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MarsGT: Multi-omics analysis for rare popu-
lation inference using single-cell graph
transformer

Xiaoying Wang1,2,3,6, Maoteng Duan1,6, Jingxian Li1, Anjun Ma 2,3, Gang Xin3,
Dong Xu4,5, Zihai Li 3, Bingqiang Liu 1,7 & Qin Ma 2,3,7

Rare cell populations are key in neoplastic progression and therapeutic
response, offering potential intervention targets. However, their computa-
tional identification and analysis often lag behind major cell types. To fill this
gap, we introduceMarsGT:Multi-omics Analysis for Rare population inference
using a Single-cell GraphTransformer. It identifies rare cell populations using a
probability-basedheterogeneous graph transformer on single-cellmulti-omics
data. MarsGT outperforms existing tools in identifying rare cells across 550
simulated and four real humandatasets. Inmouse retina data, it reveals unique
subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In
human lymph node data, MarsGT detects an intermediate B cell population
potentially acting as lymphoma precursors. In human melanoma data, it
identifies a rare MAIT-like population impacted by a high IFN-I response and
reveals the mechanism of immunotherapy. Hence, MarsGT offers biological
insights and suggests potential strategies for early detection and therapeutic
intervention of disease.

Multicellular organismsencompass a diverse range of specialized cells.
Identifying these cell types is pivotal in immunotherapy and clinical
scenarios, as it illuminates immune mechanisms, aids in devising tar-
geted therapies, and bolsters personalizedmedicine by unmasking the
unique cellular makeup of each patient1. However, difficulties surface
when encountering rare or transiently expressed cells2,3. Despite their
scarcity, rare cell populations stepup toplay crucial roles ina variety of
biological processes4,5. For example, antigen-specific memory T cells
are integral for sustained immunosurveillance and long-term immu-
nity, even in infection-free periods6. Conversely, invariant natural killer
T cells impact a variety of pathologies, including microbial infections
and autoimmune diseases, due to their robust immunoregulatory
functions7,8. Additionally, minimal residual disease, denoting the min-
ute cancer cell population post-treatment, acts as a significant early

indicator for potential tumor relapse, highlighting the necessity to
identify and comprehend these rare cell groups in disease dynamics
and therapeutic interventions9,10. A refined grasp of these rare cell
populations, culminating in a more detailed depiction, will illuminate
our understanding of tumor microenvironments and the intricate
mechanisms that steer the responses to immunotherapy.

The advent of single-cell RNA sequencing (scRNA-seq) has vastly
improved our ability to identify individual cell types, offering high-
resolution molecular profiles that illuminate cellular diversity and the
complex dynamics of gene expression within specific cells11,12. Most
existing rare cell identification tools, such as FIRE4, GapClust13,
TooManyCells14, GiniClust15, RaceID2, and SCMER1, confront several
challenges, such as high false positives when inferring rare popula-
tions, limited performance with complex samples like tumor biopsy
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single-cell data, inability to concurrently identify major and rare cell
types, and compromised accuracy with ultra-rare cell types (<1% of the
sample)14. These issues could stem from the limited representation of
rare cells, whichmay lead to inaccurate grouping with more prevalent
cell populations when solely relying on gene expression data. This
pursuit can be further accelerated by technological innovations like
single-cell ATAC sequencing (scATAC-seq)12.When synergistically used
with scRNA-seq, these methodologies provide partial regulatory data
concerning enhancer regions pivotal in preserving cell type identities1.
This invaluable information can be tapped into for the construction of
gene regulatory networks, thereby unraveling critical insights into the
nature and function of rare cell populations16.

Meanwhile, graph neural networks have recently demonstrated
profound proficiency in deciphering complex biological data, offering
robust backing for the precise analysis and study of scMulti-omics
data16–20. The implementation of the heterogeneous graph transformer
provides a unified framework that amalgamates diverse single-cell data
types, thereby facilitating a comprehensive understanding of cellular
heterogeneity16,21–23. This approach unveils the intricate interplay
among various cell types within complex cellular landscapes, enhan-
cing our comprehension of biological systems and bolstering oppor-
tunities for precision therapeutic interventions.

To fill the gap and validate the theory, we developed MarsGT
(Multi-omics analysis for rare population inference using single-cell
Graph Transformer), an end-to-end deep learning model for rare cell
population identification from scMulti-omics data. Graph neural net-
works have recently demonstrated profound proficiency in modeling
single-cell data24,25. Furthermore, our in-house tool, DeepMAPS16, has
shown the superior performance of heterogeneous graph transformer
(HGT), a powerful graphneural network architecture that candealwith
large-scale heterogeneous and dynamic graphs, in biological network
inference and cell clustering from the joint analysis of scMulti-omics
data. With such a foundation, MarsGT introduces a probability-based
HGT framework to analyze scMulti-omics data from a heterogeneous
graph, including cells, genes, and peaks, which can build peak-gene
regulatory relationships and utilize such relationships to characterize
rare cell populations.

MarsGT, as a probability-based subgraph-sampling method, can
highlight rare cell-related genes and peaks in a heterogeneous graph.
We conducted extensive simulations (n = 550) to thoroughly test the
accuracy and robustness of MarsGT in identifying rare cell popula-
tions. The performance of MarsGT, validated on the above simulation
data and four human peripheral blood mononuclear cell datasets,
surpassed existing methods in F1 score and Normalized Mutual
Information (NMI) metrics. To further showcase the application cap-
ability of MarsGT, we applied MarsGT on three scMulti-omics case
studies of (1) mouse retina, (2) human Fresh Frozen Lymph Node with
lymphocytic lymphoma, and (3) melanoma patients and healthy
donors. Our results demonstrate that MarsGT can distinguish unique
rare cell populations—a feat not achievable with other computational
tools—and provide strategies for early clinical detection and the
development of immunological blockers.

Results
Overview of the MarsGT framework
MarsGT incorporates scRNA-seq and scATAC-seq data, and con-
currently yields primary and rare cell populations along with their
respective regulatory relations (Fig. 1 and Supplementary Fig. 1). A
heterogeneous graph, comprising cells, genes, and enhancers, is
constructed from the initial scRNA-seq and scATAC-seq data, with the
presence of genes and peaks within cells represented as edges. We
posit that a gene ubiquitously expressed is less likely to be pivotal for
identifying rare cells compared to a gene that is expressed only within
a specific subpopulation. To discern rare cells, it is imperative to
identify genes or peaks that are highly expressed in a target cell but

exhibit low or no expression in other cells. We defined such genes and
peaks as rare-related genes and peaks. The genes/peaks within a cell
are segmented into high or low-selection regions according to the first
quartile of the expression/accessibility. For a given cell, the selection
probability of a gene/peak is determined by the proportion of gene/
peak expression/accessibility in the high selection region. Such rare-
related genes and peaks have a higher probability of being sampled to
the key features of rare cells in our multi-head attention graph trans-
former. The multi-head attention mechanism facilitates the update of
joint embeddings of cells, genes, and peaks on the sampled subgraphs.
The cell assignment probability matrix and peak-gene link assignment
probability matrix are predicted post-learning joint embedding. The
peak-gene relations and rare cell populations from the subgraphs are
concurrently determined and iteratively updated for model training.
Furthermore, to safeguard that features pertinent to major cells are
not diminished, regularization terms are incorporated into the training
process (Supplementary Fig. 2). The fully trained model is subse-
quently applied to the entire heterogeneous graph, and a transcription
factor (TF) database is incorporated to construct cell cluster enhancer
gene regulatory networks (eGRNs)12 (Methods).

MarsGT achieves superior performances in rare and major cell
population identification simultaneously on simulated and
real data
We assessed the performance of MarsGT in identifying both rare and
major cell populations across 550 simulated matched scRNA-seq and
scATAC-seq datasets. To evaluate the performance of the tools on
distinct datasets, we simulated 100 datasets using highly homo-
geneous cell line data. Each simulation dataset contained 500 cells and
2-3 cell types (Sim-CL 1, 2). To test these tools on heterogeneous data,
we simulated an additional 300 datasets using peripheral blood
mononuclear cell (PBMC) data. Each simulation dataset contained 500
cells and2-3 cell types (Sim-PBMC1, 2, 3, 4, 5, 6) (SupplementaryData 1,
Methods). Furthermore, to ensure that the simulation datasets more
closely resemble real data, we increased both the number of cell types
and the number of cells. We generated 150 simulated datasets using
peripheral blood mononuclear cells. Each simulation dataset con-
tained 5000 cells and 5-15 cell types (Sim-PBMC 7, 8, 9) (Methods).
Each simulated dataset included benchmark annotations from their
original manuscripts. MarsGT was first compared with CellCUIS26,
FIRE4, andGapClust15, which operate as classification-like tools, to infer
rare cells only. The performance was evaluated based on the F1 score,
Precision, and Recall metrics for rare cell identification performance.
To ensure fairness, each benchmarking tool was also tuned with dif-
ferent parameter combinations (Methods). We selected the parameter
combination for performance comparison based on the grid search
benchmarking of all the above tools. Specifically, if themean score of a
parameter combination achieves the highest across all datasets, we
consider it the default parameter (Methods).MarsGToutperformed all
classification-like tools across Sim-CL 1-2 and Sim-PBMC 1-5 simulated
datasets (totaling 350) in terms of F1 score, Precision, and Recall
(Supplementary Fig. 3, Supplementary Data 2, and Source Data 1).
MarsGT also outperformed all classification-like tools on the Sim-
PBMC 7-9 simulated datasets (totaling 150) (Fig. 2a, Supplementary
Fig. 4, and Source Data 2, 3). Furthermore, to verify MarsGT’s rate of
false positives, we compared it with other tools using the Sim-PBMC 6
dataset (totaling 50), which lacks rare cells (Methods). The results
confirmed that MarsGT does not force the identification of rare cell
populations (Supplementary Fig. 5, Supplementary Data 3, and
Source Data 4).

