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SiFT: uncoveringhiddenbiological processes
by probabilistic filtering of single-cell data

Zoe Piran 1 & Mor Nitzan 1,2,3

Cellular populations simultaneously encode multiple biological attributes,
including spatial configuration, temporal trajectories, and cell-cell interac-
tions. Some of these signals may be overshadowed by others and harder to
recover, despite the great progress made to computationally reconstruct
biological processes from single-cell data. To address this, we present SiFT, a
kernel-based projection method for filtering biological signals in single-cell
data, thus uncovering underlying biological processes. SiFT applies to a wide
range of tasks, from the removal of unwanted variation in the data to revealing
hidden biological structures. We demonstrate how SiFT enhances the liver
circadian signal by filtering spatial zonation, recovers regenerative cell sub-
populations in spatially-resolved liver data, and exposes COVID-19 disease-
related cells, pathways, and dynamics by filtering healthy reference signals.
SiFT performs the correction at the gene expression level, can scale to large
datasets, and compares favorably to state-of-the-art methods.

Cells encode information in their gene expression profiles about
different facets of their identity, such as their spatial location within
tissues, cell cycle phase, and disease stage. Recent years have seen a
surge in computational methods for the reconstruction of such
cellular facets from single-cell RNA-sequencing (scRNA-seq) data1.
While these reconstruction methods were proven successful for the
recovery of diverse signals, including spatial2–4 and temporal5,6 sig-
nals, most of these methods focus on reconstructing a single signal
in the data, relying either on its dominance or based on sufficient
prior knowledge (such as known marker genes). However, since
cells encodemultiple signals about their intrinsic state and extrinsic
environment, focusing on a single signal (measured or recovered) is
insufficient and may overlook key cellular attributes. For example,
while the cells’ spatial organization may be the dominant signal in a
single-cell dataset, it may overshadow a temporal regulation pat-
tern. In such a scenario, information about the reconstructed (e.g.,
spatial) signal can be used to filter it from the data and reveal further
complex hidden attributes. Another example involves case–control
comparisons, where information about healthy controls can be fil-
tered from cells sampled frompatients along disease progression to
uncover the subpopulation of cells affected by the disease and
characterize their response.

The signal filtering approach was previously explored for
removing unwanted sources of variation as a preprocessing step. For
example, multiple computational methods have been proposed for
data integration and the removal of batch effects (e.g., bbknn7,
Harmony8, and scVI9,10), or specifically for removing the cell cycle sig-
nal, a major source of bias in single-cell data11–15. This bias introduces
large within-cell-type gene expression heterogeneity that can obscure
the differences between cell types. In turn, the latter can resurface
once the cell cycle signal is filtered out. Yet, these methods are task-
specific; data integration methods (apart from scVI) typically focus on
a categorical factor to encode the different groups (batches) in the
data, and cell cycle filtering approaches tend to account for known
informative genes13,14 or take advantage of the signal’s cyclic
structure11. Similarly, scPrisma, a spectral template-matching
method, was recently proposed for the inference, filtering or
enhancement of underlying signals based on prior knowledge of
their structure (such as the cyclic structure of the cell cycle)16. In
addition, most integration methods, including scVI, provide a correc-
tion at the level of a joint latent representation of the cells, and not for
the original count matrix or for individual genes, thus limiting the
applicability of existing downstream analysis tools and requiring
the development of case-specific methods17. Hence, altogether, the
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above methods cannot be used to filter out a generic biological signal
from single-cell data.

To this end, Satija et al.18 suggested removing technical and cell
cycle effects using a linear regression model. In this setting, indepen-
dent linearmodels arefitted topredict gene expressionwith respect to
a set of predefined variables. Then, for each variable independently,
the fitted linear model is regressed from each gene. However, this
strategy is restricted to the fit of the linear model and does not allow
for additional user inputs to adjust the removal process to ensure that
desired biological components are not removed from the data.

Here we introduce SiFT (Signal FilTering), a diverse and robust
framework for filtering signals induced by different biological pro-
cesses in single-cell data, thus uncovering underlying processes of
interest. To do so, we compute a probabilistic cell–cell similarity ker-
nel, which captures the similarity between cells according to the bio-
logical signal we wish to filter. Using this kernel, we obtain a projection
of the cells onto the signal in gene expression space. By deducting this
projection from the original data, we filter the signal-related informa-
tion and uncover additional, hidden cellular attributes.

We begin by demonstrating that SiFT can successfully and effi-
ciently remove sources of unwanted variation in the data while pre-
serving biological attributes. This is showcased by applying SiFT to
filter nuisance signals in Drosophila wing disc development single-cell
data and removing cell cycle effects from a semi-synthetic single-cell
dataset mimicking the existence of two sub-clones, where SiFT out-
performs state-of-the-art methods. Next, we exemplify SiFT’s ability to
expose and enhance underlying biological signals. To do so we use
prior knowledge regarding liver zonation to filter the spatial signal
from single-cell liver data, thereby enhancing the temporal circadian
signal encoded by the cells. In addition, we apply SiFT to spatially
resolved data of liver regeneration where global subpopulations
involved in the regeneration process are exposed by filtering the local
neighborhood of cells using the corresponding spatial coordinates.
Finally, we demonstrate the application of SiFT in a case–control set-
ting in the context of COVID-19 progression. Healthy samples are used
as a reference to filter the healthy signal and identify disease-related
dynamics. SiFT is available as an open-source softwarepackage https://
github.com/nitzanlab/sift-sc, along with documentation and tutorials
at https://sift-sc.readthedocs.io.

Results
Revealing hidden biological signals using SiFT
The SiFT framework leverages known relationships between cells to
expose additional, underlying structures in single-cell data (Fig. 1).
Consider the scenariowhere each cell has two attributes, whichwewill
term here shape and color. Now, assume that we have experimentally
measured, or can computationally recover, the color identity (e.g., by
coupling known marker genes to a clustering of the data). The biolo-
gical signal that remainsmeaningful to uncover is the shape of the cell,
for which no prior knowledge exists. By using SiFT to remove the color
signal from the data we can uncover the shape signal (Fig. 1a).

SiFT takes as input both an expression count matrix, as well as
knowledge about a specific signal encoded by attributes of the cells.
The latter canbeprovided as amappingof the cells usingdeterministic
labels (e.g., cell cycle stage or spatial coordinates), a set of marker
genes, pseudotime ordering, or a latent space representation of the
cells (“Methods”, Fig. 1b). These attributes are used to compute a
cell–cell similarity kernel with respect to the encoded signal (Fig. 1c).
Alternatively, the mapping to the signal can be based on a population
of reference cells (e.g., control cells in a case–control setting). Then,
the cell–cell similarity kernel is computed only using the reference
cells to capture the reference (e.g., control) signal.

In general, the kernel captures distances between cells in the
signal space, thus encoding the cells’ similarity concerning the signal
to be filtered. We define three main variants of cell–cell similarity

kernels: a mapping, k-nearest-neighbor (knn), and a distance kernel.
Themapping kernel relies on a stochastic or deterministic mapping of
the cells to a given domain. Such mapping results in cell labels,
including cell-type labels or temporal labels generated by binning of a
pseudotime trajectory. In such a case, the resultant kernel will follow a
block structure, grouping cells associated to the same label. The knn
and distance kernels rely on a joint space representation of the cells
over which a corresponding distance metric can be defined. Such
spaces canbegenerated, for example, by restricting theoriginal single-
cell data to a set of marker genes, or a latent space representation of
the cells based on single-cell variational inference (scVI)10. Given such a
representation, the knn kernel is defined as the row-normalized
weighted adjacency matrix based on the distance measure used to
identify each cell’s neighbors. The distance kernel uses the cell dis-
tances directly, transformed to valid probabilities using the SoftMax
function. The choice of the kernel type relies on the structure and
knowledge regarding the existing signal attribute. Themain difference
is in the coarse representation captured by the mapping kernel in
contrast to the weighted similarities obtained by the knn and distance
kernels (“Methods”, Fig. 1c). Alternatively, the user can supply a pre-
computed cell–cell similarity kernel that captures information they
aim to filter.

