
Article https://doi.org/10.1038/s41467-024-44740-2

Personalising intravenous to oral antibiotic
switch decision making through fair
interpretable machine learning

William J. Bolton 1,2,3,4 , Richard Wilson1,4,5, Mark Gilchrist1,4,6,
Pantelis Georgiou1,4,7, Alison Holmes1,4,5,8 & Timothy M. Rawson 1,4

Antimicrobial resistance (AMR) and healthcare associated infections pose a
significant threat globally. One key prevention strategy is to follow anti-
microbial stewardship practices, in particular, to maximise targeted oral
therapy and reduce the use of indwelling vascular devices for intravenous (IV)
administration. Appreciating when an individual patient can switch from IV to
oral antibiotic treatment is often non-trivial and not standardised. To tackle
this problem we created a machine learning model to predict when a patient
could switch based on routinely collected clinical parameters. 10,362 unique
intensive care unit stays were extracted and two informative feature sets
identified. Our best model achieved a mean AUROC of 0.80 (SD 0.01) on the
hold-out set while not being biased to individuals protected characteristics.
Interpretabilitymethodologieswere employed to create clinically useful visual
explanations. In summary, our model provides individualised, fair, and inter-
pretable predictions for when a patient could switch from IV-to-oral antibiotic
treatment. Prospectively evaluation of safety and efficacy is needed before
such technology can be applied clinically.

Antimicrobial stewardship aims to optimise drug use to prolong
current therapeutic effectiveness and combat antimicrobial
resistance (AMR)1. One key aspect of antimicrobial stewardship is
the route of administration. It is common for critically ill patients
to be given empirical intravenous (IV) antibiotic therapy upon
admission due to rapid delivery, high bioavailability, and uncer-
tainty surrounding a potential infection. Then later in the treat-
ment regime once the patient is stabilized and the infection is
understood, their antibiotics are often switched to an oral
administration route. There is a well described focus to switch
from IV-to-oral administration as early as possible and to use
more oral drugs when appropriate, given they are often equally
effective and can reduce side effects during prolonged

exposure2–5. In a range of infectious diseases that were tradi-
tionally treated with IV only (e.g., bacteremia, endocarditis, and
bone and joint infections), recent studies have demonstrated that
oral therapy can be non-inferior to IV in efficacy6–11. Furthermore,
reducing the unnecessary use of indwelling IV devices is a well
established patient safety and infection prevention priority to
minimise the risk of healthcare associated infections (HCAIs)12.
Beyond the infection complications of IV catheters, oral admin-
istration is more comfortable for the patient, reduces nurses’
workload, and allows for easy discharge from the hospital. Fur-
thermore, oral therapy is cheaper and more cost-effective13. The
UK Health Security Agency recently published national anti-
microbial IV-to-oral switch (IVOS) criteria for early switching14.
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The requirements were developed based on expert consensus
and primarily revolve around the patient’s clinical and infection
markers improving as well as specific points with regards to
absorption, bioavailability, and infection type.

Despite significant evidence, the uptake of early oral therapy
remains low15,16, and beyond guidelines14 there is a lack of research in
IV-to-oral decision support systems. Given this, we decided to inves-
tigate if a machine learning based clinical decision support system
(CDSS) could assist antibiotic switch decision making at the individual
patient level. More specifically neural networkmodels were developed
to predict, based on routinely collected clinical parameters, whether a
patient could be suitable for switching from IV-to-oral antibiotics on
any given day. ICU data was utilised given it is widely available, com-
prehensive, and if a CDSS can be developed for critical patients then it
can likely be adapted to less severe settings. Many CDSSs utilising

machine learning have been developed to assist with other aspects of
antimicrobial use17–19; however, limited clinical utilisation and adoption
has been seen20. As such, when tackling this problem we wanted to
ensure our CDSS solution was simple, fair, interpretable, and gen-
eralisable to maximise the ability for clinical translation. By simple we
mean themodel architecture can be understood by non-experts, while
fair infers model performance is not biased to particular sensitive
attributes or protected characteristics. Interpretability means predic-
tions canmore easily be understood, explained, and trusted. Finally, a
model is generalisable if it can be applied to many healthcare settings
with consistent performance. We imagine by providing individualised
antibiotic switch estimations such a system could support patient-
centric decisions and provide assurance on if switching could be
appropriate or not in a given clinical context. Figure 1 shows an over-
view of this research.
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Fig. 1 | Overview of the steps taken in this research study to develop fair and
interpretable machine learning models for antimicrobial switch decision
making.MIMIC Medical Information Mart for Intensive Care, ICU Intensive care

unit, IV Intravenous, IVOS Intravenous-to-oral switch, SHAP SHapley Additive
exPlanations, UTI Urinary tract infection.
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Results
Data
8694 unique intensive care unit (ICU) stays, were extracted from the
MIMIC dataset21,22, with 1,668 from eICU22–24. 10 clinical features were
selected based on the UK antimicrobial IVOS criteria14 (Supplementary
Table. 1). Transformation of those temporally dynamic values into time
series features as detailed in Section 4.1 resulted in 960 unique fea-
tures for each day of each patient’s stay. Details of the MIMIC pre-
processing, MIMIC hold-out, and eICU datasets are shown in Table 1.
All the datasets are relatively equally balanced, however, the specific
antibiotic utilisation distribution varies between MIMIC and eICU.
Furthermore, eICU represents a more unwell population given the
higher proportion of life-threatening infections such as sepsis.

The antibiotic spectrum index (ASI)25 demonstrates if an antibiotic
treatment regime shows broad or narrow activity. Larger values indi-
cate a broader spectrum, while smaller values correlate with more
targeted activity. A statistically significant (p-value < 0.01, statistic

1686390, alpha 0.05, effect size 0.87) difference was found between
the mean ASI for IV and oral antibiotics upon switching (8.25 and 5.89
respectively) through the Wilcoxon rank-sum test. In addition, the
majority of patients (70.03%) see a decrease in their treatments ASI
upon switching, with a mean decrease of 23.04% although this was
highly variable (Supplementary Fig. 1).