Furthermore, to evaluate MarsGT’s ability to identify major and
rare cell populations simultaneously, we compared it with three
clustering-like tools (GiniClust13, RaceID2, and SCMER1) using NMI,
Purity, and Entropy metrics. In all simulation datasets, MarsGT sur-
passed all clustering-like tools across all simulation datasets in termsof
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Purity and Entropy. Regarding the NMI index, GiniClust exhibited a
similar performance to MarsGT (Fig. 2b, Supplementary Figs. 4, 6,
Supplementary Data 2, and Source Data 2, 3, 5). A cell type is classified
as a rare cell type if it constitutes less than 3% of the total cells. How-
ever, certain rare cells, such as senescent cells, can constitute an even
smaller proportion27. To assess each tool’s ability to identify these
extremely rare cell types, we performed a gradient test with propor-
tions of 0.5%, 1%, 2%, and 3% rare cells across five simulated datasets. A
detailed comparison across all evaluation metrics demonstrated that
MarsGT outperformed the existing top-performing tool in rare cell
identification, exhibiting a superior F1 score that was 11.56%~143.49%
higher, across different proportions of rare cells (Supplementary
Fig. 7, Supplementary Data 4, and Source Data 6).

ToevaluateMarsGT’s performanceon realdatasets,we chose four
datasets (PBMC-bench-1, 2, 3, and PBMC-test) from human peripheral
blood mononuclear cells with ground truth labels. To maintain fair-
ness, we presented the performance in a bar plot, using default para-
meters for all benchmarking tools and showing the results of
parameter combinations (Supplementary Data 5, 6). In real data, we
separately classified cell types constituting less than 3% and 1% of total
cell counts as rare cell types. MarsGT achieved 100% and 63.71% higher
F1 scores, compared to the second-best-performing tool (GiniClust),
for 1% and 3% simulated rare cell proportion identification,

respectively in the independent test dataset (PBMC-test) (Fig. 2c).
MarsGT delivered the best performance among all rare cell identifi-
cation tools, achieving an NMI score that was 7.14% higher than that of
the second-best-performing tool (GiniClust) in the independent test
dataset (PBMC-test) (Fig. 2c and Source Data 7). The cell clustering
UMAP on an independent dataset with benchmarking labels illustrated
that MarsGT can accurately identify all rare cell types compared to
other tools (Fig. 2d). The cell clustering UMAP on an independent
dataset with benchmarking labels illustrated that MarsGT can accu-
rately identify all rare cell types compared to other tools (Supple-
mentary Fig. 8, Supplementary Data 7, and Source Data 8), which
confirmed MarsGT’s robust stability.

MarsGT effectively captures differential regulatorymechanisms
and uncovers biologically meaningful rare cell populations
often missed by other tools
To underscore MarsGT’s robust capability in identifying rare cell
populations within species beyond humans, we utilized MarsGT on
a published dataset involving matched single-nucleus RNA
sequencing (snRNA-seq) and single-nucleus ATAC sequencing
(snATAC-seq) performed on 9383 cells from the mouse retina
(Supplementary Data 1). This study demonstrates MarsGT’s cap-
abilities in discerning major and numerous rare cell populations,
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Fig. 1 | The framework of MarsGT. The model employs a six-step process for cell
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First, a heterogeneous graph, comprised of cells, genes, and peaks, is constructed
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a probability matrix with rows representing cells and columns indicating pseudo-
cell clusters. Cells that share the same maximum probability belong to the same
cluster. The fourth step is constructing the peak-gene relationship via a matrix
calculated from gene and peak embeddings, with rows denoting the regulatory
potential of the peak to gene and columns indicating pseudo-cell clusters. In the
final step, the trained model is applied to the entire graph. Following this, TF
database information is integrated to infer cell clusters and eGRNs. Circles repre-
sent rare cell populations.
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and we were able to identify 18 distinct cellular clusters, inclusive of
one amacrine cell (AC) group, eight bipolar cell (BC) groups, one
Cone cell group, one horizontal cell (HC) group, three müller glia
cell (MG) groups, one retinal ganglion cell (RGC) group, and three
Rod cell groups (Fig. 3a). Moreover, 12 rare cellular populations
were distinguished, eight of which boast a 95% confidence level as
highlighted by scPower28 (Fig. 3b). The annotation of major cell

populations was accomplished through the visualization of
expression levels pertaining to curated marker genes29–31 (Fig. 3c).
The populations of BC are known to exhibit a multitude of rare
populations. Utilizing MarsGT, we identified eight unique popula-
tions of BC. These populations were annotated by visualizing the
expression levels of curated marker genes specific to the BC
subpopulation32 (Fig. 3d). Excluding rod bipolar cell (RBC), all eight
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populations are regarded as rare cell populations at a 95% con-
fidence level, as determined by scPower28.

To validate whether the rare cell populations we identified is a
false positive, further testing is required. Hence, we inferred potential
cell-cell communications and constructed communication networks
among different BC populations using CellChat33. Notably, we identi-
fied a non-canonical Wnt (ncWnt) signaling pathway originating from
RBC and targeting both BC3 and BC6 (Supplementary Fig. 9, Supple-
mentary Data 8). Previous research has highlighted the role of Wnt5a
and Wnt5b, produced by RBC, in activating a non-canonical signaling
pathway in rods, which in turn regulates early Outer Plexiform Layer
(OPL) patterning34, thereby validating the accuracy of the rare cell
populations identified by MarsGT. We calculated the differentially
expressed genes (DEGs) for each population further to elucidate the
functionality of these distinct BC populations. Based on the cell
population-specific DEG list, we inferred the functional pathways for
each cell population (Fig. 3e). Notably, neuron migration was moder-
ately enriched in BC1B, which aligns with its translocation from the
bipolar to the amacrine cell layer. Categories such as axonogenesis and
the glutamate receptor signaling pathway revealedmodest differences
among BC clusters. Interestingly, extracellular ligand-gated ion chan-
nel activity was predominantly enriched in OFF types, reflecting their
employment of ionotropic glutamate receptors35.

Interestingly, our analysis distinguished cluster 10, which com-
prises 127 cells, fromcluster 2. Although both clusters are annotated as
MG, cluster 10 stands out as a rare cell population.We denote cluster 2
as MG-1 and cluster 10 as MG-2. In the original paper, the 127 cells are
annotated as Rod (120) and MG (5) by scRNA-seq and marker gene36.
To further validate our findings, we utilized GiniClust15, the algorithm
with the second-best performance in our benchmarking section after
MarsGT. GiniClust annotated the 127 cells as Rod (83 cells) and MG
(41 cells) (Supplementary Fig. 10). This indicates that the rare MG
identified in our study,whichwas not found in the original text, are not
false positives. We ventured further into exploring the functional dif-
ferences between the two MG clusters. Notably, we found MG-1 to be
enriched in sprouting angiogenesis (Fig. 3f), suggestive of potential
defects in retinal vascular development and a consequential functional
deficit in MG, known to play a critical role in guiding outgrowing
vessels37. MG-2 exhibited enrichment in the structural constituent of
eye lens function (Fig. 3f). This finding echoes the assertions of pre-
vious research indicating thatMG inbothmature andembryonic retina
binds antibodies generated to a lens fraction enriched for α-crystallin,
a key lens protein38. The eGRN of the structural constituent of eye lens
pathway related-gene is displayed in Supplementary Fig. 11 (Supple-
mentary Data 9). We further visualized the eGRN for MG-1 and MG-2
(Fig. 3g, Supplementary Data 10, 11 and Source Data 9). Compared to
other methods, MarsGT effectively captures differential regulatory
networks, successfully identifying biologically meaningful rare cell
populations that are often missed by RNA-only or other tools.

