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Large scale plasma proteomics identifies
novel proteins and protein networks
associated with heart failure development

Amil M. Shah 1,2 , Peder L. Myhre3, Victoria Arthur 1,2, Pranav Dorbala2,
Humaira Rasheed 3,4,5, Leo F. Buckley6, Brian Claggett2, Guning Liu7,
Jianzhong Ma7, Ngoc Quynh Nguyen7, Kunihiro Matsushita8, Chiadi Ndumele8,
Adrienne Tin 9, Kristian Hveem5, Christian Jonasson 5, Håvard Dalen10,11,12,
Eric Boerwinkle7, Ron C. Hoogeveen13, Christie Ballantyne 13, Josef Coresh 14,
Torbjørn Omland3 & Bing Yu 7

Heart failure (HF) causes substantial morbidity and mortality but its patho-
biology is incompletely understood. The proteome is a promising inter-
mediate phenotype for discovery of novel mechanisms. We measured 4877
plasma proteins in 13,900 HF-free individuals across three analysis sets with
diverse age, geography, and HF ascertainment to identify circulating proteins
and protein networks associated with HF development. Parallel analyses in
Atherosclerosis Risk in Communities study participants inmid-life and late-life
and in Trøndelag Health Study participants identified 37 proteins consistently
associated with incident HF independent of traditional risk factors. Mendelian
randomization supported causal effects of 10 on HF, HF risk factors, or left
ventricular size and function, including matricellular (e.g. SPON1, MFAP4),
senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15,
ITIH3) proteins. Protein co-regulation network analyses identified 5 modules
associated with HF risk, two of which were influenced by genetic variants that
implicated trans hotspots within the VTN and CFH genes.

Heart failure (HF) is a multisystem disorder that affects 5.7
million Americans, costs $30.7 billion annually, and is associated with a
50% 5-year mortality1. Although neurohormonal activation is an estab-
lished biologic pathway underlying HF, much remains unknown
regarding HF pathophysiology especially when occurring in the absence

of antecedent myocardial infarction or with preserved left ventricular
(LV) ejection fraction (HFpEF)2. Despite the growing burden of HF, there
has been limited progress in leveraging deep molecular phenotyping
(‘-omics’ technologies), such as genomics, to better understand disease
mechanisms and biologic sub-phenotypes for precision medicine.
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As proteins are the effectors of genes and their circulating levels
are frequently influenced by genetic variation, the proteome is a pro-
mising intermediate phenotype for discovery of novel mechanisms
underlying HF development. Parabiosis experiments demonstrate
important effects of circulating factors on cardiac structure and
function3, highlighting the potential of circulating proteins to influ-
ence HF pathobiology. Furthermore, circulating proteins are common
targets of pharmacologic therapies4. High throughput quantitation of
nearly 5000 proteins using aptamer affinity technology therefore
holds promise to deepen understanding of HF biology. Prior pro-
teomic studies from the Framingham Heart, Jackson Heart, Malmo,
PIVUS, ULSAM, and HOMAGE studies have identified novel markers of
HF risk but have been relatively limited in proteome coverage and

sample size5–10, with sparse data regarding protein networks and
potential causality of identified associations. We leveraged robust
clinical phenotyping and prospective event adjudication available in
two large prospective cohorts with diversity of age, geographic loca-
tions, and HF ascertainment to identify proteins robustly and repro-
ducibility associated with HF across these sources of heterogeneity.
We evaluated the associations of individual proteins with HF risk and
used the correlation structure between proteins to study the associa-
tions of protein networks with HF risk. We used data on common and
low frequency genetic variants to identify proteins and networks with
potential causal associations with HF development (Fig. 1).

In thiswork,weperformed aparallel analysis of the relationshipof
4877 aptamers (4697 unique proteins) measured using modified

Fig. 1 | Schematic overview of study design. The three analysis sets are: ARIC Visit
3 (1993-1995; age 60 ± 5 years, 54%women, 21% Black race), ARIC Visit 5 (2011-2013;
age 75 ± 5 years, 58% women, 17% Black race), and HUNT cycle 3 (2006-2008; age
65 ± 10 years, 39% women, 0% Black race). For Mendelian randomization analysis,

protein quantitative trait loci (pQTLs) were obtained from the INTERVAL, AGES,
and Fenland studies as instrumental variables (IV). Summary statistics for heart
failure were from the HERMES study and summary statistics for cardiac structure
and function were from UK Biobank.
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aptamer technology (SomaScan v4) with incident HF in Athero-
sclerosis Risk in Communities (ARIC) study participants in mid-life
(n = 10,638; age 60 ± 5 years) and late-life (n = 4483; age 75 ± 5 years)
and in Trøndelag Health Study (HUNT) participants (n = 3262; age
65 ± 10 years). We identify 37 proteins (represented by 38 aptamers)
significantly associatedwith incident HF independent of traditional HF
risk factors in all three study samples. These proteins demonstrate
largely consistent associations with incident HFpEF and HFrEF, but
differential associations with risk of developing key HF risk factors
from mid- to late-life and with cardiac and non-cardiac physiologic
measures in late-life. Potential causal associations with HF, alterations
in LV structure or function, or clinical HF risk factors were observed for
10 of these 37 proteins by two-sample Mendelian randomization (MR)
analysis (one for HF; seven for LV structure or function; seven for
clinical HF risk factors), 8 of which were annotated as druggable tar-
gets. Analysis of protein co-regulation networks using weighted co-
expression analysis identified five protein modules reproducibly
associated with HF risk in mid- and late-life, three of which are influ-
enced by cis- and trans-acting genetic variants. Additional systems-
level analyses of HF-associated proteins provide further insight into
relevant mechanistic and regulatory pathways for HF risk.

Results
Characteristics of cohorts
A total of 10,638 HF-free ARIC participants at study Visit 3 (1993-
1995; age 60 ± 5 years, 54% women, 21% Black race; Table 1) were
included in the ARICmid-life baseline analysis, and experienced 822
incident HF events over a 10-year follow-up. ARIC late-life baseline
analysis included 4483 HF-free ARIC participants at study Visit 5
(2011-2013; age 75 ± 5 years, 58% women, 17% Black race), who
experienced 408 incident HF events over a median follow-up of 7
[IQR 6, 8] years. The HUNT cohort consisted of 3262 participants
from the third study cycle (2006-2008; age 65 ± 10 years, 39%
women, 0% Black race), with 340 incident HF events over a median
follow-up of 10 [IQR 9, 11] years. Detailed description of participant
characteristics, inclusion and exclusion criteria, and participant
flow for each analysis set are provided in Supplementary Figs. 1–3.
The SomaScan assay consists of 5284 aptamers, 4877 (91%) of which

passed ARIC quality control assessments (see Methods) and were
used in this analysis.

Association of Protein Levels with Incident Heart Failure
In uniprotein multivariable analysis adjusting for demographics and
clinical risk factors, associations with incident HF were observed for
948 proteins at an FDR p <0.05 and 283 proteins at Bonferroni sig-
nificance (1×10−5) in the ARIC mid-life analysis; 558 proteins at an FDR
p <0.05 and 141 proteins at Bonferroni significance in the ARIC late-life
analysis; and 52 proteins at an FDR p <0.05 and 17 proteins at Bon-
ferroni significance in HUNT (Fig. 2a). The direction and magnitude of
effect of these proteins with incident HF were generally consistent
across analysis sets (Fig. 2b). As a complementary approach to the
mainparallel analyses,weconductedmeta-analysis using theARIC visit
3, ARIC visit 5, and HUNT data (see Methods) which identified 294
proteins associated with incident HF at a Bonferroni-corrected level of
significance (Supplementary Fig. 4). Most of the candidate proteins
identified in our parallel analysis were the most strongly associated
with incident HF in the meta-analysis. Overrepresentation pathway
analysis using these 294 proteins as input identified 3 overrepresented
pathways at FDR <0.05: Hepatic Fibrosis / Hepatic Stellate Cell Acti-
vation, LXR/RXR Activation, and Inhibition of Matrix Metalloproteases
(Supplementary Data 1).

Thirty-three proteins were associated with incident HF at an
FDR <0.05 in all 3 analysis sets, of which 11 were associated at Bon-
ferroni significance (p < 1×10−5) in all three analysis sets. We employed
random survival forest analysis as a complementary feature selection
approach that simultaneously considered all proteins and did not
assume a linear protein level – outcome association (see Methods).
Random survival forest analysis, performed in parallel in each analysis
set, identified 17 proteins retained in all three analysis sets. Elevenwere
also identified by the uniprotein multivariable Cox regression analysis
while six were newly identified by the random survival forest analy-
sis (Fig. 2c).

