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Helical-caging enables single-emitted large
asymmetric full-color circularly polarized
luminescence

Yajie Zhou1, Yaxin Wang1, Yonghui Song2,3, Shanshan Zhao1, Mingjiang Zhang1,
Guangen Li1, Qi Guo1, Zhi Tong1, Zeyi Li1, Shan Jin4,5,6, Hong-Bin Yao 2,3,
Manzhou Zhu 4,5,6 & Taotao Zhuang 1,2

Colorful circularly polarized luminescence materials are desired for 3D dis-
plays, information security and asymmetric synthesis, in which single-emitted
materials are ideal owing to self-absorption avoidance, evenly entire-visible-
spectrum-covered photon emission and facile device fabrication. However,
restricted by the synthesis of chiral broad-luminescent emitters, the realiza-
tion and application of high-performing single-emitted full-color circularly
polarized luminescence is in its infancy. Here, we disclose a single-emitted full-
color circularly polarized luminescence system (spiral full-color emission
generator), composed of whole-vis-spectrum emissive quantum dots and
chiral liquid crystals. The system achieves a maximum luminescence dis-
symmetry factor of 0.8 and remains an order of 10−1 in visible region by tuning
its photonic bandgap. We then expand it to a series of desired customized-
color circularly polarized luminescence, build chiral devices and further
demonstrate the working scenario in the photoinduced enantioselective
polymerization. This work contributes to the design and synthesis of efficient
chiroptical materials, device fabrication and photoinduced asymmetric
synthesis.

Circularly polarized luminescence (CPL) has aroused universal con-
cern these years owing to its versatile utilization and application
potential in anti-counterfeiting1–3, 3D optical displays4–6, photoelec-
tronic devices7–9, disease detection10, asymmetric synthetic
photochemistry11 and the promotion of plant growth12. However, most
CPL employed in practical applications is produced by lasers, polar-
izers and quarter-wave plates—not conducive to theminiaturization of
optical systemsand the construction ofwearable devices. Additionally,
for the small luminescence dissymmetry factor (glum), practical appli-
cations based on CPL-active materials have been slow to get off the

ground for a long time, so searching for high quality materials with
large glum values has always been the key towards practical applica-
tions in this field. Among all CPL, single-emitted full-color circularly
polarized luminescence (SF-CPL)mustbe taken careof since it can be a
considerable candidate for cryptography13,14, affecting the biomass
production of plants12 and the accurate production of customized-
color CPL15.

One single emitter with broad-vis-spectrum luminescence is of
particular importance all along since it allows to avoid energy transfer
among mixed components and simplify device fabrication16–18, but to
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date, materials with single-emitted full-color CPL are still absent.
Intensive efforts have produced chiral organic molecules19–37,
MOFs38,39, polymers40–46 and inorganic nanostructures47–49 with multi-
color emission. Nonetheless, these full-color-CPL-active materials still
cannot satisfy accurate practical requirements because of the com-
plicated and imprecise regulation of multi-emitters, so it is pressing
and of particular importance to develop SF-CPL-active materials with
large glum values, simplified adjustment and customized potential.

To achieve high-performing SF-CPL, we took a view, combined
high-quality inorganic white emitters with a large asymmetric chiral
host5,24,25,50–52. In this work, we describe a SF-CPL system (spiral full-
color emission generator, SFEG), offering the visible-spectrum-
regulated CPL with glum values up to 0.8. Since the shelling process
can adjust the luminescent properties and improve the photo-
luminescence quantum yield (PLQY) of quantum dots (QDs)17,53, we
chose the core-shell QDs as the highly-efficient emitter. The prepared
white luminescent Cu-Ga-S core was wrapped in double ZnS shells to
enhance the PLQY to 66% and tune the photon emission to the whole
visible range. We then controlled the photonic bandgap of the chiral
nematic liquid crystal to achieve full-colorCPL and further extended to
white CPL based on the liquid crystal polymer. The continuous wide-
spectrum-emission of the SFEG also made it possible to obtain custo-
mized CPL for device fabrication and further practice. Here, we also
successfully employed the highly-efficient SFEG to co-induce the
enantioselective polymerization of 10,12-tricosadiynoic acid, provid-
ing more practicalities for the application of CPL in photon-driven
asymmetric synthesis.

Results and discussion
Spiral full-color emission generator design
The generation of SF-CPL depends largely on the precise synthesis of
the white-luminescent emitter, the selection of CPL-amplifying pho-
tonic crystal and the ingenious combination of these two. Here, we
design a long-range ordered cage-like assembly strategy: the white
quantum dots (WQDs) are wrapped in the chiral nematic liquid crystal

similar to a night pearl in a spiral cage—converting natural white light
to large asymmetric full-color CPL.