To further assert that MarsGT does not overlook pertinent infor-
mation in the data while identifying rare cell populations, we initially
compute the differentially expressed genes of the predominant cell
populations. We identified top DEGs such as Arr3, Gnat2, and Pde6h,
which act as marker genes for the Cone. Additionally, hsd7a serves as
the marker gene for HC, whereas Apoe, Clu, and Slc1a function as
marker genes for MG. Meg3 is identified as the marker gene for RGC,

and Nrl for Rod32 (Supplementary Fig. 12, Supplementary Data 12). The
results validate the accuracy ofMarsGT in identifying the predominant
cell populations. Utilizing the raw gene expression data and cell
populations, we deduced potential cell-cell communications and
subsequently constructed communication networks among different
cell populations within multiple signaling pathways, facilitated by
CellChat33. Notably, we discovered a VEGF signaling pathway extend-
ing from AC, MG, RGC, HC, MG, and Rod towards MG as the target
(Supplementary Fig. 13, Supplementary Data 13), which is consistent
with the previous research30.

MarsGT identifies a rare state, B lymphoma-state-1, which offers
the potential in preventing B-lymphoma progression
To underscore MarsGT’s robust capability in identifying rare cell
populations within cancer data, we utilized a matched scRNA-seq and
scATAC-seq dataset available on the 10X Genomics website (Supple-
mentaryData 1). This data originated from 14,566 cells obtained froma
flash-frozen intra-abdominal lymph node tumor in a patient diagnosed
with diffuse small lymphocytic lymphoma of the lymph node. MarsGT
identified 14 distinct cell clusters, which we annotated by visualizing
the expression levels of curatedmarker genes (Fig. 4a, b). Notably, four
of these clusters were annotated as B cells. To differentiate the sub-
populations of B cells, we visualized the expression levels of both
normal Bmarker genes and B lymphomamarker genes across the four
subpopulations (Fig. 4c). We designated one subpopulation as normal
B cell population and three as lymphoma cell populations: B
lymphoma-state-1 (BLS1), B lymphoma-state-2 (BLS2), and B
lymphoma-state-3 (BLS3). BLS1, a rare cell population, exhibits a 95%
confidence level, as indicated by scPower28. Intriguingly, it was evident
that B cell subpopulations annotated using solely RNA or ATAC data
could not be effectively distinguished (Fig. 4c, Supplementary Fig. 14).
We also applied other scMulti-omics tools to the dataset for com-
parative purposes. For instance, Seurat39 only identified two B cell
subpopulations with hard annotation by curated marker genes (Sup-
plementary Fig. 15), while our in-house tool DeepMAPS identified only
three B cell subpopulations16. However, neither tool successfully
identified the rare cell cluster within the B cells.

A pseudotime analysis on the four B cell clusters (comprising
the normal B cell populations and three B lymphoma cell popula-
tions), using slingshot, postulated a lineage whereby the rare cell
population BLS1 originates from the normal B cell populations. It
was inferred that BLS1 predates BLS2, which in turn predates BLS3
(Fig. 4d, e). To substantiate this proposed linear-like developmental
trajectory, we computed gene signature scores40 reflecting different
functions (anti-apoptosis, metastatic, and PD-PDL1) across the four
B cell populations (Fig. 4f, Supplementary Data 14, Supplementary
Data 15 and Source Data 10). These results depict a progressive
progression of B lymphoma from BLS1 to BLS3. Focusing on PDL1, a
critical gene in the PD1-PDL1 pathway that is promoted by STAT1 and
HIF1A, we observed more regulatory relations and intensity of
STAT1 and HIF1A in BLS3 (Fig. 4g, h, Supplementary Data 16). This
finding is in line with our inferred linear-like development tendency.
Furthermore, BCL2, an oncogenic gene that plays an anti-apoptotic
role in cancer and drives its progression41–44, demonstrated an
incrementally enhanced regulatory score from normal B cells to
BLS3 (Fig. 4i, Supplementary Data 16), lending further credibility to

Fig. 2 | Benchmarking ofMarsGT in termsof rare cell population identification.
a Benchmark rare cell population identification on Sim-PBMC 7, 8, 9 datasets with
classification-like tools in terms of F1 score. The X-axis signifies the dataset, while
the Y-axis presents F1 scores arranged in descending order. b Rare cell population
identification on Sim-PBMC 7, 8, 9 datasets benchmarked with clustering-like tools
evaluated via NMI scores. The X-axis signifies the dataset, while the Y-axis denotes
NMIs, organized in descending order. c Comparative results on three real training
datasets (PBMC-bench-1, 2, 3) and one independent test dataset (PBMC-test). Test

parameters across all tools are determined by the most optimal results obtained
from the training dataset. d The UMAPS results for the independent PBMC-test
dataset were calculated using PCA and predicted cell clusters in the tools. The
purple and orange ellipses represent rare cell populations constituting less than 1%
and 3%, respectively. Tools like FIRE and GapClust can distinguish only between
major and rare populations in a binary fashion based on their method design.
CellSISU, due to its design, can identify several rare cell populations but cannot
recognize major ones. Source data are provided as a Source Data file.
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our inference. The scATAC-seq tracks of STAT1, HIF1A and BCL2 are
shown in Fig. 4j and Supplementary Fig. 16. Exploring BLS1 in
greater depth, we compared the disparities among the four B cell
clusters and identified a unique TF for BLS1, namely, MEF2C, along
with switch-enhancer corresponding TFs: POU2F2, FOXP1, SPI1, and
NFIC. Simulating a knockout experiment45 involving these five TFs
revealed a shift in B lymphoma cells towards normal B cells, sug-
gesting that identifying the rare BLS1 state could offer potential
avenues for curbing B-lymphoma progression (Fig. 4k, l,

Supplementary Fig. 17). It has been reported previously that MEF2C
mutations lead to deregulated expression of the BCL6 oncogene in
B lymphoma46,47, and that POU2F2 reflects the survival of B cell
malignancies48. Additionally, FOXP1 is known to suppress immune
response49–52. The roles of SPI1 andNFIC, as inferred byMarsGT,may
provide fresh insights into therapeutic strategies for B lymphoma.
In short, MarsGT can effectively identify a rare subset of B cells,
BLS1, provides valuable insights into B-lymphoma progression, and
opens new avenues for potential interventions, thereby advancing
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our understanding of cellular disease dynamics and fostering
innovative medical research and treatment strategies.

MarsGT identifies MAIT-like rare cell populations and eGRNs in
multi-sample melanoma scRNA-seq and scATAC-seq
To broaden MarsGT’s scope in multi-sample and rare cell population
inference, we utilized ten matched scRNA-seq and scATAC-seq samples
of peripheral blood mononuclear cells (PBMCs) from melanoma
patients at baseline (prior to receiving anti-PD1 therapy) and healthy
donors. Of these, two samples were from healthy donors, while the
remaining eight were from melanoma patients. MarsGT identified 13
distinct cell clusters from the integrated dataset of these ten samples,
which include one CD4+T cell group, three CD8+T cell groups, two
CD14+ monocytes (Mono) cell groups, one B cell group, one Nature
killing (NK) cell group, one FCGR3A+ Mono cell group, and three Den-
dritic (DC) cell group. These clusters were annotated by visualizing the
expression levels of curated marker genes in the major cell populations
(Fig. 5a, b). DEGs for each cell population were calculated and repre-
sented in a heatmap (Supplementary Fig. 18). Notably, we observed two
rare cell populations within the CD8+T cells, namely, Cluster 9 and
Cluster 12. The DEGs across these three CD8+T cell populations were
computed (Supplementary Fig. 19, Supplementary Data 17), leading to
the identification of topDEGs such as ZBTB16 and SLC4A10 in Clusters 9
and 12. These genes act as markers for Mucosal Associated Invariant
T cells (MAIT), recognized as a crucial rare cell population in immune
responses. To delve deeper into the cell populations within Clusters 9
and 12, we visualized additional MAIT marker genes (Fig. 5c). Given that
both MAIT and Natural Killer T (NKT) cells are non-canonical T cells and
share similarities in their functions and partial marker genes, we com-
puted the gene signature enrichment scores for MAIT and NKT
respectively. TheMAIT scorewas significantly higher than theNKT score
(Fig. 5d, Supplementary Data 18 and Source Data 11), leading us to define
Cluster 9 as MAIT-like 1 and Cluster 12 as MAIT-like 2.

