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Decoding the gene regulatory network of
endosperm differentiation in maize

Yue Yuan1,2,3,6, Qiang Huo 1,6, Ziru Zhang1, Qun Wang1, Juanxia Wang1,
Shuaikang Chang1, Peng Cai1, Karen M. Song 4, David W. Galbraith 5,
Weixiao Zhang1, Long Huang1, Rentao Song 1,2,3 & Zeyang Ma 1,2,3

The persistent cereal endosperm constitutes themajority of the grain volume.
Dissecting the gene regulatory network underlying cereal endosperm devel-
opment will facilitate yield and quality improvement of cereal crops. Here, we
use single-cell transcriptomics to analyze the developing maize (Zea mays)
endosperm during cell differentiation. After obtaining transcriptomic data
from 17,022 single cells, we identify 12 cell clusters corresponding to five
endosperm cell types and revealing complex transcriptional heterogeneity.
We delineate the temporal gene-expression pattern from 6 to 7 days after
pollination. We profile the genomic DNA-binding sites of 161 transcription
factors differentially expressed between cell clusters and constructed a gene
regulatory network by combining the single-cell transcriptomic data with the
direct DNA-binding profiles, identifying 181 regulons containing genes
encoding transcription factors along with their high-confidence targets, Fur-
thermore, we map the regulons to endosperm cell clusters, identify cell-
cluster-specific essential regulators, and experimentally validated three pre-
dicted key regulators. This study provides a framework for understanding
cereal endosperm development and function at single-cell resolution.

Maize (Zea mays) endosperm is an important food source for humans
and animals1–3 and an excellent model for developmental and mole-
cular studies, given its relatively large size andgreater repertoireof cell
types compared to thoseof other crop species, suchaswheat (Triticum
aestivum), rice (Oryza sativa) and barley (Hordeum vulgare)3–6. After
double fertilization, early maize endosperm development includes a
multinucleate coenocyte stage, a cellularization stage to form the
cellular endosperm, and then the stage of differentiation into distinct
cell types6–8. In early differentiation, maize endosperm comprises the
immature starchy endosperm (SE), aleurone layer (AL), basal endo-
sperm transfer layer (BETL) and embryo-surrounding region (ESR) cell
types; the subaleurone (SA), conducting zone (CZ), basal intermediate
zone (BIZ) and endosperm adjacent to scutellum (EAS) arise in late

differentiation4,7,9. Based on morphological observations, 6–8 days
after pollination (DAP) is a critical time window bridging the early and
late differentiation stages7. Once the main cell types are established,
maize endosperm undergoes intensive cell proliferation and transi-
tions to the grain-filling stage10.

Despite this detailed body of knowledge, the regulatory
mechanisms underlying endosperm cell fate determination and dif-
ferentiation remain largely unknown. Transcriptomic studies have
provided spatiotemporal molecular characterization of the major
maize endosperm cell types9,11–15, but a high-resolution map of endo-
sperm cells at differentiation stage has not been established, hindering
our understanding of the heterogeneous cell populations and of the
underlying biological processes. A cohort of transcription factors (TFs)
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involved inmaize endosperm development has been identified16, but a
comprehensive regulatory network governing the formation and
maintenance of the different cell types, as well as their master reg-
ulators, have yet to be defined.

To build a comprehensive map of the transcriptional landscape
and a gene regulatory network of endosperm differentiation in maize
and to describe its transcriptional complexity, we used single-cell
transcriptomics (scRNA-seq) and optimized DNA affinity purification
sequencing with PCR-amplified genomic DNA library (ampDAP-seq) to
generate a transcriptome atlas and large-scale TF-DNA-binding pro-
files, respectively. Based on the reconstituted high-confidence gene
regulatory network, we also identified essential regulons for each cell
type. Finally, we provide an online interface for exploring these data-
sets (https://www.maize-endosperm.cn/).

Results
Construction of a single-cell transcriptome atlas of maize
endosperm
To generate a single-cell atlas from differentiating endosperm, we
harvested maize endosperm tissues at 6 and 7 DAP and digested them
into protoplasts. We constructed four scRNA-seq libraries (one sample
from 6 DAP and three replicates from 7 DAP) using the 10x Genomics
Chromium platform, which were sequenced using Illumina technolo-
gies (Fig. 1a, Supplementary Fig. 1, Supplementary Data 1). We profiled
17,022 individual cells that passed quality control and detected the
expression of 25,365 genes, which was close to the number (30,050)
detected by bulk RNA sequencing (RNA-seq) of the same samples
(Supplementary Fig. 1, Supplementary Data 1). On average, we detec-
ted the expression of 2005 genes per cell. The global gene-expression
profiles were highly correlated between undigested endosperm cells
andprotoplasts, aswell as between the scRNA-seq andbulk RNA-seqof
protoplasts (r = 0.95 and 0.83, respectively; Supplementary Fig. 1a, b).
The quality control plots indicated high reproducibility between bio-
logical replicates (Supplementary Fig. 1c, d).

To identify distinct cell populations based on the gene-expression
profiles, we aggregated scRNA-seq data from all samples using the
Harmony algorithm. We clustered all sequenced cells using the Seurat
package in an unsupervised manner, obtaining 18 clusters ranging
from 82 to 2484 cells each (Supplementary Figs. 2–5, Supplementary
Data 2). The effects of cell-cycle heterogeneity on cell clustering were
mitigated using a list of cell-cycle-related genes17–19 (Supplementary
Data 3) and the standard Seurat pipeline (See methods). Most of the
cells having cell-cycle heterogeneity were grouped into clusters
(Supplementary Fig. 2). The numbers of expressed genes per cell from
different clusters were similar (Supplementary Fig. 3b). Quality
inspections such as Pearson’s correlation analysis between cells and
clusters illustrate the high reliability of our clustering (Supplementary
Fig. 4). Differential expression analysis to identify the genes more
strongly expressed in each cluster revealed specific expression pat-
terns of the genes representative of each cluster, which included some
cell-type marker genes reported for maize endosperm: e.g., the
Embryo-surrounding region 2 (ESR2) in ESR cells20 (Supplementary
Fig. 5a, Supplementary Data 4). We annotated the identity of cell
clusters using a manually curated list of reported marker genes for
kernel cell types9,12,15 and mRNA in situ hybridization (ISH) assays of
newly identified cluster-representative transcripts (Fig. 1, Supplemen-
tary Figs. 6 and 7). We then removed cells from further analysis that
represented contaminating tissues (cluster 17 for embryo and cluster
14 for nucellus) and abnormal cell states (cluster 16 for mitochondrial
highly expressed cells and cluster 13 that exhibits higher expression of
stimulus-response genes) (Fig. 1b, Supplementary Fig. 6).