Feature and model optimisation
Thefirst excessively large neural network trained on the preprocessing
training subset achieved an Area Under the Receiver Operating Char-
acteristic curve (AUROC) of 0.76 on the preprocessing test subset.
SHapley Additive exPlanations (SHAP) values26 were calculated and the
top 98 features were selected for input into a genetic algorithm. The
genetic algorithm produced two sets of features, one short set, con-
tainingonly 5 features, and another longer set of 37. The short and long
feature sets achieved anAUROCof0.80and0.82 on the preprocessing
test subset respectively. The final features for each set are shown in

Table 1 | Dataset demographics and statistics

Dataset

Statistic MIMIC preprocessing MIMIC hold-out eICU

Number of stays 4347 4347 1668

Age (mean) 65.30 (SD 15.16) 65.44 (SD 15.23) 64.74 (SD 15.91)

Length of stay (mean) 3.14 (SD 2.78) 3.12 (SD 2.71) 3.17 (SD 2.83)

Sex (%) Male 58.82 58.92 50.30

Female 41.18 41.08 49.70

Race (%) White 67.97 68.09 78.77

Black 9.55 9.92 15.08

Unknown 10.28 9.35 3.50

Other 6.22 5.48

Hispanic 3.27 3.94 1.39

Asian 2.34 2.94 0.84

Native American 0.36 0.27 0.42

Antimicrobial treatment length (mean) Overall 3.34 (SD 2.16) 3.29 (SD 2.01) 2.97 (SD 1.94)

IV 2.79 (SD 1.47) 2.75 (SD 1.46) 2.46 (SD 1.55)

Oral 2.76 (SD 1.90) 2.69 (SD 1.81) 1.14 (SD 1.78)

Infection type (%, most common shown) UTI 65.10 64.69 10.19

Pneumonia 26.30 26.62 31.71

Sepsis 18.20 19.63 32.91

IV antibiotics (%, those with a frequency of greater than
5% shown)

Vancomycin 35.96 35.56 41.98

Cefepime 12.28 14.03 2.86

Cefazolin 12.47 12.08 1.71

Piperacillin-Tazobactam 9.35 8.42 8.92

Ceftriaxone 7.82 8.04 6.10

Levofloxacin 1.76 1.99 14.12

Oral antibiotics (%, those with a frequency of greater than
5% shown)

Azithromycin 22.96 23.18 12.24

Vancomycin 13.45 14.23 12.37

Ciprofloxacin 12.77 12.14 -

Levofloxacin 12.69 12.37 51.70

Sulfameth/Trimethoprim 11.82 10.04 -

Metronidazole 7.90 9.32 22.72

Microbiology (%, those with a frequency of greater than
5% shown)

Positive growth 32.76 33.07 13.01

Escherichia coli 6.86 6.51 -

Staphylococcus aureus 6.69 7.33 -

Note that infection types in MIMIC are determined through ‘hadm_id’ and are not definitively linked to the antimicrobial switch of interest as diagnoses are only coded for billing purposes upon
hospital discharge. This results in totals over 100% as patients have multiple infection episodes. Sex was determined based on the information contained within the dataset. MIMIC Medical
Information Mart for Intensive Care, ICU Intensive care unit, IV Intravenous, SD Standard deviation, UTI Urinary tract infection.
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Supplementary Table. 1 with the respective Catch22 time-series
transformations listed in Supplementary Table. 2. During hyperpara-
meter optimisation our objective was to find the most simple models
whilst maintaining performance. For both feature sets, this was
achieved with new less complex models being found to achieve the
same AUROC. The final hyperparameters of each model are shown in
Supplementary Table. 3. Finally, alternative cutoff thresholds were
explored for both models to maximise the AUROC and minimise the
FPR (Supplementary Fig. 2). This then allows for a traffic light system to
be employed at deployment for simplicity and interpretability (Fig. 4).
Youden’s index27 which optimises the AUROC, found the 1st cutoff
point of 0.54 and 0.52 for the short and long models respectively. The
pointwhere precision, recall and the F1 scorewere equal acted as a 2nd
stringent threshold. This cutoff point was 0.74 for the short models
and 0.79 for the long models, resulting in a lower AUROC (0.70 and
0.74 respectively) on the preprocessing test subset but a superior false
positive rate (FPR) (0.11 and 0.09 respectively versus 0.26 and 0.22
using Youden’s threshold).

Model evaluation
The final shortmodels trained and tested on the hold-out set obtained
a mean AUROC of 0.78 (SD 0.02), FPR 0.25 (SD 0.02) with the 1st
Youden’s threshold, and a mean AUROC of 0.69 (SD 0.03), FPR 0.10
(SD 0.02) with the 2nd threshold. Meanwhile, the final long models
achieved ameanAUROCof 0.80 (SD0.01), FPR0.25 (SD0.04)with the
1st cutoff, and a mean AUROC of 0.75 (SD 0.02), FPR 0.10 (SD 0.03)
with the 2nd cutoff. Further evaluation metrics for each model and
threshold can be found in Table 2. For comparison, a baseline that
utilised two clear infection markers (temperature and Early Warning
Score) from the latest guidelines14 obtained worse results with an
AUROC of 0.66, accuracy of 0.61, TPR of 0.75, and FPR of 0.43. Pre-
dictions and labels broken down by IV treatment duration (Fig. 2)
shows that the majority of incorrect predictions occurred in the mid-
dle of IV treatment days when the models predicted to switch but the
real label indicated the patient continued with IV. The short model on
average predicted 70% and 38% of patients could switch earlier than
they did with the 1st and 2nd thresholds respectively. Arguably the
long model demonstrated a more balanced profile with 51/28% early,
38/41% agreement, and 11/31% late switch predictions with the 1st and
2nd thresholds. When the difference between the real and predicted
switch event was minimal, mean patient LOS outcomes were reduced
(Fig. 3). Furthermore, a statistically significant difference (Wilcoxon
rank-sum test, alpha 0.05) in remaining LOS was observed between
those who received oral versus those who had IV treatment, with 2, 3,
and 4 prior days of IV treatment (oral mean, IV mean, p-value, statistic
and effect size of 1.03;1.70; < 0.01;555588;0.39,
0.91;1.89; < 0.01;227473;0.56 and 0.95;2.02; < 0.01;24572;0.57 respec-
tively). No statistically significant differences were observed on the
later days 5, 6, and 7 (Supplementary Fig. 3). No mortality differences
were observed due to imbalanced data (Supplementary Table. 4).