We constructed the eGRN of the three CD8+ T cell populations
and found that common enhancers and genes in the three cell popu-
lations constituted the majority proportion (Fig. 5e, f, Supplementary
Data 19). Meanwhile, each cell population demonstrated unique
enhancers and genes, indicating that MAIT-like 1 and MAIT-like 2
represent different MAIT-like subpopulations, each endowed with
unique functional attributes. To support this observation, we inferred
the pathways enriched in the MAIT-like cell population based on the
cell population’s active gene expression in the eGRNs (Fig. 5g). MAIT-
like 1 andMAIT-like 2 shared several pathways, including Regulation of
I-kappaB kinase/NF-kappaB Signaling, which play significant roles in
immune responses. Unique to MAIT-like 1 were pathways such as
Positive Regulation of Cytokine Production Involved in Immune
Response, Interleukin-12-Mediated Signaling Pathway, and Regulation
of Type I Interferon Production. The MAPK Cascade pathway was

unique to MAIT-like 2, further differentiating these two subpopula-
tions. Divergent regulatory patterns became apparent when we
focused on a single regulon, ZBTB16, recognized as a critical tran-
scription factor in MAIT cells. We visualized the expression of the
genes it regulates, aswell as the average accessibility value of the peaks
associatedwith these regulated genes (Fig. 5h).We furthermapped the
regulatory relationships of ZBTB16 within the two MAIT-like cell
populations (Fig. 5i). Interestingly, our results highlight minor differ-
ences in expression and accessibility, but more substantial variations
in regulatory relationships. This supports our hypothesis that reg-
ulatory information is pivotal in recognizing rare cell populations.

MarsGT reveals the mechanism for different survival of PD1-
blocking immunotherapy
The above ten sample datasets we analyzed incorporated immu-
notherapy data from eight melanoma patients, grouped according
to their Interferon-I response capacity (IRC). Four patients exhib-
ited high IRC, as determined by the levels of Interferon-I stimulated
proteins measured by mass cytometry, while the remaining four
demonstrated low IRC (Supplementary Fig. 20). The source study
inferred that a hyporesponsive IRC effectively predicted extended
survival following PD1-blocking immunotherapy, while high
responsiveness strongly associated with treatment failure and
reduced survival duration. Interestingly, we observed that in both
MAIT-like 1 and MAIT-like 2 cells, samples with low IRC represented
a majority, accounting for 83.57% and 70.18%, respectively, a figure
significantly higher than those with high IRC (Fig. 6a). Given the
potential significance of MAIT-like 1 cells in understanding the
survival mechanisms underpinning PD1-blocking immunotherapy,
we decided to investigate this cell population further (MAIT-like 2,
with only 69 cells, was excluded due to potential low confidence).
We found 176 MAIT-like 1 cells in the high IRC group, compared to
895 cells in the low IRC group (Fig. 6b). Additionally, the count of
DCs in the low IRC group exceeded those in the high IRC group. We
compared the expression of IFN-I stimulated genes (ISGs) between
high and low IRC patients.

Contrary to the IRC assignments, ISG expression in low IRC
patients was significantly higher than in high IRC patients (Fig. 6c and
Source Data 12). Upon calculating the unique enhancers in the eGRNs
of high IRC and low IRC groups, respectively, we found that tran-
scription factors TCF1 and BCL6 were exclusively present in the low
IRC group. Previous studies have demonstrated that the TCF1-Bcl6 axis
counteracts type I interferon to repress exhaustion andmaintain T cell
stemness53. Then we calculated the effector and exhaustion gene sig-
nature scores for MAIT cells in high IRC and low IRC groups, respec-
tively (Fig. 6d, Supplementary Data 20 and Source Data 13). MAIT-like
1 cells in thehigh IRCgroupappeared exhausted,while those in the low
IRC group appeared effective. This observation may explain the

Fig. 4 |MarsGT identifies the rare cells in the intermediate transition state onB
lymphoma data. a UMAP visualizes cell clusters predicted by MarsGT, annotated
based on the marker genes. b Dot plot demonstrates the expression value and
proportion of marker genes within the cell clusters predicted by MarsGT. c A
stacked violin plot represents the subpopulations of B cells, annotated with the
marker genes for both normal and tumorous B cells. d A cell development trajec-
tory for the four B cell subpopulations, with the line representing the lymphoma
development trajectory. e The pseudotime of the four B cell subpopulations. f The
gene signature scores of anti-apoptosis, metastatic, and PD-PDL1 pathways. Each
box showcases the minimum, first quartile, median, third quartile, and maximum
gene signature enrichment scores of different pathways in four cell clusters
(Cluster 0: n = 2754, Cluster 6: n = 731, Cluster 10: n = 456, Cluster 13: n = 72).
p-values were calculated based on two-tail t-test. Color represents cell clusters, and
the Y-axis is the enrichment score. g The regulatory relationship of the PDL1 gene
across the four B cell subpopulations. The red color signifies the regulatory score
for each enhancer of the STAT1 coding gene across different B cell subpopulations,

while blue indicates gene expression. h The regulatory relationship of the PDL1
gene across the four B cell subpopulations. The red color signifies the regulatory
score for each enhancer of the HIF1A coding gene across different B cell sub-
populations, while blue denotes gene expression across these subpopulations.
i The regulatory relationship of the BCL2 gene (an anti-apoptosis promoting gene)
across the four B cell subpopulations. The red color represents the regulatory score
of each enhancer for the BCL2 coding gene across different B cell subpopulations,
while the blue color represents gene expression in these subpopulations. j The
Coverage plot for gene BCL2. The Coverage Plot encompasses the tracks of
scATAC-seq (upper), peak links (lower), and gene expression (right). k Observed
andextrapolated future states (depictedas arrows) following the POU2F2knockout
in the four B cell subpopulations. The color represents the different cell clusters.
lObserved and extrapolated future states (depicted as arrows) following the FOXP1
knockout in the four B cell subpopulations. The color represents the different cell
clusters. Source data are provided as a Source Data file.
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varying IRC across samples and the improved prognosis for low IRC
patients following PD1-blocking immunotherapy.

High IRC suppressedMAIT-like 1 cells response by triggering high
interleukin-10 (IL-10) production by DC, which subsequently inhibited
the secretion of IL-15, IL-18 which are costimulatory cytokines for
MAIT-like 1 cell activation. This observation is supported by the
expression levels of the genes coding for these cytokines and their
respective receptors (Fig. 6e–g and Source Data 14–16). The effector
functions of MAIT-like 1 cells are mediated through the production of

IFN-II, GzmB, and Perforin (Fig. 6h). Our attention then turned to the
regulatory mechanisms of IFN-II, GzmB, and Perforin in the high and
low IRC contexts. In low IRC, IFN-I signaling is relayed by Tyk2-NFKB to
regulate IFNG (the coding gene of IFN-II), and relayed by Jak1-STAT1 to
regulateGZMB. IL-15 signaling is relayedby Jak1/Jak3-STAT1 to regulate
GZMB, while IL-18 signaling is relayed by JNK-NFKB to regulate IFNG
and by JNK-FOS/JUN to regulate GZMB and PRF1 (the coding gene of
Perforin). In contrast, high IRC sees only IL-18 signaling relayed by JNK-
FOS/JUN to regulate PRF1 (Fig. 6i). The complete GRNs of IFNG, GZMB,
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and PRF1 are depicted in Supplementary Fig. 21. Interestingly, we
observed a higher number of positive regulatory relations in low IRC
compared to high IRC. This suggests a critical role for low IRC in
facilitating the elimination of tumor cells. In other words, compared to
samples with high IRC, those with low IRC stimulate the expression of
cytokine and cytolytic molecule coding genes in CD8+ T cells via var-
ious costimulatory factors and pathways. This leads to the enhanced
secretion of IFN-γ, TNF-α, Granzyme B, and Perforin, which in turn
boosts the cytotoxic function of CD8+ T cells, promoting more
effective tumor destruction.

Discussion
MarsGT is an end-to-end deep learningmodel capable of inferring and
identifying rare cell populations from scMulti-omics data using a het-
erogeneous graph transformer. To model and represent the scMulti-
omics data, a heterogeneous graph is constructed, comprising nodes
of cells, genes, and peaks. This configuration allows for the updating of
joint embeddings of cells, genes, and peaks, facilitated by amulti-head
attention mechanism. An end-to-end model benefits rare cell identifi-
cation as it integrates scMulti-omics data with minimal information
loss. The graph transformer can enhance the signal-to-noise ratio,
addressing the high dropout feature of single-cell technologies, which
in turn reduces the false positive rate in rare cell identification. Cru-
cially, MarsGT employs a probability-based subgraph-sampling tech-
nique duringmodel training, which allows the selective highlighting of
cell-gene and cell-peak relationships that are relevant to rare cells. In
parallel, the model determines peak-gene relations and rare cell
populations from the subgraphs, undergoing iterative updates during
the training process. Consequently, MarsGT is well equipped to iden-
tify rare cell populations and their corresponding gene regulatory
networks within the entire heterogeneous graph.

MarsGT’s performance remains consistent across data types
(snRNA-ATAC-seq or scRNA-ATAC-seq), health statuses (healthy or
diseased), and species (human or mouse). In the mouse retina case,
MarsGT identified not only six major cell populations but also a rare
sub-cell population of Müller glia cells, a discovery unachievable by
alternative computational tools and unreported in the original study.
In the human small lymphocytic lymphoma case,MarsGT pinpointed a
rare B cell lymphoma population, with unique transcription factors
and binding enhancer changes indicating potential regulatory
mechanisms, functional differences, and a possible precursor state for
B cell lymphoma. This finding could lead to early detection or pre-
vention strategies for B cell lymphoma progression. In the melanoma
case, MarsGT identified two CD8+ Mucosal-associated invariant T
(MAIT)-like rare subpopulations and revealed that high IFN-I response
hinders these MAIT-like cell responses by upregulating IL10 and
inducing IL15 and IL12 from DC in patients who responded to immune
checkpoint blockade. These examples underscore the prowess of
MarsGT in uncovering new biological insights, as well as generating
new biomarkers for guiding immunotherapy.

