller P value means that the TAD is more likely to be reorganized
in condition 2.
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For a set of TADs, P values are adjusted for multiple comparisons
by a fewmethods, with the BHmethod as the default. The pseudocode
of our DiffDomain algorithm is presented in SupplementaryMethod 2.

Model assumptions and their verifications
Given two KR-normalized Hi–C contact matrices, DiffDomain com-
putes the normalized difference matrix D, bypassing complicated
further normalization of individual Hi–C contact matrices69. Thus,
DiffDomain makes no explicit assumptions on the individual Hi–C
contact matrices. DiffDomain only makes assumptions on the nor-
malized differencematrixD. First, underH0, DiffDomain assumes that
D=

ffiffiffiffi

N
p

is a generalizedWignermatrix: a symmetric randommatrixwith
independent mean zero upper diagonal entries. Symmetry is satisfied
by D=

ffiffiffiffi

N
p

because Hi–C contact matrices are symmetric. The inde-
pendence assumption on the upper diagonal entries is violated by
D=

ffiffiffiffi

N
p

considering the well-known fact that Hi–C contact frequencies
positively correlate with each other among nearby chromosome bins.
However, the violation of the independence assumption does not
substantially alter the properties of D=

ffiffiffiffi

N
p

and DiffDomain (Supple-
mentary Note 1). Briefly, the empirical properties of D=

ffiffiffiffi

N
p

and Diff-
Domain resemble the following theoretical properties: (i) empirical
spectral distribution of a generalizedWigner matrix converging to the
well-established semicircle law70, (ii) λN→ 267, (iii) unadjusted P values
following a uniform distribution when H0 is true and model assump-
tions are satisfied (Supplementary Note 1, Supplementary Fig. 3). The
key result (5) requires one more assumption. It holds under the con-
dition that the distributions of entries in generalized Wigner matrices
have vanishing third-moments as N tends to infinity71. After the stan-
dardization procedure (3), Dij=

ffiffiffiffi

N
p

approximately follows a Gaussian
distribution N(0, 1/N) whose third moment is 0, satisfying the vanish-
ing third-moment assumption. Taken together, assumptions of Diff-
Domain are appropriate. For additional references on the generalized
Wigner matrix, please refer to the comprehensive books authored by
Bai and Silverstein72 and Couillet and Liao73.

Reorganized TAD classification
Once a subset of reorganized TADs is identified, the classification of
reorganized TADs is critical to interpreting TAD reorganization and
linking them to the dynamics of genome functions. Motivated by clas-
sifications in previous studies10,30,31, DiffDomain classifies reorganized
TADs into six subtypes: strength-change, loss, split, merge, zoom, and
complex. TADs are hierarchically organized, as identified by methods
such as Arrowhead. Large TADs can subdivide into smaller TADs, and a
genomic region may belong to multiple TADs, complicating reorga-
nized TAD classification. To address this, we compare the TAD list in
condition 1 with the TAD list in condition 2, utilizing combinations of
identical TADs and overlapping TADs between the two conditions to
distinguish the distinct reorganized TAD subtypes (Fig. 1f, Supplemen-
tary Method 3). A brief description of the subtypes is provided below.
1. Strength-change represents that the boundaries of the reorga-

nized TAD are the same in both conditions. Specifically, the
reorganized TAD in condition 1 has a one-to-one identical
relationship with a TAD in condition 2.

2. Loss represents that the reorganized TAD in condition 1 does not
overlap with or be identical to any TADs in condition 2.

3. Split represents that a reorganized TAD in condition 1 is split into
at least two TADs in biological condition 2. Specifically, the reor-
ganized TAD has either a one-to-many identical relationship or a
one-to-many overlapping relationship with TADs in condition 2.

4. Merge represents that the reorganized TAD has a many-to-one
identical or a many-to-one overlapping relationship with a TAD in
condition 2. Specifically, the reorganized TAD and at least one of
its adjacent/overlapping TADs in condition 1 are identical to or
overlap with a single TAD in condition 2.Merge is the opposite of
split when condition 2 is treated as condition 1.

5. Zoom represents that the reorganized TAD in condition 1 has a
one-to-one overlapping relationship with a TAD in condition 2,
addition to not being identical to any TADs in condition 2.

6. Complex represents the other reorganized TADs.

After the classification of reorganized TADs into the six subtypes,
the strength-change TADs are further subdivided into two categories.
Within a strength-change TAD, the Hi–C contact frequencies either
increase or decrease in biological condition 2, after proper normal-
ization on the differences in total sequenced reads. Subsequently, a
strength-changeTADcanbe classified into a strength-change upTADor
a strength-change downTAD. Before explaining the classification, a few
mathematical notions are introduced. Given a strength-changeTAD, let
m1 be the median value of KR-normalized Hi–C contact frequencies
within the strength-change TAD in condition 1,m2 be themedian value
of the KR-normalized Hi–C contact frequencies within the same TAD
region but in condition 2. Let s1 be the sum of the KR-normalized Hi–C
contact frequencies across all condition 1 TADs, s2 be the sum of the
KR-normalizedHi–C contact frequencies across all condition 2 TADs. If
the strength-changeTADsatisfies m1

m2
× s2

s1
≥ 1, it is classified as a strength-

change up TAD. Otherwise, the strength-change TAD is classified as a
strength-change down TAD.

Missing value imputation
Missing values may exist in Hi–C contact matrices A1 or A2 for a specific
TADregion, and their origin canvary.DiffDomaindistinguishesbetween
missing values caused by SVs and those caused by other factors, such as
low sequencing depth. When SVs are present, say in condition 2, Diff-
Domain first checks if an m×m submatrix, m≥3, of A2 contains exclu-
sivelymissing values. In such cases, them ×m submatrix is imputedwith
a constant, with the default value of 1. Otherwise, if any row and column
with a proportion of missing values greater than a given threshold, with
a default value of 0.5, DiffDomain removes the corresponding row/
column from both A1 and A2. Subsequently, the remaining missing
values are imputed by the median contact frequency of interactions at
the same distance within the corresponding contact matrix.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. Hi–C data of mul-
tiple human cell lines and replicates of GM12878 cell line are down-
loaded from the Gene Expression Omnibus (GEO) database under
accession code GSE63525 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE63525]33. Hi–C data of patient-derived DIPG, NHA, and
GBM cell lines and DIPG frozen tissue specimens are downloaded from
the GEO database under accession code GSE162976 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE162976]74. Hi–C data of mock-
infected and SARS-CoV-2-infected A549-ACE2 cells are downloaded
from the GEO database under accession code GSE179184 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179184]48. Processed
single-cell Dip-C data of multiple cell types in mouse brains are down-
loaded from theGEOdatabase under accession codeGSE162511 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162511]51. The other
Hi–C data, DNase-seq data, super-enhancers, and cancer genes are
downloaded from the GEO, 4DN, OncoKB, and GeneCards databases,
and the data sources are listed in Supplementary Method 5. All relevant
analyzed data is available upon request.

Code availability
The software is published under the GNU GPL v3.0 license. The source
code of DiffDomain is available at https://github.com/Tian-Dechao/
diffDomain or at this https://doi.org/10.5281/zenodo.1020520875.
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