Given a cell–cell similarity kernel, we obtain a projection of the
expression count matrix onto the signal we seek to filter using matrix
multiplication (“Methods”). With this construction, the projection can
be interpreted as the portion of the expression associated with the
known signal. Hence, we can deduct it from the original count matrix,
and obtain a filtered representation of the data which represents the
deviation of each cell’s gene expression from the expected, or typical
expression in its neighboring cells, to capture attributes associated
with additional biological signals (Fig. 1d). Thereby, SiFT provides a
corrected count matrix (which can contain negative values or be cor-
rected by a pseudocount; “Methods”). Now, diverse analysis tools can
be applied to study the filtered data and explore the underlying bio-
logical signals it encodes (Fig. 1e).

SiFT efficiently removes unwanted sources of variation
Experimental data often contains unwanted sources of variation which
obscure the biological signal of interest. These can be discrete (e.g.,
sex label) or continuous (e.g., cell cycle phase) signals. A desired pre-
processing step is to remove such sources of variation. An optimal
removal procedure should: efficiently remove the unwanted signal
while preserving the biological attributes, be generic and adaptive to
diverse settings, and be easily included in the analysis pipeline (in
terms of implementation and scalability with respect to dataset size).
We turn to show that SiFT meets all of these criteria.

As a start, we consider a single-cell transcriptomics dataset of the
Drosophila wing disc, previously shown to suffer from unwanted
sources of variation due to cell cycle and sex signals19. The original
embedding of the cells reflects the bias induced by both the cell cycle
and sex signals within each batch (Fig. 2a). Using SiFT, we can filter
these signals and uncover the underlying biologically meaningful
variability. We apply SiFT to filter both cell cycle and sex-related var-
iation using a corresponding reported set of marker genes (Supple-
mentary Table 1). Namely, the marker genes’ expression is used to
construct a knn kernel, capturing the neighborhood of the cells with
respect to the cell cycle and sex signals (Supplementary Fig. 1). Then,
this kernel is used to filter out the unwanted signals.

The SiFT-corrected embedding of the cells shows a homogeneous
representation with respect to the sex and cell cycle phase signals,
which we aimed to filter (Fig. 2a). That is, in contrast to the original
data, labels are not visibly separable in the latent space representation
(Fig. 2a), and the marker genes’ spatial gradients are removed (Sup-
plementary Fig. 2). This qualitative result is supported quantitatively
by the graph iLISI score, evaluated for each biological batch
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independently, with respect to cell cycle labels aswell as joint cell cycle
and sex labels (“Methods”). This quantitative evaluation shows that
SiFT can successfully remove unwanted variation in single-cell data
(Fig. 2b). Further, SiFT is robust to kernel as well as hyper-parameter
choice; specifically, the performance is robust to different values of k
(the number of neighbors for the knn kernel) and to kernel choice
(shown for the distance kernel using the same input as the knn kernel

above, Supplementary Fig. 3). However, using amapping kernel, which
takes as input coarse labels, reduces the performance. This is expec-
ted, as themapping kernel induces a block structure thatgives uniform
weight to all cells of the same label without further tuning for local
neighborhoods of the individual cells, in contrast to the knn kernel.

Furthermore, SiFT compares favorably to available baselines for
this task, including Scanpy’s regress out function (a Python
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Fig. 1 | Overview of the SiFT algorithm. a Conceptual illustration of the applica-
tion of SiFT to cells where each cell has two attributes, shape and color. Applying
SiFT will expose the shape attribute, based on our existing knowledge of the color
structure. Figure is created with BioRender.com. b–d The SiFT pipeline. b input;
SiFT takes as input a count matrix and a pre-computed mapping of the cells. The
mapping can be either continuous or discrete and either univariate or multi-
dimensional. Figure is created with BioRender.com. c Cell–cell similarity kernel
computation; the cell–cell similarity kernel is computed based on the given signal
mapping. Columns correspond to the different kernels, the mapping kernel (left),
the knn kernel (center), and the distance kernel (right). The top row illustrates the

cell similarity structure captured by the kernel and the bottom row illustrates the
cell–cell similarity kernel. Figure is created with BioRender.com. d Projection fil-
tering; filtering is performed by projecting the kernel onto the count matrix and
deducing the projection from the original count matrix. e Downstream analysis;
after filtering, the hidden structure is exposed and easily recovered in downstream
analysis. SiFT allows labeling according to hidden signals (left), enhances under-
lying gene trends (middle), and uses a reference control population to identify cells
that are responsive for the case, correcting the naive abundance test and identi-
fying that cells of type B contain a larger population of cells informative of disease
state (right).
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implementation of the linear regression suggested by Satija et al.18)
(regress_out20) and scVI conditioned on the expression of the set of
nuisance genes (scVI10). This can be seen by qualitatively comparing
the labels’ separation in the latent space representation (Fig. 2a), and
quantitatively with respect to the graph iLISI score (Fig. 2b).

Importantly, while filtering unwanted variance in the data SiFT
preserves biological variation that was not targeted for filtering, with
40% of the genes of interest (using genes reported in the original
analysis of this data19 and in ref. 21, Supplementary Table 1) present in
the corrected highly variable gene set, whereas regress_out captures
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Fig. 2 | SiFT removes unwanted variation from single-cell data. a, b Removal of
unwanted sources of variation from transcriptomics of the Drosophila wing disc
development20. a UMAP embeddings50 following different data correction proce-
dures (rows) and colored bydifferent covariates, representingunwanted sources of
variation and desired biological signal (columns). Rows (top to bottom) show
uncorrected data (Original data), SiFT filtering using knn kernel (SiFT), Scanpy’s
scanpy.pp.regress_out() (regress_out), and scVI latent space with continuous cov-
ariates (scVI).Columns (left to right) show the cells coloredbybatch label, sex label,
cell cycle phase, and Nrt, a novel Hedgehog target gene identified in ref. 20.
b Integration and biological preservation scores per method. Scores (left to right):
graph iLISI score evaluated for cell cycle phase label, graph iLISI score evaluated for
cell cycle phase and sex label and overlap of the highly variable genes with a set of
genes of biological interest. Scores are reported over n=4 biologically indepen-
dent samples. In box plot middle line, median; box boundary, interquartile range

(IQR); whiskers, 1.5*IQR; minimum and maximum, not indicated in the box plot;
gray dots, points beyond the minimum or maximum whisker (“Methods”). c The
runtime of the methods on subsampled versions of the Heart Cell Atlas dataset23.
d A table summarizing several criteria regarding the different methods: (top to
bottom) adaptive; relates to the flexibility of the method, support of different
filtering procedures allowing for optimization of the task. Both comparedmethods,
regress_out and scVI, do not support additional parameters apart from the variable
of interest, regarding the filtering task. runtime; color indicates the overall scal-
ability of the method. A combined measurement of overall runtime and scalability
across magnitudes, as depicted in (c). GPU support; implemented support of GPU
acceleration. corrected expression; indicates whether the method outputs the
corrected gene expression (for a disclaimer regarding scVI’s applicability to this
evaluation as it requires imputation of the corrected gene expression see “Meth-
ods”). Source data of (b, c) are provided as a Source Data file.
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only 30% (“Methods”, Fig. 2b). Suchpreservationof biological variation
is visualized for Neurotactin (Nrt) and midline (mid), downstream
Hedgehog pathway targets in the adult muscle precursors, and pat-
ched (ptc), a receptor of the Hedgehog ligand (Fig. 2a and Supple-
mentary Fig. 2).

Further exploring this setting, when coupled to standard batch
integration methods (e.g., Harmony8 or bbknn7), over the complete
integration task, SiFT positively compares to regress_out followed by
Harmony or bbknn, or scVI applied with batch correction with con-
tinuous covariates (Supplementary Fig. 4). Next, we probe the
dependence of SiFT on prior knowledge (the set of marker genes in
this case). We evaluate the methods’ performance using a partial,
weaker set ofmarkers, by randomly replacing 10of the 55markerswith
genes that are unrelated to the cell cycle and sex signal we aim to filter,
yet related to biological signalswe aim to retainpost filtering (from the
set of genes of interest). This exchange implies that beyond removing
genes that are valuable for the recovery of the nuisance signal we add
genes that encode biologically meaningful information, such as the
spatial compartment in thewing disc, thusweakening the gene set that
is used to guide thefiltering (“Methods”). In contrast to othermethods,
SiFT encounters aminimal degradation in performance (percentage of
deviation of the mean score, taken over biological batches and mod-
ified marker set repetitions, from the score over the original set: iLISI
cell cycle; SiFT = −0.6%, regress_out = −1.0%, scVI = −13.5%, iLISI cell
cycle and sex; SiFT = −4.2%, regress_out = −5.9%, scVI = −16.3%, Sup-
plementary Fig. 4).