While MarsGT shows impressive performance in identifying rare
cells anduncoveringbiological insights, there is roomfor improvement.
Statistical significance is crucial for rare cell identification to ensure that

detected rare cell populations genuinely exist, rather than being ran-
domfalsepositives. In this study,weutilized scPOWER tomaintain high-
confidence rare cell populations. It is necessary to develop a new
method for significance testing. More complex scenarios, such as
senescent cells that exhibit highheterogeneity evenwithin the samecell
type, also need to be considered. For multi-sample datasets, batch
correction is necessary prior to the MarsGT application. Thus, devel-
oping an algorithm that can perform batch correction during training
could enhance the utility of MarsGT. Moreover, the model’s depen-
dency onGPU computationsmight challenge reproducibility.While our
benchmark tests demonstrate negligible variance across multiple runs,
the small number of rare cell populations identified suggests that the
focus should be on significant findings for analysis. Finally, although we
designed a regularization term to balance the signal between rare and
major cell populations, this approachdid sacrifice someperformance in
identifying major cell populations to ensure accuracy in rare cell iden-
tification (Supplementary Fig. 22). More intricate designs should be
considered in future work. In conclusion, MarsGT represents a tool for
the identification of rare cell populations and the elucidation of
microenvironmental and immunotherapeutic mechanisms. It sets a
promising trajectory for precision medicine by enabling the discovery
of disease-associated rare cell populations and uncovering intrinsic
regulatory mechanisms that could inform immunotherapy strategies.

Methods
Data preprocessing
MarsGT initiates by inputting the raw count matrices derived from
matched scRNA-seq XR = fxR

ik ji= 1,2, . . . ,M1; k = 1,2, . . . ,Ng and scATAC-
seq XA = fxA

jk jj = 1,2, . . . ,M2; k = 1,2, . . . ,Ng. For the scRNA-seq data
matrix, we organize it such that rows represent genes, whereas cells
constitute the columns. Conversely, the scATAC-seq data matrix is
structured with regulatory regions (peaks) as rows and cells as col-
umns. Any rowor column in each datamatrix containing less than0.1%
non-zero values is excluded from further analysis. Quality control
measures for the data are conducted utilizing Seurat v354, encom-
passing criteria like total read counts and mitochondrial gene ratios.

We then construct the regulatory score matrix
XRA = fxRAij ji= 1,2, . . . ,M1; j = 1,2, . . . ,M2g based on MAESTRO55. In this
matrix, xRA

ij signifies the regulatory potential of peak j relative to gene i.
This potential is determined in accordance with the genomic distance
between peak j and gene i.

xRAij =

0,dij > 150kb or peak j located in any nearby genes
1

Length exonð Þ , peak j located at the exon regions of the gene i

2�
dij
d0 , else

8>><
>>:

ð1Þ

The distance between the center of peak j and the transcription
start site of gene i is denoted as dij . The half-decay of the distance, d0,
is set to be 10 kb. LengthðexonÞ is the length of the exon where the
peak j located in. As indicated by formula (1), the regulatory potential
score xRAij of peak j relative to gene i is typically calculated by 2�

dij
d0 ; For

Fig. 5 | MarsGT identifies MAIT-like rare cell populations and eGRNs in multi-
sample melanoma scRNA-seq and scATAC-seq. a UMAP visualizes MarsGT’s
predicted cell cluster results, annotated based on marker genes. b Dotplot depicts
the expression value and proportion of marker genes within the cell clusters pre-
dicted by MarsGT. c UMAPS showcases the marker genes of MAIT cells.
d Showcasing the marker genes of MAIT cells. Each box showcases the minimum,
first quartile, median, third quartile, and maximum gene signature enrichment
scores on different MAIT-like cell populations (MAIT-like 1: n = 1071, MAIT-like 2:
n = 67). The p-value is calculated by theMann-Whitney U test with two-sided. e The
upset plot illustrates the peaks present in CD8 +T cell subpopulations. f The upset
plot demonstrates the genes found in CD8 +T cell subpopulations. g Pathway

enrichment across different MAIT-like cell populations. Colors represent distinct
cell populations, while the size of the dots indicates the ratio of enriched genes.
p-values were calculated based on one-sided hypergeometric test. Multiple testing
correction was performed by using FDR-adjusted p-values. h The expression and
accessibility of ZBTB16-regulated genes across variousMAIT cell populations. i The
regulatory relations of ZBTB16 indifferentMAIT-like cell populations. Greenmeans
the common regulatory relations between MAIT-like 1 and MAIT-like 2. Light blue
means the regulatory relations unique in MAIT-like 1. Dark blue means the reg-
ulatory relations unique in MAIT-like 2. Source data are provided as a Source
Data file.
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peaks with dij > 150kb, we conveniently assign the regulatory potential
score of 0, considering that it will be less than 0.0005. For peaks
located within the exon region, xRA

ij is computed as 1
LengthðexonÞ.

Multiple datasets integration
In our specific case analysis, we handled matched scRNA-seq and
scATAC-seq across multiple samples. For batch effect correction in

multiple scRNA-seq datasets, we employed Harmony56, resulting in an
integrated matrix. For multiple scATAC-seq datasets, we adopted a
binning approach with a length of 5000 base pairs to amalgamate
different samples. The counts of peaks fallingwithin the same binwere
aggregated. Subsequently, multiple scATAC-seq datasets were inte-
grated into a single matrix, where rows represented bins and columns
denoted cells.
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Fig. 6 | MarsGT reveals the good prognosis with high IFN-I response impairs
MAIT cell responses by increasing IL10 and inducing IL15 and IL12 from DC.
a The number of cells inMAIT-like cell populations in differentmelanoma patients.
b The number of cells in MAIT cells and DC cells in high IRC and low IRC.
c Expression of ISGs inMAIT cells across different IRC. d Enrichment score ofMAIT
effective gene signature and exhaustedgene signature across varying IRC. Each box
showcases the minimum, first quartile, median, third quartile, and maximum gene
signature enrichment scores in different IRC in MAIT cells (High IRC: n = 176, Low
IRC: n = 895). The p-value is calculated by the two-sided Mann-Whitney U test.

e Expressionof critical cytokine genes inDCcells across varying IRC. f Expressionof
IFN-I receptor coding genes in MAIT cells across different IRC. g Expression of
secreted factors coding genes inMAIT cells across different IRC. h Themechanism
of MAIT-like cells with different IRC samples. i The regulatory mechanism of IFN-II,
GzmB, and Perforin in high IRC and low IRC. Green means the common regulatory
relations between high IRC and low IRC. Dark blue means the regulatory relations
are unique in low IRC. Figure created with BioRender.com. Source data are pro-
vided as a Source Data file.
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MarsGT model’s construction
Heterogeneous graph construction. To model and represent the
scMulti-omics data, a heterogeneous graph is constructed, comprising
nodes of cells, genes, and peaks. The intuitions of creating such a
heterogeneous graph are: (1) Gene and peak entities do not exist in
isolation. They interact with each other in intricate ways in cells. The
heterogeneous graph captures these interactions and dependencies
into a unified framework. (2) A heterogeneous graph enables the
identification of joint embeddings of cells, genes, and peaks in a hol-
istic manner. Such joint embeddings will benefit the harmonization of
the two data sources, revealing cross-modal relationships that might
be missed when analyzing each data type in isolation. (3) A hetero-
geneous graph also allows the message to pass across different cells,
genes, and peaks. The local and global message passing and transfer-
ring in the later graph transformer model can minimize the effect of
missing values or dropout issue in single-cell data.