We recovered all major endosperm cell types at the early differ-
entiation stage from the annotated cell clusters (Fig. 1b–f, Supple-
mentary Fig. 8a). For example, canonical ESR marker genes, such as
Embryo-surrounding region (ESR)1, ESR2 and ESR620–22, were more

strongly expressed in cluster 15, suggesting that it corresponds to the
ESR. We verified this assumption using ISH assays of cluster-15-
representative genesMaternally expressed gene (MEG) 14 and 1d038758
(Fig. 1e, Supplementary Fig. 6). Clusters 2 and 9 were annotated as
BETL based on differential expression of themarker genesMyb related
protein1 (MRP1), BETL9, Transfer cell response regulator1 (TCRR1), and
others15,23–25.We also verified this assignment by ISHof newly identified
cluster-representative transcripts (1d053108, 1d052759 and 1d053785),
which both showed very strong signals at the bottom part of the
endosperm. Male sterile8 (MS8), Sugars will eventually be exported
transporter15a (SWEET15A) and Phosphatidylethanolamine-binding
protein 11 (PEBP11)9, which are EAS cell markers, were more strongly
expressed in cluster 11. Therefore, we assigned cluster 11 to the EAS.
ISH analysis ofMS8 and SWEET15A indicated that cells highly expressed
with these transcripts surround the upper region of the embryo at the
stage of early differentiation, and are likely progenitors of the fully
differentiated EAS (Fig. 1e, Supplementary Fig. 6). Of note, clusters 2, 9,
11 and 15were clearly isolated on theUniformManifold Approximation
and Projection (UMAP) plot, implying their transcriptome signatures
are more distinctive (Fig. 1b). We designated clusters 1 and 8 as
representing SE cells based on the expression of typical SE markers,
including Tryptophan aminotransferase related 1 (TAR1), 27-kDa zein
protein (ZP27) and Shrunken2 (SH2)26,27, and on the ISH results
observed for Defective endosperm18 (DE18) and Floury3 (FL3)
transcripts28 (Fig. 1e, Supplementary Fig. 6). Based on the patterns of
expression of the established AL markers AL9 and Vacuolar proton
pump7 (VPP7)29, and the ISH results for cluster-representative tran-
scripts Subtilisin1 (SBT1) and 1d024210, we assigned clusters 0, 3, 4 and
7 as representing the AL cell type (Fig. 1d, e, Supplementary Fig. 6). We
annotated clusters 10 and 12 as proliferating cells because of the genes
encoding mitosis phase markers, such as HMG9 and other cyclin
proteins17–19 were more strongly expressed (Fig. 1, Supplementary
Figs. 2 and 6). Nevertheless, the ISH assay with HMG9 indicated that
this cell-cycle-related marker gene is broadly distributed across dif-
ferent cell types, including the embryo.

After analyzing the differentially expressed genes in clusters 5 and
6, we found that they were not obviously marked by any reported
marker, making it challenging to assign them to any known cell type
(Supplementary Fig. 6, Supplementary Data 4). Although the overall
expression pattern of the cluster-representative genes of cluster 5 had
a close relationship with the SE, whereas those of cluster 6 resembled
the AL (Figs. 1 and 2; Supplementary Figs. 5b and 7), ISH results of
selected clusters 5 and 6 markers did not conclusively support their
AL-like or SE-like identities, respectively. Thus, we kept cell clusters 5
and 6 as undefined (Figs. 1 and 2, Supplementary Fig. 8). To confirm
our cell-type assignment of each cluster, we compared our annotation
with published cell-type-specific transcriptomes, the results showing
that our cell-cluster identity was highly consistent with that from laser-
capture microdissection (LCM) data15 (Supplementary Fig. 8c).

Overall, we assigned the endosperm cell types to the computa-
tionally generated cell clusters using known marker genes and ISH
experiments, and also discovered a large number of new cluster mar-
ker genes (Supplementary Fig. 5b, Supplementary Data 4). These
results are a resource that will provide insight into progressive devel-
opment of endosperm cell identities.

Distinct clusters exist within the known endosperm cell types
Our initial results revealed that anatomically definedmaize endosperm
cell types comprise distinct cell clusters, implying undescribed het-
erogeneity within these compartments (Figs. 1 and 2a). We then
focused on the features of 12 cell clusters assigned todefined cell types
(Fig. 2a). To illustrate the relationships between cell clusters, we
assessed the expression patterns of the top cluster-representative
genes. We found that whereas cell types of the AL and the SE exhibit
distinctive signature genes (e.g., SBT1 and DHN1 for AL, and NAC130
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Fig. 1 | Construction of a single-cell transcriptomic atlas for developing maize
endosperm. a Overview of the endosperm scRNA-seq and cluster annotation
workflow using scRNA-seq libraries generated using protoplasts isolated from 6
and 7 DAP immaturemaize endosperms; scale bars, 1mm. b UMAP visualization of
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cell, color-coded by cell clusters. c Violin plots showing the expression patterns of
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and FL3 for SE), they also shared numerous similarities in terms of
other cluster-representative genes, including ELFA9 and HP1. This
suggests a close relationship between the AL and the SE, and implies
that they are not fully differentiated at 7 DAP (Fig. 2b). In contrast, the
transcriptome signatures of ESR cluster 15 and BETL clusters 2 and 9
were highly distinguishable from other cell groups (Figs. 1 and 2b), in
accordance with past observations that BETL and ESR cells

differentiate earlier than other cell types. The BETL is recognizable
shortly after cellularization is completed, with the ESR also starting to
differentiate as early as 4 DAP3,7. Furthermore, in agreement with the
morphological structure and spatial location of EAS and SE cells at
early stage, the transcriptome signatures of cells from cluster 11 (EAS)
were very similar to those in clusters 1 and 8 (SE) (Fig. 2b, c, Supple-
mentary Fig. 8a). These results serve to refine the relationships
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between cell clusters and their corresponding cell types at the mole-
cular level.