It is of high advantage to choose a single QD with broad-vis-range
emission instead of mixed ones to achieve white luminescence
because of simplified construction of photoelectric device as well as
stable emission in practical applications. Achieving complete visible
spectrum emission from one single kind of QD can be proceeded by
doping impurity ions such as Mn2+ or Cu+ into the QD host54,55. Here,
with the developed multiple-step injection method17, we synthesized
the WQDs with a high PLQY of up to 66%. Figure 1 illustrates the
construction of the SFEG: the Cu-dopedGa-S core is first prepared by a
heat-up approach, and the corresponding multiple ZnS shell coun-
terparts arewrapped over the Cu-Ga-S core by a two-step hot injection
method (Supplementary Fig. 1). The synthesized Cu-Ga-S/ZnS core-
shell QDs show broad-vis-region white luminescence. Then, the
nematic liquid crystal 5CB is selected as a suitable chiral host for its
macroscopically favorable compatibility, room-temperature stability,
regular fingerprint textures and periodic spiral arrangement induced
by chiral dopants (e.g., R/S811, offering large helical twisting power).
When combined to form the CPL-amplifying soft photonic crystal, the
system effectively boosts the CPL signals throughout. Meanwhile,
thanks to the broad luminescence range of the emitter, the chiral
nematic liquid crystal’s photonic bandgap could be tuned in the vis-
spectrum without the change of glum values’ order of magnitude. With
the ordered integration of the high-quality WQDs and the appropriate
chiral nematic liquid crystal, we achieve the considerable SFEG system.

Characterizations of the spiral full-color emission generator
We first used transmission electronmicroscopy (TEM) to examine the
morphology of the resultant WQDs (Fig. 2a, Supplementary Fig. 2) and
further confirmed the crystallization of the QDs as well as observing
their size is concentrated at ca. 3 nm by high resolution transmission
electron microscopy (HRTEM) (Fig. 2b), which indicates the potential
to realize high-quality photoluminescence (PL).We performed energy-
dispersive X-ray spectroscopy (EDS)mapping analysis (Supplementary
Fig. 3) to evidence the successful doping of Cu+ in theWQDs. The X-ray
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Fig. 1 | Schematic illustration of the fabrication of the spiral full-color emission
generator (SFEG). a A multiple-step injection method for the synthesis of core-
shell Cu-Ga-S/ZnS white quantum dots (WQDs). b Components of the SFEG.

c Schematic drawing of the SFEG formed by a long-range ordered cage-like
assembly strategy.
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diffraction (XRD) pattern showed the archetypal tetragonal chalco-
pyrite structure of the WQDs (Supplementary Fig. 4).

We then adopt various characterization instruments to study the
photochemical properties of the SFEG. The absorbance and PL spectra
of the WQDs are shown in Fig. 2c, demonstrating that the intense
absorption band is located in the ultraviolet (UV) region, and the
emission covers the visible range from blue-purple to red under UV
irradiation. Such broad spectrum enables the WQDs to emit bright
white luminescence (Fig. 2d), with the corresponding CIE color coor-
dinates measured as (0.34, 0.39) (Fig. 2e). We thereafter doped these
synthesized WQDs (i.e., single-broad-luminescent emitter) into the

designed chiral nematic liquid crystal host (5CB-R/S811) with opti-
mized reaction conditions (details in Supplementary methods). We
tuned the ratio of chiral dopants and 5CB in the hybrid system—

obtaining different pitches and distinctive structural colors (Supple-
mentary Figs. 5–7)—to achieve full-color CPL (Supplementary
Figs. 8–11). All fabricated SFEG (for example, doped with 29wt%, 26wt
% and 23wt% R/S811) showed typical fingerprint textures (Fig. 2f),
proving the formation of chiral structures. As expected, obvious
photonic bandgaps (Fig. 2g) and strong symmetric CPL signals were
detected (Fig. 2h, the density of states oscillations in the edge of the
photonic bandgap leading to the weak CPL reverse signals56) with the
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Fig. 2 | Characterizations of the Cu-Ga-S/ZnS white quantum dots (WQDs) and
spiral full-color emission generator (SFEG). a High-angle annular dark field
scanning transmission electron microscopy (HAADF-STEM) image of the WQDs.
Scale bar = 50nm. b Representative high resolution transmission electron micro-
scopy (HRTEM) image of the WQDs (scale bar = 5 nm) with inset corresponding to
the selected area electron diffraction (SAED) pattern (scale bar = 5 1/nm).
cAbsorbance (UV-vis) andphotoluminescence (PL) spectraof theWQDs in toluene.