The resulting 39 HF-associated aptamers (17 identified through
both Coxmodels and random forest analysis, 16 identified through Cox
models alone, 6 identified through random forest analysis alone)
demonstrated consistent associations with incident HF across the 3
analysis sets, with higher levels of 30 associated with higher HF risk and
higher levels of 9 associated with lower HF risk (Fig. 2d). These 39
aptamers represented 37 unique proteins, one of whichwas NT-proBNP
(Supplementary Fig. 5). Of these 37 proteins, we identified cis-pQTLs for
all but 4, supporting aptamer specificity (Supplementary Data 2)11. We
used an orthogonal method to validate aptamer specificity (Olink
Explore 3072 proximity extension assay [n = 27], targeted ELISAs [n = 2],
or electrochemiluminescence sandwich immunoassay [n = 1]) using
plasma from a subset of 113 participants (Supplementary Fig. 6). No
validation was available for 7/37 proteins: TAGLN, TREM1, CACNA203,
FBLN5, CLIP2, CELA1, PTPRD. Correlation was good (>0.70) for the
majority of proteins (18/30) assessed, moderate (0.40-0.70) for 8/30,
and poor (<0.40) for only 4 (FSTL1, APOF, SVEP1, ATP1B1).

Based on protein annotations in the Human Protein Atlas (https://
www.proteinatlas.org)12, 78% were annotated as secreted, 14% as
membrane bound, and 8% as exclusively intracellular (Supplementary
Data 3). Based on data from the Genotype-Tissue Expression (GTEx)
project13, tissue expression varied between proteins with a subset
demonstrating robust expression in LV and LA appendage tissue
(Supplementary Fig. 7). Given the established associations of BNP with
HF, HF risk factors, and cardiac function, further analyses did not
include BNP aptamers.

Associations of Candidate ProteinswithDevelopment ofHFRisk
Factors
Following the ARIC mid-life baseline, 6590 participants developed
incident hypertension, 3094 incident diabetes, 959 incident chronic

Table 1 | Baseline clinical characteristics and follow-upevents
for participants included in each analysis set: ARIC mid-life
baseline (Visit 3), ARIC late-life baseline (Visit 5), and HUNT

ARIC Visit 3
(1993-1995)

ARIC Visit 5
(2011-2013)

HUNT (2006–2008)

N 10,638 4483 3262

Age (years) 60 ± 6 75 ± 5 65 ± 10

Black race 2201 (20%) 763 (17%) 0

Male 4886 (46%) 1861 (42%) 1975 (61%)

Hypertension 4839 (45%) 3622 (81%) 1352 (41%)

Smoking 6279 (59%) 2593 (58%) 2145 (66%)

Diabetes 1936 (18%) 1560 (35%) 307 (9%)

BMI (kg/m2) 28 ± 5 28 ± 5 28 ± 4

eGFR (ml/min/
1.73 m2)

86 ± 15 72 ± 17 88 ± 16

Coronary disease 673 (6%) 662 (15%) 566 (17%)

Atrial fibrillation 112 (1%) 232 (5%) 208 (6%)

Incident HF events 822 408 340

F/U Time (Years) 10.0
[10.0, 10.0]

7.2 [5.6, 7.8] 10.0 [9.2, 10.6]

Event Rate 0.8 [0.8, 0.9] 1.4 [1.3, 1.5] 1.2 [1.1,1.3]

Incident HF events post-ARIC Visit 3 and post-ARIC Visit 5 were not overlapping. Continuous
variables are provided as n ± standard deviation or n [25th percentile limit, 75th percentile limit]
as appropriate.
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kidney disease (CKD), 2006 incident coronary heart disease (CHD),
and 2409 incident atrial fibrillation (AF). The 37 key HF-associated
proteins weremost consistently associatedwith risk of incident atrial
fibrillation (Fig. 3). Hierarchical clustering identified three protein
clusters based on their associations with the development of HF risk
factors. One of these clusters (Cluster 2) consisted of 7 proteins, all
associated with lower risk of HF, which tended to associate with
lower risk of developing several HF risk factors. Cluster 1 consisted of
12 proteins including GDF-15, FSTL3, and IGFBP7, and demonstrated
robust associations with higher risk of developing most HF risk fac-
tors. The largest cluster (Cluster 3) consisted of 17 proteins, including
SVEP1, SPON1, CCL15, and ITIH3. These proteins tendedbe associated
with higher risk of incident atrial fibrillation (except for two proteins
associated with lower HF risk, SLITRK1 and PTPRD) and variable
associations with incident CKD and/or diabetes.

Protein Associations with HF Phenotype and Pathophysiologic
Measures
Concomitant data on cardiovascular structure and function, and
function of non-cardiovascular systems relevant to HF risk

(pulmonary function, body composition, skeletal muscle strength,
anemia), were available in the ARIC late-life baseline analysis set for
cross-sectional analyses (Fig. 4a). With these measures, three protein
clusters were identified using hierarchical clustering. The first cluster
of 9 proteins, all associated with lower risk of HF, demonstrated
modest associations with cardiac structure and function but more
consistent associations with better pulmonary function and lower fat
mass. Notable among this cluster was GHR, which associated with
lower LV and left atrial (LA) volumes and higher hemoglobin. The two
remaining clusters consisted of proteins associated with higher HF
risk. Proteins in Cluster 3 included SVEP1, SPON1, FSTL3, IGFBP7,
MFAP4, and APOF, and were associated with larger LV and LA size,
higher E wave velocity, higher LV filling pressure (greater E/e’ ratio
and LA volume), andworse LA function (LA reservoir and contraction
strains). These proteins also demonstrated robust associations with
non-cardiovascular measures including lower fat mass, lower grip
strength, lower hemoglobin, and less consistently with worse pul-
monary function – all potential extracardiac contributors to HF.
Cluster 2 proteins, which includedNRP1, CCL15, ANGPTL3, and ITIH3,
demonstrated less consistent associations with cardiovascular
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Fig. 2 | Association of individual proteomic measures with risk of
developing HF. Hazard ratios are based on single protein, multivariable Cox pro-
portional hazardmodels adjusting for age, BMI, eGFRbyCKD-EPI, race, sex, current
smoking status, prevalent CAD, prevalent DM, prevalent AF, and prevalent hyper-
tension. a Volcano plots of the associations of individual plasma proteins with
incident HF in ARIC late-life (Visit 5), ARIC mid-life (Visit 3), and HUNT in models
adjusted for demographics and clinical HF risk factors. Green – significant at FDR
p <0.05, Blue–Bonferroni (BF) significance (p < 1×10−5).bHazard ratio-Hazard ratio
plots demonstrating consistency of associations of proteins with incident HF
identified in Panel A across analysis sets. Green – significant at FDR p <0.05, Blue
–Bonferroni significance (p < 1×10−5) in X-axis analysis set; Circle– significant at FDR
p <0.05, Triangle –Bonferroni significance (p < 1×10−5) in Y-axis analysis set.
c Random forest (RF) analysis. Venn diagram demonstrating the number of

proteins retained by RF analysis [seeMethods] in each analysis set, and the overlap
between analysis sets. Orange – ARIC late-life baseline (Visit 5), Green – ARIC mid-
life baseline (Visit 3), Blue – HUNT. Table shows 16 proteins retained in parallel
random forest analysis performed in each analysis set. Light blue indicates proteins
not significant at FDR p <0.05 in all three analysis sets in single protein Cox
regression models. d Forest plot of hazard ratios with 95% confidence intervals for
associations with incident HF for proteins associated with HF at FDR p <0.05 or
Bonferroni significance in all three analysis sets or retained in random forest ana-
lysis in all three analysis sets. Estimates to the left of the horizontal line are asso-
ciated with a lower risk of incident HF while those to the right are associated with
higher risk.Orange –ARIC late-life baseline (Visit 5,n = 4483), Green –ARICmid-life
baseline (Visit 3, n = 10,638), Blue –HUNT (n = 3262). Source data are provided as a
Source Data file.
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measures compared to Cluster 3, but similar associations with non-
cardiovascular measures.

Incident heart failure phenotype (HFpEF and HF with reduced
LVEF (HFrEF)) was available in the ARIC late-life baseline analysis set

(193 incident HFpEF, 157 incident HFrEF). Of the 37 key HF-associated
proteins, effect estimates were generally similar for incident HFpEF
and incident HFrEF, with all but 8 demonstrating significant associa-
tions with both (Fig. 4b).
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Fig. 4 | Associations of HF-related proteins with cardiac and non-cardiac
function and incident HF phenotype in late-life. a Heatmap showing the cross-
sectional associations of HF-associated protein levels with measures of cardiac
structure and function, arterial properties, pulmonary function, fat mass, grip
strength, and anemia. Proteins were ordered using hierarchical clustering based on
associations with cardiovascular and non-cardiovascular function. Linear regres-
sion models adjusted for age, BMI, eGFR by CKD-EPI, race, sex, current smoking
status, prevalent CAD, prevalent DM, prevalent AF, and prevalent hypertension,
and additionally for heart rate and systolic blood pressure for echocardiographic
outcomes. Color shading indicates hazard ratio as indicated in the scale. Gray
indicates non-significant association. FDR p-value < 0.05 was considered statisti-
cally significant after adjusting for multiple testing. Color of the bar below the
heatmap signifies the observed association of protein levels with incident HF risk.