To characterize the function of each cell cluster, we examined
Gene Ontology (GO) annotation for the cluster-representative gene
sets, finding that not only different cell types, but also different cell
clusterswithin the same cell typewere enriched for different GO terms
(Fig. 2d, Supplementary Fig. 9, Supplementary Data 5). For example,
GO terms related to “cell-cell signaling” were only enriched in the ESR
(cluster 15) across all cell types,which ispartiallydue to thepresenceof
CLAVATA3/ESR (CLE) peptide genes implicated in cell-to-cell
communication30. The GO term “cellular respiration” was highly enri-
ched in AL clusters 3 and 4 but not in other AL clusters (Fig. 2d, Sup-
plementary Data 5), implying that these cells were active in energy
metabolism. The BETL is implicated in nutrient transport, defense and
signaling31,32. Interestingly, we obtained different GO terms in com-
paring the two BETL clusters. GO terms related to “protein transport”
and “protein localization” were enriched in BETL cluster 2, while “cel-
lular component biogenesis” and “response to inorganic substance”
were enriched in BETL cluster 9 (Fig. 2d).

Phytohormones are important in endosperm development33. We
plotted the expression of functional genes related to phytohormone
biosynthesis and signaling pathways on UMAP plots. Employing the
uniformly distributed gene Ubiquitin1 (UBI1) as an internal control, we
found that expression of phytohormone biosynthesis and response
genes varied across different cell clusters (Fig. 2e, Supplementary
Fig. 10a–j, Supplementary Data 6). For example, auxin (AUX) bio-
synthesis genes were more strongly expressed in SE cluster 8 and
cluster 5, and jasmonic acid (JA) biosynthesis genes in AL clusters 0, 4
and 7. In contrast, the transcriptional signals of AUX- and JA-response
genes were not more strongly expressed in the same cell clusters
(Fig. 2e). Thus, differences exist between the cell clusters in terms of
the functioning of phytohormone signaling pathways, which is largely
consistent with observations in plant roots34,35. As for the
phytohormone-related genes, transcription signals of additional
functional gene sets were also differentially expressed in certain cell
clusters within a cell type (Supplementary Fig. 10k, Supplementary
Data 6). Taken together, these results imply that different cell types as
well as the cell clusters within a cell type have distinct biological
functions.

To further explore the heterogeneities in the canonical cell types,
we identified additional differentially expressed transcripts from those
cell clusters within the same cell type (Supplementary Fig. 11a–c,
Supplementary Data 7). For example, in BETL cells, Bax inhibitor1 (BI1)
was preferentially expressed in cluster 9, whereas gpm832, a canonical
BETL marker, was highly expressed in cluster 2 (Supplementary
Fig. 11a). Pyruvate decarboxylase1 (PDC1) was highly expressed in SE
cluster 1, whereas Pyruvate orthophosphate dikinase1 (PDK1) was pre-
ferentially expressed in SE cluster 8 (Fig. 2h, Supplementary Fig. 11b).
Similarly, for the AL, preferentially expressed genes in each cluster (0,
3, 4 or 7) were identified (Supplementary Fig. 11c).

Spatial patterns of cluster-preferential genes within the BETL and
SE provide further evidence for the division of BETL and SE into sub-
cell-type clusters, respectively. The fully developed BETL comprises
multiple layers of transfer cells36,37, and there is a developmental gra-
dient along the basal-apical axis38,39. Both the computational expres-
sion patterns of BETL marker genes and the experimental ISH results

conformed to this gradient pattern (Fig. 2f, g). Therefore, BETL cluster
2 likely represents the transfer cells at the outermost basal layer, where
most canonical BETL markers are expressed, with cluster 9 repre-
senting transfer cell layers that are closer to the endosperm interior. SE
cells differentiate from the inner cells formed after cellularization via
periclinal divisions of subalurone cells from the outer regions of the
endosperm7,40. We hypothesized that cluster-preferential genes within
the SE cell type may also exhibit specific spatial distributions. ISH
results show that these tested probes have less pronounced spatial
patterns compared to those observed in BETL. For example, PDC1 and
1d045392, which are preferentially expressed in SE cluster 1, was
observed to be more strongly expressed in the outer layer of SE cells
adjacent to the AL. On the other hand, the cluster 8 preferentially
expressed genes PDK1 andCNGT1, were located towards the bottomof
SE cells, near the BETL and embryo. These results provide a basis for
further dissecting their developmental difference (Fig. 2h, i; Supple-
mentary Fig. 11g, h). However, the ISH results of all tested cluster
preferentially expressed makers within AL do not provide spatially
distinctive evidence for the four putative AL clusters (Supplementary
Fig. 11d–f).

To conclude, these results highlight the heterogeneity of endo-
spermcomposition at single-cell resolution, anddemonstrate complex
transcriptional signatures within maize endosperm cell types.

Transcriptome dynamics at the transition stage during endo-
sperm differentiation
Maize endosperm differentiation is arbitrarily separated into early
(4–6 DAP) and late (8–12 DAP) stages7. To obtain molecular insight
regarding the transition stage between early and late endosperm dif-
ferentiation, we reanalyzed the transcriptomes of the 12 cell clusters at
each time point. UMAP plots showed that all clusters were con-
tinuously detected from 6 and 7 DAP (Fig. 3a). However, the sizes of
some cell clusters changed significantly across this time period
(Fig. 3b). For example, the proportional cell number of ESR cluster 15
dramatically increased (from 0.1% at 6 DAP to over 1.2% at 7 DAP)
(Fig. 3b). In addition, differential expression analysis revealed a cohort
of genes with temporally specific enrichment in each cell cluster,
indicating that these clusters were undergoing a vigorous differentia-
tion process (Fig. 3c, Supplementary Data 8 and see Methods). We
defined these as cell-cluster-time-specific (CCTS) genes. For example,
expression of the defense related genes Defensin-like protein (DEF)1
andDEF2ofAL clusters 0, 3, 4, and 7 increased from6 to 7DAP (Fig. 3c,
Supplementary Data 8). Interestingly, the temporal gene-expression
patterns of each cell cluster corresponded to the cell-cluster identity, a
large percentage of CCTS genes being also cluster-representative
markers (Fig. 3c and Supplementary Data 8). For example, Maternally
expressed gene (MEG)1 and MEG3 were CCTS genes and also identified
BETL cluster 2 markers (Fig. 3c). The dynamic expression patterns of
selected CCTS genes were the same as the patterns observed in bulk
RNA-seq data, further supporting a close relationship between tem-
poral and spatial gene expression during early differentiation (Fig. 3d,
Supplementary Data 8).