At last, we turn to show that SiFT is scalable and can be applied to
large single-cell datasets. Of note, similarly to scVI, SiFT’s scalability
relies on GPU support (see “Methods”). Runtime performance is
benchmarked on the Heart Cell Atlas dataset, composed of nearly
500,000 cells22. To define a filtering task, we add random features in
the form of continuous random noise. The features are used as the
mapping for the signal we wish to remove (“Methods”). Given this task
we test the runtime of the removal algorithms (SiFT, scVI, and
regress_out) over increasing subsamples of the data (Fig. 2c; both SiFT
and scVI are run using GPU support). This showcases SiFT’s efficiency
and scalability to large single-cell datasets, with a runtime of 12min,
36min, and 1 h 26min for SiFT, scVI, and regress_out, respectively,
over the complete dataset.

Together, SiFTmeets all criteria desired for the successfulfiltering
of unwanted signals in single-cell data (Fig. 2d); its versatility in kernel
computation allows adapting the filtering to uncover and preserve the
biological signal of interest, its runtime efficiency using GPU support
allows scaling to large datasets, and since filtering is performed
directly on the input countmatrix, it cannaturally be incorporated into
the data preprocessing step and followed by any downstream analysis
procedure.

SiFT exposes underlying biological heterogeneity
An important aspect of the filtering procedure is the ability to expose
underlying biological attributes. The cell cycle introduces hetero-
geneity that can obscure other biological differences between cells,
and so removing its effect improves the inference of inherent biolo-
gical diversity11–1415. Hence, many dedicated methods were introduced
for this task, amongst them are Cyclum11, an autoencoder-based
approach for identifying circular trajectories in gene expression space,
Seurat13, which uses a linear model to find the relationship between
gene expression levels and marker genes scores it assigns to each cell,
ccRemover14, a PCA-based method that identifies and then removes
components related to the cell cycle, and f-scLVM15, a factor-analysis-
based latent variable model.

We consider a synthetic manipulation of single-cell data curated
by Liang et al.11 which consists of two sub-clones, and show that SiFT
can successfully remove the cell cycle effect and enhance the subclone
separability in the data. The two sub-clones provide a supervised

setting resembling a biological signal we intend to preserve and
expose. We used mouse embryonic stem cell (mESC) data as one
clone23 and a second clone was created by doubling the expression
levels of a randomly selected set of genes containing variable numbers
of cell cycle and non-cell cycle-related genes. The cell cycle stage can
be easily recovered in the original data, but not in the subclone where
it is hidden (Fig. 3a).

To quantify the performance and assess the separability of the
sub-clones alongwith themixing of the cell cycle stages,we use a set of
metrics for integration accuracy24. The metrics are divided into two
categories, removal of batch effects and conservation of biological
variance (all scores are scaled between 0 to 1), where cell cycle stage
labels are considered as the batches in the data. Hence in our context,
the batch effect removal scores correspond to the mixing of the cell
cycle stages. Similarly, the cell subclone identity label is used as the
anchor for the preservation of biological signals, thus used in the
metrics for biological variance (“Methods”).

We startwith an independent evaluationof SiFTusing only a set of
known cell cycle marker genes as input to compute a knn kernel
(“Methods”, Fig. 3b). The marker genes define the manifold for the
computation of the neighbors. Here, the low-dimensional repre-
sentation of the cells does not expose clear visual separation between
the sub-clones (Fig. 3c), yet the quantitative assessment ensures it
performs well for the desired task and more specifically outperforms
Seurat which relies on the same prior knowledge (Fig. 3d). Next, we
show how additional prior knowledge can enhance the accuracy of
SiFT by two alternative mappings for the cell cycle signal. The ground
truth cell cycle stage (provided with the data), and the binned repre-
sentation of the pseudotime inferred by Cyclum11. Both are then used
to construct mapping kernels. The mapping kernels showcase a block
structure depicting three cell cycle stages while the knn kernel cap-
tures more subtle relations between the cells (Fig. 3b).

Further, we evaluate the performance of SiFT using three addi-
tional kernels: A distance kernel and a coarser knn kernel on Cyclum’s
pseudotime, as well as a mapping kernel based on Seurat’s13 inferred
cell cycle labels. SiFT preserves its performance accuracy using the
distance kernel over the Cyclum pseudotime, whereas the coarser
binning of the pseudotime slightly degrades the results, still compar-
ing favorably to all methods apart from Cyclum. However, as a direct
result of SiFT’s dependence on the accuracy of the input mapping,
using Seurat-based labels results in a loss of accuracy (Supplemen-
tary Fig. 5).

Following filtering of cell cycle effects, the visual separability of
the sub-clones is substantially enhanced by SiFT, as well as by Cyclum,
using either the ground truth labels or Cyclum’s pseudotime (Fig. 3c).
SiFT attains quantitatively higher scores in cell cycle removalmetrics in
comparison to baseline methods, and higher scores in biological
conservation when relying either on ground truth or Cyclum based
mapping to be filtered (Fig. 3d and Supplementary Fig. 5).

Filtering spatial signals recovers temporal information
Cellular gene expression is regulated by spatial and temporal signals,
posing a challenge of decoupling, and studying the interplay between
the two. The liver stands as an example of a tissue undergoing strong
spatial and temporal regulation; it consists of repeating anatomical
units termed liver lobules, and sub-lobule zones performing distinct
functions. Liver zonation refers to functions that are non-uniformly
distributed along the lobule radial axis. Hence, even for spatially
resolved data, recovering the spatial zonation requires identifying the
lobules and classifying cells into their sub-lobular zones. Given the
strong zonation signal, regardless of spatial information this is often
doneusing knownmarker genes. Beyond the spatial structure, the liver
is also subject to temporal regulation, consistingof the circadian clock,
systemic signals, and feeding rhythms25,26. While the liver zonation
signal has been intensively studied26,27, less is known regarding the
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temporal signal25. Thus, SiFT can be used to filter the prior knowledge
regarding the spatial zonation signal in order to enhance the circadian
clock trajectory. To do so, we consider a dataset from ref. 26, labeled
for temporal processes, as data were collected at four different equally
spaced time points along the day, and with known marker genes for
the spatial zonation signal27 (Supplementary Table 2). The prior
knowledge of known marker genes allows to computationally recover
the spatial structure for filtering (Fig. 4a).

While SiFT can take as input the set of spatial marker genes
directly, it can be beneficial to use existing methods dedicated to
spatial reconstruction and provide the spatial mapping directly as
input to SiFT. Using SiFT solely with marker genes exposes the tem-
poral signal and by providing the spatial reconstruction input, we can
further improve its performance. To obtain a spatial reconstructionwe
use novoSpaRc2,3, providing a mapping of the spatial organization of
the cells. NovoSpaRc is an optimal transport-based method for
reconstruction of scRNA-seq data which can take as input prior
knowledge in the form of marker genes (“Methods”). The mapping, as

inferred by novoSpaRc, to an eight-layer tissue representing the lob-
ular liver layers, is used by SiFT to construct a mapping kernel (Sup-
plementary Fig. 6). The set of spatial marker genes is used by SiFT to
define a knn kernel, where distances between cells are computed
based on similarities in the spatially zonated genes (Supplemen-
tary Fig. 6).

In both settings, using zonated genes or relying on novoSpaRc
mapping, applying SiFT successfully removes the zonation signature
yet preserved the visual separability based on the circadian trajectory
over a UMAP representation of the data (Fig. 4b). This is further sup-
ported by comparing the expression of two zonated and rhythmic
genes (Hlf and Elovl3) before and after the application of SiFT (Fig. 4c);
The genes’ temporal trend is preserved (Fig. 4c, top row), yet the
spatial variation is eliminated (Fig. 4c, bottom row).

