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BIDCell: Biologically-informed self-
supervised learning for segmentation of
subcellular spatial transcriptomics data

Xiaohang Fu 1,2,3,4,5,8, Yingxin Lin 1,3,4,5,8, David M. Lin6,
Daniel Mechtersheimer1,3,4, Chuhan Wang2,3,5, Farhan Ameen 1,3,4,
Shila Ghazanfar 1,3,4, Ellis Patrick 1,3,4,5,7, Jinman Kim2,3,5 &
Jean Y. H. Yang 1,3,4,5

Recent advances in subcellular imaging transcriptomics platforms have
enabled high-resolution spatial mapping of gene expression, while also
introducing significant analytical challenges in accurately identifying cells and
assigning transcripts. Existing methods grapple with cell segmentation, fre-
quently leading to fragmented cells or oversized cells that capture con-
taminated expression. To this end, we present BIDCell, a self-supervised deep
learning-based framework with biologically-informed loss functions that learn
relationshipsbetween spatially resolvedgene expression and cellmorphology.
BIDCell incorporates cell-type data, including single-cell transcriptomics data
from public repositories, with cell morphology information. Using a compre-
hensive evaluation framework consisting of metrics in five complementary
categories for cell segmentation performance, we demonstrate that BIDCell
outperforms other state-of-the-art methods according tomanymetrics across
a variety of tissue types and technology platforms. Our findings underscore
the potential of BIDCell to significantly enhance single-cell spatial expression
analyses, enabling great potential in biological discovery.

High-throughput spatial omics technologies are at the forefront
of modern molecular biology, and promise to provide topographic
context to the wealth of available transcriptomic data. Recent
breakthroughs in profiling technology have revolutionised our
understanding of multicellular biological systems, and the collection
of Subcellular Spatial Transcriptomics (SST) technologies (e.g. 10x
Genomics Xenium1; NanoString CosMx2; BGI Stereo-seq3; and Vizgen
MERSCOPE) now offer the promise to tackle biological problems that
were previously inaccessible and better understand intercellular
communication by preserving tissue architecture. Depending on the
commercial platforms, these ultra-high resolution, spatially resolved

single-cell data contain mixtures of nuclear, cytoplasmic, and/or cell
membrane signals, and create new data challenges in information
extraction. More specifically, the aim is to ensure all available data can
be capitalised to automatically and accurately distinguish the bound-
aries of individual cells, as the fundamental goal of SST technologies is
to understand how single-cell transcriptomes behave in situ within a
given tissue4.

Limited attempts have been made to address these data chal-
lenges and to date, three conceptual categories have emerged. The
first employs morphological operations originally designed for lower-
resolution imaging technologies such as microscopy. Within this
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category, initial nuclei segmentation is accomplished with a nuclear
marker, using thresholding or pretrainedmodels such asCellpose5 and
Mesmer6. Cell boundaries are then identified using either morpholo-
gical expansion by a prespecified distance1 or using a watershed
algorithm on a mask of the cell bodies3. Chen et al. applied a global
threshold to thedensity of allmolecules in SSTdata to estimate the cell
body mask. The limitation of Cellpose5 and similar approaches is that
they were primarily designed for microscopy modalities and fluor-
escent markers, so they may not always be suitable for SST due to
dissimilar visual characteristics.

Secondly, an alternative approach to cell segmentation does not
identify cell boundaries directly, but classifies or clusters individual
transcripts into distinct measurement categories that pertain to
cells. These include segmentation-free and transcript-based methods,
as exemplified by Baysor7, StereoCell8, pciSeq9, Sparcle10, and
ClusterMap11. However, a key limitation of these approaches is their
assumption that expression of all RNAs within a cell body are homo-
geneous, and in the caseof Baysor, that cell shapes (morphologies) can
be well approximated with a multivariate normal prior. This can result
in visually unrealistic segmentations that do not correspond well to
imaging data.

Thirdly, more recent approaches have begun to leverage deep
learning (DL) methods. DL models such as U-Net12 have provided
solutions for many image analysis challenges. However, they require
ground truth to be generated for training. DL-based methods for SST
cell segmentation includeGeneSegNet13 and SCS14, though supervision
is still required in the form of initial cell labels or based on hard-coded
rules. Further limitations of existing methods encountered during
our benchmarking, such as lengthy code runtimes, are included in
Supplementary Table 1. The self-supervised learning (SSL) paradigm
can provide a solution to overcome the requirement of annotations.
While SSL-based methods have shown promise for other imaging
modalities15,16, direct application to SST images remains challenging.
SST data are considerably different from other cellular imaging mod-
alities and natural images (e.g., regular RGB images), as they typically
contain hundreds of channels, and there is a lack of clear visual cues
that indicate cell boundaries. This creates new challenges such as (i)
accurately delineating cohesive masks for cells in densely-packed
regions, (ii) handling high sparsity within gene channels, and (iii)
addressing the lack of contrast for cell instances.

While these morphological and DL-based approaches have shown
promise, they have not fully exploited the high-dimensional expression
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Fig. 1 | BIDCell framework. a Schematic illustration of the BIDCell framework and
the loss functions used for training. In the deep learning model, E1 to E5 and D1 to
D4 are respectively the encoding and decoding layers, while the connectivity
between layers to each decoding layer is indicated by arrows of a unique colour
(e.g., green for D3). b Comparative illustration of the predictions from BIDCell and

other cell segmentation methods on the public Xenium-BreastCancer1 dataset.
BIDCell captures cell morphologies with better correspondence to the input ima-
ges, with a more diverse set of cell shapes that include elongated types. The H&E
images are provided for illustrationpurposes only andwere not used as an input for
any of the methods shown.
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information containedwithin SST data. It has become increasingly clear
that relying solely on imaging information may not be sufficient to
accurately segment cells. There is growing interest in leveraging large,
well-annotated scRNA-seq datasets17, as exemplified by JSTA18, which
proposed a joint cell segmentation and cell type annotation strategy.
While much of the literature has emphasised the importance
of accounting for biological information such as transcriptional com-
position, cell type, and cell morphology, the impact of incorporating
such information into segmentation approaches remains to be fully
understood.

Here, we present a biologically-informed deep learning-based
cell segmentation (BIDCell) framework (Fig. 1a), that addresses the
challenges of cell body segmentation in SST images through key
innovations in the framework and learning strategies. We introduce
(a) biologically-informed loss functions with multiple synergistic
components; and (b) explicitly incorporate prior knowledge from
single-cell sequencing data to enable the estimation of different cell
shapes. The combination of our losses and use of existing scRNA-seq
data in supplement to subcellular imaging data improves perfor-
mance, and BIDCell is generalisable across different SST platforms.
Along with the development of our segmentation method, we cre-
ated a comprehensive evaluation framework for cell segmentation,
CellSPA, that assesses five complementary categories of criteria for
identifying the optimal segmentation strategies. This framework
aims to promote the adoption of new segmentation methods for
novel biotechnological data.

Results
BIDCell: Incorporating biological insights usingdeep learning to
improve cell shape representation
BIDCell is a DL-based cell segmentation method that identifies each
individual cell and all its pixels as a cohesive mask. BIDCell uses sub-
cellular spatial transcriptomic maps, corresponding DAPI images, and
relevant average expression profiles of cell types from single-cell
sequencing datasets; the latter is obtained from public repositories
such as the HumanCell Atlas. Given the lack of ground truth and visual
features that indicate cell boundaries in the SST images, BIDCell
instead focuses on the relationships between the high-dimensional
spatial gene expressions and cell morphology. The BIDCell framework
automatically derives supervisory signals from the input data and/or
predicted segmentations, which is an approach to learning that we
borrow from SSL.

To achieve this, we designed multiple loss functions that repre-
sent various criteria based on biological knowledge, that work syner-
gistically to produce accurate segmentations (Fig. 1a; seeMethods and
Supplementary Materials for a detailed description). BIDCell learns to
use the locations of highly- and lowly-expressed marker genes to
calibrate the segmentation to capture higher “cell expression purity”,
thereby ensuring transcripts within each cell share the same profile.
Furthermore, BIDCell captures local expression patterns using a data-
driven, cell-type-informedmorphology.We found that the eccentricity
measure of nuclei could reveal diverse cell morphologies that corre-
spond to established knowledge, such as elongated morphologies for
fibroblasts (Supplementary Fig. 1). By capturing a diverse set of cell
shapes and leveraging marker information from previous single-cell
experiments (Table 1), BIDCell generates superior segmentations
(Fig. 1b and Supplementary Figs. 2 and 3), and overcomes the limita-
tions of many existing methods (Table 2) that rely primarily on SST
image intensity values for cell segmentation.

We further ensure the integrity of cell segmentations by propos-
ing three other cooperative loss functions. Appropriate cell sizes are
supported by capturing expression patterns local to nuclei using gui-
dance from cell-type informed morphologies (cell-calling), while
ensuring the cohesiveness of cell instances (over-segmentation) and
enhancing segmentation in densely-populated regions (overlap loss).

BIDCell also leverages expression patterns within nuclei to guide the
identification of cell body pixels.

We investigated removing individual losses in an ablation study
with Xenium-BreastCancer1 data (Supplementary Figs. 4, 5). Our inves-
tigation shows that the losses work synergistically; e.g., there was a
marked increase in purity F1 relative to the amount of captured tran-
scripts when the losses were combined. With the inclusion of single-cell
data (which informs the positive and negative losses, and contributes to
the ability to predict elongated cell shapes), performance improved
considerably, particularly inpuritymetrics andcorrelation toChromium
data. The use of single-cell data helped the model to better capture
transcripts that aremorebiologicallymeaningfulwithin cells. Bydefault,
the weights of the losses are all 1.0 and do not need to be tuned for
BIDCell to perform well, though further fine-tuning is possible (Sup-
plementary Fig. 6). The popular UNet 3+19 serves as the segmentation
backbone architecture inBIDCell, though this is not a requirement and it
may be replaced with alternative architectures (Supplementary Fig. 7).