Next, we used the bulk RNA-seq gene-expression profiles of 6 and
7 DAP to identify temporally up- and downregulated gene sets (Sup-
plementary Fig. 12, Supplementary Data 9 and seeMethods). A cellular
differentiation score for each cell was generated based on these gene

Fig. 2 | Endospermcell types contain transcriptionallydistinct subpopulations.
a Visualization of five endosperm cell types by UMAP plots, colored according to
cell clusters. b Heatmap depicting expression patterns of identified marker genes
formajor cell types. Selected classicalmarker genes and geneswith known function
are listed on the right. The colors fromblue to red represent low to high expression
levels. c Tree plot illustrating the relationship between clusters. d Representative
GO terms enriched in different cell clusters. P-values were obtained using hyper-
geometric test, with g:SCS (graph-based stratified Cox-Snell) correction applied for

multiple comparisons. e UMAP plots of gene-expression patterns related to auxin
(AUX) and Jasmonic Acid (JA) biosynthesis and response. Colors ranging from gray
to blue represent low to high expression levels. f, h Dot plots displaying selected
markers of BETL and SE cells. f BETL, h SE. Circle size indicates the percentage of
cells expressing the marker and color represents scaled expression values.
g, i mRNA in situ hybridization results of genes shown in (f) and (h); scale bars,
100μm. Experiments were repeated three times yielding similar results.
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sets, and finally resolved the developmental trajectories of cells in 12
clusters (Fig. 3e, f). The plot showed that the computationally defined
cell clusters in BETL, which had functional heterogeneities, partially
correlated with the differentiation state.

The AL and SE cell types are spatially adjacent and convertible
under certain conditions41–43. To explore the common progenitor cells
and cell fates required for their differentiation, we analyzedAL clusters
0, 3, 4, 7, SE clusters 1 and 8 and two adjacent clusters 5 and 6 from 7
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Fig. 3 | Transcriptome dynamics at the transition stage during endosperm
differentiation. a Visualization of five endosperm cell types byUMAP plots at each
time point, colored according to cell clusters. b Bar charts showing the ratio of cell
number of different cell clusters at 6 and 7 DAP, colored as in (a). c Differential
gene-expression analysis showing 6 DAP and 7 DAP marker genes across all 12
clusters. 6 DAP marker genes are indicated in milky white, while 7 DAP marker
genes are indicated in blue. d Expression levels of selectedmarker genes at 6 and 7
DAP from bulk RNA-seq. milky white and blue represent genes with the highest
expression at 6 DAP and 7 DAP, respectively. e Trajectories of the developmental
“pseudotime” in each cell clustermapped onto the sameUMAPplot depicted in (a);
the differentiation score is calculated based on the stage-specific genes identified
from bulk RNA-seq. f Raincloud plot showing the cell differentiation score of 6 and
7 DAP. n = 2898 cells in 6 DAP, n = 12,698 in 7 DAP. ****, P <0.0001. Two-tailed

student’s t-test. No adjustments were made for multiple comparisons test. Box
plots indicating median (middle line), 25th, 75th percentile (box) and 5th and 95th
percentile (whiskers) as well as all data (single points).g tSNE plots of the SE and AL
developmental trajectory depicting cell types (right) and pseudotime (left) using
CytoTRACE.hBox plots showingCytoTRACE values for clusters 0, 1, 3, 4, 5, 6, 7 and
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cells in cluster 7. Boxplots indicatemedian (middle line), 25th, 75th percentile (box)
and 5th and 95th percentile (whiskers) as well as all data (single points).
i–k Expression of selected genes in the pseudotime trajectory using CytoTRACE.
i FL3; j AL9; k 1d038865. Gradient from blue to red represents low to high expres-
sion levels.

Article https://doi.org/10.1038/s41467-023-44369-7

Nature Communications |           (2024) 15:34 6



DAP cells usingCytoTRACE, a non-graph-basedpseudotimeprediction
tool, which is able, without prior knowledge, to recover the direction
of differentiation and identify immature cells. The Monocle2 software
package projected the pseudotime-ordered cells into two distinct
branches and revealed two terminal states representing more differ-
entiated AL and SE (Fig. 3g). The cell ordering results indicated that AL
cells were relatively less differentiated as compared to SE cells, as
judged by the number of expressed genes (Fig. 3h). This result is also
consistent with the cellular differentiation score analysis for each cell
cluster (Supplementary Fig. 13). Surprisingly, besides cells exclusively
marked by AL or SE markers (such as AL9 for AL and FL3 for SE), there
were also cells having transcriptomic features derived from both cell
types,whichmight imply they are their commonprogenitors (Fig. 3i–k,
Supplementary Data 10). One gene that was highly expressed in these
cells (1d038865) encodes a 60S ribosomal protein (Fig. 3k). Its Arabi-
dopsis homolog, AT2G19730, is highly expressed in shoot apical mer-
istem tissue and also marks the root quiescent center (QC) cells in a
scRNA-seq analysis, suggesting meristematic commonalities for these
predicted progenitor cells44,45. In addition, CytoTrace and “differ-
entiation score” results were consistent with each other, further sup-
porting the robustness of our analysis (Supplementary Fig. 13).

Large-scale profiling of TF-binding sites using ampDAP-seq
The transcriptomic identities of cell clusters are largely defined by
their underlying gene regulatory networks (GRNs), in which TFs drive
the expression of their target genes to establish distinctive expression
profiles. Identifying the genome-wide TF-binding sites (TFBS) is
essential for constructing GRNs containing direct targets of individual
TFs. However, only a few genome-wide TFBS have been profiled in
maize using chromatin immunoprecipitation sequencing (ChIP-seq) or
DAP-seq46–51.We therefore tested over 200TFs, selected based on their
distinct cell-cluster expression patterns, to identify their genome-wide
binding sites using optimized ampDAP-seq (Supplementary Fig. 14 and
see Methods). Two rounds of ampDAP-seq enrichment increased the
enrichment signal of stable DNA-binding events (Supplementary
Fig. 14). We successfully recovered DNA-binding profiles and de novo
predicted motifs for 161 TFs from 24 families (Fig. 4a–c, Supplemen-
tary Data 11).