eICU is a different dataset from MIMIC covering distinct hospi-
tals with a separate patient population and unique data distribution.
These differences can often cause problems for machine learning
models but allows us to validate our features and modeling approach
on an external dataset. When applied to eICU data via transfer learning
a mean AUROC of 0.72 (SD 0.02), 0.65 (SD 0.05), 0.72 (SD 0.02), 0.64
(SD 0.06), and a FPR of 0.24 (SD 0.04), 0.05 (SD 0.02), 0.24 (SD 0.04)
and 0.06 (SD 0.03) was obtained for the short and longmodels 1st and
2nd thresholds respectively (Table 2). Both models outperformed the
eICUbaselinewhich obtained anAUROCof 0.55, accuracy of 0.67, TPR
of 0.38, and FPR 0.28.

Achieving target drug exposure against the pathogenic organism
is important during antibiotic treatment and is often a concern when
deciding to switch to oral administration28. For those patients who
were on oral antibiotics with incomplete absorption amean AUROC of

0.73 (SD 0.03), 0.67 (SD 0.05), 0.77 (SD 0.02), 0.73 (SD 0.03), and a
FPRof 0.33 (SD0.06), 0.12 (SD0.04), 0.28 (SD0.07) and0.12 (SD0.07)
was achieved for the short and long models 1st and 2nd cutoffs
respectively (Table 2).

If patients have issues with enteral absorption, oral antibiotic
therapy is less likely to be suitable14.When tested onpatientswith poor
absorption a mean AUROC of 0.76 (SD 0.10), 0.75 (SD 0.11), 0.75 (SD
0.07), 0.71 (SD 0.16), and a FPR of 0.48 (SD 0.20), 0.28 (SD 0.12), 0.43
(SD0.14) and0.12 (SD0.12)wasobtained for the short and longmodels
1st and 2nd thresholds respectively (Table 2).

Results were then examined for patients with specific infections.
For urinary tract infection (UTI) patients a mean AUROC of 0.77 (SD
0.03), 0.74 (SD 0.04), 0.78 (SD 0.02), 0.77 (SD 0.04), and an FPR of
0.33 (SD 0.03), 0.15 (SD 0.03), 0.31 (SD 0.04) and 0.13 (SD 0.05) was
achieved for the short and longmodels 1st and2ndcutoffs respectively
(Table 2). When tested on patients with pneumonia a mean AUROC of
0.76 (SD 0.03), 0.76 (SD 0.03), 0.77 (SD 0.02), 0.74 (SD 0.04), and a
FPRof0.35 (SD0.03), 0.16 (SD0.04), 0.32 (SD0.04) and0.14 (SD0.04)
was obtained for the short and long models 1st and 2nd thresholds
respectively (Table 2). Finally, for sepsis patients, a mean AUROC of
0.82 (SD0.05), 0.79 (SD 0.12), 0.77 (SD 0.07), 0.76 (SD0.18), and a FPR
of 0.36 (SD0.10), 0.17 (SD0.09), 0.35 (SD0.08) and 0.16 (SD0.07) was
achieved for the short and longmodels 1st and2ndcutoffs respectively
(Table 2).

Interpretability
Two cutoff thresholds allows for a simple traffic light system to be
presented to clinicians with regards to if a switch could be appropriate
at a particular time. To further improve interpretability and model
understanding the SimplEx29 methodology was applied. Once fitted
thedecomposition for a particular patientwas computed to get corpus
examples, their importance, and feature contribution. This data was
combined and infectious disease clinicians consulted to create infor-
mative visual representations. Figure 4 shows an example of these for
short model predictions.

Fairness
Overall the models demonstrated equalised odds (EO) across the
majority of sensitive attribute groups. Table 3 shows the AUROC, TPR,
and FPR for both short and long models by sensitive attribute group.
The short model did not obtain EO for those in the age bracket of 90,
ofNative Americandescendance, orwithMedicaid insurance (Table 3).
On the other hand, the long model only showed a discrepancy for
patients in the age bracket of 30. For the short model, threshold
optimisation30 with the true positive rate (TPR) parity constraint
enabled EO to be achieved for those in the age bracket of 90, while the
EO constraint standardised performance across insurance groups
(Supplementary Table. 5, Supplementary Fig. 4).No constraint enabled
themodel to demonstrate EO for the native group. For the longmodel,
the FPR parity constraint caused EO to be obtained for those in the age
bracket of 30 (Supplementary Table. 6, Supplementary Fig. 4).

Discussion
To maximise clinical utility we aimed to minimise complexity during
feature selection and model development. Through the genetic algo-
rithm, two feature sets of interestwere identified. The short set utilised
only 5 features but maintained performance, while the long set
enabled slight improvements in the evaluation metrics. The two most
important SHAP features utilised the same time series transformation
(SB_MotifThree_quantile_hh) for systolic blood pressure over the
whole ICU stay and heart rate over the current day respectively. This
measure uses equiprobable binning to indicate the predictability of a
time series. This is medically relevant to switching the administration
route as clinicians look for vitals to stabilise before switching. Inter-
estingly the 3rd and 4th SHAP ranked features represent the same type
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of feature (IN_AutoMutualInfoStats_40_gaussian_fmmi calculated over
the whole of the ICU stay) for two different clinical parameters,
respiratory rate, and the mean blood pressure. Furthermore, their
feature values (shown in Supplementary Fig. 5) are very similar, indi-
cating why having both features was likely redundant to the models.
Other features in the short set also demonstrate clinical importance.
For example, the first minimum of an O2 saturation pulseoximetry
autocorrelation function (CO_FirstMin_ac) would indicate variable
stability and hence clinical improvement or deterioration. While a
value indicating the importance of low frequencies in the Glasgow
Coma Scale (GCS) motor response (SP_Summar-
ies_welch_rect_area_5_1), could show if the patient is retaining con-
sciousness or not over a long period, which is often necessary for
administering oral medication. Overall these features combine to
provide a comprehensive but succinct overview of the general health
status of the patient which canbe used to determine if switching could
be appropriate.