Red – higher protein level associates with higher risk of incident HF; Blue – higher
protein level associates with lower risk of incident HF. Proteins were ordered using
hierarchical clustering based on associations with cardiovascular and non-
cardiovascular function. b Hazard ratio-Hazard ratio plot demonstrating con-
sistency of associations of candidate proteins with incident HFpEF (X axis) and
HFrEF (Yaxis) in theARIC late-life analysis set (Visit 5). Hazard ratios (HRs) are based
on single protein, multivariable Cox proportional hazardmodels adjusting for age,
BMI, eGFR by CKD-EPI, race, sex, current smoking status, prevalent CAD, prevalent
DM, prevalent AF, and prevalent hypertension. Color indicates outcomes for which
statistically significant associations were observed (Orange – HFrEF, Green –

HFpEF, Purple–Both, Gray–neither), which shape indicates strengthof association
(Triangle – FDR<0.05, Circle – Bonferroni-corrected (BF) significance level).
Source data are provided as a Source Data file.
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Mendelian Randomization Causally Implicates Proteins
For the 37 top candidate proteins that were significantly associated
with incident HF, a two sample Mendelian randomization (MR)
approach was employed to assess potential causal relations of those
proteins with HF, with key HF risk factors, or with alterations in LV
size and function using protein quantitative trait loci (pQTLs) from the
INTERVAL, AGES, and Fenland studies as instrument variables (IV) (see
Methods)14–16. A single trans-pQTL for SVEP1 (rs687621 in the ABO
gene) demonstrated MR association with HF (Fig. 5a; Supplementary
Data 4). We observed MR evidence for associations between geneti-
cally regulated levels of 7 proteins and HF risk factors (Fig. 5a)
including: SPON1, CCL15, and ITIH3 with hypertension; SVEP1 and
SPON1with atrial fibrillation; FSTL3 andNRP1with diabetes; andAPOF,
CCL15, ITIH3, andNRP1with CHD.We didnot observeMRevidence for
significant causal associations with CKD. Two sample MR was also
performed using summary statistics for LVEDV, LVESV, and LVEF
assessed by cardiac MRI in UK Biobank (n = 36,041) to assess potential
causal associations with cardiac remodeling and dysfunction. Geneti-
cally regulated levels of 7 proteins were associated with LV measures
(Fig. 5b). Genetically higher levels of SPON1 associated with higher
LVEF, lower LVEDV, and lower LVESV. Additional significant MR asso-
ciations included: IGFBP7with LVESV and LVEF; CCL15 with LVEDV and
LVESV; FSTL3, ANGPTL3, and NRP1 with LVEDV; andMFAP4 with LVEF.
Analyses using only cis-acting pQTLs demonstrated generally similar
findings, although MR association of SVEP1 with HF was no longer
observed (Supplementary Fig. 8). Replication of significant single SNP
MR results in distinct pQTL datasets was available for 5 protein-
outcome associations, all of which demonstrated consistent results
(Supplementary Data 5). Backward MR for significant associations,
which used instrumental variables for HF, HF risk factors, or cardiac
structure and function as exposure and instrumental variables for
proteins as the outcome, did not detect evidence of potential reverse
causality (Supplementary Data 6). Colocalization analysis demon-
strated evidence of colocalization for the majority of MR significant
associations (19 of 34; Supplementary Data 7). We observed evidence
of colocalization for observed MR associations for SPON1, CCL15, and
FSTL3 with multiple outcomes; for SVEP1 with HF; and for NRP1 with
diabetes and CHD. Power was inadequate for colocalization for
ANGPTL3 and MFAP4. For the observed associations for NPPB, ITIH3,
and IGFBP7 with multiple outcomes and for the association of SVEP1
with atrial fibrillation, our findings were negative for colocalization,
suggesting twodifferent causal variants for protein level and outcome.

Supportive of our MR findings, two SPON1 pQTLs (rs10832169,
rs1969539) were also annotated as eQTLs in GTEx and were associated
with altered SPON1 expression in the LV and LA appendage, in addition
to liver, visceral adipose, skeletal muscle, and tibial artery (Supple-
mentary Fig. 9). Additionally, a pQTL for MFAP4 (rs139356332) was
associatedwith alteredprotein expression in the LA appendagewhile a
pQTL for ITIH3 (rs2535629) was associated with altered protein
expression in whole blood. Based on data from the druggable genome
database17, there are already existing agents (antibodies) targeting
NRP1 and ANGPTL3, both with MR evidence of potential causal asso-
ciations with LV size. An additional 6 proteins with MR evidence of
potential causal associations with LV measures and/or HF risk factors
were annotated as druggable (CCL15, FSTL3, IGFBP7, ITIH3, MFAP4,
APOF; Supplementary Data 8)17.

Finally, we performed consensus clustering based on levels of the
10 proteins with MR support for causal associations with HF, HF risk
factors, or cardiac structure/function (see Methods). Application of
consensus clustering identified three clustersbasedonprotein profiles
in theARIC late-life analysis set (Fig. 6; Supplementary Fig. 10). Relative
to the largest cluster, one cluster consisted of participants with higher
levels of multiple proteins and were at the highest risk of incident HF.
Participants in another cluster demonstrated lower levels of multiple
proteins and were at the lowest risk of developing HF.

Network Analysis Identifies Protein Modules Relevant to Heart
Failure Risk
By applying weighted correlation network analysis (WGCNA) to the
ARIC late-life analysis set (see Methods)18, we identified 28 protein
modules, 6 of which were associated with incident HF at a Bonferroni
adjusted level of significance (Fig. 7a, b). When applied to the ARIC
mid-life analysis set, 5 of these modules (brown, pink, light green,
white and salmon)were also associatedwith incidentHF inmid-life at a
Bonferroni adjusted level of significance (Fig. 7c). The largest of these,
the brown module, consisted of 409 proteins and constituted 2 large
sub-modules (Fig. 7d), both of which demonstrated robust associa-
tions with incident HF in both mid- and late-life (Supplementary
Data 9). Submodule 1 consisted of 312 proteins, including 17 of the top
HF-associated proteins identified in the single-protein analysis, and
was enriched for several canonical pathways including Ephrin receptor
signaling, STAT3 pathway, atherosclerosis signaling, and PI3K/AKT
signaling relevant to cardiac hypertrophy and remodeling, among
others (Supplementary Data 10). GWAS of this sub-module, summar-
ized using a module eigengene, from both the mid- and late-life ana-
lysis sets identified 94 associated variants in the CFH gene on
chromosome 1. LD-based clumping identified two clumps: Clump 1
included a missense variant in CFH (rs1061170) while the independent
SNP for Clump 2 was rs424535, which was nominally associated with
HF in the HERMES consortium (p =0.027). Both SNPs demonstrated
trans effects on a large number of proteins across several modules
beyond the Brown submodule. Submodule 2 consisted of 97 proteins,
including 4 of the top HF-associated proteins from the single-protein
analysis, and was enriched for canonical pathways related to dendritic
cell maturation (Supplementary Data 10).

The Pink module consisted of 30 proteins, none of which were
identified as top HF-associated proteins in our single protein analysis.
Greater Pinkmodule eigenvalues associated with lower HF risk in both
mid- and late-life analysis sets. GWAS identified 255 SNPs associated
with the Pink module in both analysis sets, all of which localized to a
single region on Chromosome 17 (Fig. 7e). There were 34 independent
SNPs identified using LD-based clumping, which influenced levels of 18
out of 30 module proteins. These included SNP rs704, a missense
variant in the VTN gene, which was associated with levels of all 18
proteins. Rs704 SNP demonstrated trans effects onmany proteins, but
the pink module had the largest proportion of proteins influenced by
this SNP.

The light green module consisted of 19 proteins (Fig. 7f) and
associated with lower HF risk in both ARIC analysis sets. GWAS iden-
tified two SNPs (rs1035849, rs1017301) in high LD on chromosome 12
related to gene PZP, and of the 19 module proteins, these SNPs only
influenced PZP levels. The salmon module consisted of 23 proteins, 2
of which were identified as top HF-associated proteins in our single
protein analysis, and enriched for acute phase response signaling,
complement system, lipid metabolism, and senescence pathways
(Fig. 7g; Supplementary Data 11). The White module consisted of 12
proteins. No consistent genetic determinants for thewhite and salmon
modules were identified.