We quantitatively test the performance of temporal recon-
struction by assessing the correlation of the reconstruction with
the reported temporal trajectory as a function of the number of
temporally informative genes (marker genes used for the
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reconstruction, Supplementary Table 2). To do so, we employ
novoSpaRc again, this time to recover the temporal trajectory by
mapping to four cyclic locations. We find that the quality of tem-
poral trajectory reconstruction with SiFT (using novoSpaRc,
zonated), even without any temporal reference, is better than the
reconstruction based on the original data with 10 marker genes
(Pearson correlation; SiFT (0 markers) = 0.81 ± 0.00, Original (10
markers) = 0.44 ± 0.00), implying that by using SiFT, prior knowl-
edge of the zonation signature exposes the underlying circadian
clock trajectory and provides sufficient information for its suc-
cessful recovery. Further, even in the simpler setting, applying SiFT
using zonated genes, improves the quality of temporal recon-
struction without any marker genes (Pearson correlation=0.46 ±
0.0). At last, in both of the SiFT settings, the reconstruction quality
substantially improves upon the addition of informative genes and
reaches near-perfect performance using 10 markers (Pearson cor-
relation; SiFT (zonated genes) = 0.71 ± 0.00, SiFT (novoSpaRc,
zonated) = 0.96 ± 0.00, Original=0.44 ± 0.00, Fig. 4d).

Recovering collective subpopulations by removing local
interactions
A cell’s state is largely influenced by its environment, and cell–cell
interactions give rise to tissue niches28. While deciphering the com-
munication mechanisms and emergent local spatial structure is
crucial28,29, understanding global cellular states is often the primary
focus of interest. Advancements in methods for spatial molecular
profiling provide us with contextual information regarding the cell’s
local environment along with gene expression measurements. As we
show, the spatial information can be utilized to filter local signals and
expose global phenomena.

As presented earlier, the liver consists of repeating anatomical
units, inducing global subpopulations of cells acting similarly across a
tissue sample. However, signals associated with such spatially global
processes may be interfered with local spatial signals, making pro-
cesses occurring at longer length scales harder to recover. Recently
Matchett et al.30 presented a cross-species, integrative multimodal
dataset to study liver regeneration. Among their key reported findings
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were the discovery of a novel ANXA2+ migratory hepatocyte sub-
population emerging during human liver regeneration and a corollary
subpopulation in APAP-induced mouse liver injury. For the analysis of
the mouse model of APAP-induced acute liver injury, Matchett et al.30

considered both snRNA-seq and spatial transcriptomics (ST) ofmouse
liver across multiple time points (Fig. 5a). Our analysis of the ST data
shows that the observed expressionpatterns are largely driven by local
neighborhoods, giving rise to spatially distinct localized clusters, while
signals related to global subpopulations cannot be recovered. This is
evaluated visually, by the spatial distribution of the clusters, and
quantitatively through the clusters’ interaction matrix over spatial
coordinates (Fig. 5b, Supplementary Fig. 7, “Methods”). Specifically,
the migratory subpopulation of cells cannot be recovered from ST

data directly without specific prior knowledge over the expected
migratory signal (marker genes identified over human samples30).
Since our initial analysis suggests that cellular gene expression is
strongly driven by local information, we hypothesized that by
removing this signal, which is encoded by spatial coordinates, we will
be able to directly uncover the migratory hepatocyte subpopulation.

To this end, we apply SiFT to each ST slide independently, con-
structing a distance kernel based on the spatial coordinates (“Meth-
ods”). After filtering the local spatial signal, we perform leiden
clustering of cells from all samples jointly. The obtained clusters
expose global spatial patterns, shared across samples (Fig. 5b and
Supplementary Fig. 8). Quantifying the distribution of samples within
each cluster, we observe a relatively homogeneous distribution over
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the first three clusters and the two last clusters capturing distinct
states in late and early samples, respectively. This contrasts with the
non-homogeneous distribution of samples across the original clusters
(without SiFT, Fig. 5c). Importantly, cluster 1 in the SiFTed data cor-
responds to the ANXA2+ migratory hepatocyte subpopulation, with
Anxa2 appearing uniquely in cluster 1’s top marker genes (Supple-
mentary Fig. 9) and corresponding GO terms suggesting a migratory
phenotype (Fig. 5d). As mentioned above, this migratory subpopula-
tion cannot be directly recovered by clustering of the original data30.

After identifying the migratory hepatocyte subpopulation, we
turn to study its temporal signature. Using scFates31 we obtain a
pseudotime ordering of the cells and identify temporally informative
genes.Within the temporally correlated geneswe can identify two sub-
groups, early and late, peaking at early (late) stages of the trajectory,
accordingly (Fig. 5e). Using gene-set enrichment analysis, we find that
genes peaking at late stages of the trajectory are related to wound
closure, chemotaxis, and migration, in accordance with the identifi-
cation of Matchett et al.30, based, in that case, on additional experi-
mental measurements. Downregulated programs at late stages consist
of metabolic processes, which can be related to the expected degra-
dation of metabolic processes in proliferating hepatocytes, which
appear following wound healing30,32 (Supplementary Fig. 10).

Using a reference of healthy control cells to recover disease
signature
An essential step in studying disease is decoupling disease signatures
from the healthy state by characterization of the healthy signal in
clinical samples. SiFT can be used for this task, recovering disease-
specific signatures in individual cells, by filtering the healthy trajectory
based on healthy control samples. This allows for enhancing the dis-
ease signature, identifying cells that are more informative for disease
states, and studying the different types of disease response pathways
(Fig. 1). Existing analysis pipelines approach this task by integrating all
samples, from both healthy controls and disease patients, and then
performing comparative analysis, for example, by performing differ-
ential expression analysis between common cell types or assessing
differences in cellular composition between health and disease33–36.
This analysis holds some limitations as it relies on global comparison
between the groups and does not allow studying the disease trajectory
in individual cells. In contrast to this, in the analysis performed using
SiFT, the healthy trajectory in each disease cell is identified indepen-
dently byweighting the contribution of control cells according to their
similarity to it.

We considered single-cell transcriptomes from peripheral blood
mononuclear cells (PBMCs) from individuals with asymptomatic,mild,
moderate, severe, and critical COVID-19 (n=90 individuals) and con-
trols (n= 23 individuals) reported by Stephenson et al.33 (Fig. 6a). We
used harmonized PCA space (as reported in ref. 34), which corrects for
batch effects between samples to define a knn kernel, capturing the
similarity between each cell from individuals with COVID-19 relative to
the healthy population (Fig. 6b. the robustness of the kernel choice
was validated by evaluating performance also using the distance ker-
nel, Supplementary Fig. 11, “Methods”). Under this construction,
applying SiFT is expected to filter the signal of the healthy trajectory
from the data and expose the disease response in each cell)

Patients with COVID-19 present with an abnormal immune land-
scape, characterized by overactivated inflammatory, innate immune
response, and impaired protective, adaptive immune response37.
Recent studies revealed the dynamic changes in peripheral immune
cells, both in transcriptional states and population size over the course
of COVID-1934,38. The SiFTed representation recovered cell types
involved in innate immune response, based on the interferon response
(IFN) score (monocytes, DCs, and HSPC), whereas the same analysis
over the original data failed to expose the relevant cell types33 (Fig. 6c).
While this acts as validation that SiFT can successfully recover results

obtained from direct comparative analysis33, we next show how using
SiFT can go beyond current analysis methods.

Considerable effort has been put into identifying the expansion of
different cell types in response to COVID-19 infection33,39. This is
assessed by comparing the cell-type-specific population size between
the disease and control samples. This analysis, however, does not
expose the extent to which these cells respond to the infection and
furthermore, which fraction of the expanded population contains
information regarding the disease state. SiFT allows for both as it
refines and extends the initial cell-type classification with respect to
the disease response, hence exposing the distinct underlying disease
signature and identifying the cells that are informative for the disease
state. Intuitively, by SiFTing the healthy signal we expect that cells of a
given cell type with a dominant disease response will preserve their
identity (and will later be clustered together) and that remaining cells,
with a less distinct response (more similar to healthy cells), will tend to
cluster with non-informative cells, asmost of their signalwas removed.
Indeed, the latent space representation of the SiFTed data exposes
subpopulations of specific cell types (CD14+ mono., CD16+ mono.,
Plasmablast, and Platelet) while other cell types got mixed (Fig. 6d).
Importantly, the exposed cell types are known to undergo changes in
response to COVID-19 infection40.