Most of these motifs were consistent with those of the same TF
family recorded in the JASPAR database, suggesting the high quality of
our dataset (Fig. 4d, Supplementary Data 11). In total, we identified
over 2million (2,506,059) non-overlapping TFBS loci, with amedian of
about 79,258 binding sites per TF (Supplementary Data 11). Integrative
Genomics Viewer (IGV) plots illustrated the genomic binding profiles
of SE- and BETL-representative TFs at selected target gene sites, such
as 16-kDa zein protein (ZP16), Brittle endosperm2 (BT2), BETL10 and
Basal layer antifungal protein2 (BAP2), and recovered the binding peak
of NRP1 and MRP1 to these known targets, further supporting the
validity of our TFBSdata (Fig. 4e).We also included additional genomic
binding profiles (clustered into 311,832 non-overlapping loci) of 136
TFs acquired from published datasets in the following analysis47,50,51

(Supplementary Data 11). In total, genomic binding sites from 278
unique TFs resulted in an approximate 45% coverage in aggregate of
the maize genome (Fig. 4f), which is more than the proportions of the
genome associated with TF-bound and histone-modified regions
found in themouse (~13%) and human (~20%) genomes52,53. Of note, the
proportion of TF-binding annotated regions may be underestimated
since many regulators have not yet been tested. This result implies
widespread regulatory potential in the maize genome.

Identifying regulons using TF-binding profiles and the
coexpression-based transcriptional regulatory networks
The gene-expression profiles of individual cells provide an unprece-
dented opportunity to study the underlying gene regulatory
programs54. We chose GRNBoost2, which is based on curated models,

as our analysis pipeline. This yielded an interwoven network com-
prising 25,258 nodes (1793 regulator TFs) and 3,233,871 edges, cover-
ing almost all detected transcripts (Fig. 5a). Further filtering of this
GRN to include only the top-rankededges (seeMethods), yieldedmore
reliable connections from 24,083 nodes (1746 regulator TFs) (Fig. 5a,
Supplementary Data 12). We identified potential key regulators based
on network topology analysis (Fig. 5b, Supplementary Fig. 15, Sup-
plementary Data 12). Well-known TF genes regulating endosperm
development, such as NAC130 and FL327,28, possessed high “between-
ness centrality” and “out degrees” scores, suggesting that our pre-
dicted network has high biological relevance (Fig. 5b,
Supplementary Fig. 15).

After integrating theGRNandTFBS information fromTFs profiled
by ampDAP-seq, publishedDAP-seq and in vivoChiP-seq in endosperm
(Fig. 5a, Supplementary Fig. 16a), we obtained 181 regulons (TFs with
their direct-binding targets) containing 12, 360 genes, having amedian
size of ~70 genes per regulon (Fig. 5c, Supplementary Fig. 16b, c,
Supplementary Data 13). The in-degree and out-degree distribution
patterns imply that these regulons form a scale-free network (Fig. 5d).
We carried out GO enrichment analyses to link the regulons to func-
tions in known biological processes. A set of regulons were indeed
associated with specific biological functions (Fig. 5e, Supplementary
Data 14). For example, theNRP1-regulated targetswere associatedwith
“peptide biosynthetic process” and macromolecule biosynthetic rela-
ted GO terms (partially due to the corresponding zein protein
encoding genes), which was consistent with their function in storage
protein biosynthesis27.

Next, we evaluated the accuracy of predicted regulon targets
using documented targets based on the RNA-seq and ChIP-seq
analyses15,46,49 (Supplementary Data 15). Combining the coexpression
GRN with TFBS significantly improved the predictive power of the
network. Our coexpression GRN based on single-cell transcriptomes
had an improved predictive power: the area under the Receiver
Operating Characteristic (ROC) curve was 0.569, surpassing the 0.500
value for a random prediction. When we combined the TF-binding
information to obtain a list of TF regulon targets, the area under the
ROC curve (AUC) increased to 0.702 (Fig. 5f). Likewise, more true
positive targets were recalled from the regulon-based network com-
pared to the coexpressionGRN for any given networkprecision setting
(Fig. 5g). For instance, we recovered the reported targets of MRP1
(TCRR1, MN1, MEG3, BETL10, and others15) in our network (Supple-
mentary Fig. 16d). To further verify our predicted network, we also
examined the newly predicted targets of selected TFs by in vitro
transactivation assays. Randomly selected newly identified targets
from the regulons, such as EREB108, MYBR81 and WRKY8, were ver-
ified (Supplementary Fig. 16e). These results confirm successful
reconstitution of a high-confidence endosperm transcriptional reg-
ulatory network.

Identifying essential regulators of cell-cluster identity
To link the regulatory functions predicted by theGRN to individual cell
clusters, we searched for the critical regulators for cell identity by
calculating the regulon specificity score (RSS) for the cell clusters
basedon Jensen-Shannondivergenceand regulonactivity scores (RAS)
using the AUCell algorithm (Supplementary Data 16 and 17), and
identified the most specific regulons (having the highest RSS values)
associated with each cell cluster (Fig. 6a–l, Supplementary Fig. 17). In
agreement with previous studies, MRP1, a master regulator of BETL
development24, was one of the most specific regulons associated with
BETL cluster 9. Our network analysis also identified O11 and NKD2 as
two of themost specific regulons associatedwith SE cluster 8; both are
well-known regulators of SE46,55. The UMAP plot, including the binar-
ization score for each cellular regulon activity, supported the idea that
the activities of these regulonswerehighly specific to the indicated cell
clusters (Fig. 6a–l, Supplementary Figs. 17 and 18). These results
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Fig. 6 | Regulons formmodules and coordinate their activity within cell types.
a Ranking of regulons in cluster 0 based on the regulon specificity score (RSS).
b Cluster 0 cells are highlighted in the UMAP plot (red dots). c Binarized regulon
activity scores (RAS) (Z score normalized across all samples, and 0.15 is set as the
cutoff to convert to 0 and 1) for a regulon (BZIP52)with the top RSS value on UMAP
plot (dark green dots). d–f Same as (a–c) but for cluster 9 and regulon MYBR21;
0.079 set as the RAS cutoff.g–i Same as (a–c) but for cluster 1 and regulon BZIP104;
0.004 set as the RAS cutoff. j–l Same as (a–c) but for cluster 11 and regulon

