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Machine-learning-accelerated design of
high-performance platinum intermetallic
nanoparticle fuel cell catalysts

Peng Yin1,3, Xiangfu Niu2,3, Shuo-Bin Li1, Kai Chen2, Xi Zhang1, Ming Zuo1,
Liang Zhang 2 & Hai-Wei Liang 1

Carbon supported PtCo intermetallic alloys are known to be one of the most
promising candidates as low-platinum oxygen reduction reaction electro-
catalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic
trade-off between particle size and ordering degree of PtCo makes it chal-
lenging to simultaneously achieve a high specific activity and a large active
surface area. Here, by machine-learning-accelerated screenings from the
immense configuration space,weare able to statistically quantify the impact of
chemical orderingon thermodynamic stability.Wefind that introducingofCu/
Ni into PtCo can provide additional stabilization energy by inducing Co-Cu/Ni
disorder, thus facilitating the ordering process and achieveing an improved
tradeoff between specific activity and active surface area. Guided by the the-
oretical prediction, the small sized and highly ordered ternary Pt2CoCu and
Pt2CoNi catalysts are experimentally prepared, showing a large electro-
chemically active surface area of ~90 m2 gPt

‒1 and a high specific activity of
~3.5mA cm‒2.

Proton exchange membrane fuel cells (PEMFCs) with net-zero carbon
emission are promising energy conversion devices1,2, but the heavy use
of high-cost platinum-based electrocatalysts for boosting the sluggish
oxygen reduction reaction (ORR) at the cathode limits their large-scale
commercialization3,4. To this end, the US Department of Energy (DOE)
has set two mass-normalized performance based on platinum group
metal (PGM) as cost targets, including rated power (>8 kW gPGM

−1) and
activity (>0.44 AmgPGM

−1)5. Hence, significant reduction of PGM usage
by using ORR electrocatalysts with high mass activity (MA) is impera-
tive to achieve full-commercialization of PEMFCs6.

Recently, carbon supported structurally ordered Pt-based
intermetallic compound (IMC) nanoparticles have been exten-
sively investigated as low-Pt catalysts to boost ORR for PEMFCs7–10.
Since the pronounced ordering-degree-dependent activity in inter-
metallic catalysts, the realization of high or even full ordering
degree is highly desirable when preparing the alloy catalysts11,12. To

promote the ordering degree of IMCs catalysts, high-temperature
annealing is crucial to form the Pt-M alloys with ideal stoichiometric
ratio and to overcome energy barrier of disorder-to-order transition
within every individual nanoparticle13, which inevitably leads to the
sintering of catalysts into larger particles with decreased electro-
chemical surface area (ECSA)14,15. As demonstrated in a typical
impregnation synthesis of PtCo alloy, the seesaw relation between
particle size and ordering degree could be clearly observed (Fig. 1a).
An acceptable MA of large-particle catalysts with a low ECSA could
be achieved by the compensation of a very high SA16–18. However, for
a certain Pt usage in the membrane electrode assembly (MEA, mgPt/
cm2

MEA), a low ECSA means a small Pt roughness factor in MEA
(normalized ECSA on a cathode, cm2

Pt/cm
2
MEA) that exacerbates the

local oxygen transfer resistance, which eventually leads to a sig-
nificantly decreased fuel cell performance, particularly at the high
current density6,19.
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Some elaborately designed methods have been developed for
preparing small-size Pt-based intermetallic catalysts, such as KCl
matrix-assisted annealing20, low temperature chemical vapor deposi-
tion with organometallic precursors21, sulfur-anchoring synthesis8,
small-molecule assisted synthesis22, and thermal decomposition of
bimetallic complexes23. These methods focus on the anti-sintering
during the high-temperature annealing; the ordering degree of the
resulted IMCs catalysts is often low, even though the high kinetic
energy barrier of atom ordering could be overcome by the high-
temperature annealing. The reason behind this phenomenon is prob-
ably the low thermodynamic driving force in the disordered-to-order
transition process13,15, which would significantly limit the nucleation
rate of IMC phase.

Recently, machine learning methods have demonstrated sig-
nificant potential in accelerating material discovery by efficiently
navigating design spaces and predicting properties, thereby sub-
stantially reducing the cost of identifying and optimizing catalytic
materials24–27. Here, we perform the machine-learning-accelerated
computational screening, aiming at the de novo design of the ele-
ment composition to increase the thermodynamicdriving force for the
disordered-to-order transition and thus promote the nucleation of
IMC phase with high ordering degree (Fig. 1b, c). After the systematic
screening of the ternary Pt2CoM alloys (PtCo represents the most
promising alloy catalyst for practical PEMFCs applications28,29; M is
another base metal element), including alloy mutual solubility,
ordering transition energy, and strain-induced activity prediction, we
obtain two optimal solutions of Pt2CoCu and Pt2CoNi. The experi-
mentally prepared Pt2CoCu (Ni) IMC catalysts showboth large ECSA of
~90m2 gPt

−1 and high SA of ~3.5mA cm−2, which lead to a high MA of
~3 A mgPt

−1. The highly ordered Pt2CoCu catalysts also exhibit
enhanced MEA performance in practical H2–air fuel cells.