In our case, we integrate matrices XR and XA by constructing a
gene-cell-peak heterogeneous graphG, consisting of three node types
and four edge types to ensure each type of element (nodes and edges)
maintains a unique distribution and furnishes a natural representation
framework. We define the heterogeneous graph as G= ðV,E,FÞ with
node set V=VC ∪VE ∪VG, where VC = fvCk jk = 1,2, . . . ,Ng denotes all
cells, VE = fvEj jj = 1,2, . . . ,M2g denotes all peaks, VG = fvGi ji= 1,2, . . . ,M1g
denotes all genes. The edge set E is constituted
as fðvGi ,vCk Þ,ðvCk ,vGi Þ,ðvEj ,vCk Þ,ðvCk ,vEj Þji= 1,2, . . . ,M1,j = 1,2, . . . ,M2,k = 1,2,
. . . ,Ng, with edge weight w defined as follows. To eliminate
information redundancy between node initial embeddings and
the edge weights, we utilize unweighted edges when constructing the
heterogeneous graph. For XR

ik >0,wðvGi ,vCk Þ=wðvCk ,vGi Þ= 1, otherwise,
wðvGi ,vCk Þ=wðvCk ,vGi Þ=0. For XA

jk >0, wðvEj ,vCk Þ= wðvCk ,vEj Þ= 1, otherwise,
wðvEj ,vCk Þ= wðvCk ,vEj Þ=0. Lastly, we establish the initial feature vectors F
for nodes in G as follows:

FC
k =X

R
�,k , k = 1,2, . . . ,N;

FE
j = ðXA

j,�Þ
T
, j = 1,2, . . . ,M2;

FG
i = ðXR

i,�Þ
T
, i= 1,2, . . . ,M1;

where Xi,� and X �,k represent the ith row vector and the kth column
vector of X, respectively.

Sub-sampling of a heterogeneous graph. To enhance the efficiency
of MarsGT when dealing with a large heterogeneous graph, it is neces-
sary to select subgraphs prior to model training. We assume that a gene
ubiquitously expressed is unlikely to hold as much significance for rare
cell identification compared to a gene that is expressed only in a parti-
cular subpopulation. To discern rare cells, we devised a probability-
based sub-sampling method. It is imperative to identify genes or peaks
that are highly expressed in a target cell but exhibit lowor no expression
in other cells. There are two steps for the probability-based sub-sam-
pling method. The first step is to filter out lowly expressed genes, which
should not be regarded as rare-related features. For cell k0, the genes
vGik0

with xG
ik0

>a are reserved. a is a threshold set to the first quartile of
the expression value of all genes in the given cell.

The second step is to select genes and peaks based on prob-
abilities calculated by the following formula:

Prob vGik0

� �
=

Prop vGik0

� �
P

fijxG
ik0

>ag
Prop vGik0

� � ð2Þ

where

Prop vGik0

� �
=

xR
ik0P

k
xRik

ð3Þ

The greater the probability value of gene correspondence, the
easier it is to be selected into the subgraph of the corresponding cell.
At this time, the gene has a higher probability of displaying the rare
signal of the cell. The number of reserved genes is denoted as Ng .
Considering the expensive nature of the deep learningmodel, here we
set minðNg ,20Þ number of genes are selected as default. As XA trends
towards binarization, peaks vEjk0

within the cell according to a prob-
ability that is defined as follows:

Prob vAjk0

� �
=

Prop vAjk0

� �
P
j
Prop vAjk0

� � ð4Þ

where

Prop vAjk0

� �
=

xA
jk0P

k
xAjk

ð5Þ

The greater the probability value of peak correspondence, the
easier it is to be selected into the subgraph of the corresponding cell.
At this time, the peak has a higher probability of displaying the rare
signal of the cell. The number of reserved peaks is denoted as Np:

Considering the expensive nature of the deep learningmodel, here we
set minðNp,20Þ number of peaks as default.

Each subgraph incorporates 30 cells randomly along with their
selected neighbor nodes. MarsGT is trained using multiple mini-bat-
ches, each represented by a subgraph.

MarsGT embedding update. LetHl represent the embedding of the lth

layer (l = 1, 2,…, L). The updated embedding of vGi , v
E
j , v

C
k on the lth the

layer is denoted as Hl ½vGi �, Hl ½vEj �, and Hl ½vCk �, respectively. To align the
features of different types of nodes into the samedimension,we apply a
linear projection functionW on the initial feature vectors F and obtain
the initial embeddingsH0 with a lower dimension, which we set at 256:

H0 vGi
� �

=WG FG
i

� �
ð6Þ

H0 vEj
h i

=WE FE
i

� �
ð7Þ

H0 vCk
� �

=WC FC
i

� �
ð8Þ

Subsequently, we apply a multi-head mechanism to divide H0 v½ �
evenly into H heads. Within the lth layer, we build three linear pro-
jection functions, query (Qh

linear), key (Kh
linear), and value (Vh

linear), for
each head ðh = 1, . . . ,HÞ. For each node v within the graph, the feature
vectors obtained after these transformations are denoted as follows:

Qh vð Þ=Qh
linear Hl�1 v½ �

� �
ð9Þ

Kh vð Þ=Kh
linear Hl�1 v½ �

� �
ð10Þ

Vh vð Þ=Vh
linear Hl�1 v½ �

� �
ð11Þ
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To calculate the mutual attention between node v and its neigh-
borNðvÞwithin the hth head, we introduce the attention operator. This
operator estimates the importance of each neighboring node vne in
NðvÞ relative to v using Kh vneð ÞWATT

t vne ,vð ÞQ
h vð ÞT, where WATT

t vne ,vð Þ is a
transformation matrix designed to capture edge features, while tð:Þ
denotes the edge type. :ð ÞT signifies the transposal function. The
attention coefficient within the head h0 is then calculated as follows:

att vne,v,h0

� �
=

Softmax
all vne 2 N vð Þ Kh0 vne

� �
WATT

t vne ,vð ÞQ
h0 vð ÞT

� �
ð12Þ

The concatenation of attention heads yields the attention coeffi-
cients, represented as follows:

att vne,v
� �

=
j j
h

att vne,v,h
� �� � ð13Þ

The message from vne that can be relayed to v within head h is
given byVh vneð ÞWMSG

t vne ,vð Þ.W
MSG
t vne ,vð Þ is also a transformationmatrix. Then,

the results from different message heads should subsequently be
concatenated:

mes vne,v
� �

=
j j
h
Vh vne

� �
WMSG

t vne ,vð Þ ð14Þ

To update the embedding of node v, the final step within the lth

layer will sum Hl�1 v½ � and Hl’ v½ � with trainable weights into the node’s
new embedding.

Hl0 v½ �= Aggregate
8vne 2 N vð Þ att vne,v

� �
mes vne,v

� � ð15Þ

Hl v½ �=αReLU Hl0 v½ �
� �

+ 1� αð ÞHl�1 v½ � ð16Þ

where α represents a trainable parameter, while ReLU functions as the
activation function. The final embedding of v is obtained by layer-wise
stacking of information.

MarsGT subgraph training. For the sake of generality, we continue
using the aforementioned notation for subgraphs. Following the cal-
culation of embeddings, all nodes (genes, cells, andpeaks) acquirenew
embeddings, denoted as fHl v½ �jv 2 VC ∪VE ∪VGg. The update
embeddings of cells fHl v½ �jv 2 VCg is denoted asP after normalizing by
the sum of columns. Each row of P represents a cell, each column of P
represents a reduced dimension set manually, and each element sig-
nifies the probability that a cell belongs to a specific cell cluster. We
establish an initial number of cell clusters that alignwith the number of
cell embeddings. A cell is assigned to the cell cluster where the cor-
responding dimension yields the highest value relative to all other
dimensions. Thus, MarsGT does not require pre-specification of the
number of cell clusters. Similarly, we construct the initial embedding
of links between genes andpeaks for each cell cluster by concatenating
gene and peak embeddings, denoted as Q. The row of Q represents a
peak-gene link, and the column of Q represents the cell cluster. By
applying a linear layer and a ReLU layer, the dimension ofQ is reduced
to match the number of initial cell clusters. The output is the prob-
ability that a peak-gene link belongs to each cell cluster which is
denoted as bO. The base peak-gene relations are determined based on
XRA and adjusted according to the corresponding gene expressions
and chromatin accessibility of all cells in a cell cluster, denoted as O.

In our model training, we devise a multi-task loss function, which
consists of four critical components (Supplementary Fig. 2). Loss
components (1) and (2) are designed to obtain high-quality node
embeddings. Loss components (3) and (4) are the key to identifying
rare and major cell populations simultaneously. Based on component
(3), we introduce the peak-gene relations in the model training

process, which canprovidemore accurate rare signals. Component (4)
is critical for our model to keep the major population signal not
diminished while we focus on rare populations. The multi-task loss
function is defined as follows:

Loss = KLcluster
zfflfflfflffl}|fflfflfflffl{ð1Þ

�Cosloss
zfflfflffl}|fflfflffl{ð2Þ

+ KLðbO,OÞ
zfflfflfflfflffl}|fflfflfflfflffl{ð3Þ

+ δReg loss

zfflfflfflfflffl}|fflfflfflfflffl{ð4Þ
ð17Þ

where KLcluster =KLðHl ½VG�*Hl ½VC �T ,XRÞ +KLðHl ½VE �*Hl ½VC �T ,XRÞ. δ is
the weight coefficients, the default values are all set to 1.

The Cosine similarity in cluster C0 is defined as:

Cosloss C0

� �
=

X
8ka ,kb2C0

CosineðHl ½Vka �,Hl ½Vkb �Þ ð18Þ

The regular term is defined as:

Regloss = Smoothingcross Pr ,L,εð Þ ð19Þ
where L= fljjlj 2 1, . . . ,Tf g, j = 1, . . . ,Ng is the cell cluster results by
Louvain with scRNA-seq, Pr is the predicted results of model. T is the
number of cell clusters by Louvain, ε is a smoothing factor.