Next, to obtain a classification of cells as disease-informative, we
used a cluster-purity test over Leiden-based clusters in the SiFTed data
with respect to cell-type labels (“Methods”, Supplementary Fig. 12,
Fig. 7a). Under the cluster-purity test, a cluster is classified as disease-
informative if the fraction of themost prominent cell type in it exceeds
a threshold value τ =0:55. Enrichment analysis over the differentially
expressed genes between the two groups (disease-informative/disease
non-informative) supported this classification and identified pathways
associated with inflammation including response to virus, response to
type I interferon, IFNα response, inflammatory response, and regula-
tion of viral process in the disease-informative cells (Fig. 7b). In addi-
tion, under the classification of disease-informative cells, the IFN
response signature was refined by enhancing the expected pattern of
disease informative cells and exemplifying the lack of disease-related
signal of remaining disease non-informative cells (Supplementary
Fig. 12). In accordancewith this, the disease-informative cells exhibited
overexpression of type I/III interferon response-related genes (Sup-
plementary Fig. 12), which were recently reported in genome-wide
association studies (GWAS) for COVID-19 susceptibility41,42.

The classification of disease-informative/non-informative clusters
follows the understanding that analysis based on cell-type abundance
is limited and may not accurately reflect the relevance for the under-
lying disease43,44. For example, there is an ongoing debate regarding
the influence of SARS-CoV-2 on theHSPCniche43 and it has been shown
that HSPCs are particularly susceptible, implying that their vulner-
ability to SARS-CoV-2 may vary greatly from patient to patient45. Thus,
despite being the fourth most prevalent cell type in clinical samples it
may be that only a small subset of these cells is informative for disease
state, as indicated by the SiFT clustering (Fig. 7c). On the other hand,
within the cDC population, ranked third least prevalent cell type in
clinical samples,most of the cells were found to be associatedwith the
disease-informative cluster. This supports the importance of cDCs in
COVID-19 response, as expected since cells of myeloid origin play a
pivotal role during infections. Specifically, there is growing evidence
that even though their fraction in disease state decreases, cDCs
undergo aberrant maturation in COVID-1944,46,47, amongst them are
recent findings by Marongiu et al.44 that SARS-CoV-2 interacts directly
with this population.We can study the disease-associated signal in this
population by performing differential gene expression analysis
between the disease-informative and non-informative clusters. This
recovers the importance of this population in virus response, and
highlights previously reported genes, IFITM genes and MX144 (Fig. 7a
and Supplementary Fig. 13).
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In addition to exposing cell types of interest, this analysis identi-
fies the population of interest within a cell type. For example, while
increased platelet activation and coagulation abnormalities were pre-
viously reported in COVID-19 patients33,48, we identified two distinct
subpopulations of Platelet: informative and non-informative for dis-
ease state (Fig. 7a). Enrichment analysis based on differential gene
expression between the disease-informative and non-informative
clusters identified pathways associated with coagulation, hemostasis,
and antimicrobial humoral response in the disease-informative cells, as
well as increased expression of surface proteins indicative of platelet
activation in the disease-informative cells (Supplementary Fig. 13).

Discussion
We presented SiFT, a method aiming at discovering hidden cellular
processes by filtering out a knownor reconstructed signal from single-
cell gene expression data. The SiFT procedure starts by defining a
cell–cell similarity kernel, capturing similarities with respect to the
signal to be filtered. This kernel is then used to obtain a projection of
gene expression onto the signal, which is then removed from the ori-
ginal expression.

We have shown that filtering signals by SiFT can expose the
underlying, biologically meaningful structure in the data over a wide

range of tasks. First, we showcased its ability to successfully filter
unwanted sources of variation caused by nuisance signals in the data
while preserving biological signals of interest. When focusing on
removing cell cycle effects, a major source of bias in single-cell data, in
a semi-simulated setting, we showed that SiFT outperforms state-of-
the-art methods for the task. A substantial advantage of SiFT is its
ability to use existing prior knowledge to reveal hidden biological
attributes. We used the vast prior knowledge regarding spatial zona-
tion in hepatocytes to uncover the temporal trajectory in the data. In
addition, we applied SiFT to spatially resolved dataset of liver regen-
eration, where we used the spatial coordinates to remove local signals
and expose global subpopulations of interest involved in the regen-
eration process. At last, we presented SiFT’s applicability to the
case–control setting. In the context of COVID-19, SiFT exposed
disease-related signals and single-cell dynamics by filtering a corre-
sponding healthy trajectory obtained bymapping to reference healthy
samples.

In contrast to various latent space representation methods, SiFT
performs the correction at the level of individual genes. In turn, simi-
larly to other data correctionmethods, itmodifies the gene expression
so that data is no longer properly log-transformed, a property that is
expected in certain downstream analysis tasks. However, this can be
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correctedby adding a global pseudocountwhich preserves the relative
differences in gene expression. Performing the correction directly on
the measurements is a desired property for many biological applica-
tions as it allows drawing interpretable insight at the gene level, rather
than a set of lower dimensional inferred features. In future work, it will
be intriguing to explore the statistical implications of applying com-
monly used analysis tools to corrected gene expression data.

SiFT suffers from the general challenge of any computational
method which lacks a ground truth reference that can be used to
evaluate the results. To mitigate this, we suggest using integration
metrics (which in general may be application-specific), as has been
used throughout this manuscript, which provides a quantitative eva-
luation of the data after filtering is applied. Finally, it is important to
note that SiFT strongly relies on the prior knowledge used todefine the
cell–cell similarity kernel. As we showcase in various examples, an
inaccurate or coarse-grained mapping may lead to a loss of signal.

Here we exemplified the diverse range of applications of SiFT and
showcased the potential that filtering has for understanding the dif-
ferent biological signals encoded in single-cell data. We further envi-
sion that with the ongoing increase in single-cell analysis tools along
with the advance in multimodal assays, SiFT will serve as a basic ana-
lysis tool revealing hidden, more complex structures in the data. We
have made SiFT available as an open-source python package along

withdocumentation and tutorials and ensured it can efficiently scale to
the ever-increasing sizes of single-cell datasets.

Methods
The SiFT algorithm
The aimof SiFT is to expose hidden biological signals in an input count
matrix. Given an expressionmatrix along with a mapping of the genes
to a specific signal, SiFT computes the cell–cell similarity kernel based
on this mapping, the projection of the data onto the signal, and the
filtered expression matrix.

The input to SiFT includes a cell (N) by features (G) matrix
X 2 RN ×G and a mapping of the cells, T . For best performance, we
recommend that the matrix X will contain pre-processed normal-
ized gene expression. In addition, SiFT can also be applied to any
other representation of the cells, e.g., latent space or a subset of
the genes.

The mapping, T , is assumed to capture a specific biological
attribute or representation of the cells and can be of any type, e.g.,
stochastic or deterministic, continuous or discrete, uni- or multi-
variate. The diversity of types of mappings that are supported
includes, for example, donor age (deterministic, discrete, univariate),
pseudotime reconstruction (deterministic, continuous, univariate),
and a latent space representation of the data (PCA, scVI, etc.)

a

cb

disease informative
disease non-informative

cDC Platelet

0.10 0.15 0.20
Gene fraction

response to virus

defense response to virus

defense response to symbiont

response to interferon-alpha

type I interferon signaling pathway

cellular response to type I interferon

neutrophil chemotaxis

neutrophil migration

viral genome replication

positive regulation of inflammatory response

negative regulation of viral entry into host cell

response to interferon-beta

cellular zinc ion homeostasis

zinc ion homeostasis

astrocyte development

− log10(padj)
2.0
2.4
2.8
3.2
3.6
Count
3
4
6
9

0.0 0.2 0.4 0.6 0.8 1.0
fraction

CD4+ T cell

Treg

CD8+ T cell

ɣδ T cell
MAIT

NK CD56low

NK CD56high

B cell

HSPC

pDC

cDC

Plasmablast

CD14+ mono.

CD16+ mono.

Platelet

Prolif. lymph.

RBC

Prolif. mono.

disease informative
disease non-informative

healthy

Fig. 7 | Classification of cells from COVID-19 clinical samples to disease-
informative (or non-informative). a UMAP visualizations of all cells in the SiFTed
data colored by association to disease-informative and non-informative clusters.
Leiden clusters in the SiFTed data were classified according to cluster-purity score
(“Methods”). Insets show a zoom-in on the cDC (left) and Platelet (right) sub-
populations. b Enrichment analysis of the differentially expressed genes in the
disease-informative cluster (compared to non-informative, using top 50 genes).