Results and discussion
Computational screening of ternary Pt2CoM alloys
To reduce the experimental trials and errors, weperformed theoretical
screening of the Pt2CoM ternary systemwith the third elementM from
an initial pool of 16 potential elements, includingNa,Mg, Sc, Ti,Mn, Fe,
Ni, Cu, Ga, Ge, In, Sn, Sb, Te, Pb and Bi. The alloying of the third
element aims to facilitate the Pt-M ordering while maintaining, if not
enhancing the surface ORR performance. Therefore, the 16 candidates
underwent screening in the following three aspects: solubility of M in
PtCo alloy, promotion of a more feasible disorder-to-order transition
in ternary Pt2CoM compared to binary PtCo, and the potential for
higher ORR activity in Pt2CoM (Fig. 1d). Consequently, this systematic
approach successfully narrowed down the potential ternary candi-
dates to two: Pt2CoCu and Pt2CoNi, which were subsequently experi-
mentally verified.

Figure 1e shows the twomatrics used to assess the solubility of M
in PtCo alloy: the relative energy of Pt2CoM with respect to PtCo and
PtM, and the structural deformationdue to theMdissolving. ForM=Fe,
Ti, Ga, Mn, Ni, Cu, Sc, and Ge, the segregation of ternary Pt2CoM to
PtCo and PtM is thermodynamically unfavorable. However, it is
important to note that even when segregation is thermodynamically
preferred, the formation of a ternary alloy can still be kinetically sta-
bilized. Meanwhile, Ge and Sc exhibit significant structural deforma-
tion after the density functional theory (DFT) optimization (Fig. 1e and
Supplementary Fig. S1). Therefore, six soluble element Fe, Ti, Ga, Mn,
Cu, and Ni, located in the left bottom of Fig. 1e were subjected to the
ordering assessment in the next stage.

The activity and durability of Pt alloy catalysts are strongly
dependent on the ordering degree of Pt and Co/M11,12. Warren-Cowley
short range order (SRO) was used to quantify the chemical ordering of
the alloy system.Wedefined the ordering energy Eordering as the energy

b
disordered alloy ordered alloy

PtCo

Pt2CoM

c

Ra
te

Temperature

IMC phase forma�on
IMC phase diffusion

Temperature
e fd

a

Thermodynamic driving force

IMC forma�on process

Pt2CoM structures

Model TrainingActive Learning

SRO   Feature & Target 

Fig. 1 | Development of machine learning model. a Schematic illustration
showing the dilemma of ECSA and SA in a typical binary PtCo IMC catalyst synth-
esis. b Schematic illustration assuming the presence of Pt2CoM combination with
higher thermodynamic driving force of disordered-to-ordered transition.
c Schematic illustration showing the change of IMC phase formation rate after

enhancing thermodynamic driving force. Purple and blue colors represent Pt2CoM
and PtCo, respectively. d Screening flowchart of ternary Pt2CoM combinations.
e Structural deformation and relative energy distribution of 16 Pt2CoM combina-
tions. fActive learning procedures to constructmachine learning predictionmodel
for relative energy of Pt2CoM.
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difference between ordered configurations (SRO of Pt-Co/M:
αPt�ðCo=MÞ = � 1=3, where Pt atoms hold the same positions as PtCo
intermetallics) and randomly mixed configurations (αPt�ðCo=MÞ =0).
The ordering energy Eordering measures the thermodynamic driving
force for the disorder-to-order transition. To overcome the intract-
ability of the diverse interatomic arrangements in Pt2CoM using DFT
calculation, an active learning strategy was adopted to train the pre-
diction model of relative energy for each Pt2CoM ternary system
(Fig. 1f and Supplementary Table S1). We selected Gaussian Process
Regression (GPR) as the machine leaning model due to its ability for
uncertainty measurement24. Active learning was implemented, and
after completing 7 rounds of iterations, over 100 DFT data points were
used for each Pt2CoM, resulting in a formation energy prediction
accuracy with an error below 10meV/Atom (Supplementary Figs.
S2–S5, Supplementary Table S2). The trained machine learning model
was then applied to predict the formation energies of 300 ordered
(αPt�ðCo=MÞ = � 1=3) and 300 random (αPt�ðCo=MÞ =0) configurations, as
well as 3800 structures with varying ordering degrees (Supplementary
Fig. S6). We found that the ordered PtCo was 0.054 eV per atommore
stable than the configurations where Pt and Co were randomly mixed
(upper panel of Fig. 2a). The introduction of Cu exhibits a similar
thermodynamic barrier between the mean formation energy of
ordered and random configurations (0.050 eV per atom). Interest-
ingly, we found an extra small peak bringing an extra stabilization
energy Eext = 0.016 eV per atom for the Pt-Co/Cu ordered structure.
Further analysis demonstrates that the extra stabilization energy of the