Results on specific infections and antibiotic characteristics
demonstrate the models have stable performance across numerous
different patient groups. Particularly important is understandingwhen
oral antibiotics with incomplete absorption can be used, given con-
cerns surrounding achieving therapeutic concentrations. Our long
model achieved an AUROC of 0.77 (SD 0.02) in this subpopulation.
Furthermore, in conditions such as sepsis where patients are critically-
ill for prolongedperiods and fewer oral therapies are utilised, our short
model obtained an AUROC of 0.82 (SD 0.02). Indicating that such a
support systemcouldbeutilised in severe infections. Transfer learning
results on the eICU dataset were stringent with regards to predicting
when switching could be appropriate (Supplementary Fig. 3), this is to
be expected considering the patients in eICU are on average more
severely unwell than in MIMIC (Table 1). Switching administration
route is influenced by many behavioural factors that are not easily
modeled. Given eICU contains data from many different hospitals the

prescribing behaviour with regards to oral switching is likely much
more heterogeneous than in MIMIC whose data is from a single insti-
tution. As such, the eICU model is having to approximate many dif-
ferent behaviours, which results in varying performance across
institutions (Supplementary Fig. 6), and likely causes it to be more
stringent with regard to predicting a switch to optimise performance.
Similar behavior is observed with the baseline eICU results which
confirms predicting the route of administration is a more challenging
task in eICU when compared to MIMIC (AUROC of 0.66 and 0.55
respectively). Further research into subpopulations and other datasets
could identify unfavourable IV-to-oral switch characteristics, such as
individuals with abnormal pharmacokinetics or immunosuppression.
Specific thresholding or separate models31 could then ensure patients
with suchattributes require a larger output to beflagged as suitable for
switching. Combining this with alternative thresholds to ensure fair-
ness though can very quickly make CDSSs excessively complex, lead-
ing to misunderstanding, misuse, and reluctant adoption17,20,32. We
believe this research strikes a practical balance between performance
and usefulness for IV-to-oral switch decision support. Overall the
results demonstrate our methods and models are generalisable as
similar performancewas obtained across allMIMIC tests with different
patient populations, and between two distinct ICU datasets indicating
the feature sets identified are informative and that the selected
hyperparameters can model the underlying data.

Overall the models demonstrated reasonably fair performance
across all sensitive attribute groups. When equalised odds were not
achieved, threshold optimisation30 was able to improve the results for
a givengroup in all cases, except for thatof theNativeAmerican group.
This population was the most underrepresented within the data with
an average of only 11 patients in the test set, highlighting the need for
further good quality real or synthetic data on minority populations.
When threshold optimisation was undertaken a trade-off between
groups in a sensitive attribute class was sometimes observed. For

Labels

1st threshold

2nd threshold

Con�nue with IV

Switch to oral

BA

Fig. 2 | Labels and predictions by IV treatment duration. Plots for the short model A and the long model B. IV Intravenous.

1st threshold

2nd threshold

BA

Fig. 3 | Mean patient LOS outcomes by days between the real and predicted
switch event. Plots for the shortmodelA and the longmodelB. A negative number
on the x axis indicates the predicted switch event was before the real switch event.

The opposite is true for positive numbers, while 0 means they occurred on the
same day. IV Intravenous, LOS Length of stay.
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Feature Switch to 
oral label

Switch to oral predic�on

Importance 1 2 3 4 5 1st threshold 2nd threshold

Pa�ent - 0.24 0.25 0.28 0.43 0.77 1 1 0

Example
1 0.38 0.25 0.20 0.25 0.42 0.73 0 1 0

2 0.12 0.21 0.12 0.20 0.43 0.85 0 1 0

Feature Switch to 
oral label

Switch to oral predic�on

Importance 1 2 3 4 5 1st threshold 2nd threshold

Pa�ent - 0.32 0.51 0.37 0.50 0.41 0 0 0

Example

1 0.28 0.38 0.54 0.29 0.48 0.46 0 0 0

2 0.25 0.31 0.55 0.28 0.51 0.50 0 0 0

3 0.21 0.29 0.52 0.45 0.52 0.46 0 0 0

4 0.13 0.32 0.55 0.36 0.51 0.00 0 0 0

ICU admission 
and IV ini�a�on

Day

Switch to oral 
recommenda�on

0 1 2 3 4 5 n
.   .   .

ICU dischargeIV-to-oral 
switch

Day 1

Highlights 
• Both thresholds predict switching is likely not appropriate at this �me
• Predic�ons were correct for 100% of similar examples
• O2 satura�on pulseoximetry (feature 4) was of par�cular interest for these predic�ons

***

Feature Switch to 
oral label

Switch to oral predic�on

Importance 1 2 3 4 5 1st threshold 2nd threshold

Pa�ent - 0.16 0.49 0.45 0.37 0.59 1 1 1

Example

1 0.21 0.20 0.58 0.39 0.37 0.45 1 1 1

2 0.20 0.15 0.47 0.43 0.36 0.70 1 1 1

3 0.16 0.16 0.43 0.48 0.36 0.76 1 1 1

4 0.15 0.18 0.49 0.42 0.38 0.59 0 1 1

Day 2

Highlights 
• Clinical guidance should be sought, model thresholds disagree on whether switching could be appropriate or not at this �me
• Predic�ons were correct for 50% of similar examples (0% for the 1st threshold and 100% for the 2nd threshold)
• O2 satura�on pulseoximetry (feature 4) was of par�cular interest for these predic�ons

Day 5

Highlights 
• Both thresholds predict switching could be appropriate at this �me 
• Predic�ons were correct for 75% of similar examples (75% for the 1st threshold and 75% for the 2nd threshold)
• Systolic blood pressure (feature 1) and O2 satura�on pulseoximetry (feature 4) were of par�cular interest for these predic�ons

*

**

Posi�ve 
feature 

contribu�on 

Nega�ve 
feature 

contribu�on 

Predic�on correct

Predic�on incorrect

Switch

Poten�ally switch

Don’t switch

Note this system does not cover all aspects of the switch decision making process and should only be used as 
decision support to highlight when a pa�ent may be suitable for switch assessment  