Discussion
We measured 4877 plasma proteins in 13,900 HF-free individuals
across three analysis sets comprising 18,383 assessments with diverse
age, geography, and HF ascertainment to identify circulating proteins
and protein networks robustly associated with HF development. Using
multivariable Cox PH regression and a complementary random forest
analysis (a supervised machine learning approach), we identified 37
unique proteins that reproducibly associated with HF risk in all three
analysis sets independent of traditional HF risk factors. While pre-
clinical data supports the involvement of most of these in HF devel-
opment, circulating levels of only 8 have previously been associated
with risk of incident HF and 10 with risk of adverse outcomes among
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patients with prevalent HF (excluding NT-proBNP and troponin T;
Supplementary Data 12).These proteins tended to associate with both
incident HFpEF and HFrEF but demonstrated differential associations
with the development of HF risk factors and with alterations in cardiac
function cross-sectionally.We foundMR support for potentially causal
associations of 10 proteins with HF, HF risk factors, or LV size and
function, 8 of which were druggable targets. Protein co-regulation

network analyses identified 5 protein modules associated with HF risk,
three of which contained no proteins identified in our candidate pro-
tein analysis. Three modules were influenced by cis- and trans-acting
genetic variants and implicated two trans hotspots within the Vitro-
nectin (VTN) and Complement Factor H (CFH) genes.

Compared to prior population-based studies relating large panels
of circulating proteins with risk of incident HF, our study is unique in
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its parallel analysis design that sought to ensure consistent, statistically
robust associations across important sources of heterogeneity in the
HF syndrome: age, geographic location, and method of event ascer-
tainment. Plasma collection and storage procedures in HUNT that
closely reflect clinical practice conditions further ensure general-
izability of our findings. We identified several established markers of
HF risk (NT-proBNP, GDF-15)19,20, confirmed previously described
associations of other proteins with incident HF (e.g. SPON18–10,
THBS25,7, GHR6, IFGBP25,6, C97, osteoprotogerin8,10, MMP128–10), and
identified several proteins not previously associated with incident HF
(e.g. SVEP1, FSTL3, APOF, ANGPTL3, IGFBP7, CCL15, and ITIH3 among
others). The proteins we identified were predominantly annotated as
secreted, and implicated in extracellular matrix remodeling, fibrosis,
and inflammation. The proteins were largely consistent in their asso-
ciations with risk of developing both HFpEF and HFrEF. While possibly
related to our use of any HF as an outcome, our findings highlight the
shared biologic pathways underlying both HF phenotypes and are
consistent with prior findings of a high proportion of proteins corre-
lations shared between prevalent HFpEF and HFrEF21.

In contrast, only a subset of the 37 proteins were cross-sectionally
associated with cardiac structure and function – primarily LV and LA
size and diastolic function. These findings support the importance of
extra-cardiac dysfunction in HF pathophysiology. In particular, con-
sistent associations of HF-risk promoting proteins with lower fatmass,

grip strength, and anemia suggest the importance of frailty22,23. That
proteins associated with lower HF risk demonstrated consistent asso-
ciations with better pulmonary function highlights the relevance of
cardiopulmonary interactions to HF development24. Similarly, while a
subset of proteins demonstrated consistent associations with devel-
opment of several HF risk factors, the most consistent association
across the 37 proteins was with incident atrial fibrillation, with rela-
tively few proteins associated with incident CHD or hypertension.
These findings support the recognized intimate relationship between
atrial fibrillation and HF, particularly HFpEF25, while the lack of asso-
ciation of several proteins with incident CHD and hypertensionmay be
partly related to our analytic approach which included a late-life ana-
lysis set among whom hypertension is highly prevalent.

Mendelian randomization analyses supported causal associations
for 10 of 37 proteins with HF, HF risk factors, or LV structure and
function. These included matricellular proteins implicated in mod-
ulating the extracellular matrix, senescence-associated proteins, and
proteins related to lipid metabolism, CAD, and inflammation. SVEP1
was the only protein with MR suggestion of a causal association with
HFanddemonstrated the strongestobserved associationwith incident
HF in all three analysis sets. SVEP1 is a ligand for integrin alpha9beta1,
promoting cellular adhesion in response to pro-inflammatory
signaling26. It has also been implicated in maintenance of vascular
integrity via interaction with ANGPT2, another HF-associated protein

Fig. 5 | Results of two-sample Mendelian randomization (MR) analyses.
aManhattanplots ofMRanalyses of protein candidateswithHF andHF risk factors.
pQTLs are single SNP markers unless otherwise labeled. Hatched line indicates
nominal significance (p <0.05). Solid red line indicates significance after Bonferroni
multiple testing correction. Gray pQTLs – non-significant, Blue – nominally sig-
nificant, Red – significant after multiple testing correction. Forest plots demon-
strate direction and magnitude of effect (MR beta estimate and 95% confidence
interval) of genetically higher protein levels for significant pQTLs. Purple – Cis
pQTL, Orange – Trans pQTL, Brownmulti-SNP pQTL comprising both cis and trans
SNPs. pQTLs were obtained from the INTERVAL (n = 3301), AGES (n = 5368), and
Fenland (n = 10,708) studies. The summary statistics forHFwere obtained from the

HERMES consortium (n = 977,323). Summary statistics for atrial fibrillation were
obtained from a GWAS meta-analysis of 6 studies (n = 1,030,836), for CHD were
from UK Biobank and replicated using CARDIoGRAMplusC4D data (n = 296,525),
for CKDwere from a 43 studyGWASmeta-analysis (n = 117,165), for DMwere from a
GWAS meta-analysis of 3 studies (n = 655,666), and for hypertension were from a
UK Biobank GWAS (n = 463,010). b Manhattan plots of Mendelian randomization
analyses of protein candidates with measures of left ventricular size and function
(LVEDV, LVESV, LVEF). Forest plots show causal estimates with 95% confidence
intervals. Summary statistics for LVEDV, LVESV and LVEF were obtained from UK
Biobank (n = 36,041). See Methods. Source data are provided as a Source Data file.
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Fig. 6 | ARIC late-life participant clusters based on the 10 proteins with sig-
nificant associations in MR analyses derived using consensus clustering algo-
rithm. a Plot of the mean standard difference in the 10 proteins values in each
cluster versus theoverall sample. Hatched red lines indicate standard differences of
0.5 and −0.5. b Kaplan-Meier curves for incident HF after the ARIC late-life baseline

by cluster assignment and adjusted hazard ratios for incident HF associated with
clusters 2 and 3 with cluster 1 as reference. The Cox proportional hazards model
was adjusted for age, gender, Field Center, hypertension, diabetes, BMI, atrial
fibrillation, smoking status, CHD, and eGFR. Source data are provided as a Source
Data file.
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identified in this analysis27,28. A low frequency SVEP1 missense variant
has previously been associated with an increased risk of CHD, DM, and
with higher blood pressure29. Genetically higher SVEP1 levels were
nominally associated with CHD but also associated with AF in our MR
analysis, consistent with our observed association of SVEP1 with inci-
dent AF. While SVEP1 has not been previously associated with incident
HF, plasma SVEP1 levels are strongly and positively associated with

older age30 and related disorders like dementia31, and have recently
been described as strongly predictive of outcomes in prevalent
HFrEF32.

MR analysis supported a potential causal association of SPON1
with LV size and function. SPON1 was another protein robustly asso-
ciated with HF development in all three analysis sets, consistent with
prior studies of incident HF and in prevalent HFpEF and HFrEF8–10,21,33.
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SPON1 is an matricellular protein that structurally consists of 6
thrombospondin domains, one spondin domain, and one reelin
domain, and has been primarily implicated in dementia and axonal
development34. Notably, SPON1 is expressed in the LV and LA among
other tissues, and the relevant SPON1 pQTLs were also eQTLs in these
tissues. Animal models implicate SPON1 in genetically mediated
hypertension and in cardiac remodeling due to ischemia-
reperfusion35,36, consistent with our MR results supporting a causal
association of SPON1 with hypertension and atrial fibrillation. Another
member of the same family, SPON2 (mindin), appears to attenuate
cardiac hypertrophy, fibrosis, and dysfunction in response to pressure
overload or neurohormonal activation37,38. The thrombospondin
THBS2 was also robustly associated with incident HF in our analysis.
Although we did not observe MR findings of potentially causal asso-
ciation, THSB2 has previously been identified in CAD GWASs39–42. Like
SPON2, preclinical studies implicate myocardial THBS2 expression in
protection from myocardial fibrosis and dysfunction with aging or in
response to hypertension43,44. AnotherHF-relatedmatricellular protein
with MR findings supporting a causal association with LV function is
MFAP4. Similar to SPON2 and THBS2, in pre-clinical models, myo-
cardial MFAP4 expression appears to protect frommyocardial fibrosis
and hypertrophy in response to pressure overload or neurohormonal
activation45,46. Furthermore, the relevant MFAP4 pQTL is also an eQTL
in left atrial tissue, and plasma MFAP4 levels have previously been
associated with atrial fibrillation and degree of atrial fibrosis47. Toge-
ther, these findings highlight the potential importance of matricellular
proteins and ECM remodeling to HF development.