CellSPA comprehensive evaluation framework captures diverse
sets of metrics of segmentation aspects across five com-
plementary categories
To ensure an unbiased comparison, we introduce a Cell Segmentation
Performance Assessment (CellSPA) framework (Fig. 2a) that captures
cell segmentationmetrics across five complementary categories. These
categories, detailed in Fig. 2a and Supplementary Table 2, include (i)
baseline characteristics at both the cell and gene levels; (ii) measures of
segmented cell expression, where we assess the “expression purity” of
our assigned segmented cells based on how well transcripts within the
segmented cell share a similar expression profile; (iii) measures of
baseline cell characteristics in its spatial environment, including spatial
region diversity and corresponding diversity in morphology; (iv) a
measure of contamination between nearest neighbours (Supplemen-
tary Fig. 8); and (v) measures of replicability.

Using CellSPA, we compared the performance of BIDCell with
several recently developedmethods for the segmentation of SST data.
These methods included classical segmentation-based approaches
such as simple dilation, watershed, and Voroni; and transcript-based
approaches including Baysor. Additionally, we evaluated JSTA18, which
attempts to jointly determine cell (sub) types and cell segmentation
based on an extension from the traditional watershed approach. In all
comparisons, we limited the computational time to within 72 h, which
we deemed a practical requirement for the solutions provided by each
approach (see Discussion).

To ensure the minimal appropriateness of segmented cells, we
examine a series of quality control (QC) statistics. As an illustrative
example using Xenium-BreastCancer1 data, we segmented cells using
BIDCell, generating 100,000 number of cells, with 53.4% of transcripts
assigned (Fig. 2b). We first confirm that the total number of transcripts
per cell and the number of genes per cell were greater in thewhole cell
(cell body + nuclei) compared to just the nuclei (Fig. 2c and Supple-
mentary Fig. 9).

Similarly, using the percentage of cells expressing each gene
between the nuclei vs. the cell body, we further evaluate the level of
information presented in the nuclei and the cell body from the gene
level (Fig. 2d). We find that the segmented cells of some of the meth-
ods (e.g. Baysor) did not yield any additional transcript information
beyond that of the nuclei, wherewe see a tight concordance (lying on a
45-degree line) between the segmented cell body and the cell nuclei.
However, BIDCell, 10x, Cellpose, and JSTA are all able to capture
additional transcript information. Moving forward, we will focus on
methods that provide “additional" information to the nuclei, with an
emphasis on the ability to better capture cell boundaries.

Lastly, we examine the cell morphology of the segmented cells
against the segmented nuclei, including cell area, elongation, com-
pactness, sphericity, convexity, eccentricity, solidity and circularity
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(See Methods and Supplementary Fig. 10). Through these metrics, we
are able to identify the outliers of the segmented cells, such as cells
with extremely large areas in JSTA, Voronoi and Watershed in the
sparse areas (Supplementary Fig. 11). We illustrate that as intended

from our cell-mask, BIDCell has cell morphology that is highly corre-
lated with the nuclei morphology (Fig. 2e). Furthermore, we find that
segmented cells from BIDCell exhibit more diverse cell morphology
characteristics compared to other methods (Supplementary Fig. 12).

Table 1 | Single-cell RNA-seq references used in this study

Data collection Data # of cell types Source

TISCH-BRCA GSE110686 17 http://tisch.comp-genomics.org/gallery/?cancer=BRCA&species=Human

GSE114727_10X

GSE114727_inDrop

GSE138536

GSE143423

GSE176078

SRP114962

EMTAB8107

GSE148673

GSE150660

Chromium-BreastCancer Single Cell Gene Expression
Flex (FRP)

22 https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-
human-breast

Mouse brain Allen brain map 59 https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-
hippocampus-smart-seq

HLCA Banovich_Kropski_2020 50 https://beta.fastgenomics.org/p/hlca

Krasnow_2020

Lafyatis_Rojas_2019

Meyer_2019

Misharin_2021

Misharin_Budinger_2018

Teichmann_Meyer_2019

TISCH-NSCLC EMTAB6149 1 http://tisch.comp-genomics.org/gallery/?cancer=SCLC&species=Human

GSE117570

GSE127465

GSE143423

GSE148071

GSE150660

SKCM atlas GSE115978 15 http://tisch.comp-genomics.org/gallery/?cancer=SKCM&species=Human

GSE120575

GSE123139

GSE139249

GSE148190

GSE72056

GSE134388

GSE159251

GSE166181

GSE179373

Table 2 | Summary of existing methods used for comparison

Types Method Nuclei segmentation Cell body segmetation Public code Reference

Nuclei 10x (Nuclei) 10x NA N/A

Cellpose (Nuclei) Cellpose NA Version 2.1.1 5

Adapted from classical approach Cellpose nuclei dilated Cellpose Dilation OpenCV (v4.6.0)

Voronoi Cellpose Voronoi expansion SciPy library (v1.9.3)

Watershed Cellpose Watershed algorithm OpenCV (v4.6.0)

Deep learning-based 10x 10x 10x N/A

BIDCell Cellpose BIDCell Version 4494e02

Cellpose cell Cellpose Cellpose Version 2.1.1 5

JSTA Cellpose JSTA Version ccce064 18

Transcript-based Baysor N/A or Cellpose Baysor Version 0.5.2 7
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BIDCell captures improved purity of cell expression, leading to
less contamination from neighbouring cells
To determine whether various cell segmentation methods can
improve spatial resolution without sacrificing detection efficiency, we
first compare the correlation between cell type signatures in the
Xenium and Chromium V2 platforms for Xenium-BreastCancer1 data
(Fig. 3a). We observed that the performance of correlation for average
expression between the spatial and sequencing profile ranges between
0.72 and 0.8 across all methods. Interestingly, we observe a trade-off

between the size of the cell (average total transcript per cell) and the
level of correlation. Fig. 3a demonstrates the importance of employing
two metrics to quantify segmentation performance. While Cellpose
achieved the highest Pearson correlation overall, BIDCell achieved the
highest Pearson correlation among methods that detect a similar
number of transcripts as Chromium data (i.e., cell sizes that are more
similar to segmentation of the cell body as opposed to the nuclei).
Similar results are shown in the average percentage of expressed genes
(Fig. 3b). Furthermore, Fig. 3c highlights a high level of consistency in
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cell type proportion between the segmented cells generated by BID-
Cell and Chromium (cor = 0.95). BIDCell also has a higher presence of
positive markers and a lower presence of negative markers in large
cells (Fig. 3d and Supplementary Fig. 13), demonstrating an improve-
ment in the expression purity of segmentation.

In category III of CellSPA, we investigate the potential con-
tamination between neighbouring cells by comparing the percentage
of B cells that expressed negative markers, such as CD3D and CD3E,
which are positive T cell markers but are considered negative markers
in B cells. The presence of T cell marker genes in B cells suggests
potential contamination during the cell segmentation process. Fig. 3e
and Supplementary Fig. 14 indicate that BIDCell showed the smallest
percentage of contamination cells, indicating its ability to reduce
contamination in a densely populated region.

Lastly, we investigate the spatial diversity by examining the
association between the cell type composition and the various cell
level characteristics of spatial local regions. Here, we expect the region
with a diverse composition of cell types would have a high variety of
cell sizes andmorphologies.We first divide the image into several local
regions and then quantify the diversity of the cell type composition of
a region using entropy (Fig. 3f). As shown in Fig. 3g and Supplementary
Fig. 15, we find that BIDCell achieves a higher correlation of the coef-
ficient of variation of the cell-level characteristics (the total transcripts,
the total genes expressed and cell area) with the cell type entropy
compared to the other methods. Similarly, we observe that the variety
of cell elongation in BIDCell is highly correlatedwith the proportion of
fibroblasts, one of the dominant cell types in the data (Fig. 3h).

Together, with a comprehensive benchmarking using CellSPA, we
demonstrate that the BIDCell segmentation achieves a better balance
between high cell expression purity and a large cell body compared to
theother state-of-the-artmethods,whichcapture amorediverse range
of cell morphologies and provide the potential for a more accurate
representation of the topographic context of neighbouring cellular
interactions.

BIDCell is replicable andgeneralisable tomultiple SSTplatforms
As an additional sensitivity analysis to the ablation study, we evaluated
the replicability of BIDCell. We compared the results between the two
replicated studies (Xenium-BreastCancer1 and Xenium-BreastCancer2).
Figure 3i displays images of the two replicates, with corresponding cell
types highlighted in Fig. 3j (left panel). The results are very similar,
demonstrating that BIDCell is replicable. The tSNE plot in Fig. 3j (right
panel) shows a well-mixed population of cells between the two repli-
cated studies. The high correlation of the cell morphology metrics of
segmented cells from BIDCell between the two replicates further con-
firm the replicability of our method (Supplementary Fig. 16).