NACTF65; 0.048 set as the RAS cutoff.m Heatmap showing gene-expression pat-
tern during differentiation of AL (fate1), SE (fate2) along pseudotime. n Identified
regulon modules along with selected TFs and corresponding binding motifs.
oHeatmap showing average activity scores of 10modules in different cell clusters.
p Network of relatedness for the selected 12 cell clusters constructed based on
similarities between regulon activities. q Sankey plot displaying relationships
between cell cluster and the top 3 regulons in modules M1–M10.
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suggested a successful recapitulation of critical regulators for defined
cell clusters using this approach. In addition, we identified a new list of
essential TFs for each cell cluster. For example, BZIP52, WRKY8,
EREB111, BZIP48, and WRKY71 had the highest RSS values associated
with the AL cluster 0 (Fig. 6a); NACTF65, THX35, NACTF61, ARFTF7,
and ARFTF27 had the highest RSS values associated with the ESR
cluster 15 (Fig. 6j). To establish a connection between the regulons and
the differentiation dynamics of AL and SE, we conducted embedded
heatmap analyses of the regulator TFs that belonged to the most
specific regulons in clusters0, 3, 4, 7, 5, 1, 8 and6.Our analysis revealed
that the TFs linked with the differentiation of these cell types exhibit
unique temporal expression patterns along pseudotimes without any
overlap (Fig. 6m). In conclusion, our findings provide a valuable
resource for identifying key regulators of endosperm tissue differ-
entiation, although the specific functions of these newly predicted
regulators in each cell cluster require further investigation.

Regulons involved in endosperm differentiation form combi-
natorial modules
To analyze the relationships between the cell-cluster-associated reg-
ulators, we systematically characterized the combinatorial patterns
exhibited by the TFs and their targets. We compared the regulon
activity ratings of each pair of regulatory relationships using the con-
nection specificity index (CSI). After filtering out the low-quality reg-
ulons and those with less than five targets, we classified 168 regulons
into 10 modules (M1–M10) (Fig. 6n, Supplementary Fig. 19a, Supple-
mentary Data 18–21 and see Methods). Through mapping the average
activity score of each module onto the cell-identity UMAP map, we
found that each module occupies a distinct region, showing not only
cell type but also cell-cluster preferences (Supplementary Fig. 19b).We
also linked the modules, which included unique regulators and their
binding motifs, to cell clusters based on their average activity scores
(Fig. 6o). For example, module M8 is enriched in clusters 2 and 9, and
contained MRP124, an essential regulator for the BETL; module M1 is
enriched in clusters 1 and 8, it contained O1146, a central hub of maize
endosperm development and of the regulatory network of zein pro-
tein synthesis (Fig. 6o).

Related cell clusters of a given cell type shared similar network
structures, as depicted in a highly-modularized graph in which two
related cell clusterswith similar total regulon activities are connectedby
an edge having a higher Pearson correlation coefficient (PCC) value. The
higher the PCC value between cell clusters, the more likely they are to
share the same regulons (Fig. 6p, Supplementary Data 22). For instance,
the PCC value between cell clusters 2 and 9 of BETL is higher than those
between cluster 2/9 and other cell clusters, suggesting a stronger cor-
relationbetween them.This result further confirmed theaccuracyofour
cell clustering from the perspective of regulatory modules.

Further, when we used Sankey diagram to highlight the link
between the cell clusters and the regulon modules, we found that the
same cell cluster corresponded to multiple modules. (Fig. 6q). For
example,M2,M4, andM9were linked to cluster 0belonged toAL cells,
and M8 and M10 were correlated with cluster 2, representing BETL
cells. Thus, we propose that the developmental fate of a cell cluster
may be regulated by multiple core regulatory networks.

In our work, we further validated a number of novel functional
regulons predicted from the network analysis. For example, we iden-
tified EREB108,MYBR19 andMYBR29 as key regulators associatedwith
BETL clusters 2 and/or 9, implying their crucial roles in BETL devel-
opment (Fig. 6, Supplementary Figs. 17 and 20). To confirm their
predicted targets, we conducted RNA-seq experiments on homo-
zygousmutants of these TFs at 8 DAP (Supplementary Fig. 20a–c). The
results showed that the predicted targets of these TFs were well-
supported by the differentially expressed genes (DEGs) in their
mutants (Fig. 7a, b and Supplementary Fig. 20b, Supplementary
Data 23–25). Moreover, the DEGs of these mutants exhibited higher

average expression levels in BETL (Fig. 7c). Previously reported BETL
key genes, such asMRP1 and SWEET4C56, were downregulated in these
mutants, suggesting defects in BETL differentiation (Fig. 7d). Micro-
scopic examinations revealed that the transfer tissue in mybr29
mutants comprises cells lacking or having fewer cell wall ingrowths
(CWI) compared with wild type (Fig. 7e). Consistent with this histolo-
gical observation, the ISH test of 1d053785, a BETL marker gene,
showeda lower abundant and amore restricted regionof expression in
the mutant endosperm (Fig. 7f, Supplementary Fig. 20e). A small-seed
with decreased kernel weight phenotype in mature seeds of mybr29
mutants compare with wild type were also observed and probably due
to these differentiation defects in BETL (Fig. 7g–j, Supplementary
Fig. 20f–h). Collectively, these results further support the important
roles ofMYBR29 inBETLdevelopment. In summary, the transcriptome
signature and developmental defects in these loss-of-functionmutants
indicated that these TFs are key regulators for BETL development.

Discussion
Improvement of grain yield and quality in cereal crops requires better
understanding of the regulation of cereal endosperm development.
Single-cell transcriptomes have increased analytical resolution to the
level of an individual cell57, with two single-nucleus RNA profiling stu-
dies on early developing syncytial endosperm tissues reported in
Arabidopsis58,59. Although the persistent cereal endosperm is similar to
that of Arabidopsis in early development (from coenocytic nuclear
divisions to cellularization to form cell walls between individual
nuclei), the cells later differentiate into additional cell types and
rapidly accumulate storage products4. Our scRNA-seq analysis and
regulatorynetwork inferenceof themaize endosperm,whichdevelops
more cell types than other cereal crop species, provides the most
detailed information to date of transcriptional regulation in early
endosperm development.

Here, we have constructed a comprehensive transcriptome
compendium and underlying GRN of themaize endosperm during the
differentiation stage, unveiling a previously unrecognized complexity.
For example, our analysis indicated that both BETL and SE cell types
comprise two cell clusters, respectively (Fig. 2). Positioning is impor-
tant for AL, which is the epidermal layer covering most all the endo-
sperm surface, cell specification, as determined through in vitro
cultureof isolated endosperm42,60. TheAL cells adjacent to the embryo,
defined as the scutellar AL, are characterized by strong expression of
putative transporter-encoding genes9. These findings suggest that
distinct positional cues lead to the characteristics of AL cells during
formation. Despite having four computational cell clusters for AL, the
ISH results of selected markers did not support their distinct spatial
expression, suggesting the differential gene expression detected in
these cell clusters may not solely be due to the different positional
distribution of AL cells (Supplementary Fig. 11).