Our analysis also implicated proteins known to be associatedwith
the senescence phenotype and age-related cardiac dysfunction as
potentially causally associated with LV remodeling and dysfunction.
FSTL3 is a downstream regulator of Activin type II receptor signaling,
which has been implicated in aging-related muscle wasting48. Cardiac
myocyte and endothelial cell FSTL3 expression is increased in HF and
contributes to paracrine activation of cardiac fibroblasts to promote
fibrosis49–51. In preclinical models, increasing activin A resulted in car-
diac dysfunction through increased ActRII signaling and FSTL3
expression48. Similar to GDF15, IGFBP7 is also a component of the
senescence associated secretoryphenotype52.MR analysis supported a
causal association of genetically higher circulating IGFBP7 levels with
larger LVESV and lower LVEF. Although prior associations of circulated
IGFBP7 with incident HF have been limited, higher IGFBP7 levels are
associated with worse outcomes among patients with HFpEF and
HFrEF53,54.

Notably, 8 out of the 10 proteins with significantMR findings were
annotated as druggable targets by the druggable genome database17,55,
with existing agents targeting 2 proteins (NRP1, ANGPTL3).While NRP1
promotes angiogenesis in malignancy, it is also expressed in the heart
and has been implicated in cardiovascular development and main-
tenance of cardiac function56. Mice with NRP1 knocked out in

cardiomyocyte and vascular smooth muscle cells demonstrate
decreased survival, cardiac dysfunction, and aggravated ischemia-
induced HF57. Consistent with this, higher NRP1 levels were associated
with greater LVEDV, LVMi, and LAVi in our analysis, and genetically
higher NRP1 levels associated with CHD and larger LVEDV. These
findings suggest a potential role for anti-NRP1 antibodies, currently
being tested in oncology, forHFprevention58. ANGPTL3 is expressed in
the liver and is an endogenous inhibitor of lipoprotein lipase and
endothelial lipase, with loss of function variants associated with lower
triglyceride and LDL cholesterol levels and lower odds of CAD59,60.
Associations with HF have not been previously reported. In our ana-
lysis, ANGPTL3 levels were not associated with incident CHD, but MR
supported a potential causal association of genetically higher circu-
lating ANGPTL3 levels with lower LVEDV. The potential mechanisms
mediating these associations will require further investigation.
Importantly, we demonstrate that these 10 proteins with potentially
causal associations with HF, cardiac function, or HF risk factors,
identify a sizeable subgroup of older persons – approximately one in
five – at particularly high risk for developing HF. That most of these
proteins are also druggable suggests that this represents a population
of at-risk individuals amenable to novel targeted therapies to decrease
HF risk.

Single protein-outcome association analyses do not account for
the complex correlation structure between circulating proteins. Using
weighted gene coexpression network analysis to generate protein
networks based on the topological scale-free criteria18,61,62, we identi-
fied five protein modules reproducibly associated with HF develop-
ment in bothmid- and late-life. Two of thesemodules (Brown, Salmon)
containedmost of the proteins identified in our single protein analysis
while some modules (Pink, Light Green, White) did not contain any,
highlighting the complementary information provided by this
approach. We observed consistent evidence of genetic regulation in
mid and late-life of three of these modules (Brown submodule 1, Pink,
Light Green). Genetic associations with the Brown and Pink modules
identified known trans pQTL ‘hotspots’ in the CFH and VTN genes
respectively14–16,61. Interestingly, these variants inCFH andVTN are both
causally implicated in age-related macular degeneration (AMD)63,64, an
age-related disease that shares many risks factor with HF and is itself
associated with heightened risk of HF65. AMD and HF also share puta-
tive mechanistic pathways, including oxidative stress, inflammation,
and mitochondrial dysfunction, suggesting possible shared biology
underlying these two distinct late-life conditions66,67.

While this study has several unique strengths, our findings should
be interpreted in the context of the study’s limitations. While ascer-
tainment and adjudication of HF varied across analysis sets, this
strengthens the generalizability of our findings. We also had limited
data regarding the etiology of HF. Data on HF phenotype (HFpEF
versus HFrEF) was only available in the ARIC late-life analysis set when
the number of incident events were limited. As mechanisms of HF

Fig. 7 | Weighted correlation network analysis. a Hierarchical clustering den-
drogram of plasma proteins from the ARIC late-life baseline (Visit 5) using dynamic
tree cut identifies 28 protein modules. b Volcano plot showing the associations of
module eigengene values with incident HF in Cox proportional hazard models
adjusted for age, BMI, eGFR by CKD-EPI, race, sex, current smoking status, pre-
valent CAD, prevalent DM, prevalent AF, and prevalent hypertension. Green –

modules significant at FDR p <0.05, Blue – modules significant at Bonferroni-
corrected significance level. c Forest plot demonstrating hazard ratios (HRs) with
95% confidence intervals for incident HF for HF-associated modules in the ARIC
late-life baseline (Visit 5; orange; n = 4483) when applied to the ARIC mid-life
baseline (Visit 3; green; n = 10,638) analysis set. HRs adjustment as in (b). d Brown
module, submodules 1 and 2 network diagram, incidence rate splines for associa-
tion with incident HF, and GWAS Manhattan plots. Both submodule eigengenes
were consistently associated with greater risk of incident HF. Orange network
nodes indicate HF-associated proteins identified in candidate analysis (Fig. 2).

GWAS of submodule 1 eigengene value at Visit 3 and Visit 5 identified consistent
genetic associations with SNPs in the complement factor H (CFH) gene on chro-
mosome 1. Independent SNPs for two identified LD-based SNP clumps included a
missense variant rs1061170 for Clump1 and rs424535 for Clump 2. Both demon-
strated cis effects on CFH and trans effects on many proteins. e Pink module.
Module eigengene was associated with consistently lower risk of incident HF.
GWAS of the eigengene value at Visit 3 and Visit 5 identified consistent genetic
associations with 34 independent SNPs in the vitronectin (VTN) gene on chromo-
some 17, including rs704 which demonstrated cis effects on VTN and trans effects
on many proteins. f Light green module. Higher eigengene values were associated
with consistently lower risk of developing HF. GWAS identified consistent asso-
ciations with 2 SNPs in high LD in the pregnancy zone protein (PZP) gene on
chromosome 12, which demonstrated cis effect on PZP. g Salmon and White
modules. Both modules demonstrated consistent associations with higher risk of
incident HF. Source data are provided as a Source Data file.
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partially differ by etiology and phenotype, our approach highlights
likely shared protein risk factors. We assessed plasma proteins which
may not reflect myocardial expression, although some candidate
pQTLs are also eQTLs in cardiac issue. However, we believe sampling
plasma proteins is appropriate as HF is a systemic disorder influenced
by cardiac and extra-cardiac factors, circulating factors are known to
influenceHF development and pathobiology, and plasma proteins can
be readily targeted by certain therapeutics such as antibodies. Further
translational studies will be necessary to elucidate the relationships of
candidate plasma protein levels with myocardial expression and
activity. While the SOMAscan assay provides the broadest coverage of
the plasma proteome currently available, it is incomplete and poten-
tially biased in protein sampling. Target specificity of some aptamers
maybe limited, howeverwe identified cispQTLs for themajority of our
candidate proteins. Two-sample MR used GWAS data from HERMES
for the HF outcome and UKBB for the CMR outcomes. As some indi-
viduals in HERMES and UKBB may have contributed to pQTL data,
there is a risk of winner’s curse which may result in larger effect size
and potentially impact statistical significance. Finally, mid-life and late-
life analysis sets both originated from the ARIC cohort and therefore
involved overlapping participants at different stages of life, although
incident HF events in each analysis set were unique. However, HUNT
was a third parallel analysis set and was completely independent
of ARIC.

High throughput proteomic profiling in diverse cohorts enables
identification of novel proteinmarkers of risk forHFdevelopment, and
integration with genomic data and annotated bioinformatic databases
suggest several may represent targetable HF risk factors. Further stu-
dies are necessary to understand the mechanisms by which these
proteins influence HF risk.

Methods
Study population
The Atherosclerosis Risk in Communities (ARIC) study is a prospective
epidemiologic cohort study whose design and methods have been
previously described68. Between 1987 and 1989, 15,792 middle-aged
subjects were enrolled in 4 communities in the United States: Forsyth
County, NC, Jackson, MS, suburbanMinneapolis, MN, andWashington
County, MD. Participants underwent four exam visits between 1987
and 1998, followed by a fifth exam visit between 2011 and 2013. The
mid-life baseline analysis set in this analysis used data from ARIC
participants attending the third study visit which occurred between
1993-1995 who were free of heart failure (HF) at the time of study visit.
The late-life baseline analysis set in this analysis used data from ARIC
participants attending the fifth study visit which (2011-2013) who were
free of HF at the time of the study visit. The study protocol was
approved by institutional reviewboards at eachfield center: University
of North Carolina at Chapel Hill, Chapel Hill, NC; Wake Forest Uni-
versity, Winston-Salem, NC; Johns Hopkins University, Baltimore, MD;
University of Minnesota, Minneapolis, MN; and University of Mis-
sissippi Medical Center, Jackson, MS. All participants provided written
informed consent at each study visit.