We demonstrate the generalisability of BIDCell to other SST
platforms and tissue types by applying BIDCell to data generated by
CosMx from NanoString (Fig. 4a–c, Supplementary Figs. 17, 18) and
MERSCOPE data from Vizgen (Fig. 4d–f, a–c, Supplementary Figs. 19,
20). In particular,weobserved that BIDCell had a lowerpercentageof B
cells expressing negative markers (markers indicating contamination)
for the CosMx-Lung data (Fig. 4c), suggesting more accurate cell

segmentation. Additionally, in MERSCOPE-Melanoma data, regions
with more diverse cell types corresponded to more diverse cell type
characteristics (Fig. 4f). Furthermore, we also applied BIDCell to
Stereo-seq from BGI (Supplementary Fig. 21). We have now demon-
strated the applicability of BIDCell on data from four major platforms,
and from five different tissue types. We believe that our method has
the flexibility and generalisability to other data from other SST plat-
forms and tissues.

Accurate cell segmentation can reveal region-specific subtypes
among neuronal cells
To further assess the performance of BIDCell in accurately segmenting
closely packed cells, we performed an evaluation on another case
study from Xenium-MouseBrain data. The hippocampus is critical for
learning and memory20, and the tripartite synapses formed between
the dentate gyrus and cornu ammonis (CA) have been well studied21.
Because of the density of pyramidal neurons within the CA region, we
askedwhether or not BIDCell could accuratelydistinguishCA1, 2, and 3
fromone another. Figure 5a, b show the spatial image andhighlight the
neuronal cell type and neuronal regions using scClassify trained
existing sequencing data (Table 1). Fig. 5c compares the segmentation
pattern obtained using 10x vs. BIDCell. Note that BIDCell generates a
more finely textured and tighter pattern of cells than 10x, and the
outputmore closely resembles the pattern seen in Fig. 5a. The superior
performance of BIDCell is further confirmed by the evaluationmetrics.
With similar size of the segmented cells with 10x (Supplementary
Fig. 22), BIDCell achieves a higher similarity with scRNA-seq and
expression purity score (Fig. 5d–e, Supplementary Fig. 23). BIDCell can
identify neuronal subtypemarkers that distinguish granule neurons in
the dentate gyrus (Prox1) from pyramidal neurons in CA1-3 (Neurod6)
(22; Fig. 5f). Furthermore, it is able to spatially subdivide pyramidal
neurons in the CA region despite their close proximity to one another.
Fig. 5f shows the expression patterns ofWfs1 in CA123, Necab2 in CA224

and Slit2 in CA325, consistent with prior studies. Interestingly, we found
a new gene (Cpne8) that is enriched in CA1, consistent with in situ data
from the Allen Brain Atlas and illustrates BIDCell’s capacity for biolo-
gical discovery.

Discussion
Here we presented BIDCell, a method for cell segmentation in sub-
cellular spatially resolved transcriptomics data. BIDCell leverages DL
with its biologically-informed loss functions that allow the model to
self-learn and capture both cell type and cell shape information, while
optimising for cell expression purity. Its default components (such as
the backbone architecture and use of cell type profiles) may be
exchanged for other architectures and Atlas datasets. We have
demonstrated the effectiveness of BIDCell by comparing it to state-of-
the-artmethods andhave shown that BIDCell provides better cell body
delineation. Moreover, our flexible approach can be applied to dif-
ferent technology platforms, and different gene panels. Our study
highlights the potential of BIDCell for accurate cell segmentation and
its potential impact on the field of subcellular spatially resolved
transcriptomics.

Fig. 2 | CellSPAperformance evaluation framework. aSchematic showing the cell
segmentation evaluation framework with five complementary categories. b Bar
plots showing overall characteristics, including the number of cells [left], and the
number of transcripts [right] for each of the 11 methods. c Boxplots of cell-level
quality metrics with total number of transcripts [left] and total number of genes
[right]. The number points for each box includes the number of cells detected by
each method (N = Chromium: 22,294; Cellpose (nuclei): 99,693; BIDCell: 103,209;
10x (nuclei): 126,515; 10x: 160,254; JSTA: 107,131; Cellpose nuclei dilated: 104,307;
Cellpose cell: 87,046; Voronoi: 106,227; Watershed: 105,527; Baysor: 177,437; Bay-
sor (no prior): 191,698), and ranges from the first to third quartile with the median
as the horizontal line. The boxplot’s lower whisker extends 1.5 times the

interquartile range below the first quartile, while the upper whisker extends 1.5
times the interquartile range above the third quartile. d Gene-level quality metric
represented by a scatter plot of the percentage of cells expressed for each gene in
the segmented cells (y-axis) vs. the nuclei (x-axis). e Cell morphology metrics
represented by the elongation values between the segmented cells (y-axis) and
nuclei (x-axis), where each dot represents the average elongation for each cell type
and the Pearson correlation between the elongation values of nuclei and seg-
mented cells is noted in the top left corner. f Scatter plot between correlation the
elongation values of nuclei and segmented cells (y-axis) and average total number
of transcripts per cell (x-axis) based on average expression. Source data are pro-
vided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44560-w

Nature Communications |          (2024) 15:509 6



a

d f

e

i

Expression and cell composition similarity with scRNA-seq 

Average expression comparison Average % gene expressed comparison Cell type proportion comparison

1.0 1.5 2.0
Cell type entropy

Spatial regions Cell type composition diversity

b c

g

h

j

Expression purity

Spatial characteristics diversity 

Neighbouring contamination  

10xBIDCell Cellpose Cell Cellpose nuclei dilated JSTA Voronoi Watershed

Replicate 2

Replicate 1

Replicate 1
Replicate 2

Unassigned

ACTA2+ Myoepi
KRT15+ Myoepi
CD4 T
CD8 T
STAB2+ Endothelial
Fibroblast
IRF7+ DC
LAMP3+ DC
Macrophage
B Cells
Mast cells
CRABP2+ Malignant
Plasma
SCGB2A2+ Malignant
VWF+ Endothelial
ECM1+ Malignant
CD163+ Macrophage

BIDCell

S
T

A
B

2+
 E

nd
ot

he
lia

l
V

W
F

+ 
E

nd
ot

he
lia

l
F

iro
bl

as
t

P
la

sm
a

K
R

T
15

+ 
M

yo
ep

i
A

C
T

A
2+

 M
yo

ep
i

S
C

G
B

2A
2+

 M
al

ig
na

nt
C

R
A

B
P

2+
 M

al
ig

na
nt

E
C

M
1+

 M
al

ig
na

nt
LA

M
P

3+
 D

C
B

 C
el

ls
IR

F
7+

 D
C

C
D

8 
T

C
D

4 
T

C
D

16
3+

 M
ac

ro
ph

ag
e

M
ac

ro
ph

ag
e

M
as

t c
el

ls

STAB2+ Endothelial
VWF+ Endothelial

Firoblast
Plasma

KRT15+ Myoepi
ACTA2+ Myoepi

SCGB2A2+ Malignant
CRABP2+ Malignant

ECM1+ Malignant
LAMP3+ DC

B Cells
IRF7+ DC

CD8 T
CD4 T

CD163+ Macrophage
Macrophage

Mast cells

C
hr

om
iu

mPearson correlation

cor = −0.47 cor = 0.7 cor = 0.09

0.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8
0.3

0.5

0.7

0.9

1.1

Fibroblast %

C
V 

of
 e

lo
ng

at
io

n

cor = 0.42 cor = 0.44 cor = 0.29
10x BIDCell Watershed

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0.075

0.100

0.125

0.150

0.175

Entropy

C
V 

of
 to

ta
l t

ra
ns

cr
ip

ts
CD3D in B Cells CD3E in B Cells

[0,10] (10,20] (20,30] (30,40] [0,10] (10,20] (20,30] (30,40]

10

20

30

40

0

5

10

15

%
 c

el
ls

 e
px

re
ss

in
g 

ne
ga

tiv
e 

m
ar

ke
r

Euclidean distance

Robustness and reproducibility

10x

BIDCell

Cellpose cell
Cellpose nuclei dilated

JSTA

Voronoi

Watershed

0.00

0.25

0.50

0.75

150 200 250 300
Average total transcript per cell

Pu
rit

y 
F1

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5
Positive purity score (10x)

Po
si

tiv
e 

pu
rit

y 
sc

or
e 

(B
ID

C
el

l)

cor = 0.95

0

5

10

15

20

25

0 5 10 15 20 25
Chromium

BI
D

C
el

l

Unassigned

ACTA2+ Myoepi
KRT15+ Myoepi
CD4 T
CD8 T
STAB2+ Endothelial
Fibroblast
IRF7+ DC
LAMP3+ DC
Macrophage
B Cells
Mast cells
CRABP2+ Malignant
Plasma
SCGB2A2+ Malignant
VWF+ Endothelial
ECM1+ Malignant
CD163+ Macrophage

0.725

0.750

0.775

150 200 250 300
Average total transcripts per cell

P
ea

rs
on

 c
or

re
la

tio
n 

w
ith

 C
hr

om
iu

m

0.81

0.82

0.83

0.84

0.85

150 200 250 300
Average total transcripts per cell

Pe
ar

so
n 

co
rre

la
tio

n 
w

ith
 C

hr
om

iu
m

10x

BIDCell

Cellpose cell

Cellpose nuclei dilated

JSTA

Voronoi

Watershed

10x

BIDCell
Cellpose cell

Cellpose nuclei dilated

JSTA

Voronoi

Watershed

0 0.2 0.4 0.6 0.8 1

Fig. 3 | CellSPA graphical representation of comparison study using Xenium-
BreastCancer. a Correlation heatmap of average expression between segmented
cells from BIDCell (y-axis) and expression from Chromium data (x-axis) [left].
Scatter plot between correlation with Chromium expression (y-axis) and average
total number of transcripts per cell (x-axis) based on average expression [right].
Each dot represents a different method. b Scatter plot between correlation with
Chromium expression (y-axis) and average total number of transcripts per cell (x-
axis), where eachdot represents a differentmethod. c Scatter plot between BIDCell
(y-axis) and expression from Chromium data (x-axis) based on the cell type pro-
portion extracted from each of themethods. d Scatter plot showing the expression
between the F1 score for positive markers in BIDCell (y-axis) and in 10x segmen-
tation (x-axis) [left], and scatter plot showing the purity F1 score against the average
total transcripts per cell [right]. Each dot represents amethod. e Line plots showing
the percentage of B cells expressing the unwanted T cell marker CD4, CD8A, and