Pt-M ordering origins from the Co/Cu disordering (red section in
Fig. 2c), where the relative formation energy of Pt2CoCu increases with
αPt�ðCo=CuÞ, but oppositely correlates with αCo�Cu (Fig. 2b and Supple-
mentary Figs. S7 and S8). Simialrly, we indentified that Ga, Ni, Ti held
the potential to form more ordered IMC structure, but the introduc-
tion of Mn and Fe would significantly suppress the thermodynamic
driving force for the disorder-to-order transition of Pt2CoM (Fig. 2c
and Supplementary Table S1). In the realm of computational effi-
ciency,the training and predicting with machine learning models
required negligible time compared to DFT calculations, leading to a
significant reduction in the time required to establish the correlation
between chemical ordering and stability (Supplementary Fig. S9).

When catalyzing ORR, the Pt alloy catalysts should be convereted
into alloy@Pt core-shell structures by in situ electrochemical deal-
loying or pre-leaching in acid11. The electronicproperties of the Pt-shell
are strongly influenced by the alloy core due to the well-known ligand
and/or strain effects30,31. To evaluate the ORR activity of the Pt2CoM
(M=Ga, Ni, Cu and Ti), we calculated the adsorption energies of OH*
and O* as the activity descriptor using Pt-shell slab models with
ordered Pt2CoM-core (Fig. 2d and Supplementary Tables S3 and 4)32.
The computed results show that strain effects play a dominated role in
regulating the ORR activity of Pt2CoM (Supplementary Fig. S10). For
comparision, we also marked the calculated activity of ordered and
disordered PtCowith various ordering degree of subsurfacePtCo core.
Generally, ordered PtCo poesses higher activity than disordered
counterpart. Among the ternary alloys, Pt2CoCu and Pt2CoNi show

Fig. 2 | Result feedback of machine learning model. a ML predicted relative
energies distribution of random and ordered PtCo (upper) and Pt2CoCu (bottom).
b Relative energies of Pt2CoCu configurations as a function of Pt-Co/Cu SRO
αPt� Co=Cuð Þ and Co-Cu SRO αCo�Cu. A higher SRO value represents a higher dis-
ordered degree. Triangles and circles represent data points computed by DFT (1
configurations per data point) and ML (average of 20 configurations for each data

point) prediction model, respectively. c Ordering energy Eordering for six soluble
Pt2CoM combinations. Dashed line represents Eordering of PtCo for reference. Red
part represents the extra stabilization energy from the Co/Cu disordering. d ORR
activity volcano plot of four ordered Pt2CoM, ordered PtCo and five
disordered PtCo.
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comparable ORR activity with fully ordered PtCo, and thus were finally
selected for the experimental validation. There has beenprior research
reporting PtCoNi and PtCoCu ternary system as excellent ORR catalyst
due to their near-optimum strain levels for higher ORR activity33,34,
aligning well with our computational screening results. More impor-
tantly, our study provides a innovative design perspective that the
introduction of Cu/Ni leverages the thermodynamic driving force for
the disordered-to-order transition, resulting in a more favorable tra-
deoff between specfic activity (SA) and electrochemically active sur-
face area (ECSA).

Synthesis and characterizations of Pt2CoCu/Pt2CoNi catalysts
The Pt2CoCu and Pt2CoNi catalysts were synthesized by the wet-
impregnation ofH2PtCl6 and corresponding non-noblemetal salts on a
carbon support Black Pearl 2000, followed by a high-temperature
annealing at 1000 °C. We first performed the powder X-ray diffraction
(XRD) characterizations to verify the L10-type intermetallic structures
by comparing with the standard Powder Diffraction File cards of cor-
responding IMC (Fig. 3a, b). Different from a face-centered cubic
structure in disordered PtCo alloy, two characteristic super-lattice
peaks at around 24° and 33° were found in the Pt2CoCu and Pt2CoNi
samples, indicating the formation of the L10 structures. After Rietveld
refinement of the XRDpatterns, we could obtain the fitting parameters
for each diffraction peak (Supplementary Fig. S11 and Supplementary
Table S5). In addition, the (111) peaks showed obvious broadening and
no phase separation, suggesting a uniform IMC phase and small crys-
tallite size. The average crystallite sizes calculated by the Debye-
Scherer equation basedon the full-width at half-maximumof (111) peak
were 2.94 nm and 3.19 nm for Pt2CoCu and Pt2CoNi, respectively.