The Trøndelag Health Study (HUNT) Study is a population-based
cohort study that collected detailed socio-demographic and clinical
information for ~229,000 participants from Trøndelag County in
Norway69. The current study included 3262 individuals from the third
survey (HUNT 3) which enrolled a total of 50,807 participants between
2006–2008, with a follow-up time of 10 years70. Proteomic profiling
was performed in three cohorts of patients from this study: 1) 971
participants with chronic coronary syndrome (history of myocardial
infarction (MI), angiographic evidence of at least 50% stenosis in 1 or
more coronary vessels, prior evidence of inducible ischemia by stress
testing, or history of coronary revascularization);71 2) 1067 participants
with an incident primary cardiovascular event; and 3) 1447participants
who were randomly selected from the full HUNT 3 cohort5. All

individuals provided informed written consent and the study was
approved by the Regional Committee forMedical andHealth Research
Ethics (REK South-East C 2019/17355). The current study complies with
STROBE guidelines.

Protein measurement
Protein measurements in each analysis set were performed using a
multiplexed Slow Off-rate Modified Aptamer (SOMAmer) assay
(SOMAScan v4) as previously described31. Briefly, blood plasma was
collected using standard protocols at ARIC sites during visits 3 and 5.
Samples were stored at −80 °C and were sent to SomaLogic for
quantification. The relative concentration levels of plasma proteins
were determinedusing the SOMAmer assay, whichutilizes small pieces
of single strand DNA with modified aptamer regions. These aptamers
are designed to bind to proteins based on a particular sequence or
three-dimensional structure. DNAdetection technology is thenused to
identify and quantify the proteins. Additional details on the assay and
its performance have been previously published72. Relative protein
concentration was available for 5,284 aptamers in total.

For SomaLogic assay quality control, ARIC data sets were com-
bined with data from healthy controls and then normalized. Samples
were flagged if at least one of the four sample calibration factors was
outside of the acceptance criteria range of 0.4-2.5. These factors
include hybridization control normalization factor, normalization
factor for a dilution factor of 0.005%, normalization factor for a dilu-
tion factor of 0.5% and normalization factor for a dilution factor of
20%. SOMAmers were flagged if at least one intraplate calibration
factor was out of the acceptance criteria of 0.8-1.2. Additional quality
control procedures were implemented by the ARIC study. SOMAmer
measures were log2 transformed to correct for skewness in the data
distribution. Blind duplicates were run for 4% of participants in each
visit, corresponding to422of 11565 individuals at visit 3 and 185of 5327
individuals at visit 5. The median inter-assay coefficient of variation
(CV) for SOMAmers measured at each visit were calculated using
Bland-Altman analysis. For visit 3, this value was 6.31% and for visit 5 it
was 4.67%. Quality control outliers were excluded as described below,
and median split sample reliability coefficients were then calculated
for each visit. At visit 3 themedian reliability coefficientwas 0.85,while
at visit 5 the median reliability coefficient was a bit higher at 0.94.
Additionally,manual annotationwas completed for sixUniProt IDs and
three protein names.

Of the 5284 SOMAmers available before quality control exclusion,
aptamerswereexcluded fromanalysis if they had aCV > 50% (55at visit
3, 93 at visit 5). Additionally, proteinswith variance<0.01 on a log-scale
were excluded (12 at visit 3, 12 at visit 5). SOMAmers that bound to Fc
mouse (228), contaminants (15), or non-proteins (70) including
hybridization control elution, non-human proteins, non-biotin, non-
cleavable, or spuriomer molecules were also excluded. Samples
deemed to be outliers for each SOMAmer, defined as values outside of
5 times the standard deviation of the log2 scaled same mean, were
winsorized. After quality control, a total of 4877 aptamers measuring
levels of 4697 unique proteins were present for analysis.

In HUNT 3, non-fasting plasma samples were collected in EDTA
tubes at random times of day. The samples were centrifuged, plasma
aspirated and frozen at −80 °C within 24 h of blood draw. Never-
thawed samples were shipped to SomaLogic, Boulder, CO for pro-
teomic profiling using the equivalent assay (SOMAScan v4). Nine
samples failed SOMALogic quality control and were excluded from
further analyses. Only the 4877 aptamers passing ARIC quality control
assessments were analyzed.

Validation of candidate HF-associated aptamers
To provide orthogonal validation of key candidate proteins identified
in this analysis, we measured plasma proteomics in a subset of 113
participant plasma samples at Visit 5 using the Olink Explore 3072

Article https://doi.org/10.1038/s41467-023-44680-3

Nature Communications |          (2024) 15:528 11



platform (2926 unique proteins) which uses multiplexed proximity
extension assays (PEA)73. The assay sensitivity is comparable to tradi-
tional enzyme-linked immunosorbent assays (ELISAs)74. Of the 37 key
candidate proteins identified in this analysis, 28 were captured in the
Olink platform. ELISA assay was performed for 1 additional protein not
captured by the Olink assay (SVEP1, AFG Bioscience sandwich ELISA
assay) andhigh sensitivity troponin Twaspreviouslymeasured in ARIC
Visit 5 sample (Elecsys high-sensitivity assay on an automated Cobas
e411 analyzer, Roche Diagnostics®)75.

Covariate assessment
In ARIC, sex and race were self-reported. Hypertension was classified
based on self-reported medication use or blood pressure ≥140/
90mmHg at any ARIC visit. Diabetes was defined based on self-report
of a physician diagnosis of diabetes, anti-diabetic medication use,
fasting glucose≥126mg/dL, or non-fasting glucose≥200mg/dL, at any
ARIC visit. Smoking status was assessed at each visit based on
interviewer-administered questionnaire. Body mass index (BMI) was
assessed based on height and weight measures at each visit. Estimated
glomerular filtration rate (eGFR) was assessed using the CKD-EPI
equation using plasma creatinine measured at each visit76. Since study
inception, ARIC participants have undergone surveillance for cardio-
vascular events including incident coronary heart disease events
(definite or probable MI, or coronary revascularization) as previously
described77,78. Atrial fibrillation was ascertained based on ECGs at
5 study visits and hospital discharge records as previously described79.
Prevalent HF was based on hospitalization ICD codes prior to 200578

with additional physician adjudication since 2005 as previously
described80.

In HUNT, sex, race, diabetes, and smoking status were self-
reported. Prevalent HF was defined by self-reported HF any time in life
before the HUNT 3 visit. Prevalent CAD was defined by self-reported
myocardial infarction, angina, percutaneous coronary intervention, or
coronary artery bypass grafting. Prevalent hypertension was defined
by self-reported anti-hypertensive medication use or blood pressure
≥140mmHg systolic or ≥90mmHg diastolic at the HUNT 3 visit. Pre-
valent AF was defined by the use of ICD 10 code I48.* or ICD 9 code
427.3 at any time in hospital records. BMI was calculated from weight
and height measured at the HUNT 3 visit.

Ascertainment of incident heart failure
In ARIC, incident HF events following the mid-life baseline assessment
(Visit 3) were based on active surveillance of HF-related hospitaliza-
tions or death based on annual participant calls, review of local hos-
pital discharges for cohort participants, and health department death
certifications. IncidentHF eventwasdefined as thefirst occurrenceof a
hospitalization with a HF ICD9 code 428 or ICD10 code I50 or death
certificate with one of these codes78. Incident HF events through 10
year follow-up post-mid-life baseline were included in this analysis.

Incident HF events following the late-life baseline assessment
(Visit 5) was based on ARIC HF Event Classification as previously
described80. HF event ascertainment and adjudicationwas triggeredby
any HF-related ICD discharge code in any position. Following com-
prehensive abstraction of medical records, which included informa-
tion on LVEF, two independent reviewers classified each case using
ARIC classification guidelines. Consistent with prior epidemiologic
studies81, HFpEF was defined as adjudicated HF with LVEF ≥ 50% at the
incident HF hospitalization and HFrEF if LVEF was <50% at incident HF
hospitalization. Incident HF events were ascertained through Decem-
ber 2018. IncidentHF events following late-life baseline did not overlap
with events following mid-life baseline. In HUNT, incident HF from the
HUNT 3 visit through 2018 was first defined by the same ICD codes as
in ARIC, and then adjudicated by a blinded cardiologist with access
to all hospital records according to the 2012 European Society of
Cardiology Guidelines for HF diagnosis.

Physiologic testing and measures in the ARIC late-life
analysis set
Quantitative measurements of cardiac structure and function were
performed by echocardiography in ARIC at the time of late-life base-
line (Visit 5), the design and methods of which have previously been
described including reproducibility metrics82. All studies were per-
formedby a limited set of certified sonographers using a study-specific
acquisition protocol and all qualitative measures were performed by
trained analysts at the ARIC Echocardiography Reading Center (Bos-
ton, MA). Arterial stiffness was assessed by pulse wave velocity (PWV)
using the automated waveform analyzer VP-1000 Plus (Omron, Kyoto,
Japan) after participants were supine for 5–10min83. Repeatability of
these measures have been previously reported84. Lung function was
assessed based on the following spirometric variables: FEV1, FVC and
their ratio as previously described24. Participants underwent bio-
electric impedance (measured using the Tanita Body Composition
Analyzer, TBF-300A) and percent body fat, fat mass and lean body
mass were calculated85. Grip strength, a measure of upper limb func-
tion, was assessed as themaximumhandgrip isometric effort from two
attempts using a handheld dynamometer22.