CD8B against its distance from the nearest T cell, where the B cells are grouped by
distance ranges. A lower percentage is better, and each line represents a different
method. f–h Spatial characteristics diversity. f indicates the local spatial regions
being divided in the images where the left panel indicates the cell type proportions
of each local region and the right panel indicates the cell type entropy of the local
region. g Scatter plots showing the association between the cell type entropy and
the coefficient of variation of the total transcripts of three methods: 10x, BIDCell,
andWatershed, where each dot represents each local region shown in (f).h Scatter
plots showing the association between the coefficient of variation of elongation
and proportion of fibroblasts in the data. i Spatial imaging of two replicates in
Xenium-BreastCancer, where each dot represents the segmented cells coloured by
the annotated cell type. j UMAP plots of the two replicates, coloured by cell type
[left] and replicate [right]. Source data are provided as a Source Data file.
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The typical approach to leverage advancements in DL relies on
ground truth to guide models to learn relationships between inputs
and outputs. However, manual annotation of individual pixels is
unattainable for SST that contain hundreds of molecular units per
pixel, given the time and effort of manual labour. Further, we have
shown (e.g., with Cellpose) that models pretrained on other imaging
modalities do not transfer well to SST images. BIDCell innovates
through its integrated loss functions that inject biological knowledge
of cell morphology and expressions, to allow the model to self-learn
from the given spatial transcriptomic and DAPI images, and produce
superior visual and quantitative performance compared to previous
methods. Our loss functions also allow BIDCell to be broadly applic-
able across diverse tissue types and various SST platforms. Therefore,
BIDCell can facilitate faster research outputs and new discoveries.

Establishing an easy-to-use evaluation system is crucial for pro-
moting reproducible science and transparency, as well as facilitating

furthermethods development. In CellSPA, we have extended beyond
a single accuracy metric and introduced metrics that represent
important downstream properties or biological characteristics
recognised by scientists. This concept of evaluation by human-
recognised criteria is also discussed by the computer vision com-
munity as “empirical evaluation”26. Another aspect that is often
overlooked is related to the practical establishment of benchmarking
studies. As benchmarking studies gain recognition, they can be time-
consuming due to challenges with software versioning and different
operating systems, and different methods may require varying
degrees of ease of use and time to adjust the code for comparison.
The CellSPA tool is available as a R package with all necessary
dependencies, simplifying its installation and usage on local systems,
and promoting reproducible science and transparency. Rather than
generating a comprehensive comparison of existing methods, which
can quickly become outdated, evaluation metrics are generated to
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allow new methods to be compared to a database of existing meth-
ods, without the need to re-implement a large collection of methods.
This approach reduces redundancy, allows for direct comparison
with state-of-the-art methods, and saves time and effort. Examples of
this approach include those for cell deconvolution27 and simulation
methods28.

A comprehensive evaluation framework is vital when comparing
diverse segmentation approaches in the absence of a ground truth. It is
important to recognise that different segmentation approaches may
purposefully have different priorities and outcomes. For example, a
segmentation approach such as a seeded Voronoi tessellation will
identify larger cells than a fixed expansion around the nuclei, such as

a c

b

CA1 CA2 CA3 DG

d

Astro
CA1
CA2
CA3
Car3
CR
DG
Endo
L2 IT ENTl
L2 IT RSP−ACA
L2 IT RSPv−POST−PRE
L2/3 IT CTX
L2/3 IT ENTl
L2/3 IT PAR
L2/3 IT POST−PRE
L2/3 IT ProS
L3 IT ENTl

L3 IT ENTm
L4 IT CTX
L4 RSP−ACA
L4/5 IT CTX
L5 IT CTX
L5 IT RSP−ACA
L5 PPP
L5 PT CTX
L5/6 IT CTX
L5/6 NP CTX
L6 CT CTX
L6 CT ENT
L6 IT CTX
L6 IT ENTl
L6b CTX
L6b ENT
L6b RHP

Lamp5
Meis2
Micro−PVM
NP PPP
NP SUB
Ntng1 HPF
Oligo
Pax6
ProS
Pvalb
SMC−Peri
Sncg
Sst
SUB
unassigned
Vip
VLMC

10x

BIDCell

Transcripts DAPI BIDCell 10x Baysor (no prior) Baysor Watershed Voronoi Cellpose cell

Prox1

Neurod6

Wfs1

Necab2

Cpne8

5
4
3
2
1
0

5
4
3
2
1
0

4
3
2
1
0

5
4
3
2
1
0

3
2
1
0

Distance to CA1

f

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5
10x

BI
D

C
el

l

e Positive purity score

0.25

0.50

0.75

0.25 0.50 0.75
10x

BI
D

C
el

l

Correlation with Allan Brain SMART−seq2 data

CA1 CA2 CA3 DG

Lo
g-

tra
ns

fo
rm

ed
 g

en
e 

ex
pr

es
si

on

0
1
2
3
4
5

Prox1

0
1
2
3
4
5

Neurod6

0
1
2
3
4

Wfs1

0
1
2
3
4

Necab2

0

1

2

3

4
Slit2

0

1

2

3

4
Cpne8

Slit2
4
3
2
1
0

CA1
CA2
CA3
DG

CA1
CA2

CA3 DG

Article https://doi.org/10.1038/s41467-023-44560-w

Nature Communications |          (2024) 15:509 9



Cellpose cell. The former will typically assign more transcripts and
produce a densermap of which cells are touching. In contrast, the latter
mayproducemorehomogenousprofiles of the cellswith fewer assigned
molecules and tighter cell boundaries, limiting its capability to estimate
physical cell interactions.While achievingmorehomogenous cell bodies
is desired, it can also result from the arbitrary over-segmentation of
nuclei. This emphasises that the use of employing a variety ofmetrics to
quantify segmentation performance enables a systematic assessment
and reveals the desirable properties of each approach.

Cells have a three-dimensional structure, thus analyses in a two-
dimensional perspective may achieve limited representation. BIDCell
can be further adapted (e.g., via its cell-calling loss) to incorporate cell
membrane markers to enhance segmentation. InMERSCOPE data that
display cellmembranemarkers, there is a percentage (25%) of cells that
lack nuclei in their segmentation, likely due to being elongated mela-
nocytes or fibroblasts in a section without a nucleus. While platforms
like MERSCOPE can utilise cell membrane markers as cell masks to
perform cell segmentation, it is necessary to conduct further research
to understand whether a cell’s slicing affects the measurement of
expression in tissues. Similarly, in the nervous system, a future chal-
lenge will be to accurately identify and segment dendritic and axon
morphologies. Like melanocytes and fibroblasts, the varied and elon-
gated nature of these cell morphologies will make it challenging to
accurately identify cell boundaries in the absence of nearby nuclei.
Because of these difficulties, most approaches may instead generate
similar results between the segmentation of the whole cell and the
corresponding segmentation of the cell nuclei.

In conclusion, the development of subcellular spatial tran-
scriptomics technologies is revolutionising molecular biology. We
have introduced a deep learning approach that does not require
ground truth supervision and incorporates prior biological knowledge
by leveraging the myriad of single-cell datasets in Atlas databases. We
illustrate that our BIDCell method outperforms the current state-of-
the-art cell segmentationmethods, and we are able to uncover region-
specific subtypes in the brain with explicit highlighting of cell bodies
and boundaries. Furthermore, recognising the importance of evalua-
tion, we developed CellSPA, a Cell Segmentation Performance
Assessment framework, that covers a wide variety of metrics across
five complementary categories of cell segmentation characteristics.

Methods
Datasets and preprocessing
We used publicly available data resources from three different SST
commercial platforms (10 ×Genomics Xenium, NanoString CosMx,
and Vizgen MERSCOPE), and sequencing data from Human Cell Atlas.

Subcellular spatial transcriptomics data. For all datasets and for each
gene, detected transcripts were converted into a 2D image where the
value of each pixel represents the number of detected transcripts at its
location. The images were combined channel-wise, resulting in an
image volume X 2 RH ×W ×ngenes , where H is the height of the sample,W
is thewidthof the sample, andngenes is the number of genes in thepanel.

(i) Xenium-BreastCancer1 and Xenium-BreastCancer2. The Breast
Cancer datasets included in this study were downloaded from https://
www.10xgenomics.com/products/xenium-in-situ/preview-dataset-

human-breast(accessed 9 Feb 2023), and included two replicates. Low-
quality transcripts for 10 ×Genomics Xenium data with a phred-scaled
quality value score below 20 were removed, as suggested by the
vendor1. Negative control transcripts, blanks, and antisense transcripts
were also filtered out. This resulted in 313 unique genes with the overall
pixel dimension of the images being 5475 × 7524 × 313 for Xenium
breast cancer replicate 1 (Xenium-BreastCancer1) and 5474 × 7524× 313
for Xenium breast cancer replicate 2 (Xenium-BreastCancer2).

(ii) Xenium-MouseBrain. TheMouse Brain data included in this study
was downloaded from https://www.10xgenomics.com/resources/
datasets/fresh-frozen-mouse-brain-replicates-1-standard (accessed
14 Feb 2023) and were processed following the steps in (i). There
were 248 unique genes, and the resulting size of the image was
7038 × 10,277 × 248 pixels.