High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) revealed that Pt2CoCu/Pt2CoNi IMC
nanoparticles were homogeneously distributed over the whole carbon
matrix and no obvious aggregates or overgrowth of nanoparticles
were found in both low- and high-resolution view fields (Fig. 3c, d).
Statistical analyses suggested a narrow particle size distribution of
Pt2CoCu/Pt2CoNi catalysts in the range of 1.5–4 nm, with average size

of 2.62 and 2.73 nm, respectively, which were close to the values esti-
mated by XRD. Further, energy dispersive spectroscopy (EDS) ele-
mental mapping with a large visual field indicated the homogeneous
distributions of Pt and other non-noble metal elements in individual
nanoparticles without element segregation (Fig. 4a, b).

We then performed aberration-corrected HAADF-STEM with
atomic resolution to verify the ordered structure of the Pt2CoCu/
Pt2CoNi catalysts (Fig. 4c, d). Owing to the atomic number (Z)-contrast
differences between Pt and non-noblemetals in an ordered lattice, the
periodic regularity of brightness could be found along the specific
zone axis; the Pt atoms will appear brighter than other non-noble
metals with lower Z-contrast. Through their Z-contrast and atomic
radius after local amplification, we could observe an alternating bright
and dark stacking of Pt and non-noble metal columns. Our theoretical
predictions suggested that Co with Cu or Ni tends to exhibit random
site occupation. However, distinguishing the Co/Cu or Co/Ni position
in the alloy structure is challenging due to their similar atomic radius33.
Fast Fourier transform (FFT) patterns further confirmed the face-
centered tetragonal ordered structures of the Pt2CoCu/Pt2CoNi cata-
lysts (Fig. 4c, d).

Electrochemical Performance
We first evaluated the ORR activity of the catalysts by the rotating disk
electrode (RDE) technique. For comparison, we also prepared binary
PtCo catalysts by the identicalwet-impregnationmethod. Two types of
PtCo catalysts, including the high-ordered/large-sized one (PtCo*) and
the low-ordered/small-sized one (PtCo#), were obtained at high-
temperature and low-temperature annealing condition, respectively
(Fig. 1a). As expected, the high-ordered/large-sized PtCo catalyst
exhibited a higher intrinsic activity with SA of ~3.4mAcm–2 but amuch
lower ECSA of 15 m2gpt

−1 than that of the low-ordered/small-sized
catalyst (SA: 1.67mAcm–2; ECSA: 87 m2 gpt

−1) (Fig. 5a and Supplemen-
tary Table S6). The trade-off relation between SA and ECSA makes
the binary PtCo catalyst showing a limited mass activity (MA) of
lower than 2.0 A mgpt

−1 (Fig. 5b). In contrast, the high-ordered/small-
sized ternary Pt2CoCu/Pt2CoNi catalysts broke such trade-off

Fig. 3 | Synthesis of Pt2CoCu/Pt2CoNi IMC catalysts. XRD patterns of Pt2CoCu (a) and Pt2CoNi (b) catalysts. HAADF-STEM images and corresponding particle size
distribution of Pt2CoCu (c) and Pt2CoNi (d) catalysts.
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relation, simultaneously showing a high SA (~3.5mA cm−2) and ECSA
(~90m2 gpt

−1), thus leading to a large MA of ~3.0A mgPt
−1. Moreover,

after 30K accelerated durability test (ADT) by cycling the potential
between 0.6 and 0.95 V in RDE, the Pt2CoCu/Pt2CoNi catalysts showed
a drop of 17.1% and 19.2% in theMA, alongwith a decrease of 10.2% and
22.2% in the SA (Fig. 5c, d and Supplementary Fig. S12). It has been well
known that an IMCs@Pt core-shell structure would be formed in acid
electrolytes and the Pt-shell could stabilize M against leaching to
guarantee the durability under harsh voltage conditions30,35.

We further evaluated the PEMFC performance of the Pt2CoCu
IMCs catalysts under practical H2-air conditions. Prior to PEMFCs tests,
the pristine IMCs catalysts were subjected to acid leaching and low-
temperature H2-annealing to form active and stable Pt-IMCs@Pt core-
shell structures8,11. EDS elemental mapping indicated the successful
formation of core-shell structure with a Pt-rich shell (Fig. 6a). Atomic
resolution HAADF-STEM and corresponding intensity profiles clearly
verified an L10 intermetallic core surrounded by a Pt shell with three
atomic layers (Fig. 6b). Low Pt loadings of 0.056mgpt cm–2 and
0.020mgPt cm

–2 were adopted for the Pt2CoCu IMCs cathode and
the commercial Pt/C anode, respectively. For comparison, commercial
Pt/C was also tested as the cathode catalyst with a loading of
0.100mgpt cm

–2. The low-Pt-loading Pt2CoCu IMCs cathodes displayed
high peak power densities of ~1.1W cm–2 at 150 kPaabs/80 °C, which
were comparable to that of Pt/C cathode at a nearly double Pt loading
(Fig. 6c). The enhanced power performance of the Pt2CoCu IMC cat-
alyst in high-current-density region (>1.5 A cm–2) was attributed to the
advantage of high ECSA in minimizing mass-transport losses36.