Statistical approach
Associations of proteins with incident HF, HF risk factors, and
measures of cardiovascular and non-cardiovascular function. To
assess the association of individual proteins with incident HF, time to
event analyses were performed using Cox proportional hazards
models. Each protein was tested in a separatemultivariablemodel that
additionally adjusted for age, BMI, eGFR by CKD-EPI, race, sex, current
smoking status, prevalent CAD, prevalent DM, prevalent AF, and pre-
valent hypertension. Multiple testing correction was conducted using
both the Bonferroni and FDRmethods. Prior to testing, data from each
analysis set were filtered to remove individuals with a negative or zero
follow-up time and individuals with prevalent HF. For covariates with
missingdata,multiple imputationusing chained equationswasutilized
to compute probable values. All imputed variables had less than 10%
missingness. Protein levels were centered and scaled to a mean of 0
and a standard deviation of 1 to allow for comparison between the
various protein models.

As a complementary feature selection approach, random forest
models were constructed for ARIC visits 3 and 5 and for HUNT using
the “randomForestSRC” R package (version 3.1.1)86–88. Outcome was
defined as time to incident heart failure. Clinical covariates used in tree
construction include age, BMI, eGFR by CKD-EPI, race, sex, current
smoking status, prevalent CAD, prevalent DM, prevalent AF, and pre-
valent hypertension, as well as all normalized, scaled protein levels.
First, trees were tuned to determine the number of variables to split at
each node, and the minimum size of a terminal node that optimized
the out-of-bag (OOB) error. Then these optimal values were utilized to
construct a single random forest model. After constructing this opti-
mal model, any proteins that did not reach the 80th percentile for
depth were removed from the potential covariates list and the tree
fitting process was repeated. 30 iterations were run in total and the
tree with the smallest OOB error was chosen as the final random forest
model for each of the three data sets.

As a complementary approach to the main parallel analyses, we
conductedmeta-analysis using the ARIC visit 3, ARIC visit 5, and HUNT
data. Due to the correlated nature of ARIC visit 3 and visit 5 data, we
first calculated a pooled ARIC HR estimate for association of protein
level and time to heart failure using the Wei, Lin, and Weissfeld
model89. Data was clustered by subject id and was stratified by ARIC
visit (3 or 5). To fit the most “assumption-free” model, we allowed
interactions between all covariates with the strata term, except for the
protein level covariate. We corrected for the same set of covariates as
in the original parallel analysis models. Meta-analysis was then con-
ducted on the pooled ARIC HR and the HUNT HR using the inverse
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variance method. Proteins that met a Bonferroni level of significance
were used as input to overrepresentation pathway analysis using Qia-
gen IPA software.

The associations of individual proteins with incident HF risk fac-
tors were assessed using Cox proportional hazards models using the
protein levels at ARIC Visit 3 were used, with outcomes censored at a
subject’s ARIC Visit 5 date. Individuals with prevalent risk factor diag-
noses were excluded from analyses. Incident risk factor development
was ascertained for each risk factor separately. Criteria for incident
hypertension included measured BP > 140/90mmHg, self-reported
use of hypertension medications in the past 2 weeks, or if a patient
indicated that a doctor has said they hadhigh blood pressure since last
contact during an annual follow-up call (AFU)90. Criteria for incident
diabetes included fasting glucose >126 or participant report that a
doctor has said they had diabetes or sugar in the blood since last
contact during an AFU91. Incident coronary artery disease was defined
as an adjudicated myocardial infarction or fatal CHD event after the
Visit 3 date77. Criteria for incident CKD included an eGFR <60mL/min/
1.73m^2at ARICVisits 4or 5 accompaniedby a ≥ 25%decline relative to
the Visit 3 value, or kidney disease related hospitalization or death
basedon ICD9 codes 581-583, 585-589 and ICD10 codesN03, N04, N19,
N25-N2792. Each protein was tested in a separate multivariate model
that adjusted for age, BMI, eGFR by CKD-EPI, race, sex, current
smoking status, prevalent CAD, prevalent DM, prevalent AF, and pre-
valent hypertension, excluding the adjustment for related prevalent
risk factor. Multiple testing correction was conducted using FDR
adjustment methods.

The cross-sectional associations of HF-related proteins with
measures of cardiovascular and non-cardiovascular function were
assessed at ARIC Visit 5 using multivariable linear regression. Con-
tinuous outcome measures were scaled to mean 0 and centered to a
standard deviation of 1 prior to analysis. Regression models were
adjusted for the covariates of age, BMI, eGFR by CKD-EPI, race, sex,
current smoking status, prevalent CAD, prevalent DM, prevalent AF,
and prevalent hypertension. For echocardiographic measures of car-
diac structure and function, models were additionally adjusted for
heart rate and systolic bloodpressure at the timeof echocardiography.
Missing covariate data was imputed using multiple imputation using
chained equations.

All analyses were conducted using R (v4.2.0).

Mendelian randomization and colocalization analysis. For proteins
that were significantly associated with incident HF, we applied a two-
sample Mendelian randomization (MR) approach93,94 to assess the
potential causal relationships between those proteins and their cor-
responding outcomes. To minimize bias, we used genetic summary
statistics from two independent European samples for exposure and
outcome data in each analysis. Instrumental variables (IVs) for protein
quantitative trait loci (pQTLs) were obtained from three published
studies: the INTERVAL study (n = 3301)14, which included summary
statistics for 2994 proteins measured by SOMAscan, the AGES cohort
study (n = 5368)15, with summary statistics for 4782 SOMAscan mea-
sured proteins, and Fenland study individuals with European descent
(n = 10,708)16, including summary statistics for 4775 SOMAscan pro-
tein targets. The summary statistics for HF were obtained from the
HERMES consortium (n = 977,323)95. Summary statistics for cardiac
structure/function outcomes (LVEDV, LVESV and LVEF) were obtained
from UK Biobank (n = 36,041)96. IVs were selected if they reached
genome-wide significance (p < 5 x 10−8), and the selected IVs were
further clumped with r2 < 0.001. Wald tests or inverse variance
weighted (IVW) tests, for more than one IV, were performed to cal-
culate a causal estimate. If more than two IVs were included, Cochran’s
heterogeneity test was used to test the heterogeneity. If three or more
IVs were included, the MR Egger method was utilized to test for the
presence of horizontal pleiotropy97. 28 out of 36 HF-associated

proteins had IVs selected and 30 out of 36 echo- and/or HF-associated
proteins had IVs selected respectively. The significance threshold for
MR association was determined using Bonferroni correction for the
number of independent sets of IVs tested, p < 7e-4 for HERMES HF
(0.05/70), and p < 5e-4 for cardiac structure and function (0.05/92).
For the observed significant associations, we further conducted a
backward MR, which used IVs for cardiac structure and function as
exposure and IVs for proteins as outcome, to detect potential reverse
causality. All the analyses were performed using the R package “Two-
SampleMR” (version 0.5.6)98.

Two-sample MR was also utilized to test for potential causal
relationships between the proteins found to be significantly associated
with one of the tested HF risk factors, including AF, CHD, CKD, type II
diabetes (DM), and hypertension. IVs for proteins were obtained using
the same studies as previously described. The summary statistics for
AF were obtained from a GWAS meta-analysis of 6 studies
(n = 1,030,836)99, summary statistics for CHD from UK Biobank and
replicated using CARDIoGRAMplusC4D data (n = 296,525)100, those for
CKD from a 43 study GWASmeta-analysis (n = 117,165)101, those for DM
from a GWASmeta-analysis of 3 studies (n = 655,666)102, and summary
statistics for hypertensionwere fromaUKBiobankGWAS stored in the
IEU Open GWAS Project Database (n = 463,010)103. The same thresh-
olds and testing methods were utilized as for the HF and cardiac
structure/function analyses. Once again, multiple testing correction
was utilized, resulting in significance thresholds of p < 4.5e-4 for AF
and hypertension (0.05/112), p < 4.7e-4 for CHD (0.05/106), p < 8.8e-4
for CKD (0.05/57), and p < 6.9e-4 for DM (0.05/72). Backward MR was
also conducted for any observed significant associations to look for
potential reverse causality.

Sensitivity analyses were conducted for all combinations of
associated proteins and their outcome. In one set of analyses, protein
IVs were selected using a lower threshold (p < 5 x 10−4) and results were
compared with the stricter threshold analyses in an attempt to assess
the validity of the instrumental variable assumptions104. Analyses using
only cis-acting pQTLs were also conducted (Supplementary Fig. 6).