(iii) CosMx-Lung. The CosMx NSCLC Lung dataset included in this
study was downloaded from https://nanostring.com/products/cosmx-
spatial-molecular-imager/nsclc-ffpe-dataset/ (accessed 24 Mar 2023).
We used data for Lung5-1, which comprised 30 fields of view. Tran-
scripts containing “NegPrb” were removed, resulting in 960 unique
genes and an overall image dimension of 7878 × 9850 × 960 pixels.

(iv) MERSCOPE-Melanoma. TheMERSCOPEmelanoma data included
in this study were downloaded from https://info.vizgen.com/
merscope-ffpe-solution (for patient 2, accessed 26 Mar 2023). Tran-
scripts with “Blank-” were filtered out, resulting in 500 unique genes
and an image with 6841 × 7849 × 500 pixels.

(v) Stereo-seq-MouseEmbryo. The Stereo-seq data used in this study,
including the DAPI image and detected gene expressions (bin 1), were
downloaded from https://db.cngb.org/stomics/mosta/download/ for
sample E12.5_E1S3. Stereo-seq data contains a far greater number of
genes compared toXenium,CosMx, andMERSCOPE. For efficiency,we
selected a panel of 275 highly variable genes (HVGs) as the input to
BIDCell. The HVGs are the common genes of the top 1000 HVGs from
both Stereo-seq data and the single-cell reference data.

Nuclei segmentation. DAPI images were directly downloaded from
the websites of their respective datasets. In cases where the maximum
intensity projection (MIP) DAPI imagewas not provided, we computed
the MIP DAPI by finding the maximum intensity value for each (x,y)
location for each stack of DAPI. DAPI images were resized to align with
the lateral resolutions of spatial transciptomic maps using bilinear
interpolation. Nuclei segmentation was performed on the MIP DAPI
using the pretrained Cellpose model with automatic estimation of
nuclei diameter5. We used the “cyto" model as we found the “nuclei"
model to undersegment or omit a considerable number (e.g., 21k for
Xenium-BreastCancer1) of nuclei given the same MIP DAPI image,
which is consistent with another study29. Other nuclei segmentation
methods may be used with BIDCell as our framework is not limited to
Cellpose.

Transcriptomics sequencing data. We used five publicly available
single-cell RNA-seq data collections as references to guide the cell
segmentation inBIDCell and evaluationwithCellSPA. For the reference

Fig. 5 | Assessment using Xenium-MouseBrain data. a Spatial image highlighting
the cell type and neuronal regions using scClassify trained on SMART-seq2 data.
b Comparative illustration of the predictions from BIDCell and other methods.
c Hippocampus cell segmentation region by 10x [top] and BIDCell [bottom].
d Scatter plot showing the Pearson correlation with SMART-seq2 data between 10x
and BIDCell for each cell type, where each dot is coloured by the cell type with the
same colours as the legend in (c). e Scatter plot showing the positive purity score

between 10x and BIDCell for each cell type, where each dot is coloured by the cell
type. f The top panel indicates the neurons in the hippocampus region (CA1-CA3,
DG) and the bottom panels are 6 x 2 panels showing the five distinct spatial regions
with different neuronal markers in the hippocampal regions. From top to bottom,
Prox1 was expressed only in DG, Neurod6was expressed in all CA regions, Slit2 was
expressed in CA3, Necab2 was expressed in CA2, and Wfs1 and Cpne8 were
expressed in CA1. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44560-w

Nature Communications |          (2024) 15:509 10

https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/resources/datasets/fresh-frozen-mouse-brain-replicates-1-standard
https://www.10xgenomics.com/resources/datasets/fresh-frozen-mouse-brain-replicates-1-standard
https://nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/
https://nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/
https://info.vizgen.com/merscope-ffpe-solution
https://info.vizgen.com/merscope-ffpe-solution
https://db.cngb.org/stomics/mosta/download/


data with multiple datasets, we constructed cell-type specific profiles
by aggregating the gene expression by cell type per dataset.

(i) TISCH-BRCA. The reference for Xenium-BreastCancer used in BID-
Cell was basedon 10 single-cell breast cancer datasets downloaded from
TheTumor ImmuneSingleCellHub2 (TISCH2)17 fromhttp://tisch.comp-
genomics.org/gallery/?cancer=BRCA&species=Human, which contains
the gene by cell expressions and cell annotations of the data. We used
the “celltype major lineage" as the cell type labels. We combined the
“CD4Tconv" and “Treg" as “CD4Tconv/Treg" and “CD8T" and “CD8Tex"
as “CD8T/CD8Tex", which results in 17 cell types in total.

(ii) Chromium-BreastCancer. To evaluate the performance of
Xenium-BreastCancer, we downloaded the Chromium scFFPE-seq data
from the same experiment from https://www.10xgenomics.com/
products/xenium-in-situ/preview-dataset-human-breast (accessed 22
March 2023), which contains 30,365 cells and 18,082 expressed genes.
We then performed Louvain clustering on the k-nearest neighbour
graph with k = 20, based on the top 50 principal components (PCs) to
obtain 22 clusters. We then annotated each cluster based on the
markers and annotation provided in the original publication1.

(iii) Allen Brain Map. The reference for Xenium-MouseBrain data was
based on Mouse Whole Cortex and Hippocampus SMART-seq data
downloaded from https://portal.brain-map.org/atlases-and-data/
rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq, which con-
tains both geneby cell expressions and cell annotations of the data.We
used the cluster annotation from “cell_type_alias_label" as the cell type
labels and combined some of the labels with a small number of cells.
For example, we combined all “Sst" subtypes as “Sst" and all “Vip"
subtypes as “Vip", which results in 59 cell types in total.

(iv) HLCA and TISCH-NSCLC. The reference for CosMx-Lung for both
BIDCell and CellSPA was based on Human Lung Cell Atlas (HLCA)30,
provided in the “HLCA_v1.h5ad" file from https://beta.fastgenomics.
org/p/hlca, including both gene expressions and cell type annotations
of the data. We used “ann_finest_level" as cell type labels, which con-
tained 50 cell types in total.

As HLCA only contains single-cell datasets from non-cancer lung
tissue, we complemented the reference data with malignant cells
provided in TISCH2, where we downloaded 6 single-cell NSCLC data-
sets with tumour samples from http://tisch.comp-genomics.org/
gallery/?cancer=NSCLC&species=Human. We only included the cells
labelled as malignant cells in the reference.

(v) TISCH-SKCM. The reference for MERSCOPE-Melanoma for both
BIDCell and CellSPA was based on 10 single-cell melanoma datasets
downloaded from TISCH2 from http://tisch.comp-genomics.org/
gallery/?cancer=SKCM&species=Human, which contains the gene by
cell expressions and cell annotations of the data.We used the “celltype
major lineage” as the cell type labels. We combined the “CD4Tconv”
and “Treg” as “CD4Tconv/Treg” and “CD8T” and “CD8Tex” as “CD8T/
CD8Tex”, which resulted in 15 cell types in total.

(vi) Mouse Embryo reference. The reference for Stereo-seq-
MouseEmbryo was downloaded from GEO database under accession
code: GSE11994531, which contain both counts and cell type annotation
data. The E12.5 data was then used as reference.

Biologically-informed deep learning-based cell segmentation
(BIDCell) overview
BIDCell is a self-supervised deep learning framework that computes
biologically-informed loss functions to optimise learnable parameters
for the prediction of cell segmentationmasks for spatial transcriptomic
data. BIDCell uses three types of data: (i) spatial transcriptomicmaps of

genes, (ii) corresponding DAPI image, and (iii) average gene expression
profiles of cell types from a reference dataset, such as the Human Cell
Atlas. A major innovation in developing BIDCell is the use of
biologically-informed prior knowledge via the SSL paradigm to enable
DL models to learn complex structures in SST data, to derive cell seg-
mentations that are visually more realistic and capture better expres-
sion profiles.

The BIDCell framework has the following four key characteristics:
• BIDCell predicts diverse cell shapes for datasets containing

various cell types to better capture cell expressions (see section
Elongated and non-elongated shapes).

• BIDCell uses positive and negative markers from sequencing
data to enhance the guidance for learning relationships between
spatial gene expressions and cell morphology in the form of
cell segmentations (see section Positive and negative cell-type
markers).

• BIDCell is parameterised by a deep learning architecture that
learns to segment cells from spatial transcriptomic images (see
section Deep learning-based segmentation).

• BIDCell uses biologically-informed, self-supervised loss func-
tions to train the deep learning architecturewithout the need for
manual annotations and better capture cell expressions (see
section BIDCell training and loss functions).

Elongated and non-elongated shapes. BIDCell is capable of gen-
erating cell segmentations that exhibit different morphologies for
different cell types, rather than assume a generally circular profile for
all cell types. In particular, BIDCell can distinguish between cell types
that typically appear more elongated, such as fibroblasts and smooth
muscle cells, and those that are typically more rounded or circular,
such as B cells. Elongated cell types can be directly specified for each
tissue sample as desired, based on existing biological knowledge.