We note that BIZ and CZ are two cell types uncaptured in our
study, possibly because they differentiate later in endosperm
development7,61. CZ cells are highly elongated, with large nuclei and
sparse cytoplasm7, and are not apparent at the early differentiation
stage. The BIZ comprises 2–4 layers of cells that are located internally
to the BETL and not fully established by 8 DAP7. However, we detected
that BURP9, a marker exclusively localized in the BIZ12, as being more
strongly expressed in cluster 9. Combined with the observation of a
gradient expression pattern of other BETL marker genes, some of the
cells in cluster 9 may later differentiate into BIZ cells (Fig. 2f, g).

In scRNA-seq data, the captured cells can often originate from
different cell-cycle stages. We attempted to remove cell-cycle effects
on clustering from the analysis. To do so, we have collected a number
of reported maize cell cycle marker genes and homologs based on a
study in rice. However, a small group of cells are still annotated as
being in the G2/M phase (Fig. 1b), which could be due to the incom-
plete annotation of cell cycle marker genes.
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The rapid growth of scRNA-seq datasets has opened new
opportunities for coexpression-based GRN prediction. Compared
to transcriptomes obtained from bulk RNA-seq experiments, one
scRNA-seq experiment can generate a large number of samples,
which allows capture of additional meaningful biological
variation62. Although earlier maize GRNs based on bulk tran-
scriptomes have been constructed for roots, stems, leaves, and

seeds14,63,64, they all lack of TF-binding site information. In our work,
we have constructed a transcriptional regulatory network of maize
endosperm during cell differentiation that combines a
coexpression-based GRN with newly characterized TF-binding
profiles. These results greatly expand understanding of the com-
plex endosperm regulation system, and imply that plants, like ani-
mals, have complex and redundant regulatory relationships, which

0.15

0.20

0.25

0.30

0.35

✱✱✱✱

WT

6

7

8

9

10 ✱✱✱✱

8.5

9.0

9.5

10.0

10.5
ns

SE

BETL
PC

mybr29-1

Em

Em
SE

BETL
PC

mybr29-1WT

W
id

th
 o

f k
er

ne
l (

m
m

)

Le
ng

th
 o

f k
er

ne
l (

m
m

)

Ke
rn

el
 w

ei
gh

t (
g)

mybr29-1WT mybr29-1WT

WT

SE

BETL

PC

Em

mybr29-1

SE

BETL

PC

Em

mybr29-1

WT

mybr29-1

BETL

BETL

-0.58 BAP1B
BAP2
BAP3A
BAP3B
BETL3
BETL4
BETL9
BETL10
TCRR1
TCRR2
MEG1
MEG3
MEG13
MRP1
MN1
SWEET4C

my
br
29
-1

my
br
19

ere
b1
08

-2.10
-1.80
-1.50
-1.20
-0.90
-0.60
-0.30
-0.00
0.30

Lo
g 2 (

Fo
ld

 C
ha

ng
e)

 
m

ut
an

t /
 W

T

-1.66-0.57

-0.91-0.37-0.78

-1.23-0.410.13

-1.36-0.32-0.35

-0.92-0.17-0.66

-0.82-0.21-0.64

-1.47-0.34-1.29

-1.13-0.35-0.93

-1.28-0.27-0.49

-1.00-0.15-0.55

-0.91-0.13-0.56

-1.34-0.61-0.10

-2.10-0.45-0.67

-1.09-0.28-0.23

-0.65-0.34-0.56

-0.87-0.29-0.16

h i jg

e fd

✱
✱✱

✱✱✱ ✱✱✱ ✱✱

✱✱✱ ✱✱✱ ✱✱✱
✱✱

✱✱✱✱

✱✱

✱✱
✱✱

✱✱

✱✱

R
el

at
iv

e 
ex

pr
es

si
on

1d008750 CAX3 Orphan22 1d028838 1d032448

WT ereb108

5

4

3

2

1

0

1d024610 1d024617 MYBR33 1d42229 BAP2

15

10

5

0R
el

at
iv

e 
ex

pr
es

si
on

BETL10 1d024659 SWEET4C 1d005620 MEG13

WT mybr19

WT mybr29-1
8

4

2

0R
el

at
iv

e 
ex

pr
es

si
on

DEGs of ereb108

DEGs of mybr19

DEGs of mybr29-1

b ca

Verified targets

6

WT

0.04

0.05

0.06

0.05
0.06
0.07
0.08
0.09

0.12
0.14
0.16
0.18
0.20

MBYR19

MBYR29

EREB108

Article https://doi.org/10.1038/s41467-023-44369-7

Nature Communications |           (2024) 15:34 12



might sustain adaptation to the environment and influence evolu-
tionary processes51,65–67.

Becausecell identity is determinedby the activity of TFs, cell-type-
specific regulons are important for plant cell differentiation and are
targets for crop breeding68. We have identified cell-type-specific reg-
ulons for different endosperm cell types anddissected their regulatory
relationships and biological functions. As an illustration, we confirmed
the roles of three essential regulator TFs in the BETL (Fig. 7). Further-
more, the target genes of AL specific regulon HB91 were annotated as
“response to inorganic substance”, suggesting they may play an
important role in mineral accumulation. As AL cells are known to be
important formineral storage69,70,HB91 and its associated target genes
are of particular interest for further analysis in this area.

TFs in plants often act in concert to coordinate gene expression71.
Regulons in our maize endospermGRN also coordinately regulate cell
type development (Fig. 5). Regulon combinations can form thousands
of regulatory relationships, and their modularity also facilitates iden-
tification of the mechanisms of gene mutation72. Although the reg-
ulons we have identified are in endosperm cells, this approach can also
be readily applied to other maize tissues. Comprehensive analysis of
regulons in all maize tissues using the same strategy should greatly
expand the repertoire of regulons and our understanding of the
regulon-based regulatory network in this important crop.

Finally, we have made all our data publicly available online
(https://www.maize-endosperm.cn), providing a web interface to
enable researchers to easily navigate the expression and regulatory
network atlas. Our regulatory atlas of the endosperm covers cell
clusters/types, and TFs and their targets from early to late differ-
entiation. The web interface provides gene-expression-centric and
regulon-centric views. As such, wehave created a valuable resource for
the broad biological community.