We finally evaluated the durability of the Pt2CoCu and Pt/C cath-
odes from two metrics, voltage loss at 0.8 A cm–2 and MA. After a

(001)
(010)

[100]

d

b

[0-10](100)

(001)
c

a

Fig. 4 | Structure characterization. EDS elemental mappings of the Pt2CoCu (a)
and Pt2CoNi (b) catalysts, scale bar 10 nm. Atomic-resolution HAADF-STEM images
and FFT patterns of Pt2CoCu (c) and Pt2CoNi (d) catalysts. Yellow balls represent Pt
and silver balls represent CoCu (Ni). Scale bar: 1 nm.

Fig. 5 | RDE performance. a, b Comparison of ECSA, SA, andMA of PtCo*, PtCo#, Pt2CoCu, and Pt2CoNi catalysts. ORR polarization curves andMA/SA loss of Pt2CoCu (c)
and Pt2CoNi (d) catalysts after 30 K ADT.
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standard ADT protocol of a square wave potential cycling between
0.60 and 0.95 V (3-second hold at each voltage) suggested by US DOE
(Supplementary Fig. S13), the current/power polarization plots at the
beginning of test (BOT) and at the end of test (EOT) were obtained
(Fig. 6c). The voltage loss for the Pt2CoCu cathode at 0.8A cm−2 was
17mV, which was much lower than the Pt/C cathode (~137mV loss).
Considering the instability of current in the high voltage region, DOE
recommends multi-point test at 0.9 ViR-free for 15min under a low
cathode stoichiometry of 9.5, and the MAwas calculated based on the
average current density at the last 1min (Fig. 6d). The Pt2CoCu IMC
catalyst retained 74.7% of its BOT-MA, whichwasmuch higher than Pt/
C (30%MA retention) and exceeded the DOE target (less than 40% loss
with an BOT MA of 0.44 A mgPt

–1).
In summary, aided by the machine-learning-accelerated compu-

tational screening, we established an experiment-theory-collaborative
design strategy of small-sized and highly ordered IMCcatalysts for fuel
cells. Thanks to the well-defined ordered structures of IMC in atomic
level, a better concordance between experiment andmachine learning
simulation can be guaranteed, which makes it feasible to quickly dis-
cover potential IMC combinations with high thermodynamic driving
force for the disorder-to order transition from the enormous design
space. Computationally, we found that alloying Cu/Ni promoted the
formation of IMC due to the addtional stabilization energy introduced

by the Co-Cu/Co-Ni disordering. Experimental results demonstrated
that the ternary Pt2CoCu/Pt2CoNi IMC catalysts could achieve the
compatibility of small size (thus high ECSA) and high ordering degree
(thus high SA), and finally achieved much improved mass-normalized
performance in practical fuel cells.

Methods
DFT Calculation
All DFT calculations were performed using Vienna Ab Initio simulation
packages (VASP)37. The interaction between the core and valence
electrons was treated using projected-augmented wave (PAW)
method38. A kinetic energy cutoff of 400 eV was used for the plane-
wave basis set. The exchange-correlation energy was evaluated by the
Perdew-Burke-Ernzerhof (PBE) functional at the generalized gradient
approximation (GGA) level39. The energy tolerance of 5× 10�5 eV was
used in electronic structure calculations, and the geometry optimiza-
tionwasperformeduntil all forcewas less than0.03 eVÅ−1. The unit cell
of PtCo in P4/mmm space group was downloaded from Material
Project40. To construct the unit cell for Pt2CoM, (M is the third element
doped to PtCo), the unit cell of PtCowas repeated twice and a Co atom
was replaced by an M atom. The lattice constants of all Pt2CoM unit
cells were re-optimized by DFT. To analyze the solubility and disorder-
to-order transition energy of Pt2CoM, a (3×3×3) supercell was
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constructed based on the DFT optimized Pt2CoM unit cell. Atomic
arrangement of initial Pt2CoM supercell was shuffled to generate
configurations with different ordering degrees. A (3×3×3)
Monkhorst-Pack k-point grid was utilized to sample the Brillouin zone
for the supercell model41. To analyze the activity of Pt2CoM, the close-
packed Pt2CoM (111) surfaces were simulated by a five-layer (4 × 4) slab
model, inwhich twoPt2CoMbottom layerswerefixed and three Pt skin
layers added on them were allowed to relax. Activity of ordered PtCo
were evaluated using three Pt-skin layers with two ordered PtCo-core
layers. The arrangement of Pt and Co in the ordered PtCo-core were
shuffled to generate disordered PtCo slab models. A vacuum layer of
7.5 Å was added above and below the slab to avoid periodic interac-
tions. A ð4×4× 1) Monkhorst-Pack k-point grid was employed to
sample the Brillouin zone for slab model. The spin polarization was
included in the calculation of slab model for Fe, Co and Ni. The
adsorption energy of O and OH were calculated by the following
Equations:

ΔEO = EO* � E* � ðEH2O
� EH2

Þ ð1Þ

ΔEOH = EOH* � E* � ðEH2O
� 1=2EH2

Þ ð2Þ

where the E*, EO* and EOH* are DFT calculated energies for clean sur-
face, surface with O and OH, respectively. The EH2O

and EH2
are ener-

gies of H2O and H2 are −6.76 eV and −14.22 eV respectively, which are
calculated by DFT using a H2O and H2 molecule placed on a
10Å× 10 Å× 10Å cubic cell model. The adsorption Gibbs free energy
was defined by:

ΔG=ΔE+ΔEwater +ΔZPE� TΔS ð3Þ

Where ΔEwater is the solvation correction, ΔZPE is the zero point
correction and TΔS is the entropic correction, in this work we used
correction values from the reference32.

Short Range Order. The Warren-Cowley short range order is
defined as Eq. (4)42:

αX�Y = 1� PXjY

CX

ð4Þ

where X and Y denote two kinds of alloy elements, cX is the ratio of
element X,PXjY is the probability of findingX in the neighbor shell of Y.
At a fixed cX, a negativeα

XjY value suggests the preference for forming
X-Ybond, which is characteristic of an ordered alloy; on the contrary, a
positiveαX�Y valuedemonstrates the segregationofX andY; andαX�Y

value close to 0 represents a random alloy configuration. Here the
configurations with the lowest short range order value
αPt�ðCo=MÞ =�1=3 are defined as order alloy, and configurations with
αPt�ðCo=MÞ =0 are regarded as random alloy.

Solubility Test
The initial 16 candidate elements include alkali metal Na; alkaline-earth
metal Mg; 3d transition metals Sc, Ti, Mn, Fe, Ni, Cu; P-block elements
Ga, Ge, In, Sn, Sb, Te, Pb, Bi. Given that the lowest and highest values of
αPt�ðCo=MÞ for the Pt2CoM supercell model are -1/3 and 2/3 respectively,
as depicted in Supplementary Fig. S6. 22 Pt2CoM structures with dif-
ferent ordering degrees were generated (four structures for each
αPt�ðCo=MÞ = −1/6, 0, 1/6, 2/6 and 3/6, one structure forαPt�ðCo=MÞ = −2/6,
4/6). Mente Carlo algorithm was applied to generate structures with
the given αPt�ðCo=MÞ value by manipulating the arrangement of Pt, Co
and M in Pt2CoM supercell model. Geometry optimizations were then
conducted by DFT on these structures. Root mean square deviation
(RMSD) was used to quantify the structural deformation during the

geometry optimizations, RMSD is defined as:

RMSD=
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i= 1
X0
i � Xi

� �2
r

ð5Þ

where n is the total number of atoms in the supercell model, X0
i and Xi

are the positions of i-th atom before and after geometry optimization.

Machine Learning
Machine learning (ML)modelwas trained to replaceDFT calculation to
predict the energy for given alloy configuration. Extracting features
from alloy structure as the input of ML model based on domain
knowledge is of great importance for rationalizing the prediction
model. Given that the stability of Pt2CoM exhibits a strong correlation
with the ordering degree (Supplementary Fig. S8), 15-dimensional
numerical fingerprints reflecting the ordering degree of alloy config-
urations were designed and applied as the input of the MLmodel. The
features consist of two parts. The Warren-Cowley short range order
defined by three kinds of diatomic pairs (Pt-Co, Pt-M and Co-M) in
three neighboring shells were used, which constituted the first nine
dimensions in the feature. In addition, numbers of different diatomic
bond pairs (Pt-Co, Pt-M, Co-M, Pt-Pt, Co-Co, M-M) were the other six
dimensions for the feature. To avoid unbalanced weighting due to the
different value ranges of each dimension in the feature, the original
features were standardized to have a mean of 0 and a standard
deviation of 1. Furthermore, to remove the redundant features and
reduce calculation demands, principal component analysis (PCA) was
carried out and only the principal components with a proportion of
variance 99% were reserved. The DFT calculated relative energy of
Pt2CoM (energy reference to ordered Pt2CoM supercell model) was
used as the output for the ML model.

TheGaussian Process Regression (GPR)model was selected as the
machine leaning model by taking advantage of its ability for uncer-
taintymeasurement43. Gaussian process regression is a non-parametric
Bayesian inference regression technique. Unlike traditional regression
method, Gaussian Process Regression gives a posterior distribution
rather than exact value for the prediction target. Gaussian Process can
be regarded as an infinite Gaussian distribution, and each final random
variables set of Gaussian Process obeys a multivariate normal dis-
tribution, which can be denoted by:

f Xð Þ∼NðμðX Þ,KðX ÞÞ ð6Þ

where X = ðx1,x2, . . . ,xnÞ is a set of random variables, f ðXÞ is the target
properties, μðX Þ is mean of target properties, KðXÞ is the covariance
matrix. For the new datapoint x* needed to be predicted, the union set
of X and x* also obey following multivariate normal distribution:

f ðXÞ
f ðx*Þ

� �

∼N
μðX Þ
μðx*Þ

� �

,
KðX Þ K X ,x*

� �T

KðX ,x*Þ Kðx*,x*Þ

" # !