Smoothingcross P,L,εð Þ = �
XN
j = 1

XT
t = 1

yjt logpjt ð20Þ

yjt =
1� ε + ε

T if lj = t
� �

ε
T if lj≠t

� �
8><
>: ð21Þ

where pjt represents the predicted probability of the given cell
belonging to the class t, i.e. the corresponding element in matrix P.
(1) The goal of Component 1 is to maximize embedding retention of

the original information of the data. In detail,
KLcluster =KLðHl ½VG�*Hl ½VC �T ,XRÞ+KLðHl ½VE �*Hl ½VC �T ,XAÞ, Hl½VG�
is the embedding of genes, Hl½VC� is the embedding of
cells,Hl ½VE � is the embedding of peaks,XR is the expression data,
andXA is the accessibility data.We expect that their inner product
can greatly restore the distribution of the original expression data
and accessibility data, thus preserving the original expression
information. As the KL divergence diminishes, less information is
lost during heterogeneous graph transformer learning.

(2) The goal of Component 2 is to ensure that the embeddings within
the same cluster we identify are sufficiently similar. In detail,

Cosloss =
P

8ka ,kb2C0

CosineðHl ½Vka �,Hl ½Vkb �Þ. A higher similarity score

indicates superior clustering efficacy and closely distance in the
same cluster.

(3) The goal of Component 3 is to ensure that the union of peak-gene
relations under the predicted cell cluster is similar to the peak-
gene relations of bulk level, and to ensure that if a peak regulates a
gene under a cell type, then the peak is accessible and the gene is
expressed. We utilize another KL divergence score to evaluate
discrepancies between predicted and baseline peak-gene links
within each cell cluster. The baseline peak-gene associations are
determined based on proximity to the nearest genes. Further, we
calculate a regulatory potential score O, and adjust this score
according to the corresponding gene expressions and chromatin
accessibility across all cells within a cell cluster. Intuitively, this
component can potentially reduce the false positive of cell
clusters’ results.

(4) The goal of Component 4 is to ensure that the feature of major
cell population is not diminished, although we have specific
designs for rare populations as above. In detail,
Regloss = SmoothingcrossðPr,L,εÞ. We calculate an entropy score

Article https://doi.org/10.1038/s41467-023-44570-8

Nature Communications |          (2024) 15:338 13



to contrast the differences between the base (Louvain clustering
results, L) and predicted cell clustering outcomes P. Since the
result of Louvain is not a true label, we allow for error ε in calcu-
lating the cross entropy.

Our algorithm concurrently updates the cell clustering outcomes
and the peak-gene links within each set of cell cluster prediction
results. The model is designed to iterate until it reaches a state of
convergence, at which point we obtain the cell clusters and all peak-
gene links specific to each cluster. Following this, the peak-gene links
within each cell cluster are obtained.

MarsGT predicts cell clusters and eGRN in the whole graph. Upon
completing the two phases of training, a robustly trained model is
generated. To ensure that every cell is mapped to its corresponding
predicted cluster, and every gene and peak is associated with cell
cluster-specific peak-gene regulatory information, we apply the
trained model to the entire graph. By covering all cells through the
chosen union of subgraphs, the trained model, when applied to the
entire graph, can also have a good performance. The cell cluster pre-
dictions encompass all cells. Regarding cell cluster-specific peak-gene
link, we use the final predicted cell cluster results to calculate all genes
and peaks, eschewing the use of a subgraph. In order to quantify the
specific degree of each peak-gene link, we determine the peak-gene
score based on gene expression, peak accessibility, and the regulatory
potential of peaks to genes. The peak-gene link score (PGS) is defined
as:

PGS i,j,CTð Þ= xi× j,CT =

P CTj j
k = 1x

R
ik × x

RA
ij × xAjk

CTj j ,j,i= 1,2, . . . ,M1,j = 1,2, . . . ,M2,k = 1,2, . . . ,N

8<
:

9=
;

ð22Þ

where CTj j is the cell number in cell cluster CT . Then the cell cluster
corresponding peak-gene links are inferred. To infer eGRN, we need to
introduce the TF information. We retrieved the genome browser track
file from JASPAR, which stores all known TF binding sites of each TF. A
p-value score was provided in JASPAR. We removed TF binding sites
with p-value scores more than 0.05. And then, if a TF binding site
overlaps with any peak regions in the predicted peak-gene link, it will
be kept, otherwise, removed. Finally, the TF-peak relations will be
obtained, and the eGRNs in each cell cluster also are inferred.

Benchmark of rare cell population identification
Simulated single-cell multi-omics data. We evaluated the perfor-
mance of rare cell identification based on the algorithm’s capability to
distinguish between two known rare populations. We assessed the
algorithm’s efficacy using 400 simulated datasets with eight different
designs from two different data types. The first data type consisted of
cell line data (549 cells) characterized by low intra-class heterogeneity,
available at https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=
SRP136421. This data contained five cell line types: PDX1, PDX2,
HeLa.S3, K562, and HCT116. The second type was the immune popu-
lation dataset (17,243 cells) with high intra-class heterogeneity,
obtainable from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE194122. In the cell line dataset, we selected PDX1 (176 cells)
and PDX2 (167 cells) as the common cell populations, while HeLa.S3
(42 cells) and K562 (74 cells) were chosen as the rare population in the
simulateddata. Two types of simulateddatasetswere createdbasedon
the cell line data: (1) PDX1 and PDX2 (major, 290 cells), HeLa.S3 (rare,
10 cells); and (2) PDX1 and PDX2 (major, 280 cells), HeLa.S3 (rare, 10
cells), K562 (rare, 10 cells). (Supplementary Table S1). Each dataset
consisted of 50datasets, each containing 300 cells thatwere randomly
subsampled from each cell type. Similarly, for PBMC cells, we utilized
NK, CD4+ T naïve, CD8+ T (common), Erythroblast, Plasma, HSC, and

ID2-hi myeloid prog cells (rare) to establish six types of simulated
datasets (Supplementary Table S1).

There were six datasets on the immune population data: (1) CD8+
T (major, 490 cells) and Plasma (rare, 10); (2) CD4+T naïve (major, 480
cells), HSC (rare, 10 cells), and Plasma (rare, 10 cells); (3) CD8+ T
(major, 490 cells), Erythroblast (rare, 10 cells), (4) CD8+ T (major, 480
cells), Erythroblast (rare, 10 cells), and HSC (rare, 10 cells); (5) CD8+ T
(major, 480 cells), Erythroblast (rare, 10), andNaiveCD20+B (rare, 10);
(6) CD14+Mono (major, 250 cells) and CD8+ (major, 250 cells). There
were 50 datasets of 500 cells generated by randomly subsampling
from each cell type.

To assess the proportion of rare cells detected by different
software, datasets were created to include from 970 to 995 com-
mon cells and 30 to 5 rare cells. For instance, the smallest common
dataset was comprised of 970 common cells and 30 rare cells (3%),
while the largest included 995 common cells and 5 rare cells (0.5%).
Six datasets of 1000 cells, with differing rare cell proportions, were
generated by random subsampling from each cell type. The first five
datasets tested rare cell population identification, while the sixth
assessed the false-positive rate of each algorithm. All algorithms
were applied to these datasets with default or suggested settings.
The results were visualized using UMAP for Scanpy and colored by
predicted results.

Furthermore, to ensure that the simulation datasets more closely
resemble real data, we increased the number of cell types and the
number of cells We simulated 150 datasets using peripheral blood
mononuclear cells. Each simulation dataset contained 5,000 cells and
5-15 cell types (Sim-PBMC 7, 8, 9). The first type contains one rare cell
population and four major cell populations (Sim-PBMC 7). The second
type contains one rare cell population and ninemajor cell populations
(Sim-PBMC 8). The third type contains five rare cell populations and
ten major cell populations (Sim-PBMC 9). The details of each simula-
tion dataset are shown as follows:

Sim-PBMC 7:
We have established a specific set of sampling rules to construct

the simulated dataset, Sim-PBMC 7. Firstly, we definitively select the
four cell types that have the highest proportions in terms of the cell
numbers of each cell type. Secondly, from the two least abundant cell
types (rare types), we randomly select one. Ultimately, we extract a
total of 5000 cell samples from these five cell types. It is noteworthy
that, except for the rare cell type, which has a fixed quantity of 50, the
sampling ratios of the remaining cell types are normalized based on
their proportions in the original dataset.