Fig. 4 | Example visual representation for a particular patient. `Traffic light'
suggestions are initially displayed in a temporalmanner as the patient progresses. If
required clinicians can obtain more information for any given day of the patient’s
stay. Simple textual descriptions are provided alongside detailed tabular graphics
to maximise clarity. The text quickly gets across key points, while tables show
similar example patients and their features, bothwith their relative importance and

contribution respectively. Furthermore, switch labels and predictions across both
thresholds are displayed. Note that the patients label would obviously not be
available during clinical use, but is shown here to be comprehensive. Finally, the
limitations and use cases for the system are clearly labeled. ICU Intensive care unit,
IV Intravenous.
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example, the TPRparity constraint on the shortmodel achieved EO for
those in the age bracket of 90. However, it caused the FPR of those in
the minority group around 20 years old to increase from 0.29 to 0.61
(Supplementary Table. 5). This loss in performance for the 20-year-old
group was also partially seen for the FPR parity constraint on the long
model (Supplementary Table. 6). This shows the importance of bal-
ance when considering if a model is defined as fair or not, in particular
for drastically different patient populations, such as 90 versus 20-year-
olds. Prioritising one group or sensitive attribute can hinder model
performance in others. As such honest and decent precautions and
analysis are needed to ensure algorithms are equal and reasonable
without discrimination. Moreover, for antibiotic decision making fur-
ther ethical considerations need to be taken into account including the
effect on other individuals outside of the patient being treated33. We
believe this analysis demonstrates such CDSSs can be fair; however,
further validation is certainly required.

Two feature sets were used in this research to evaluate the trade-
off between simplicity and explainability vs performance which has
been widely discussed in the machine learning literature34. Overall
results show that the long model often demonstrates slightly superior
performance to the short model. However, it is inherently more
complex and in some scenarios such as in those with sepsis, it per-
forms worse than the short model. Further research including under-
standing clinicians opinions is required to determine what model is
most appropriate in specific circumstances. Alternative cutoff
thresholds were also investigated for our binary classification task to

maximise the AUROCandminimise the FPR. Results show that thiswas
achieved for both the short and long models by fixing the thresholds
from the preprocessing validation subset. With the 1st threshold
achieving a reasonable AUROC and the 2nd threshold having a lower
FPR, although as expected this comes at the expense of a worse
AUROC score. We envisage such thresholds being utilised similar to a
traffic light, whereby suggestions can be split into don’t, potentially, or
do switchbasedon themodel’s level of confidence (Fig. 4). This type of
structure is simple, familiar to individuals and should ensure along
with interpretability methods that such amodel acts as an appropriate
CDSS and allows for the end user to understand the output alongside
other information in order to make the final decision.

Explainability and interpretability are critical aspects of using
machine learning models in the real world35,36. To ensure our model
and its outputs could be understood and interrogated SimplEx29 was
utilised and visual representations created (Fig. 4). These visual sum-
maries include a number of aspects that were noted as important for
understanding by clinical colleagues. Firstly textual descriptions
enable key information to be conveyed quickly and reduce the barrier
to adoption through universal understanding. Secondly, related
patient examples are shownand scored. Clinicians rely heavily onprior
experiencewhenundertaking antibiotic treatment decisions37; as such,
showing historical examples and how they compare to the current
patient of interest is perceived as appropriate. In conjunction, high-
lighting whether the model was correct on previous examples at each
threshold provides some level of reassurance on how well the model

Table 3 | Fairness results

Short model Long model

Sensitive attribute Group AUROC TPR FPR EO AUROC TPR FPR EO

— All patients 0.78 (SD 0.02) 0.80 (SD 0.05) 0.25 (SD 0.02) — 0.80 SD (0.01) 0.85 SD (0.04) 0.25 SD (0.04) —

Sex Female 0.74 (SD 0.18) 0.79 (SD 0.35) 0.29 (SD 0.13) ✓ 0.80 SD (0.15) 0.85 SD (0.34) 0.25 SD (0.10) ✓

Male 0.80 (SD 0.08) 0.82 (SD 0.22) 0.23 (SD 0.06) ✓ 0.80 SD (0.16) 0.84 SD (0.33) 0.23 SD (0.08) ✓

Age 20 0.73 (SD 0.08) 0.74 (SD 0.15) 0.27 (SD 0.06) ✓ 0.76 SD (0.09) 0.77 SD (0.16) 0.24 SD (0.05) ✓

30 0.80 (SD 0.02) 0.86 (SD 0.06) 0.26 (SD 0.04) ✓ 0.72 SD (0.03) 0.64 SD (0.09) 0.20 SD (0.05) ✗

40 0.78 (SD 0.04) 0.81 (SD 0.08) 0.25 (SD 0.03) ✓ 0.77 SD (0.02) 0.80 SD (0.06) 0.26 SD (0.06) ✓

50 0.76 (SD 0.04) 0.78 (SD 0.09) 0.25 (SD 0.04) ✓ 0.80 SD (0.04) 0.87 SD (0.08) 0.26 SD (0.05) ✓

60 0.79 (SD 0.02) 0.82 (SD 0.04) 0.23 (SD 0.04) ✓ 0.80 SD (0.03) 0.84 SD (0.03) 0.24 SD (0.05) ✓

70 0.73 (SD 0.08) 0.69 (SD 0.19) 0.23 (SD 0.07) ✓ 0.81 SD (0.06) 0.86 SD (0.12) 0.23 SD (0.05) ✓

80 0.77 (SD 0.02) 0.81 (SD 0.04) 0.26 (SD 0.03) ✓ 0.81 SD (0.01) 0.85 SD (0.06) 0.23 SD (0.05) ✓

90 0.78 (SD 0.03) 0.79 (SD 0.07) 0.23 (SD 0.02) ✗ 0.78 SD (0.02) 0.78 SD (0.04) 0.22 SD (0.04) ✓

Race Asian 0.79 (SD 0.08) 0.83 (SD 0.12) 0.24 (SD 0.11) ✓ 0.80 SD (0.11) 0.84 SD (0.18) 0.24 SD (0.08) ✓