We used the expression within the nuclei (see section Nuclei
segmentation) of cells to perform an initial classification of elongated
and non-elongated cell types. Transcripts weremapped to nuclei using
nuclei segmentations, and the Spearman correlation was computed
between nuclei expression profiles and reference cell types of the
Human Cell Atlas. Nuclei were classified as the cell type with which it
was most highly correlated to. This initial classification coupled with
the eccentricity of the nuclei were used to inform the cell-calling loss
function (described in section Cell-calling loss) to produce segmen-
tationmorphologieswithmore variation that aremore appropriate for
different cell types. We considered epithelial cells, fibroblasts, myofi-
broblasts, and smooth muscle cells to be elongated for samples of
breast cancer and melanoma. Endothelial cells, fibroblasts, myofibro-
blasts, fibromyocytes, and pericytes were deemed elongated for
NSCLC. We considered all cell types in the mouse brain sample to be
elongated.

Positive and negative cell-typemarkers. BIDCell learns relationships
between the spatial distribution of gene expressions and cell mor-
phology in the form of cell segmentations. This relationship can be
enhanced by incorporating biological knowledge in the form of cell-
type markers, specially, the genes that are typically more expressed
(positive markers) and less expressed (negative markers) in different
cell types, which allows BIDCell to predict segmentations that lead to
more accurate cell expression profiles. Cell-type marker knowledge is
drawn from the Human Cell Atlas, which allows BIDCell to be applied
without requiring a matched single-cell reference for the same sample
of interest. Markers were incorporated into BIDCell through our
positive and negative marker losses (described in section Positive and
negative marker losses).

Deep learning-based segmentation. BIDCell is parameterised by a set
of learnable parameters θ of a deep learning segmentation model. We
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used the popular UNet 3+19 as the backbone of our framework to
perform cell segmentation by predicting the probability of cell
instances at eachpixel. This architecturemaybe swappedout forother
segmentation architectures. UNet 3+ was originally proposed for
organ segmentation in computed tomography (CT) images. Itwas built
on the original U-Net12 and incorporated full-scale skip connections
that combined low-level details with high-level features across differ-
ent scales (resolutions). UNet 3+ comprised an encoding branch and
decodingbranchwithfive levels of feature scales.Wedid not adopt the
deep supervision component proposed by UNet 3+, and instead only
computed training losses at the lateral resolution of the original input.

Input
The input to the UNet 3+ model was a cropped multichannel

spatial transcriptomic image x 2 Rh ×w×ngenes , where ngenes represents
the channel axis corresponding to the total number of genes in the
dataset, h is the height of the input patch, and w is the width of the
input patch. Prior to being fed into the first convolutional layer, the
input was reshaped to [ncells, ngenes, h,w], effectively placing ncells in the
batch sizedimension. In this way, all the cells in a patchwereprocessed
simultaneously, and the model could flexibly support an arbitrary
number of cells without requiring extra padding or preprocessing.
ncells was determined by the corresponding patch of nuclei to ensure
consistency with predicted cell instances. Input volumes that were
empty of nuclei were disregarded during training and yielded no cells
during prediction.

Output and segmentation prediction
The softmax function was applied to the output of UNet 3+ to

yield probabilities of foreground and background pixels for each cell
instance. This produced multiple probabilities for background pixels
(i.e.,ncellsprobabilities per pixel for a patch containingncells), due to the
placement of cell instances in the batch size dimension. These prob-
abilities were aggregated by averaging across all the background
predictions per pixel. The argmax function was applied pixel-wise to
the foreground probabilities for all cells and averaged background
probabilities. This produced a segmentation map corresponding to
the object (cell instance or background) with the highest probability at
each pixel.

Morphological processing
The initial segmentation output by the deep learning model was

further refined to ensure pixel connectivity within each cell (i.e., all the
sections of the cell were connected). The process involved standard
morphological image processing techniques to each cell, including
dilation, erosion, hole-filling, and removal of isolated islands, while
ensuring that the nucleus was captured. First, dilation followed by
erosion were applied using a 5 × 5 circular kernel with two iterations
each. Hole-filling was then carried out on the cell section with the
largest overlap with the nucleus. Any remaining pixels initially pre-
dicted for the cell thatwere still not connected to themain cell section
were discarded. After morphological processing, the number of tran-
scripts captured within each cell is slightly higher, while purity metrics
and correlation with Chromium are the same or slightly higher (Sup-
plementary Fig. 24).

Mapping transcripts to predicted cells
The detected transcripts were mapped to cells using the final

predicted segmentations. The segmentation map was resized back to
the original pixel resolution using nearest neighbour interpolation.
Transcripts located in the mask of a cell were added to the expression
profile of the cell. This produced a gene-cell matrix ncells × ngenes, which
was used for performance evaluation and downstream analysis.

BIDCell training and loss functions. The BIDCell framework com-
bines several loss functions that automatically derive supervisory sig-
nals from the input data and/or predicted segmentations at each step
of the training process. This approach to learning is a core aspect of
SSL32. Furthermore, the modular and additive design of the loss

functions allows each loss to be swapped out with alternative
approaches to compute training signals. The SSL label describes the
ability of the framework to automatically learn relationships between
gene expressions and cell morphology from its inputs.

Our approach for learning the parameters θ of the segmentation
model relies on minimising a total of 6 loss functions that we propose
with our framework. Some of the losses effectively increase the num-
ber of pixels predicted for a cell, while others reduce the size of its
segmentation. The nuclei encapsulation, cell-calling, over-segmenta-
tion, and overlap losses guide the basic morphology of cells. The
positive and negative marker losses refine the cell morphologies
learned through the other loss functions, by further guiding themodel
to learn biologically-informed relationships between gene expressions
and cell morphology. This is reminiscent of the pretext and down-
stream (fine-tuning) stages commonly encountered in SSL, where the
pretext task aids the model to learn better representations or inter-
mediate weights, while the fine-tuning task refines the weights and
further improves performance for a particular prediction task. Taken
together, the losses ensure that the segmentation model learns rela-
tionships between spatially-localised, high-dimensional gene expres-
sion information and the morphology of individual cells.

(A) Nuclei encapsulation loss
The segmentation of a cell must contain all the pixels of the cell’s

nucleus. Additionally, the expressed genes in nuclei can guide the
model to learnwhichgenes shouldbepredictedwithin cells. Hence,we
included a loss function Lne that incentivises the model to learn to
correctly predict nuclei pixels:

Lneðxnuc,ŷÞ= � xnuc logðŷÞ � ð1� xnucÞ logð1� ŷÞ, ð1Þ

where xnuc is the binary nucleus segmentation mask, and ŷ is the pre-
dicted segmentation for all cells of the corresponding training patch.

(B) Cell-calling loss
The aim of the cell-calling loss was to increase the number of

transcripts assigned to cells. We also designed the cell-calling loss to
allow BIDCell to capture cell-type specific morphologies. Unique
expansion masks ec∈ {0, 1}h×w were computed for each cell based on
the shape of its nucleus andwhether its nucleus expression profile was
indicative of an elongated cell type. The expansion mask of a non-
elongated cell was computed by applying a single iteration of the
morphological dilation operatorwith a circular kernel of 20 × 20pixels
to its binary nucleus mask.

The expansion mask of an elongated cell was computed based on
the elongation of its nucleus, defined as the eccentricity of an ellipse
fitted to its nucleus mask:

ecc=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

s
, ð2Þ

where a represents the length of the major axis, and b is the length of
the minor axis.

We found that elongated cell types tended to have nuclei with
higher eccentricity (Supplementary Fig. 1). Hence, the eccentricity of a
nucleus could serve as a proxy for the shape of its cell via an elongated
expansionmask. We computed each cell-specific elongated expansion
mask using an elliptical dilation kernel applied to the nucleus. The
horizontal and vertical lengths of the elliptical kernel were computed
by:

lh =α × eccnuc × lt , ð3Þ

lv =
lt � lh, if lt � lh>lvm
lvm, otherwise

�
ð4Þ
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where α is a scaling factor set to 0.9, eccnuc is the eccentricity of the
nucleus, lt is the sum of lh and lv, which was set to 60 pixels, and lvm is
the minimum vertical length, which was set to 3 pixels. These values
were selected based on visual inspection (e.g., the cells appear rea-
sonably sized), andwerekept consistent across thedifferent elongated
cell types and datasets used in this study. The elliptical dilation kernel
was rotated to align with the nucleus and applied to the nucleus mask
to produce the elongated expansion mask of the cell.

The expansion masks were used in our cell-calling loss function
that was minimised during training:

Lccðe,ŷÞ=
1
M

XM
c

�ec logðŷcÞ � ð1� ecÞ logð1� ŷcÞ, ð5Þ

whereec is the expansionmask and ŷc is thepredicted segmentationof
cell c ofM cells in an input patch.

(C) Over-segmentation loss
We introduced the over-segmentation loss to counter the cell

size-increasing effects of the cell-calling loss to prevent the segmen-
tations becoming too large and splitting into separate segments. This
loss function elicited a penalty whenever the sum of cytoplasmic
predictions exceeded the sumof nuclei predictions for a cell in a given
patch:

pnuc,c =
X
i

X
j

σðq̂ijcxnuc,ij � 0:5Þ, ð6Þ

pcyto,c =
X
i

X
j

σðq̂ijcð1� xnuc,ijÞ � 0:5Þ, ð7Þ

Los =
1
M

PM
c
ðpcyto,c � pnuc,cÞ, if

PM
c
ðpcyto,c � pnuc,cÞ>0

0, otherwise

8><
>: ð8Þ

where for cell c atpixel (i, j), q̂ijc is thepredicted foregroundprobability
for cell c, xnuc,ij∈ {0, 1} is the binary nucleus mask, and σ is the sigmoid
function. Los was normalised by number of cells M to aid smooth
training.