The size of the circles indicates the numberof genes. Color indicates themagnitude
of �log10 padj

� �
. padj is calculated using the hypergeometric distribution, a one-

sidedversionof Fisher’s exact test,with Benjamini–Hochberg correction. cDisease-
informative bar plot of the proportion of cell populations, separated into disease-
informative, disease non-informative, and healthy (according to the assignment
shown in (a)). Cell types are sorted according to the fraction of disease cells. Source
data of (b, c) are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-44757-7

Nature Communications |          (2024) 15:760 11



(deterministic, discrete, multivariate). Alternatively, a set of process-
specificmarker genes (e.g., cell cyclemarker genes), can be considered
as a type of mapping and used to define distances between the cells.
The type of mapping provided dictates the cell–cell similarity kernel
that can be used.

The SiFT procedure comprises three main steps:
1. Compute cell–cell similarity kernel (K): In the first step, SiFT

computes a cell–cell similarity kernel,K 2 0,1½ �N ×N . The kernel is a
row stochastic matrix, e.g., rows sum to one, hence defining a
proper distribution. The details of the kernel construction
depend on the specific kernel choice (see below). In all cases the
user can choose the subset of source and target cells, that is the
cells for which the kernel is computed (source) and the cells the
similarity is evaluated with respect to (target). The user can also
provide a pre-computed kernel.

2. Project the data (P): obtain a projection of the data on the
supervised signal, P 2 RN ×G

P =K � X : ð1Þ
The stochasticity of K guarantees that P is of the same order of
magnitude as X .

3. Filter the data (SiFTer, eX): deduct the projection, P, from the
original countmatrix,X , to obtain a filtered expression, eX2 RN ×G,

eX =X � P =X � K � X : ð2Þ

The kernels
The kernel, K , is supposed to capture the cell–cell similarity with
respect to the signal wewish to SiFT. K is a stochastic matrix such that
the i th row is a probability distribution denoting the similarity of cell i
to all observed cells. Broadly speaking, the kernels can be divided into
three sub-classes, mapping, k-nearest-neighbor (knn), and distance
kernel, differing in the type of prior knowledge or assumptions they
require. Beyond the implemented kernels the user can provide a pre-
computed kernel.

All kernels can be refined by restricting the source and/or target
space. The source space relates to the cells whose expression we are
interested in filtering. The target space is the cells overwhich similarity
is assessed. This is done by specifying the sub-group of cells (e.g., only
healthy cells in a disease-control experiment) of interest.

Mapping kernel. The basis of the mapping kernels is a stochastic or
deterministic association of the cells (N) to a low-dimensional domain.
The mapping, T can be of any type, e.g., stochastic or deterministic,
continuous or discrete, uni- ormultivariate. In the case of a continuous
variable a binning value M is required, denoting the number of bins
used to construct a binned representation. The mapping is repre-
sented by T 2 RN ×M . Given T we construct two sets of probability
distributions:
1. pl ci

� �
: the probability of a label μ given cell i, normalizingT across

possible labels.
2. pc μð Þ: the probability of observing cell i given a label μ, normal-

izing T across cells.

The cell–cell similarity kernel, K 2 0,1½ �N ×N , is defined as the
multiplication between the two probabilities, pl and pc, summing out
the dimension of the embedded signal,M. Thus, each row inK induces
a normalized distribution, pci

cj
� �

, defined for cell i with respect to all
cells in the dataset (or reference set),

Kij =
XM
μ= 1

pl ci
� �

pc μð Þ=Eμ∼pl
pc μð Þ� � � pci

cj
� �

: ð3Þ

As evident from the above construction, this kernel is most sui-
table when the prior mapping of cells is in a form of classification (of
discrete classes or a continuum score) according to a known biological
property. The quality of the filtering procedure will rely on the accu-
racy of the provided classification.

K-nearest-neighbor (knn) kernel. The mapping, T 2 RN ×M , is used to
construct a neighborhood graph over the cells by finding the nearest
neighbors for each cell. Thus, it is required that a distance metric,
Dij =d Ti:,Tj:

� �
(e.g., the Euclidean distance), is applicable to the pro-

vided mapping. We follow Scanpy’s20 defaults to set k (with n_neigh-
bors=15), and merge and process the neighbor sets via the UMAP
algorithm49. Similarly to Scanpy20 the user can adjust the choice of k,
and as in other applications of the knn algorithm, modifying this
parameter allows controlling the size of the neighborhood considered
for the analysis, in this case the filtering procedure. In general,we show
that the procedure is robust to this choice (Supplementary Fig. 3). At
last, we normalize (across the rows) the resulting weighted adjacency
matrix of the neighborhood graph of the cells (termed the con-
nectivities) to obtain the final kernel object, K .

Distance kernel. Similarly to the knn kernel, a distance kernel requires
that the provided mapping, T 2 RN ×M , which defines a joint space
representation of the cells, will be equipped with a distance metric,
Dij =dðTi:,Tj:Þ (e.g., the Euclidean distance). With this, we define the
cell–cell similarity kernel as,

Kij =
exp �γdðTi:,Tj:Þ

� �
Zi

: ð4Þ

Here γ is a smoothing parameter that controls the effective radii
of cells (distances) that have a non-negligible influence, analogous to k
defined in the knn kernel. Z is a normalization constant, defined for
each row. If d �,�ð Þ is chosen to be the Euclidean distance, the above
denotes the radial basis function (RBF) kernel, a popular kernel func-
tion used in various kernelized learning algorithms which can be
interpreted as a similarity measure50. Similarly, if d �,�ð Þ is chosen to be
the Manhattan distance, then K is the Laplacian kernel.

Determining kernel type. As detailed above, kernel choice is largely
guided by the form of the providedmapping, T 2 RN ×M . Both the knn
and distance kernel require that a distance metric could be defined
over the mapping. Following this, as we demonstrate in the text
(Supplementary Figs. 3 and 11), SiFT’s performance is robust to the
choice between these kernels, as well as to hyper-parameter choice.
Therefore, while these choices canbe avoided using the default setting
of SiFT (the distance kernel with default parameters), we provide the
option for both kernels and allow modifying their hyper-parameters
for added user flexibility.

Importantly, the mapping kernel differs, as it is designed for a
settingwhere themappingprovides anassociation of the cells to a low-
dimensional domainwhichdefines a notion of classification of the cells
to different classes. Hence, while adequate for certain applications, for
example filtering of cell cycle stage (Fig. 3 and Supplementary Fig. 5) it
is not expected to perform well for a generic setting where the map-
ping does not capture a specific property. Further guidance and
examples are provided in our online documentation, https://sift-sc.
readthedocs.io.

The stochastic interpretation of the SiFT algorithm and output
Looking into the mathematical derivation of the SiFT procedure we
can expose natural stochastic properties which provide a better
understanding of the SiFTed output. Recall that the input mapping, T ,
is used to define a row stochastic kernel, K 2 0,1½ �N ×N . That is 8i 2
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1, � � � ,N the i th row of K is a probability distribution for cell i with
respect to remaining cells, we denote this distribution as pci

ðcjÞ
Now, an entry in the projected data Pik (for cell i and gene k in

P =K � X , step 2 in the SiFT procedure), can be read as,

Pik =
XN
j = 1

pci
cj

� �
Xjk =Ej∼pci

X jk

h i
: ð5Þ

With this, for each cell, the projection P 2 RN ×G, can be under-
stood as the mean expression of genes according to the cell–cell
similarity distribution. At the final step P is deducted from the
expression, so we obtain,

eX =X �Epc
X½ �: ð6Þ

Namely, the filtered expression stands for the deviation of the
cells’ expression with respect to the expected value in their neigh-
boring cells. This implies that the resultingmatrix can contain negative
values, which translate to genes (or features) that are below the aver-
age expression. We are only interested in the relations and distances
between the cells in the new, filtered space, and not the absolute
counts, hence the existence of negative values does not pose a pro-
blem.With that, realizing that certain analysismethods expect as input
a positive count matrix, we suggest correcting the filtered expression
matrix by adding a pseudocount following the global minima of the
data (so that the corrected filtered minima would be zero), ensuring
positivity and preserving the topology of the data.

Pseudocount correction
We formulate here the implications of adding a pseudocount to the
SiFTed expression to correct for negative values. Given eX 2 RN ×G, the
SiFTed expression, the pseudocount, α is given by, α = minðeX Þ, and
the SiFT pseudocount corrected expression, eX +

, eX +
= eX � α.This

procedure ensures that 8x 2 eX +
, x ≥0, and minðeX + Þ=0.