Black 0.78 (SD 0.04) 0.83 (SD 0.07) 0.27 (SD 0.05) ✓ 0.80 SD (0.04) 0.85 SD (0.07) 0.24 SD (0.06) ✓

Hispanic 0.80 (SD 0.07) 0.85 (SD 0.12) 0.25 (SD 0.08) ✓ 0.80 SD (0.08) 0.84 SD (0.16) 0.25 SD (0.08) ✓

Native 0.78 (SD 0.17) 0.97 (SD 0.07) 0.43 (SD 0.35) ✗ 0.82 SD (0.13) 1.00 SD (0.00) 0.35 SD (0.23) ✓

Other 0.76 (SD 0.06) 0.72 (SD 0.10) 0.19 (SD 0.05) ✓ 0.79 SD (0.07) 0.77 SD (0.09) 0.20 SD (0.09) ✓

Unknown 0.79 (SD 0.05) 0.83 (SD 0.11) 0.25 (SD 0.03) ✓ 0.82 SD (0.03) 0.87 SD (0.06) 0.23 SD (0.05) ✓

White 0.77 (SD 0.02) 0.79 (SD 0.06) 0.24 (SD 0.03) ✓ 0.80 SD (0.02) 0.84 SD (0.04) 0.24 SD (0.05) ✓

Insurance Medicaid 0.72 (SD 0.07) 0.69 (SD 0.17) 0.26 (SD 0.06) ✗ 0.76 SD (0.08) 0.77 SD (0.16) 0.26 SD (0.05) ✓

Medicare 0.78 (SD 0.03) 0.81 (SD 0.06) 0.25 (SD 0.02) ✓ 0.81 SD (0.02) 0.85 SD (0.04) 0.24 SD (0.05) ✓

Other 0.78 (SD 0.02) 0.80 (SD 0.05) 0.24 (SD 0.03) ✓ 0.80 SD (0.02) 0.84 SD (0.05) 0.23 SD (0.04) ✓

Language English 0.77 (SD 0.04) 0.79 (SD 0.09) 0.25 (SD 0.04) ✓ 0.81 SD (0.06) 0.85 SD (0.11) 0.24 SD (0.05) ✓

Other 0.78 (SD 0.02) 0.80 (SD 0.05) 0.25 (SD 0.02) ✓ 0.77 SD (0.01) 0.78 SD (0.04) 0.24 SD (0.04) ✓

Marital status Divorced 0.78 (SD 0.04) 0.80 (SD 0.10) 0.24 (SD 0.03) ✓ 0.79 SD (0.05) 0.82 SD (0.09) 0.24 SD (0.05) ✓

Married 0.77 (SD 0.03) 0.77 (SD 0.06) 0.22 (SD 0.02) ✓ 0.81 SD (0.01) 0.83 SD (0.05) 0.22 SD (0.05) ✓

Single 0.78 (SD 0.02) 0.84 (SD 0.05) 0.28 (SD 0.03) ✓ 0.79 SD (0.03) 0.84 SD (0.06) 0.27 SD (0.04) ✓

Widowed 0.79 (SD 0.04) 0.82 (SD 0.08) 0.24 (SD 0.02) ✓ 0.81 SD (0.03) 0.85 SD (0.07) 0.24 SD (0.06) ✓

Unknown 0.77 (SD 0.05) 0.83 (SD 0.09) 0.29 (SD 0.05) ✓ 0.84 SD (0.04) 0.93 SD (0.06) 0.24 SD (0.07) ✓

SD Standard deviation, AUROC Area under the receiver operating characteristic, TPR True positive rate, FPR False positive rate, EO Equalised odds
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performson this typeofpatient and therefore if thepredictions should
be trusted or not. Finally, patient-specific feature contribution can be
shown to illustrate how the model arrived at that conclusion. Figure 4
shows that while in many cases a clear switch decision is apparent,
inherently some days (e.g., day 3) and patients present a particularly
complex case. This reflects what is often seen in reality with decisions
regarding antimicrobial switching not being clear-cut. By incorporat-
ing interpretability methods, models such as those developed in this
research can become clinically useful CDSSs.

The objective of a CDSS to support IV-to-oral switch decision
making is to facilitate antimicrobial stewardship. ASI results are in-line
with current literature indicating frequent oral prescribing may use
less broad spectrum IV antibiotics overall and therefore could be
beneficial from an AMR and HCAIs perspective12,38. As such, this evi-
dence supports the drive to maximise the use of oral therapies and
alongside limited adoption15,16 highlights why a switch focused CDSS
maybe useful. It is however notoriously difficult to discern the value of
predictions from a CDSS. A retrospective analysis was conducted to
understand how such switch models may benefit healthcare institu-
tions and patients. Figure 2 shows for the first two days upon starting
IV treatment our models predict that the majority of patients should
not switch which corresponds with the true labels. This is in line with
the latest UK guidelines whereby the IV-to-oral switch should be con-
sidered daily after 48 hours14. For dates with 2 to 7 prior days of IV
treatment though there develops a disconnect between the labels and
model predictions. This is particularly apparent for the short model
and the first more lenient threshold. Model outputs indicate that by
day 4 almost all patients could be suitable for switching to oral
administration fromaclinicalparameter, health statusperspective. For
some patients, there will be risk factors beyond the models input
features that the clinician consideredmeaning they did not switch, but
for others, the clinician may have been unaware or neglected the
decision meaning switching earlier may have been suitable. Further-
more, results show that LOS is minimised when predictions and the
true labels align, and upon switching patients usually see prompt dis-
charge. Our models may therefore be able to provide useful decision
support by raising awareness of when switching could be suitable for a
particular patient. Given this decision is often neglected and post-
poned, such a CDSS may be able to promote switching when appro-
priate which could potentially support efforts to stop AMR, prevent
HCAIs, and benefit patients.