ð7Þ

The posterior distribution of f ðx*Þ can be calculated by maximiz-
ing the likelihood function, and the results are expreseed as following:

f x*� �

∼Nðμðx*Þ,σðx*ÞÞ ð8Þ

μ x*� �

=K X ,x*
� �T

K Xð Þ�1f ðX Þ ð9Þ

σ x*� �

=K x*,x*� �� K X ,x*
� �T

K Xð Þ�1KðX ,x*Þ ð10Þ

The scikit-learn package was used for constructing GPR model44.
Each term in the covariance matrix indicate the covariance between
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two elements, which was defined by the radial-basis function (RBF):

k x,x0ð Þ=C2 exp � x � x0ð Þ2
2l2

 !

ð11Þ

where C and l are scale factor and length factor, respectively. During
the ML model training process, values of C and l were optimizated to
maximize the log-marginal-likelihood. The values range of C2 and l2 is
limited to between 10−5 and 103, and 50 independent optimizations
were conducted to avoid local optimums.

Active Learning
Theworkflowof active learning is shown in Supplementary Fig. S2. The
uncertainty given by trained GPR model was used as the criterion to
select samples in next generation. Due to the difficulty of exhausting
the alloy configuration space, Monte Carlo simulation was performed
to search the Pt2CoM configuration with the high prediction uncer-
tainty. Starting from a randomly initialized structure, Monte Carlo
optimization controls the evolution of the structure along the high
uncertainty direction through changing the atomic arrangement.
When the uncertainty of the new structure is higher than that of the
previous structure, the new structure was accepted; when the uncer-
tainty of the new structure is lower than that of the previous structure,
the new structure was accepted with a certain probability. In addition,
to avoid getting trapped in local optimums, 20 simulations were per-
formed and the first 10 structures with the highest uncertainty were
extracted. The newly searched 10 structures were labeled by DFT and
added into the pre-existing dataset. Then the ML model was retrained
using the extended database. Such an active learning iteration was
repeated 7 times. The searched Pt2CoCu configurations representing
by their t-SNE in the active learning process was shown in Supple-
mentary Fig. S3. The prediction accuracy of the ML model was mea-
sured using mean absolute error (MAE) and coefficient of
determination (R2),where the80%datawas adoptedas the training set
and the remaining 20% data was the test set. The evolution of pre-
diction accuracy in the active learning process are shown in Supple-
mentary Figs. S4–5. The completed MLmodel was used to predict the
energies of 300 ordered alloy structures and 300 random alloy
structures.

Materials and Chemicals
Carbon black (Black Pearls 2000, BP2000) was produced by America
Cabot Corporation. Commercial Pt/C (TEC10E20E) was purchased
from TANAKA. All others chemicals were commercially available from
Sinopharm Chemical Reagent Co. Ltd., China, including chloroplatinic
acid (H2PtCl6·6H2O), cobalt chloride hexahydrate (CoCl2·6H2O), cop-
per chloride dehydrate (CuCl2·2H2O), cickel chloride hexahydrate
(NiCl2·6H2O), ethanol, and isopropanol. All the chemicals were used as
receivedwithout further purification. DI water (18.2MΩ/cm) used in all
experiments was prepared by passing through an ultra-pure purifica-
tion system.

Catalysts preparation
The Pt2CoCu and Pt2CoNi IMC catalysts were prepared with the
BP2000 carbon black support by a conventional impregnation
method that involved the wetness impregnation of metal salt and
subsequent thermal reduction in 5% H2/Ar. Taking the synthesis of
Pt2CoCu for an example, 50mg BP2000, 20mg H2PtCl6·6H2O, 6.4mg
CoCl2·6H2O, and 3.9mgCuCl2·2H2Owasfirstmixed in a 100mL round-
bottom flask containing 40mL DI water. After stirring overnight, the
mixture was subjected to ultrasonic treatment for 2 h before drying by
using a rotary evaporator. Finally, the dried powder was transferred to
a tube furnace and thermally reduced at 1000 °C under flowing 5%H2/
Ar for 2 h.