(D) Overlap loss
Cells are often densely-packed together in samples of various

human tissues. This poses a challenge to segmentation models in
predicting clear boundaries and coherent segmentations for neigh-
bouring cells without overlap. We introduced the overlap loss to
penalise the prediction of multiple cells occurring at each pixel:

sov,ij = � ð1� xnuc,ijÞ+
XM
c

σðq̂ijcð1� xnuc,ijÞ � 0:5Þ, ð9Þ

Lov =

P
i

P
j
ðsov,ij Þ

Mhw , if sov >0

0, otherwise

(
ð10Þ

Lov was normalised by number of cellsM, and the lateral dimensions h
and w of the input to aid smooth training.

(E) Positive and negative marker losses
The purposes of our positive and negativemarker losses were to

encourage the model to capture pixels that contained positive cell-
type markers, and penalise the model when segmentations captured
pixels that contained negative cell-type markers for each cell. The
marker losses refine the initial morphology learned through the
other loss functions, by further guiding the model to learn
biologically-informed relationships between gene expressions and
cell morphology.

The positive and negativemarkers for the training loss were those
with expressions in the highest and lowest 10 percentile for each cell
type of a tissue sample. In our experiments, we found that a higher
number of positive markers tended to increase the size of predicted
cells as the model learns to capture more markers, and vice versa. We
found that removing positive markers that were common to at least a
third of cell types in each tissue type was appropriate across the dif-
ferent datasets for training.

The one-hot encoded lists of positive and negativemarkers of the
cell type for cell c were converted into sparse maps mpos,c∈ {0, 1}h×w

and mneg,c∈ {0, 1}h×w. At each pixel, 0 indicated the absence of all
markers, while 1 indicated the presence of any positive or negative
marker for its respective map. mpos,c and mneg,c were then multiplied
element-wise by the expansion mask ec to remove markers far away
from the current cell. Each marker map was dilated by a 3 × 3 kernel,
whichwas based on the assumption that pixels in a 3 × 3 region around
each marker were most likely from the same cell. We found this dila-
tion to improve training guidance and segmentation quality, as the
maps tended to be quite sparse.

The marker maps were then used to compute the positive and
negative marker losses:

Lposðmpos,ŷÞ=
1
M

XM
c

�mpos,c logðŷcÞ � ð1�mpos,cÞ logð1� ŷcÞ, ð11Þ

Lneg ðmneg,q̂Þ=
1
M

XM
c

σðq̂cmneg,c � 0:5Þ ð12Þ

Total loss. Themodel was trained byminimising the sumof all the loss
functions over N training patches:

min
θ

XN
n

½λneLne + λccLcc + λosLos + λovLov + λposLpos + λnegLneg �, ð13Þ

where each λ represents a hyperparameter that scaled its respective L.
The value of λ for all loss functions was set to 1.0 (except for the
ablation and lambdas studies); this ensured our losses were not fine-
tuned to any particular datasets.

Practical implementation
Details. To address computational efficiency concerns related to
memory usage, we partitioned the spatial transcriptomic maps into
patches of 48 × 48 × ngenes for input into UNet 3+. BIDCell has been
verified for datasets containing up to 960 genes on a 12GB GPU. It is
also important to note that the number of genes primarily affects the
weights of the first convolutional layer, thus having a minor impact on
memory usage.

The patch-based predictions could result in effects along the
patch boundaries such as sharp or cut-off cells. When dividing the
transcriptomic maps into patches, we create two sets of patches of
the same lateral dimensions with an overlap equal to half the lateral
size of the patches. The predictions for the patches were combined
(see Supplementary Fig. 25), without additional operations to resolve
potential disagreement between predictions of the two sets. Only
patches from the first set (no overlaps) were selected during training,
while all patches were used during inference.

One image patch was input into the model at one time, though
batch size was effectively ncells due to reshaping (see section Deep
learning-based segmentation-Input). Neither normalisation nor stan-
dardisation were applied to the input image patches, such that the
pixels depicted raw detections of transcripts.

The model was trained end-to-end from scratch for 4000 itera-
tions (i.e., using 4000 training patches). This amounted to amaximum
of 22%of the entire image, thereby leaving the restof the imageunseen
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by the model during inference. Weights of the convolutional layers
were initialised using He et al.’s method33. We employed standard on-
the-fly image data augmentation by randomly applying a flip (hor-
izontal or vertical), rotation (of 90, 180, or 270 degrees) in the (x,y)
plane. The order of training samples was randomised prior to training.
We employed theAdamoptimiser34 tominimise the sumof all losses at
a fixed learning rate of 0.00001, with a first moment estimate of 0.9,
second moment estimate of 0.999, and weight decay of 0.0001.

Time and system considerations. We ran BIDCell on a Linux system
with a 12GBNVIDIA GTXTitan V GPU, Intel(R) Core(TM) i9-9900KCPU
@ 3.60GHz with 16 threads, and 64GBRAM. BIDCell was implemented
in Python using PyTorch. For Xenium-BreastCancer1, which contained
109k detected nuclei, 41M pixels (x,y), and 313 genes, training was
completed after approximately 10 minutes for 4000 steps. Inference
time was about 50 minutes for the complete image. Morphological
processing required approximately 30min to generate the final seg-
mentation. A comparison of the runtimes between different methods
is included in Supplementary Fig. 26.

Ablation study. We performed an ablation study to determine the
contributions from each loss function and effects of different
hyperparameter values (Supplementary Figs. 4, 5). We used Xenium-
BreastCancer1 for these experiments. We evaluated BIDCell without
each of the different loss functions by individually setting their cor-
responding weights λ to zero. Furthermore, we evaluated different
parameterisations of the cell-calling loss. We experimented with
different diameters for the dilation kernel for non-elongated cells,
including 10, 20, and 30 pixels, and different total lengths of the
minor and major axes lt of the dilation kernel for elongated cells,
including 50, 60, and 70 pixels. We also ran BIDCell without shape-
specific expansions, thereby assuming a non-elongated shape for
all cells.

Performance evaluation
We compared our BIDCell framework to vendor-provided cell seg-
mentations, and methods designed to identify cell bodies via cell
segmentation. Table 2 provides a summary of all methods compared
from adapting classical approaches including Voronoi expansion,
nuclei dilation, and the watershed algorithm, to recently proposed
approaches for SST images including Baysor, JSTA, and Cellpose.
Methods that were excluded from the evaluations include those that
focus on the assignment of transcripts to cells and do not consider the
cell boundaries, underperformance on the public datasets, lack of
code and instructions to prepare data into the required formats, and
failure of the method to detect any cells (Supplementary Table 1).

Settings used for othermethods. We used publicly available code for
Baysor, JSTA, and Cellpose with default parameters unless stated
otherwise. All comparison methods that required nuclei information
used identical nuclei as BIDCell, which were detected using Cellpose
(v2.1.1) (see Nuclei segmentation).

• Baysor - Version 0.5.2 was applied either without a prior, or with
a prior nuclei segmentation with default prior segmentation
confidence of 0.2. For both instances, we followed recom-
mended settings35, including 15 for the minimum number of
transcripts expected per cell, and not setting a scale value, since
the sample contained cells of varying sizes. We found the scale
parameter to have a considerable effect on segmentation pre-
dictions, and often resulted in cells with unrealistically uniform
appearances if explicitly set.

• JSTA - default parameters were used. We encountered high CPU
loading and issues with two regions of Xenium-BreastCancer1,
which yielded empty predictions for those regions despite
multiple attempts and efforts to reduce input size.

• Cellpose - Version 2.1.1 was applied to the channel-wise
concatenated image comprising DAPI as the “nuclei” channel,
and sum of spatial transcriptomic maps across all genes as the
“cells” channel, using the pre-trained “cyto” model with auto-
matic estimation of cell diameter.

• Voronoi - Classical Voronoi expansion was seeded on nuclei
centroids and applied using the SciPy library (v1.9.3).

• Watershed - Thewatershed algorithmwasperformedon the sum
of transcriptomicmaps across all genes. Seeded watershed used
nuclei centroids and was applied using OpenCV (v4.6.0).

• Cellpose nuclei dilation - we applied dilation to nuclei masks as a
comparison segmentation method. Each nucleus was enlarged
by about 1 micron in radius by applying morphological dilation
using a 3 × 3 circular kernel for one iteration. Overlaps between
adjacent cell expansions were permitted.

Evaluation metrics and settings. We introduce the CellSPA frame-
work, that captures evaluation metrics across five complementary
categories. A summary of this information is provided in Supplemen-
tary Table 2.

[A] Baseline metrics
Overall characteristics

• Number of cells
• Proportion of transcripts assigned

Cell-level QC metrics
• Proportion of cells expressing each gene
• Number of transcripts per cell
• Number of genes expressed per cell
• Cell area

Density =
P

i2Ini

A
, ð14Þ

where ∑i∈Ini represents the sum of all total transcripts over a set I, and
A represents the cell area.

Cell morphology metrics
We evaluated multiple morphology-based metrics and provide

diagrammatic illustrations in Supplementary Fig. 27.
• Elongation =

Wbb

Hbb
, ð15Þ

where Wbb represents the width of the bounding box, and Hbb repre-
sents the height of the bounding box.

Elongation measures the ratio of height versus the width of the
bounding box (Supplementary Fig. 27f). Elongation is insensitive to
concave irregularities and holes present in the shape of the cell. The
value of this metric will be 1 for a perfect square bounding box. As the
cell becomes more elongated the value will either increase far above 1
or decrease far below 1, depending on whether the elongation occurs
along the height or width of the bounding box.

• Circularity =

4π ×A

P2
convex

, ð16Þ

where A represents the area, and Pconvex represents the convex
perimeter.