To improve the clinical applicability of our solution a number of
logic-based rules couldbe implemented. For example, if a patient has a
certain type of infection, malabsorption, immunosuppression, has
recently vomited, or could have compliant issues, an overriding rule
based on the latest guidelines14 could suggest not to switch. Further-
more, the number of days of IV treatment should be highlighted
alongside conditions, such as sepsis, in which extra care should be
taken, as these factors influence switch decision making. If a patient is
receiving an IV antibiotic and there is a similar oral version available
this could be flagged alongside model outputs as a ‘simple’ switch.
Moreover, given the potential comfort, workload, and discharge ben-
efits when patients have no IV catheters, CDSSs should consider the
wider patient treatment paradigm, and potentially further encourage
switching when IV access is only for antibiotic treatment. Finally, to
improve practice it is important for clinicians to document when a
switch occurred and why that decision was made. This ensures in the
future such individualised antibiotic decision making can be data-
driven based on real evidence, rather than decided by habit or general
population evidence. By combiningmachine learning approaches with
clinical logic we can ensure patient safety while driving a positive
change in antimicrobial utilisation. In the future we will conduct fur-
ther research on how such solutions could be combined and imple-
mented in real-time to create a complete CDSS for antibiotic

optimisation, that is well received by the clinical community and
provides novel, useful information.

There are limitations to this research study. Firstly, the use of
historical patient data means that all of our models predictions are
based on historical prescribing practices. Due to concerns surround-
ing AMR, there has been a large amount of research into antibiotic
prescribing over recent years17,39–42 and hence it is plausible ourmodels
switch suggestions are ‘out of date’. Secondly, ourmodel only analyses
a snapshot of the patient and not all the factors that are clinically used
to assess a patient’s suitability for switching14. As discussed in the
methods, this is due to data challenges, but incorporating additional
criteria into the model so that under certain circumstances a switch
suggestion cannot be given is an avenue for future work. However, we
believe by anayzing and summarising multiple variables regarding the
patients clinical and infection status such a system could support
switch decision making with the final decision always made by the
clinician. Finally, the current work presented only evaluates such
models on US based ICU data. How such a system could perform in
other medical settings and health-systems such as infectious diseases
wards, the UK’s NHS and low andmiddle income countries remains an
outstanding question. But given the results presented and the routine,
standardised nature of the raw input data we believe our approach is
generalisable and there is potential to translate this research into other
non-ICU medical settings where oral therapy may be more commonly
utilised.

In summary, we have identified clinically relevant features and
developed simple, fair, interpretable, and generalisable models to
estimate when a patient could switch from IV-to-oral antibiotic treat-
ment. In the future, this research will require further analysis and
prospective evaluation to understand its safety, clinical benefit, and
how it can influence antimicrobial decision making. But given AMR,
HCAIs, and the interest in promoting oral therapies, such a system
holds great promise to provide clinically useful antimicrobial decision
support.

Methods
Datasets
Two publicly available large de-identified real-world clinical datasets
containing routinely collected EHR information were used within this
research. MIMIC-IV (4th version of the Medical Information Mart for
Intensive Care database) which contains over 40,000 patients admit-
ted to the Beth Israel Deaconess Medical Center (BIDMC) in Boston,
Massachusetts between 2008 and 201921,22, was used for feature
selection, model optimisation and hold out testing. Meanwhile, the
eICU Collaborative Research Database contains data for over 200,000
admissions to ICUs across the United States from 2014 to 201522–24, was
used for transfer learning to confirm generlisability. Our study com-
plies with all the data use and ethical regulations required to access the
datasets. For both datasets, the patient population was filtered to
those who received IV and oral antibiotic treatment within the ICU (IV
treatment was limited to less than 8 days). Unfortunately, the datasets
used in this research donot contain explicit information on if, when, or
why an IV-to-oral switch was considered. However, by utilising the
available prescribing data and taking what the clinicians actually did as
a label we can approximate the prescribing behaviour and train a
machine learning model. We therefore focused on making a route of
administration prediction for each day the patient was on antibiotics
given clinical decisions regarding antimicrobial treatment are most
often made on a daily basis. As such negative switch labels were
defined as eachday a patientwas on IV antibiotics, while positive labels
were defined as every other day (i.e., where the patient was on oral but
not IV antibiotics). The antibiotic spectrum index (ASI) from25 wasused
to assess the average breadth of activity of IV and oral treatment
regimes. By looking at the ASI on the day before switching and the first
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day of only oral administration we can understand how a change in
route of administration is most often associated with the ASI.

Feature selection
Our aimwas tomake amodel that through utilising routinely available
patient vitals could act as a starting point for the decision making
process and flag when a switch could be considered for a particular
patient. The latest UK Health Security Agency (UKHSA) IVOS criteria14

were analysed and ten related features were extracted from the data-
sets. Specifically: heart rate, respiratory rate, temperature,
O2 saturation pulseoxymetry, systolic blood pressure, diastolic blood
pressure, mean blood pressure, GCS motor response, GCS verbal
response, and GCSmotor eye opening (Supplementary Table 1).White
Cell Count and C-Reactive Protein were excluded due to data miss-
ingness, requirement for a blood test, and UKHSA guidelines stating
that they should be considered but are not necessary for a switch.
Other important aspects of the guidelines such as infection type and
absorption status, were also not included as input features to the
model as much of this data was unavailable or collected in a way that
makes it unsuitable for machine learning. Furthermore, evidence sur-
rounding these is constantly changing8,11,43. We aimed to create a sim-
ple, generalisable model that uses only routinely available patient data
and has the potential to be used inmany different healthcare settings.
The Canonical Time-series Characteristics (Catch22) methodology44

(along with the mean and variance) was utilised through sktime45,46 to
transform temporal data into daily tabular values. This was done for
each specific day and the whole of the current stay. In addition, the
difference between transformed values for a given day and the pre-
ceding day was calculated. SHapley Additive exPlanations (SHAP)
values26 and a genetic algorithm47 were then used for feature selection.
Specifically, an excessively large neural network with 851,729 trainable
parameters was preliminary trained, SHAP values were calculated and
those featureswith a value of greater thanor equal to0.5were selected
for use in the genetic algorithm. The genetic algorithm optimised for
AUROC and was run twice. Once for a simple set of 5 features and the
second without a limitation on the number of features. 10 iterations
with 50 individuals and 25 iterations with 20 individuals were used
respectively.