RDE Measurements
The Pt2CoCu (Ni) IMC catalysts was assessed for their ORR activity
using the RDE techniques using a CHI Electrochemical Station (Model
760E) in a three-electrode cell. The catalyst ink, comprising 4mg of
catalyst and 40 µL of Nafion in 2mL of isopropanol, was prepared
through sonication. Then, the ink was applied via drop-coating onto
the working electrode, a 5.0mmdiameter glassy carbon disk, and left
to air-dry at room temperature. Reference and counter electrodes
were provided by saturated Hg/HgSO4 and a platinum plate,
respectively. All potentials in this study were referenced to the
reversible hydrogen electrode (RHE) for each test. The catalyst
underwent activation using cyclic voltammetry (scan rates of
250mV s–1 and potential ranges of 0.05–1.05 V vs. RHE) until
achieving a stable curve. Linear sweep voltammetry (LSV) measure-
ments were then conducted in O2-saturated 0.1M HClO4 solution,
sweeping the potential from 0.05 to 1.05 V at a rate of 10mV/s
(1600 rpm). Mass activity calculations involved capacitance-
correction and IR-correction. For accelerated durability tests
(ADTs), the potential was cycled between 0.6 and 0.95 V at a rate of
100mV s–1 at room temperature under N2-saturated 0.1M HClO4

solution. The electrochemical active surface area (ECSA) was deter-
mined through a CO stripping test. CO stripping test involved bub-
bling CO into 0.1M HClO4 electrolyte, holding potential at 0.05 V for
10min, followed by bubbling N2 into the electrolyte for 30min.
Subsequently, a cyclic voltammetry curve was recorded by scanning
from 0.05 V to 1.05 V at a rate of 50mV s–1.

PEMFCs Tests
The catalystsfirst underwent acid treatment and subsequent annealing
to create Pt-IMCs@Pt core-shell structures8, which aimed to mitigate
thepoison effect of leachedmetal cation during the fuel cell operation.
A uniform ink was prepared by dispersing catalysts in a solvent blend
of n-propanol and water (1:1), incorporating Aquivion D72-25BS iono-
mer at an ionomer/carbon ratio of 0.8. The ink concentration was
maintained at 3mgcat. mL–1. The catalyst-coated-membrane was cre-
ated by applying an ultrasonic spray (ExactaCoat FC, Sono-Tek Cor-
poration) on a GORE Nafion membrane (12 µm, 5 cm2). A gas diffusion
layer (GDL) was used Freudenberg (H24CX483, 235μm) with a
microporous layer. The membrane electrode assembly (MEA), incor-
porating two GDLs, two gaskets, and the prepared CCM, was assem-
bled with a compression of 34%. The seven channel serpentine flow
field was applied for the all single-cell tests (designed by Hubert Gas-
teiger and co-workers45), where the pressure drop between the inlet
and outlet of the flow filed was less than 10 kPa.

The MEA was made with the Pt2CoCu (0.056mgptcm
–2) or

benchmark Pt/C cathode (TEC10E20E, TANAKA, 0.1mgptcm
–2) and the

commercial Pt/C anode with a Pt loading 0.02mgptcm
–2. Initially,

calibration curves were established to quantify the correlation
between the number of spray cycles and catalyst loading. This
approach allows the attainment of a specific Pt loadingby adjusting the
number of spraying cycles. The reproducibility of the instrument
ensures the accuracy of each spraying.

The mass activity (MA) of MEA was assessed at 0.9 ViR-correct,
80 °C, 100% relative humidity, 150 kPaabs, outlet H2–O2 at 0.05/
0.05 Lmin–1

flow rate (equivalent to the stoichiometry ratio of 2/9.5). A
hold time of 15min was implemented, and themass activity calculated
based on the average current during the last 1min. The corresponding
current was corrected for H2 crossover. The H2-air performance of
single cell was conducted at 80 °C, 100% relative humidity, 150 kPaabs,
outletH2–air at 0.5/2 Lmin–1

flow rate. For comparison,MEAmadewith
Pt/C cathodes with a loading of 0.1mgpt cm

–2 were also measured.
According to the US DOE ADT protocol for PGM-based catalysts on
carbon-based supports, the accelerated durability test (ADT) for the
MEA involved applying a square wave voltage from 0.6 to 0.95 V,
lasting 3 seconds at each voltage level. Each test was run up to 30,000

Article https://doi.org/10.1038/s41467-023-44674-1

Nature Communications |          (2024) 15:415 8



cycles at 80 °C, 100% RH, with H2/N2 flow 200/75 sccm for the anode
and cathode, respectively.

Characterization
XRD were performanced on a Japan Rigaku DMax-γA rotation anode
x-ray diffractometer equipped with graphite monochromatized Cu-K
radiation. HAADF-STEM images were produced on FEI Talos F200X
operated at 200 kV. Atomic resolution HAADF-STEM images were
produced on probe aberration-corrected JEM ARM200F (S) TEM
operated at 200 kV. EDS mapping were used FEI Talos F200X equip-
ped with Super X-EDS system.

Data availability
All source data for DFTmodeling andmachine learning that were used
in this study are available from the GitHub repository: https://github.
com/ZhangLabTHU/PtCoM. Source data are provided with this paper.
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