Sim-PBMC 8:
To verify whether our software can accurately identify rare types

among numerous cell types, we have established a specific set of
sampling rules to construct the simulated dataset Sim-PBMC 8. Firstly,
we definitively select the nine cell types that have the highest pro-
portions in terms of the cell numbers of each cell type. Secondly, from
the two least abundant cell types (rare types), we randomly select one.
Ultimately, we extract a total of 5000 cell samples from these 10 cell
types. It is noteworthy that, except for the rare type of cells,which have
a fixed quantity of 50, the sampling ratios of the remaining cell types
are normalized based on their proportions in the original dataset.

Sim-PBMC 9:
To further increase the level of difficulty, we aim to continue

verifying whether our model remains efficient when multiple rare cell
types are present. We have established a specific set of sampling rules
to construct the simulated dataset Sim-PBMC 9. First, we decisively
choose the ten cell types that have the highest proportions in terms of
the cell numbers of each cell type. Next, for those cell types that
account for less than 1% of the total, we randomly select five. Ulti-
mately, we draw a total of 5000 cell samples from these 15 cell types. It
is noteworthy that the sampling ratio of each cell type is normalized
based on their proportions in the original dataset.
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Simulated datasets benchmarking quantification
To optimize the default parameters of MarsGT, we conducted a grid-
search test on seven simulated datasets. The parameters considered in
this optimization included weighted decay (0, 0.1, 0.3), learning rate
(0.001, 0.0005), and label smoothing (0, 0.1, 0.3), which are important
parameters to prevent overfitting and ensure convergence speed. This
resulted in a total of 18 unique parameter combinations. We randomly
selected one dataset from each type of simulation as a training set. The
most effective parameter combination was weighted decay = 0.1,
learning rate = 0.001, and label smoothing = 0.3. This set was subse-
quently adopted as the default parameter combination. The remaining
simulation datasets were processed using these default parameters.

Real datasets benchmarking quantification
To assess the generalizability of our model, we applied the same
parameter combinations that we used with the simulated datasets to
three benchmark (PBMC-bench-1, 2, 3) real datasets. We subsequently
employed the default parameters for an independent test dataset
(PBMC-test).

The ability of rare cell identification
Typically, a cell type is classified as rare if it constitutes less than 3% of
the total cell count. However, truly rare cell types often represent
much less than this threshold. To evaluate the capacity of various tools
to identify these rare cells, we designated cell types representing 0.5%,
1%, 2%, and 3% of the total cell count as rare in the independent test
dataset.We then calculated the F1 score, precision, and recall score for
each category.

Statistics & reproducibility
In our case analysis, we utilized scPower, a tool that assists in deter-
mining the power needed to detect a sufficient number of cells from a
specific cell type in each individual. Using this tool, we calculated the
minimum number of cells per individual required to reach a pre-
determined power threshold. This calculation was based on the
negative binomial distribution.

No data were excluded from the analyses. The experiments were
not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

To evaluate the stability and reproducibility of MarsGT, we exe-
cuted the algorithm20 times on the independent test dataset, utilizing
the default parameters. We then computed the variance of several key
metrics, including the F1 score, precision, recall score, Normalized
Mutual Information (NMI), purity, and entropy.

Baseline tools parameter set
To evaluate the performance of MarsGT relative to other tools for
identifying rare cells, we conducted a comparative analysis between
MarsGT and other established methods.
(i) FIRE4 (v 1.0.1, https://github.com/princethewinner/FIRE, data

pre-processing, and feature extraction uses the function
“ranger_preprocess”).

(ii) GapClust13 (v 0.1.0, https://github.com/fabotao/GapClust, genes
that were expressed in less than three cells were excluded, and
cells expressing <200 genes were also excluded, the normal-
ization procedure was accomplished using the scran (R package).

(iii) CellSIUS26 (v 1.0.0, https://github.com/Novartis/CellSIUS, cells
were filtered based on the total number of detected genes, total
UMI counts, and the percentage of total UMI counts attributed to
mitochondrial genes, genes have to present with at least 3 UMIs in
at least one cell. After this initial QC, the remaining outlier cells
were identified and removed using the plotPCA function from the
scatter (R package with detect_outliers set to TRUE). Data were
normalized using scran (R package), including a first clustering
step as implemented in the “quickCluster” function).

(iv) RaceID2 (v 0.2.3, https://github.com/dgrun/RaceID3_StemID2_
package).

(v) GiniClust15 (v 3.0, https://github.com/rdong08/GiniClust3, the
“neighbors” parameter of the function “clusterGini” is set to 10
(the recommended value is from 5 to 15), other parameters at the
default values).

(vi) SCMER1 (v 0.1.0a3, https://github.com/KChen-lab/SCMER, data
pre-processing is carried out using Scanpy (Python package)).

For each benchmarking tools, grid tests were also applied to a
combination of parameters (Supplementary Data 5).

Evaluation index
Toassess theprecisionof various rarecell identificationalgorithms,we
employed metrics quantifying the purity of the clustering output. We
evaluated two categories of algorithms: the first encompassing clus-
tering methods capable of differentiating all cell populations, such as
SCMER1, GiniClust15, and RaceID2, and the second consisting of classi-
ficationmethods that can distinguish only between rare cell andmajor
cell populations. For evaluating clusteringmethods, we utilized purity,
entropy, and Normalized Mutual Information (NMI). For assessing
classification methods, we applied recall, precision, and F1-score
metrics.

Purity is based on the frequencyof themost abundant class in the
predicted clusters. Let S= fs1,s2, . . . ,sSg be the set of predicted clusters,
and T= ft1,t2, . . . ,tT g be the set of true labels. The purity index is
defined as:

purityðS,TÞ=
P

smaxt jss \ tt j
N

ð23Þ

where ss (s = 1, . . . ,S) is the set of cells in the predicted clusters. tt
(t = 1, . . . ,T) is the set of cells in the true labels.N is the number of cells.
The value of purity ranges from 0 to 1, where 1 provides the best
clustering effect.

Entropy uses Shannon entropy to evaluate cluster accuracy by
measuring the expected amount of information from the clusters. Let
S= fs1,s2, . . . ,sSg be the set of predicted clusters, and T= ft1,t2, . . . ,tT g
be the set of true labels. The entropy of each predicted cluster s is
defined as:

H ss
� �

= �
X
t

jsst j
jssj

log
jsst j
jssj ð24Þ

sst = ss \ tt ð25Þ

Then, the entropy for all clusters is defined as:

entropyðS,TÞ=
X
s

jssj
N

HðssÞ ð26Þ

Lower entropy means higher clustering accuracy.
NMI measures the normalized dependency of the true labels on

the predicted cluster. Mutual information is defined as:

I S,Tð Þ=
X
s

X
t

jsst j
N

log
Njsst j
ss
		 		 tt		 		 ð27Þ

To comparemutual information across different clusters, IðS,TÞ is
normalized to the ½0,1�, which is bounded by min ½H Sð Þ,H Tð Þ�, where

H Sð Þ= �
X
s

jssj
N

log
jssj
N ð28Þ
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H Tð Þ= �
X
t

jtt j
N

log
jtt j
N ð29Þ

Then, NMI is defined as:

NMI S,Tð Þ= I S,Tð Þ
min H Sð Þ,H Tð Þ½ � ð30Þ

Higher NMI means higher clustering accuracy.
Precision represents the ability of the model to correctly predict

rare cells among all rare cell predictions.

Precision=
TP

TP + FP
ð31Þ

Recall represents themodel’s ability to correctly predict rare cells
from actual rare cells.

Recall =
TP

TP + FN
ð32Þ

F1-score can be interpreted as a weighted average of precision
and recall. F1-score ranges from 0, poor classification, to 1, perfect
classification:

F1 score=
TP

TP +0:5* TP + FNð Þ ð33Þ

TP means the number of cells predicted to be rare in real rare
cells. FP means the number of cells predicted to be rare in real com-
moncells. FNmeans the number of cells predicted to be commoncells
in real rare cells

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Informationfiles. All data used
in this study are from public domain. The raw data are downloaded
from the GEO database with the accession numbers for: human PBMC
paired scRNA-seq and scATAC-seq data “GSE194122”, mouse retina
paired scRNA-seq and scATAC-seq data “GSE201402” and human
melanoma PBMC paired scRNA-seq and scATAC-seq data
“GSE199994”. The scRNA-seq and scATAC-seq cancer cell line data was
downloaded from NCBI with an accession code of “CNP0000213
[https://trace.ncbi.nlm.nih.gov/Traces/index.html?study=
SRP136421]”. The following paired scRNA-seq and scATAC-seq dataset
was obtained from the 10X Genomics website: “lymph node data
[https://www.10xgenomics.com/resources/datasets/fresh-frozen-
lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-
0]”. All datasets are publicly available without restrictions. Details of
data information can be found in Supplementary Data 1. Source data
are provided with this paper.

Code availability
MarsGT is a user-friendly, efficient package developed in Python,
leveraging the capabilities of PyTorch. The source code and vignettes
of MarsGT are freely available at https://github.com/mtduan/marsgt.
The source code is also available on Zenodo57 with link https://doi.org/
10.5281/zenodo.8406470.
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