d Fluorescent image of the WQDs in a quartz cell with toluene as the solvent. The
bottom area of quartz cuvette is 1 cm2. e The corresponding CIE color coordinates
of the WQDs. f Polarizing optical microscopy (POM) images of the representative
SFEG. Scale bar = 100μm. g-i Transmission spectra (g), circularly polarized lumi-
nescence (CPL) spectra (h) and the corresponding luminescence dissymmetry
factor (glum) values (i) of the representative SFEG. Source data are provided as a
Source Data file.
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larly polarized luminescence (CPL) and CPL device fabrication. a Schematic
drawing of the customized-color CPL systems by covering customized-color nar-
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coated CPLdevices (f). g Schematic of the electroluminescent CPL device.h Energy
band diagram of a solution-processed, bottom-emitting multilayered white QLED.
Indium-Tin Oxide (ITO), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS), polyvinylcarbazole (PVK), white quantum dots (CGS/ZnS). i Bright
image of the electroluminescent CPL device. Scale bar = 5mm.

Article https://doi.org/10.1038/s41467-023-44643-8

Nature Communications |          (2024) 15:251 4



glum value up to 0.8 (Fig. 2i). We also extended to white CPL with the
help of the broad-photonic-bandgap liquid crystal polymer (Supple-
mentary Figs. 12, 13).

Visualized customized-color circularly polarized luminescence
and device construction
Most full-color CPL systems were realized by mixing monochromatic
emitters in certain proportions23,27,28,32–34,37,39,49,57; unfortunately, it is
particularly complicated to obtain the required CPL with a specific
wavelength while maintaining color stability, and such a strategy
increased the complexity of the device construction—not friendly for
practical applications. The SFEG we elaborated avoids these issues
but shows full-color CPL signals under the veil of bright white
emission. We sought, therefore, to cover our SFEG using different
narrow bandpass filters (Fig. 3a) that would enable to obtain visua-
lized CPLwith accurate emission in a facile way and ultimately realize
coated CPL device construction. As a result, various customized-
color emissions with satisfying full-width at half-maximum were
produced, as exhibited in Fig. 3b. Meanwhile, we achieve strong
mirror-image CPL signals and large glum values with corresponding
emissions (Fig. 3c, Supplementary Fig. 14), which provides a method
to form desired CPL for photoelectronic and next-generation 3D
display applications.

On account of the delightful customized-color CPL performance,
we built a prototype coated white-emission CPL device (Fig. 3d)—
coating the as-prepared SFEG on the surface of a commercially avail-
able UV-LED chip. The achieved coated CPL device showed bright
white emission (Fig. 3e). After combining different narrow bandpass
filters, we also constructed customized-color coated CPL devices with
accurate red (633 nm), green (540 nm) and blue (455 nm) emissions
(Fig. 3f), offering a thread to simplify the display fabrication. Further-
more, we built an electroluminescent CPL device on the basis of an

improved liquid crystal system17,58—adding the highly asymmetric
freestanding liquid crystalfilmbottomon themultilayeredwhiteQLED
(Fig. 3g–i, Supplementary Fig. 15), which makes a significant step
towards the construction of large asymmetric CPL devices.

Circularly polarized luminescence-induced enantioselective
polymerization of 10,12-tricosadiynoic acid
The successfully prepared SFEGwith strong CPL signals encourages us
to put it into real applications. We showed a photon-to-matter case,
that is, employing our SFEG to generate CPL and then illuminating the
light on the 10,12-tricosadiynoic acid (TDA) monomer films for grow-
ing the chiral poly 10,12-tricosadiynoic scid (PTDA) (Fig. 4a, Supple-
mentary Figs. 16, 17). After simultaneous explosion under left- or right-
handed CPL (Fig. 4b) and shortwave UV for 15 s, the virtually trans-
parent TDA films turned to blue and the UV-vis and CD analysis of
the samples showed obvious absorption and opposite Cotton effect,
proving the formation of the chiral PTDA (Fig. 4c, d). We also con-
ducted other comparative experiments to confirm the interaction
between CPL and TDA (Supplementary Figs. 18–24, Supplementary
Table 1), evidencing that the polymerization relies on shortwave UV
while the enantioselectivity depends on the handedness of CPL. The
photon-driven chirality transfer using the fabricated SFEG device,
enables to promote the understanding of chirality origin in nature and
the induction of optical, electrical and magnetic properties to chiral
intelligent materials10,59–62.

Last but not least, since smart CPL materials responsive to
external stimulation have attracted enormous attention for the
demand of information storage, encryption and anti-
counterfeiting1–3,63,64, the as-prepared SFEG could also be a potential
candidate for intelligent CPL anti-counterfeiting due to its sensitive
response to ambient temperature and UV light (Supplementary
Figs. 25, 26), further broadening the application fields of CPL.