Model development
The MIMIC-IV EHR dataset was randomly split (50%, 50%) based
on patients ICU ‘stay_id’ into a preprocessing and a hold-out set in
order to generalise switching prescribing behavior and get a
reliable unbiased estimate of the models performance given the
selected hyperparameters and feature set. The preprocessing set
was split randomly into training, validation, and testing sets for
feature selection as discussed above with Pytorch48 used to create
the neural networks. After feature selection, optuna49 with the
objective of maximising the AUROC was used to select the models
hyperparameters, and optimal alternative cutoff thresholds were
determined from the preprocessing validation subset. Youden’s
Index27 was used to optimise the AUROC, while finding the point
where precision, recall and the F1 score were equal was used as a
stringent cutoff for reducing the FPR. Subsequently, once the
features and models were finalised the unseen hold-out set was
randomly split 10 times into stratified training, validation, and
testing sets for evaluation. Specifically, 10 naive models based on
the previously identified features and model hyperparameters
were trained and the final performance of such models was
evaluated. The synthetic minority oversampling technique50 was
used during training to address label class imbalance. The Adam
optimiser51 was used with binary cross entropy with logits loss.
The training utilised 10 epochs, and the model with the greatest
AUROC on the validation dataset was selected as the final model
to obtain results on the unseen test set.

Model evaluation
Standard ML metrics were used to evaluate model performance. Spe-
cifically for the switch classification task the AUROC, accuracy, preci-
sion, TPR, FPR, F1 score, and Area Under the Precision Recall curve
(AUPRC) were calculated. The standard deviation was calculated to
indicate the variation in results. To provide a baseline for comparison
two infection markers that are clearly defined within the latest
guidelines14 were separately also used for predicting when switching
could be appropriate in each patient. Specifically, their temperature
musthavebeen between 36 °C and 38 °C for the past 24 h and the Early
Warning Scoremustbe decreasing, uponwhich a switchwould thenbe
suggested for the rest of that patient’s stay. It was not possible to
include every aspect of the guidelines due to many being ambiguous
and not recordedwithin the data. However, it acts as a fair comparison
to our models as it utilises similar patient data and actually contains
additional information not fed into ourmodels such as the inspiredO2
fraction. The best performing final model and its respective hold-out
split were used to break the distribution of labels and predictions
down by IV treatment duration, to evaluate how predictions compare
temporally to the real labels and discern when the model performed
well vs poorly (Fig. 2). To understand the value of the models switch
predictions and how they relate to patient outcomes, the difference in
days between our predicted switch events and real switch events was
calculated and the mean LOS and mortality outcomes were taken
(Fig. 3, Supplementary Table 4). Furthermore, we analysed whether
there was a variation in the remaining ICU length of stay (LOS) for
patients who remained on IV vs those who switched on that day
(Supplementary Fig. 3). This was done for dates with 2 to 7 days of
previous IV treatment based on the dissimilarity between model pre-
dictions and labels on those days (Fig. 2). For statistical analysis the
non-parametric Wilcoxon rank-sum (Mann-Whitney U) test with alpha
set at 0.05 was used to test if the difference in means was statistical
significant given the non-normal data distribution. Effect sizes were
calculated using Cohen’s d method with pooled standard deviation.
Models were evaluated using functions and metrics from the Scikit-
learn and SciPy libraries52,53.

To further validate findings, evaluations were performed on
specific patient populations and infectious diseases within
MIMIC. Antibiotics with incomplete oral absorption (bioavail-
ability < 90%) were determined through consultation with a
pharmacist and a literature search on PubMed, the Electronic
Medicines Compendium, and UpToDate. The final list of anti-
biotics with incomplete oral absorption is shown in Supplemen-
tary Table 7. Total parenteral nutrition was used as a proxy for
poor oral absorption (malabsorption) while hospital ICD diag-
nostic codes were used to identify patients with UTI’s, pneumo-
nia, and sepsis. These infections were chosen as they are highly
prevalent in the dataset and UTI’s/pneumonia are commonly
treated with oral antibiotics but sepsis sees less oral utilisation.
Note that infection types in MIMIC are linked to the hospital stay
‘hadm_id’ only and not the specific ICU stay ‘stay_id’ as diagnoses
are only coded for billing purposes upon hospital discharge. The
best performing short and long models from the MIMIC hold-out
set were then evaluated on data extracted from the eICU database
via transfer learning to re-train and subsequently test the models.
The same data processing pipeline was used for eICU and transfer
learning utilised the same procedure as with evaluation on the
MIMIC hold-out set except the models parameters were initialised
with the best performing final MIMIC trained models.

The best performing final short and long models trained on the
MIMIC hold-out set were used for fairness and interpretability
research. SimplEx29 was used as a post-hoc explanation methodology
to extract similar patient examples, their importance, and the con-
tribution of each feature for each example. To this extent first, the
corpus and test latent representations are computed. SimplEx was
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then fitted and the integrated jacobian decomposition for a particular
patient was calculated and displayed. To simplify visualisations only
those examples with an importance greater than 0.1 are shown. To
assess model fairness the demanding equalised odds (EO) metric was
used given we want to acknowledge and ideally minimise false posi-
tives as well as obtain equal performance across sensitive attribute
classes. We defined that EOwas achieved for a given sensitive attribute
group if the TPR was not less than 0.1 from the global average and the
FPR was not greater than 0.1 from the global average. EO was assessed
utilising the 1st threshold for the sensitive attributes age (grouped into
brackets based on the nearest decade), sex, race, insurance, language,
andmarital status. Threshold optimisation30 was then employed to see
if the models fairness could be improved. Specifically, the post-
processing thresholdoptimizer method from fairlearn54 was used with
the balanced accuracy objective and either the equalised odds, FPR
parity or TPR parity constraint.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available datasets were analyzed in this study. The MIMIC-IV
dataset can be found at https://physionet.org/content/mimiciv/2.0/
and the eICU dataset at https://physionet.org/content/eicu-crd/2.0/.
Both are accessible once you are a credentialed user on physionet,
have completed the required training and signed the appropriate data
use agreement. Specific additional data can be provided upon request
to the authors, provided that it is in line with the datasets data use and
ethical regulations. Source data are provided with this paper.

Code availability
The computer code used in this research is available at https://github.
com/WilliamBolton/iv_to_oral55.
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