Circularity measures the area to perimeter ratio while excluding
local irregularities of the cell. We used the convex perimeter of the
object as opposed to its true perimeter to avoid concave irregularities.
The value will be 1 for a circle and decreases as a cell becomes less
circular.
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• Sphericity =

RI

RC
, ð17Þ

where RI represents the radius of the inscribing circle, and RC repre-
sents the radius of the circumscribing circle.

Sphericity measures the rate at which an object approaches the
shape of a sphere while accounting for the largest local irregularity of
the cell by comparing the ratio of the radius largest circle that fits
inside the cell (inscribing circle) to the radius of the smallest circle that
contains the whole cell (circumscribing circle). The value is 1 for a
sphere and decreases as the cell becomes less spherical.

• Compactness =

4π ×A

P2
cell

, ð18Þ

where A represents the area, and Pcell represents the cell perimeter.
Compactness measures the ratio of the area of an object to the

area of a circle with the same perimeter. Compactness uses the peri-
meter of the cell thus it considers local irregularities in the cell peri-
meter. A circle will have a value of 1, and the less smooth or more
irregular the perimeter of a cell, the smaller the value will be. For most
cells the numerical values for compactness and circularity are expec-
ted to be similar. Identifying which cells have large differences
between these metrics can identify cells with highly irregular peri-
meters which may be of interest for downstream analysis and quality
control for segmentation.

• Convexity =

Pconvex

Pcell
, ð19Þ

where Pconvex represents the convex perimeter and Pcell represents the
cell perimeter.

Convexity measures the ratio of the convex perimeter of a cell to
its perimeter. The value will be 1 for a circle and decrease the more
irregular the perimeter of a cell becomes, similar to compactness.

• Eccentricity =

Lminor

Lmajor
, ð20Þ

where Lminor represents the length of the minor axis and Lmajor repre-
sents the length of the major axis.

Eccentricity (or ellipticity) measures the ratio of the major axis to
the minor axis of a cell. The major axis is the longest possible line that
can be drawn between the inner boundary of a cell without intersect-
ing its boundary. The minor axis is the longest possible line can be
drawn within the inner boundary of a cell while while also being per-
pendicular to the major axis. This gives a value of 1 for a circle and
decreases the more flat the cell becomes.

• Solidity =

A
Aconvex

, ð21Þ

where A represents the area, and Aconvex represents the convex area.
Solidity measures the ratio of the area of a cell to the convex

area of a cell. This measures the density of a cell by detecting
holes and irregular boundaries in the cell shape. The maximum
value will be 1 for a cell with a perfectly convex and smooth
boundary and will decrease as the cell shape becomes more con-
cave and/or irregular.

Gene-level QC characteristics
• Proportion of cells expressing each gene
[B] Segmented cell expression purity. We implemented two

broad classes of statistics to capture (i) the concordance of expression
profile with scRNA-seq data and (ii) the expression purity or homo-
geneity of cell typemarkers. The scRNA-seq data used are described in
Section Datasets and preprocessing and listed in Table 1.

• Concordance with scRNA-seq data - We calculated the similarity
of the expression pattern between the segmented cells and publicly
available single-cell datasets. Here the similarity was measured by
Pearson correlation of the average log-normalised gene expression for
each cell type. We also calculated the concordance of the proportion
of non-zero expression for each cell type between the segmented cells
and scRNA-seq data. For data with paired Chromium data from the
same experiment, i.e., Xenium-Brain, we also compared the cell type
proportion and quantify the concordance using the Pearson correla-
tion. We annotated the cell type annotation for segmented cells using
scClassify36 with scRNA-seq data as reference.

• Purity of expression - We first curated a list of positive markers
and negative markers from the scRNA-seq reference data. For each
cell type, we selected the highest and lowest 10 percentile of the
genes with difference of expression compared to other cell types.We
also removed the positive markers that were common to more than
25% of cell types for a more pure positive marker list. For each seg-
mented cell, we then consider the genes with the highest 10 per-
centile of expression as positive genes and lowest 10 percentile as
negative markers. We then calculated the Precision, Recall and
F1 score for both positive and negative markers. We further sum-
marised the average positive marker F1 scores and negative marker
F1 scores into one Purity F1 score for each method, where we first
scaled the average positive and negative marker F1 scores into the
range of [0, 1] and then calculated the F1 score of transformed
metrics as the following:

F1purity = 2 � ð1� F1negativeÞ � F1positive
1� F1negative + F1positive

: ð22Þ

[C] Spatial characteristics
In this category, wemeasured the association between cell type

diversity in local spatial regions and all the cell-level baseline
characteristics provided in [A]. We first divided each image into
multiple small regions. Then, for each local spatial region, we cal-
culated the cell type diversity using Shannon entropy with the R
package ’entropy’, where a higher entropy indicates a more diverse
cell type composition. Next, we assessed the variability of cell-level
baseline characteristics within each local region using the coeffi-
cient of variation. Subsequently, for each of the cell-level baseline
characteristics mentioned in [A], we calculated the Pearson corre-
lation between the cell type diversity (measured using Shannon
entropy) and the coefficient of variation of these characteristics
across all local regions. Here, we anticipate that regions with more
diverse cell type compositions will exhibit higher variability in cell-
level characteristics, leading to a stronger correlation between
these two metrics.

[D] Neighbouring contamination
This metric is designed for cell segmentation to ensure that the

expression signals betweenneighboring cells are not contaminated. For
a pair of cell types (e.g., cell type A and B), we computed the Euclidean
distance from each cell in cell type A to its nearest neighbor belonging
to cell type B. We then grouped the cells of cell type A based on a range
of distances. Within each group, we calculated the proportion of cells
expressing a selected negative marker, which is a cell type marker for
cell type B. We anticipate that the method with less contamination will
result in segmented cells expressing lower levels of thenegativemarker,
even when the distance to a different cell type is minimal.
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[E] Replicability
Our analysis involved assessing the agreement between the

Xenium-BreastCancer1 and Xenium-BreastCancer2 datasets, which are
closely related in terms of all the cell-level baseline characteristics
provided in [A]. As these datasets are considered to be sister regions,
we anticipated that the distribution of all the baseline characteristics,
as well as the cell type composition, would be similar. We use Pearson
correlation to quantify the degree of concordance.

Statistics and reproducibility
All analysis was done in R version version (4.3.0). No statisticalmethod
was used to predetermine sample size. No data were excluded from
the analyses. All cells that passed quality control were included in the
analyses. The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available and were down-
loaded from the following links (more details including accession codes
are provided in Table 1). 10x Genomics Xenium breast cancer replicates
1 and 2: https://www.10xgenomics.com/products/xenium-in-situ/
preview-dataset-human-breast. 10x Genomics Xenium mouse brain:
https://www.10xgenomics.com/resources/datasets/fresh-frozen-
mouse-brain-replicates-1-standard. NanoString CosMx NSCLC: https://
nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-
dataset/. Vizgen MERSCOPE melanoma2: https://info.vizgen.com/
merscope-ffpe-solution (requires filling in the form to access). The
Stereo-seq E12.5_E1S3 data were downloaded from https://db.cngb.org/
stomics/mosta/download/. Tumor Immune Single Cell Hub 2
(TISCH2) BRCA: http://tisch.comp-genomics.org/gallery/?cancer=
BRCA&species=Human. 10x Chromium breast cancer: https://www.
10xgenomics.com/products/xenium-in-situ/preview-dataset-human-
breast. AllenBrainMapMouseWholeCortex andHippocampusSMART-
seq: https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-
whole-cortex-and-hippocampus-smart-seq. Human Lung Cell Atlas:
https://beta.fastgenomics.org/p/hlca. TISCH-NSCLC: http://tisch.comp-
genomics.org/gallery/?cancer=NSCLC&species=Human. TISCH-SKCM:
http://tisch.comp-genomics.org/gallery/?cancer=SKCM&species=
Human. The mouse embryo reference was downloaded from GEO
database under accession code [GSE119945]. The TISCH-BRCA datasets
were downloaded from GEO database under accession codes
[GSE110686], [GSE114727], [GSE138536], [GSE143423], [GSE176078],
[GSE148673], [GSE150660]; from EBI database under accession code [E-
MTAB-8107]; and from SRA under accession code [SRP114962]. The
original published datasets of HLCA can be accessed under GEO
accession number [GSE135893] for Banovich_Kropski_2020; URL
[https://www.synapse.org/#!Synapse:syn21041850] for Krasnow_2020;
[GSE128033] for Lafyatis_Rojas_2019; URL [https://explore.data.
humancellatlas.org/projects/c4077b3c-5c98-4d26-a614-246d12c2e5d7]
for Meyer_2019; [GSE158127] for Misharin_2021; [GSE122960] and
[GSE121611] for Misharin_Budinger_2018; European Genome-phenome
Archive study ID [EGAD00001005065] for Teichmann_Meyer_2019. The
TISCH-NSCLC datasets were downloaded from GEO database under
accession codes [GSE117570], [GSE127465], [GSE143423], [GSE148071],
[GSE150660]; and from EBI database under accession code [E-MTAB-
6149]. The SKCM datasets were downloaded from GEO database under
accession codes [GSE115978], [GSE120575], [GSE123139], [GSE139249],
[GSE148190], [GSE72056], [GSE134388], [GSE159251], [GSE166181], and
[GSE179373]. Source data are provided with this paper.

Code availability
We provide our code for data pre-processing, BIDCell training and
inference in https://github.com/SydneyBioX/BIDCell, https://doi.org/
10.5281/zenodo.1007079437. We provide our CellSPA framework in
https://github.com/SydneyBioX/CellSPA, https://doi.org/10.5281/
zenodo.1029599138.
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