Now, considering a single gene i, and SiFT pseudocount corrected
expression ex +

i 2 RN , thewe have that the following relationships hold:
1. Mean (μ): the mean of the SiFTed expression of the gene, eμi, is

shifted by a constant, the pseudocount value, α, eμ+
i = eμi � α.

2. Variance (σ2): the variance is preserved,

Var ex +
i

h i
=E ex +

i � eμ +
i

h i
=E exi � α � eμi +α

� �
=Var exi

� �
: ð7Þ

3. Difference with gene j (Δij): the difference between genes is pre-
served,

Δ+
ij = ex +

i � ex +
j = exi � α � exj +α =Δij : ð8Þ

Relationships (1–3) imply that allmetricswhich relyondifferences
of values (or means) along with variance comparison are preserved
under this correction. Among these are the standard t test, and Wil-
coxon signed-rank test.

Runtime considerations
SiFT uses pyKeops, a python package allowing for Kernel Operations
on the GPU without memory overflows51 as a backend for matrix
computations. The implementation supports pyKeops pytorch and
numpy backends and hence does not enforce pytorch dependency.
This implies that SiFT can scale to large datasets (Fig. 2c). Scaling relies
on GPU support as the core of SiFT computation involves matrix
multiplication over the cell’s dimension, hence is quadratic in the
dataset size. Since GPUmemory is limited, to avoid falling back to CPU
computation in the case of large datasets, SiFT performs automatic
row-wise batching. That is, similarly to batches used in deep learning
frameworks, SiFT automatically partitions the data to row-wise bat-
ches, and performs the computation using a GPU backend, retaining

speed performance. Importantly, this does not require any dedicated
engagement from the user and is algorithmically valid since under the
SiFT computation kernel rows are independent. In addition, whenever
possible, computation is done over sparse matrices. For example, this
maybe the case if input count data is sparse and a knn kernel is defined
over it. Again, this is the default performance of SiFT and does not
require any additional input from the user.

Datasets
Drosophila wing disc myoblast cells. We obtained the dataset of a
temporal cell atlas of the Drosophila wing disc from two develop-
mental time points collected in ref. 20 and using the processed data
published in ref. 10, available atmyoblasts.h5ad. The data contains two
biological replicates were obtained at each time point that, after fil-
tering for low-quality cells, generated data from 6922 and 7091 cells in
the 96 hr samples and 7453 and 5550 cells in the 120 h samples.

To quantitatively assess our performance in removing unwanted
variationwith respect to these attributes, we turned to classify the cells
into sex and cell cycle phase categories. The processed dataset was
lacking sex and cell cycle labels however there areknownmarker genes
for both. For sex labels, we follow the procedure suggested in the
original study in which the data was presented19. The classification
relies on the expression levels of the dosage compensation complex
genes lncRNA:roX1 and lncRNA:roX2. For both genes, we computed the
density over the log-normalized counts and identified the first local
minima as a threshold (Fig. 2 and Supplementary Fig. 1). Cells thatwere
above the threshold for either lncRNA:roX1 or lncRNA:roX2 were clas-
sified as male; otherwise, they were classified as female.

Next, to obtain cell cycle phase categories we applied Scanpy’s
scanpy.tl.score_genes_cell_cycle() based on the expression of known
Drosophila cell cycle genes from Tinyatlas at Github52,53 (Fig. 2).

Methods application. To apply SiFT we defined a knn kernel using the
set of cell cycle and sexmarker genes (Supplementary Table 1). For the
regress_out setting, Scanpy’s scanpy.pp.regress_out() function was
used by setting all marker genes as regression keys. For scVI we fol-
lowed the reproducibility notebook, scvi_covariates.ipynb using only
the set of cell cycle and sex marker genes as continuous covariates.

scVI-corrected expression. scVI provides the user with the option to
impute normalized corrected counts through get_normalized_expres-
sion(). We use this function followed by sc.pp.log1p() to obtain the
corrected counts used for HVG evaluation. It is important to note that
scVI is not designed for this task precisely, hence, we evaluated its
performance on the latent embedding when possible10.

Quantitative evaluation. To evaluate the removal of cell cycle and sex
signals we use the graph iLISI score as defined in ref. 25, using the
corrected expression for SiFT and regress_out and over the latent
embedding for scVI.We evaluated the graph iLISI score independently
with respect to the “cell cycle phase label” and the combined ”cell cycle
phase and sex label”.

To assess the perseverance of the biological signal of interest we
use the set of genes of interest suggested in ref. 10 which is based on
marker genes presented in refs. 20,22 (Supplementary Table 1). Here,
we look at the intersection of this set with the set of highly variable
genes (HVGs). HVGs identifies using Scanpy’s scanpy.p-
p.highly_variable_genes() with n_top_genes=500 and flavor = ”

cell_ranger”. Since this cannot be done over the latent space we resort
to using the imputed gene expression provided by scVI.

Batch integration. For additional evaluation regarding full integration
performance following SiFT and regress_out, we applied batch inte-
grationmethods. We used bbknn7 and Harmony8. Both were run using
Scanpy’s functions with default parameters passing the batch key for
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integration. For comparison,we use scVIwith thebatch label as a batch
key alongwith the continuous covariates (scVI (covariates and batch)).
Here, when computing the graph iLISI score, the latent embeddingwas
used for all methods as neither bbknn nor Harmony provides a cor-
rection to the gene expression.

Partial markers. To assess robustness to the provided prior knowl-
edge we test the performance of SiFT, regress_out and scVI using a
partial set of marker genes. This set is partial in two ways: (1) 10 of the
55 original marker genes (“Sex genes” and “Cell cycle genes” in Sup-
plementary Table 1) are removed and (2) 10 genes from the “Genes of
interest” set (Supplementary Table 1) are included. By adding explicitly
genes from the “Genes of interest” set we make the setting harder,
ensuring that the set is not only partial in informationwithonly 45 of 55
genes but that the additional 10 genes encode desirable biological
signals which we wish to retain post filtering, such as the spatial
compartment in the wing disc, and not just background noise. We
perform the random sampling 10 times and provide all methods with
the same modified set of genes.

HeartCell Atlas dataset. TheHeartCell Atlas datasetwasdownloaded
from https://www.heartcellatlas.org and contains a total of
486,134 cells.

Benchmark sub-datasets. For the runtime analysis, we followed the
procedure suggested by Gayoso et al.10. Using the Heart Cell Atlas
dataset which contains 486,134 cells, we created 8 datasets of
increasing size by subsampling 5000, 10,000, 20,000, 40,000,
80,000, 160,000, 320,000, and486,134 cells. Foreachdataset, the top
4000 genes were selected via scanpy.pp.highly_variable_genes(), with
parameter flavor = “seurat_v3”. Next, we generated 8 random covari-
ates by sampling from a standard normal distribution and used them
along with the percent_mito and percent_ribo fields as continuous
covariates, defining a total of 10 continuous covariates.

Methods runtime analysis. Performed on NVIDIA RTX A5000 GPU.
For SiFT runtime, we report the runtimeof initialization of the distance
kernel and running the filtering procedure. For scVI runtime, we report
the runtime of the train function with the parameters used in ref. 10:
early_stopping=True, early_stopping_patience=45, max_-
epochs=10,000, batch_size=1024, limit_train_batches=20, train_-
size=0.9 if n_cells <200,000 and train_size=1-(20,000/n_cells)
otherwise. For the regress_out baseline, we tracked the runtime of the
regress_out function for the above continuous covariates.

Virtual tumor dataset. The simulated dataset was downloaded from
Cyclum’s repository (https://github.com/Kchen-lab/Cyclum/tree/
master/old-version/data/mESC). Details regarding the simulations of
the virtual tumor data can be found in the original publication11. This
data contains a total of 279 cells, 168 belong to the intact tumor and 111
to the perturbed. Cells are givenwith ground truth labels regarding the
cell cycle phase.

The kernels. We consider different mappings representing the cell
cycle signal. In total six different SiFT kernels are used for comparison:

• ground truth labels: A mapping kernel where the discrete cell
labels are given by the ground truth cell cycle phase labels.

• cell cyclegenes: A knnkernelwhere cell neighbors are computed
based on the expression of the set of cell cycle genes reported
in ref. 54.

• Cyclum pseudotime: we use Cyclum’s pseudotime mapping of
the cells to define three kernels:
1. Cyclum, binned (n = 12): Amapping kernel where the discrete

cell labels are obtained by binning the pseudotime to 12 bins.