Fig. 4 | Enantioselective polymerization of 10,12-tricosadiynoic acid (TDA)
using the spiral full-color emissiongenerator (SFEG). a Schematic drawing of the
enantioselective polymerization of TDA induced by circularly polarized lumines-
cence (CPL) from the SFEG (peak at 500 nm, |glum | = 0.6) assisted by shortwave UV
(UV lamp: 254 nm, 16W; the sample-light distance: 15 cm). b Two different

illuminant conditions: left- (blue) and right-handed (green) CPL. Absorbance (c)
and circular dichroism spectra (d) of the chiral poly 10,12-tricosadiynoic acid
(PTDA) induced by left- (solid curve) and right-handed (dashed curve) CPL. Source
data are provided as a Source Data file.
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In summary, we present a spiral full-color emission generator
(SFEG) with a largest glum value of 0.8. We then achieve customized-
color CPL, providing a simplified approach to obtain precise CPL, and
after that, the coated photoluminescent and electroluminescent CPL
devices are constructed to make preliminary attempts for practice.
Furthermore, the as-prepared SFEG is employed as a direct CPL
generator in the photoinduced enantioselective polymerization of
TDA—showing opposite CD signals under the illumination of left- or
right-handed CPL assisted with shortwave UV. This work paves the
way for the synthesis and practical application of CPL in photo-
induced asymmetric synthesis, device construction and even future
displays.

Methods
Synthesis of the white quantum dots
For the synthesis of the Cu-Ga-S cores17, 5.95mg Cu iodide, 112.6mg
Ga iodide, 0.25mL dodecanethiol (DDT) and 2.5mL oleylamine
(OLA)were put in a 50mL three-neck flask, and then heated to 100 °C
with degassing and N2-purging procedures back and forth three
times. After that, the mixture was heated to 175 °C, and the sulfur
stock solution (dissolving 32mg S powder in 1mL 1-octadecene at
180 °C) was injected into the mixture in the three-neck flask at 175 °C
for 5min. For the synthesis of the consecutive ZnS shells, two dif-
ferent ZnS stock solutions were prepared by dissolving 366mg Zn
acetate in a mixture of 1mL DDT, 1mL ODE and 2mL oleic acid and
2.53 g Zn stearate in a mixture of 2mL DDT and 4mL ODE, respec-
tively. The first ZnS stock solution was heated to 120 °C and injected
into the Cu-Ga-S core solution, and then the reaction was heated to
210 °C for 30min. Thereafter, the second ZnS stock solution was
injected and the reaction was kept at 245 °C for 60min. The
growth solution was cooled to 80 °C and diluted with toluene, and
then washed three more times using toluene/ethanol mixture by
centrifugation at 15,777 × g for 10min and finally redispersed in
toluene.

Fabrication of the spiral full-color emission generator
For the fabrication of the representative blue SFEG, 1mL the as-
preparedWQD toluene solution, 0.29 g R/S811 weremixedwell, stirred
for 10min and then ultrasonically dispersed for 15min in a 2mL vial.
Subsequently, 0.71 g nematic liquid crystal 5CBwasadded to the above
toluene solution, stirred for 10min and then ultrasonically dispersed
for 20min. Finally, the mixture in the vial was held at 60 °C for 36 h to
completely volatilize the solvent toluene.

Characterization
TEM and high-resolution TEM were performed on JEM-2100Plus
microscopes with acceleration voltages of 200 kV. The energy dis-
persive X-ray spectra (EDS) mapping and HAADF-STEMwere collected
on JEM-2100F and Talos F200X electron microscopes. The UV-vis-NIR
spectrophotometer (Shimadzu 3700 DUV) was used for transmission
and UV-vis spectra, Hitachi F-4700 fluorescence spectrophotometer
for fluorescence spectra, and Hamamatsu (C11347) absolute PLQY
spectrometer for photoluminescence quantum yield (365 nm, quartz
cuvette). CD and CPL spectra were measured on a JASCO J-1500 and
JASCO CPL-300 spectrophotometer, respectively. POM images were
recorded on the material microscope upright Mshot MP41. The pow-
der X-ray diffraction data (PXRD) was collected on Rigaku Smart Lab
Diffractometer in the range of 20° to 70° (2θ) with Cu Kα radiation
(wavelength: λ = 1.54178 Å).

Data availability
Thedataset supporting thefindings of this study hasbeen deposited in
the Zenodo repository65, and is available at https://doi.org/10.5281/
zenodo.10258367. Source data are provided with this paper.
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