For significant MR hits in a single genomic region (cis-MR) we
performed colocalization analysis using the R package coloc (v5.1.0)105.
Colocalization assuming a single causal variant and conditional colo-
calization using SuSiEwere utilized106,107. For each cis-MRhit, we subset
the full GWAS summary statistics to within 500 kb of the SNP of
interest. We used the default priors for the coloc.abf() function. Evi-
dence for colocalization was based on the posterior probability of H4
from software output, using a threshold of 75% to denote sufficient
evidence for colocalization. For analyses conducted with coloc.susie,
the credible setwith the largest posterior probability of H4was used. A
H3 > 75% threshold was used to conclude that the protein and HF
phenotype of interest are likely driven by different causal variants,
which does not support colocalization.

Consensus clustering analysis. Consensus clustering was performed
separately for ARIC visit 5 and HUNT datasets using the “Consensu-
sClusterPlus” R package (version 1.61.0)108. Scaled log-transformed
protein levels for 10 proteins that had significant associations from the
MR analyses were used as input for the clustering. We utilized the
K-means algorithm for clustering and the Euclidean distance as a
measure of distance between the subjects’ protein levels. The number
of clusters evaluated ranged from 2 to 5. For each of 200 subsamples,
80%of subject datawas sampled and all protein datawas sampled. The
number of clusters present in the data was determined using diag-
nostic plots. To determine an optimal number of clusters, we look for
clean separation in consensus matrix heatmaps, cluster consensus
scores over 0.8 for all clusters and a low proportion of ambiguously
clustered pairs. After determining the optimal number of clusters,
differences in cluster features were examined by calculating the stan-
dardized mean difference in protein levels for each of the clusters. We
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plotted Kaplan Meier survival curves and employed multivariable Cox
proportional hazardsmodels to examine whether cluster membership
impacted incident HF risk. Models adjusted for age, gender, Field
Center, hypertension, diabetes, BMI, atrial fibrillation, smoking status,
CHD, and eGFR.

Weighted correlation network analysis. Weighted correlation net-
work analysis was performed separately for ARIC visits 3 and 5 and
HUNT datasets using the “WGCNA” R package (version 1.71)18,109. ARIC
visit 5 data was first used to determine a soft threshold for the
unsigned protein co-expression values. This threshold was utilized to
transform the co-expression data into an adjacency matrix. Hier-
archical clustering was then completed using the topological overlap
matrixdissimilarity andmoduleswere identifiedusingdynamicbranch
cutting methods. Eigengenes were calculated for each module, sepa-
rately for each of the three datasets. These eigengene values were then
scaled to a mean of 0 and a standard deviation of 1. Next, we fit Cox
proportional hazards models separately for ARIC visit 3 and visit 5 to
determine if each of themodule eigengenes were associated with time
to incident HF.

Genetic association with heart failure module proteins. We con-
ducted a genome-wide scan on the identified Brown Module in Eur-
opean and African Americans at visit 3. In ARIC, genotype was
measured using Affymetrix Array 6.0 followedby imputation using the
Trans-Omics for PrecisionMedicine (TOPMed) reference panel (freeze
5b)110. The detailed genotype quality control steps were described
previously111. In brief, samples were excluded if they were first-degree
relative of an included individual, outlier based on allele sharing and
principal components analyses, or had sex mismatch. Variants were
excluded if they had insufficient call rate (>5%), deviation from Hardy-
Weinberg equilibrium (p < 1e-5), imputation quality <0.3 or minor
allele frequency (MAF) < 0.5%. Linear regression was performed on the
inverse normal transformed protein module eigenvector adjusting for
age, sex, center and the first three principal components of ancestry to
account for population stratification. Genome-wide significance was
defined as p < 5e-8.

Many of the adjacent variants associated with the module eigen-
protein may simply represent a single signal due to LD. To determine
independent loci significantly associated with Brown Module, we first
ascertained a 1-Mb region around each significant variant, and then,
those 1-Mbregionswith anyoverlap regionsweremerged. Two regions
were identified tobeassociatedwithBrownModule: a 235 kb regionon
chromosome 1, which included 50 significant SNPs, and a 405 kb
region on chromosome 2, which included 8 significant SNPs. We next
usedGCTAv1.93.2 toperforma stepwisemodel selection procedure to
select independent variants in each region. A single COJO analysis
using the “cojo-slct” option was carried out for each module. We also
performed a LD-based clumping procedure using PLINK to the set of
variants in a region. The COJO analysis and the LD-based clumping
yielded two representative SNPs for the chromosome 1 region,
rs10922100 and rs1061170, and one SNP for chromosome 2 region 2,
rs1260326.

Gene expression analysis. Genotype-tissue expression data from the
GTex project (Analysis Release V8 [dbGaP Accession phs000424.v8.p2])
and the Human Protein Atlas (HPA, proteinatlas.org) were used for
analysis of genes coding for heart failure-related proteins, and their
expression and localization across cardiac, vascular and metabolic
tissue12,13. The expression of genes coding for heart failure-related pro-
teins was quantified in heart, vascular, kidney, adipose, lung, and liver
tissue as transcripts per million. Genes coding for heart failure-related
proteins were organized using hierarchical clustering analysis. pQTLs
with significant MR signal were tested using GTEx to determine whether
they were also associated with gene expression levels in the analyzed

tissues. Significance was determined based on a given P-value threshold
that is calculated separately for each differentially expressed gene in a
tissue and which accounts for multiple testing using the false discovery
rate method.

Ingenuity pathway analysis. Ingenuity Pathway Analysis (IPA) was
performed to characterize the biological functions represented by the
set of heart failure-associated proteins (QIAGEN IPA, QIAGEN, Hilden,
Germany) and proteins within heart failure-associated network mod-
ules derived from weighted gene co-expression analysis. IPA uses the
QIAGENKnowledgeBase, a databaseofmanually curated scientific and
medical content. Proteins-associated with incident heart failure in a
meta-analysis of ARIC Visit 3, Visit 5 and HUNT3 at a Bonferroni-
corrected two-sided P-value < 0.05 were subjected to IPA if the gene
coding for the protein was available in the QIAGEN Knowledge Base.
The beta-coefficient fromCoxproportional hazards regressionmodels
and FDR-corrected P-values at ARIC Visit 3 were uploaded for each
heart failure-associated protein. Certain proteins were targeted by
multiple SOMAmers or multiple SOMAmers targeted different pro-
ducts of the same gene. The SOMAmer with the smallest beta-
coefficient standard errorwas retained in IPA. IPAwasconductedusing
all experimentally confirmed content for all species in the QIAGEN
Knowledge Base, including proteins not measured by the SOMAScan
platform. The reference dataset for p-value calculations was restricted
to proteins measured by SOMAScan, however, to obtain the most
accurate statistics on overrepresentation. Direct and indirect rela-
tionships were considered. Network analysis was restricted to a max-
imum of 35 molecules per network and 25 networks per analysis as
recommended by QIAGEN and used previously in ARIC proteomics
analysis31. Canonical pathways, networks and upstream regulators
across the entire QIAGEN Knowledge Base were tested for over-
representation within the set of heart failure-associated proteins
relative to that expected with chance using a one-sided, right tailed
Fisher’s exact test (statistical significance was set at FDR-corrected
P <0.05)112. Thematch between expected and observed up- and down-
regulation patterns is quantified using a Z-score112.

Identification of potential drug targets. Candidate proteins with MR
findings supporting a causal association with HF, HF risk factors, or
cardiac structure/function were assessed as potential drug targets
using the ChEMBL database and the druggable genome17,55. Both the
database and the supplementarydata of druggable geneswerequeried
based on the HUGO gene name of the protein of interest.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
ARIC data access procedures are in accordance with participant
informed consent and NIH data sharing policy. Anonymized data from
the ARIC study are available at the NHLBI Biologic Specimen and Data
Repository Information Coordinating Center and can be accessed
through the website (https://biolincc.nhlbi.nih.gov/studies/aric/).
Requests for access of ARIC data may also be submitted to the ARIC
Publications Committee according to established study procedures
which includes submission of a completed ARIC Manuscript Proposal
From (available at https://aric.cscc.unc.edu/aric9/publications/
policies_forms_and_guidelines) to the ARIC Publications Committee
at aricpub@unc.edu. Review and approval of data access requests
typically takes approximately one month. Sharing of ARIC data typi-
cally requires execution of a Data Use Agreement with the ARIC
Coordinating Center at the University of North Carolina. The pro-
cessed data are available in the Source Data file provided with this
paper. The data generated in this study are provided in the
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Supplementary Information/Source Data file. HUNT data are available
on request. To protect participants’ privacy, HUNT Research Centre
aims to limit storage of data outside HUNT databank and cannot
deposit data in open repositories. HUNT databank has precise infor-
mation on all data exported to different projects and are able to
reproduce these on request. There are no restrictions regarding data
export given approval of applications to HUNT Research Centre. Fur-
ther details are available at http://www.ntnu.edu/hunt/data. Source
data are provided with this paper.

Code availability
The code and statistical packages used for analyses in this study is
available from the corresponding author upon request.
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