2. Cyclum, distance: A distance kernel where distances are
computed over the mapping of the cells to the unit circle
using the pseudotime, x,yð Þ= cos psdð Þ, sin psdð Þð Þ.

3. Cyclum, binned (n=3): Same as above with three bins.
• Seurat: Amapping kernel where the discrete cell labels are given

by Seurat’s cell cycle phase prediction.

Cell cycle removal methods.
• Cyclum: we followed the steps in the provided example by the

authors, example_mESC_simulated.ipynb. As the example is
provided using an older version of Cyclum, we modified the
parameters in the new implementation to correspond to the
reported setup run in ref. 11.

• Seurat: we followed the steps suggested in the vignette
cell_cycle_vignette.html.

• ccRemover: we used the ccRemover method as in the tutorial
ccRemover_tutorial.html.

• f-scLVM: we used the slalom implementation of f-scLVM and
followed the steps in the provided notebooks slalom/tree/
master/ipynb.

Evaluation metrics. Evaluation metrics and their definitions were
taken from ref. 25. We used the complementary python package scib
(https://scib.readthedocs.io) which provides an implementation of all
metrics. For the “cell cycle removal” score we reported the mean of
ASW_label/batch, PCR_batch, cell_cycle_conservation, and iLISI_graph.
For the “bio conservation” scorewe reported themean of NMI_cluster/
label, ARI_cluster/label, ASW_label, isolated_label_F1, iso-
lated_label_silhouette, and cLISI_graph. All methods were run with
default parameters.

Mammalian liver dataset. scRNA-seq data was downloaded fromGEO,
accession code GSE145197. For the data preprocessing procedure, we
followed thepipelinedescribed in theoriginal publication25 and given in
the GitHub repository https://github.com/naef-lab/Circadian-zonation.
After preprocessing the data contained 11,491 cells from 3 biological
repetitions for 4 different time points (time point 0: 3563 cells, time
point 6: 2791 cells, time point 12: 2919 cells, time point 18: 2218 cells).

novoSpaRc for spatialmapping.WeusednovoSpaRc2,3 to recover the
spatial signal in the data, and obtain a probabilisticmapping of cells to
the eight liver zonation layers. We performedmapping using 15 spatial
marker genes (reported in ref. 26) and ran the novoSpaRc algorithm
with α =0:5,ϵ=0:1. We used the probabilistic mapping to apply SiFT
(Supplementary Fig. 5).

Liver regeneration dataset. The liver regeneration multimodal data-
set by Matchett et al.30 is available under GEO, accession code
GSE223561. For the mouse spatial transcriptomics data, we down-
loaded the provided Seurat objects (GSE223560_seurat_object.rds.gz)
including 8 slides at three different time points relating to hours post
injection (hpi). We first perform preprocessing to each sample inde-
pendently using the counts layer.We follow basic preprocessing steps,
filtering cells and genes, scanpy.filter_cells(min_genes=200), and
scanpy.filter_genes(min_cells=3), normalize the data scanpy.normali-
ze_total() and log transform, scanpy.log1p(). After preprocessing the
dataset contained 14,798 cells distributed across samples as follows:

• 24 hpi: two samples of 1183 and 2258 cells.
• 36 hpi: two samples of 1444 and 1484 cells.
• 42 hpi: four samples of 1353, 2159, 2166, and 2747 cells.

Distance kernel construction. We apply SiFT to each sample inde-
pendently, defining a distance kernel which is based on spatial dis-
tances between the cells.
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Leiden clustering. The leiden scanpy implementation was used,
scanpy.tl.leiden(resolution=0.5), the difference between the settings
(Original and SiFTed) is in the cells adjacency used:

• Original data: To try to correct for sample effects, we use
Harmony30, correcting PCs over sample IDs. Then the adjacency
used by leiden is the neighbors connectivities defined based on
the Harmony PCs.

• SiFTed data: The adjacency used by leiden is the neighbors
connectivities defined based PCs calculated over SiFTed data.

Clusters’ interaction matrix. We use squidpy55 to evaluate the spatial
interaction of the leiden clusters within each sample.We first compute
a connectivity matrix from spatial coordinates, squidpy.gr.spa-
tial_neighbors(), and then use the dedicated function for interaction
evaluation, squidpy.gr.interaction_matrix(key = “leiden”).

COVID-19 dataset. The data object, as an h5ad file, was downloaded
fromhaniffa21.processed.h5ad, haniffa21.processed.h5ad.Our analysis
relied on provided data without further processing, to keep it as
comparable as possible to original analysis of the data. In the pre-
processing steps reported by Stephenson et al.33, harmonywas used to
adjust PCs by sample ID. Given this, we used the provided Harmony
PCs and no further batch correction or integration steps were per-
formed. At last, we relied on cell-type labels and metadata reported in
the given file. We considered COVID-19 samples, ndisease = 527,286, and
healthy controls, nhealthy =97,039.

Knn kernel construction. To filter the healthy trajectory, we define a
knn kernel ndisease ×nhealthy that captures the similarity of the disease
cells to the reference healthy cells. As a basis to evaluate the similarity
(distances) between the disease and healthy cells we consider dis-
tances in the harmonized PCA space, as elaborated above (reported in
ref. 34). We use the default numbers of neighbors, n_neighbors=15.

Distance kernel construction. Similarly to the construction of the knn
kernel we define a distance kernel ndisease ×nhealthy that captures the
similarity of the disease cells to the reference healthy cells using dis-
tances in the harmonized PCA space. To avoid numerical instabilities,
as the distance kernel requires exponentiation of the distances, we
normalize the PCA space (the PCs of each cell are normalized to unit
norm using sklearn.preprocessing.normalize() and accordingly adjust
the smoothing parameter.

Cluster-purity score. We define a cluster-purity score as a measure to
distinguish between indicative andnon-indicative clusterswith respect
to a given label (here we consider the cell type). Formally, for a given
cluster of size n, we find the most frequent label, y, withm cells. Now,
we say that a cluster is indicative if, mn > τ, for a given threshold value τ.
This measure quantifies the homogeneity of the cluster.

Statistics and reproducibility
SiFTwas evaluated across six publicly available datasets, using asmany
samples as possible in these datasets (no statistical method was used
to predetermine the sample size). Datasets include drosophila wing
disc development atlas (sample size = 27,016), human cell atlas (sam-
ple size = 486,134), virtual tumor dataset based on mouse embryonic
stem cells (sample size = 279), mammalian liver data (sample size =
11,491), liver regeneration mouse spatial transcriptomics data (sample
size = 14,798), and a COVID-19 dataset including PBMC samples
(sample size = 624,322). Preprocessing steps, including quality control,
were performed according to standard practice and reported for each
dataset independently. The experiments involved running computa-
tional methods on previously published, publicly available datasets
and did not require randomization. The investigators were not blinded
to allocation during experiments and assessment of outcome.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. All relevant data
supporting the key findings of this study are available within the article
and its Supplementary Information files. The processed drosophila
wing development data used in this study can be downloaded from
https://figshare.com/articles/dataset/scvi-tools-reproducibility_
processed_data/14374574/1?file=27458846. The processed Heart Cell
Atlas used in this study canbe found at https://www.heartcellatlas.org/
v1.html; under visualisations/Downloads/Heart Global choosing the
H5AD version (or directly downloaded by pressing the link: https://
cellgeni.cog.sanger.ac.uk/heartcellatlas/data/global_raw.h5ad) The
virtual tumor dataset used in this study can be downloaded from
https://github.com/Kchen-lab/Cyclum/tree/master/old-version/data/
mESC. The Mammalian liver data used in this study is available in the
GEOdatabase under accession codeGSE145197. The liver regeneration
data is available in theGEOdatabaseunder accession codeGSE223560.
The processed COVID-19 dataset can be downloaded from https://
www.covid19cellatlas.org/index.patient.html#publication under Data-
sets/Haniffa labby choosing theH5ADversion (ordirectlydownloaded
by pressing the link: https://covid19.cog.sanger.ac.uk/submissions/
release1/haniffa21.processed.h5ad. The code to reproduce the results
using the above datasets is available at https://github.com/nitzanlab/
sift-sc-reproducibility. Source data are provided with this paper.

Code availability
Software is available at https://github.com/nitzanlab/sift-sc and doc-
umentation at https://sift-sc.readthedocs.io56. The code to reproduce
the results is available at https://github.com/nitzanlab/sift-sc-
reproducibility.
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