Methods
Maize endosperm protoplast isolation
Maize (Zeamays) inbred line B73 endospermprotoplasts were isolated
as previously described with some modifications73. Briefly, 80–100
maize kernels at 6 and 7 DAP were harvested. The endosperms were
rapidly separated using a sharp surgical blade and placed on Mura-
shige and Skoog (MS) agar medium, then quickly cut and transferred
to a 90mm Petri dish containing 20mL of freshly prepared enzyme
solution. The enzyme solution contained 1% (w/v) cellulase R-10
(Yakult Pharmaceutical), 0.75% (w/v) macerozyme R-10 (Yakult Phar-
maceutical), 0.1% Pectolyase Y-23 (Yakult Pharmaceutical), 0.4M
mannitol, 20mM KCl and 20mMMES (pH 5.7). The enzyme solutions
were incubated in a 55 °C water bath for 10min. After being cooled to
room temperature, 10mM CaCl2, 0.1% (w/v) BSA and 0.035% (v/v)
2-mercaptoethanol were added and then the entire enzyme solution
wasfiltered through a 0.22μm filter. The endospermswere digested in
the dark at room temperature for 2 h with agitation at 10 rotations per
min. Then, an equal volume of releasing buffer (150mMNaCl, 125mM
CaCl2, 5mM KCl and 20mM MES) was added to the enzyme mixture

and gently shaken for 15 s to release protoplasts. The protoplast-
enzyme suspension was filtered through a 70 µm cell strainer and the
filtrate was gently horizontally centrifuged at 110 × g for 3min to pellet
the protoplasts. The protoplasts were washed twice in 20ml washing
solution (0.5M mannitol, 10mM CaCl2, 20mM KCl and 20mM MES)
and filtered twice through a 40 µm cell strainer, then brought to a
concentration of 600–1000protoplasts/µL. Protoplast viability was
determined by the trypan blue staining method.

Single-cell RNA sequencing
The scRNA-seq libraries were generated using the Chromium Single
Cell 3′ Reagent v3 Kit with the 10× Genomics protocol. Briefly, proto-
plasts were loaded onto the chromium chip; then, the Chromium
Single Cell Controller Instrument was used to generate single-cell gel
beads in emulsions (GEMs). Incubation of the GEMs produced bar-
coded, full-length cDNA. The GEMs were then broken, and the bar-
coded cDNAs were cleaned up using Silane magnetic beads and
amplified via PCR. After fragmentation, end-repaired and A-tailing,
index adapters were ligated, and barcoded cDNA libraries were con-
structed. The amplified libraries were sequenced on the NovaSeq
platform (Illumina) to by Berry Genomics (Beijing) generate 150-bp
paired-end reads, according to the manufacturer’s instructions.

DNA affinity purification sequencing
The ampDAP-seq experiment was performed as previously described
with modification74. Briefly, genomic DNA (gDNA) was extracted from
the leaves of the maize inbred line B73. PCR-amplified gDNA libraries
were prepared using the TIANSeq DirectFast Library Kit (cat. no.
NG101, TIANGEN) according to the manufacturer’s instructions. Full-
length maize TF coding sequences were cloned from maize endo-
sperm cDNA into the NotI and AscI sites of pUC57-Halo using MultlF
Seamless Assembly Mix (cat. no. RM20523, ABclonal). TFs were syn-
thesized using TNT SP6 High-YIELD Wheat Germ Master Protein
Expression System (cat. no. L3260; Promega) according to the manu-
facturer’s instructions. Halo-fusion protein was bound to Magne
HaloTag Beads (cat. no. G7281; Promega) and washed three times
using TBSN buffer (100mM Tris buffer, pH 7.5, 50mM NaCl and
0.005%NP-40). Then, 500ng gDNA libraries was added and incubated
at room temperature for 1.5 h. After incubation, thebeadswerewashed
four times. Beads were resuspended in 30 µl of EB buffer to recover
DNA. The recovered DNA was cleaned up with Silane magnetic beads
and amplified via PCR. Two successive rounds of affinity purification
were performed. The final PCR products were cleaned with Silane
magnetic beads and sequenced on the NovaSeq platform (Illumina) by
Berry Genomics (Beijing) to produce 150-bp paired-end reads.

Bulk RNA-seq
TwentymaizeB73 endospermsobtained at6 and7DAPwerepooled to
extract total RNA with an RNAprep Pure Plant Kit (cat. no. DP441,
TIANGEN), respectively. Three biological replicates were made from
the kernels of three independent ears of maize. cDNA libraries were

Fig. 7 | Validationof important regulons inBETL cell type. aThe gene regulatory
network regulated by three transcription factors. The gray color represents the
target genes in the regulon, while the orange color indicates differential expression
of these genes in the corresponding mutants. b Transcript levels of target genes in
three regulons in WT and mutants. Error bars indicate ± SEM (n = 3 biologically
independent samples). *, P <0.05; **, P <0.01; ***, P <0.001; ****, P <0.0001. Two-
tailed student’s t-test. No adjustments were made for multiple comparisons test.
c UMAP plots of gene-expression patterns related DEGs of three mutants. The
colors from gray to blue represent low to high expression levels. d The heatmap
illustrates the log2 (fold change) of selectively genes that are predominantly
expressed in BETL and detected in three mutants endosperms. The colors from
white to red represent low to high fold change. e Images of endospermstainedwith
calcofluor white between WT andmybr29-1. CWIs appear light blue with calcofluor

white staining (indicated by red arrowheads); scale bars, 50μm. Experiments were
repeated three times yielding similar results. fmRNA in situ hybridization results of
1d053785 between WT and mybr29-1; scale bars, 100μm. g Phenotypic features of
the mybr29-1 mutant. Scale bars, 1 cm. h, i Kernel length and width of WT and
mybr29-1 mature kernels. n = 15 kernels in WT, n = 15 kernels inmybr29-1 mutant.
****, P <0.0001. Two-tailed student’s t-test. No adjustments weremade formultiple
comparisons test. Box plots indicate median (middle line), 25th, 75th percentile
(box), and 5th and 95th percentile (whiskers) as well as all data (single points).
j Kernel weight of WT and mybr29-1 mature kernels. n = 26 kernels in WT, n = 24
kernels inmybr29-1 mutant. ****, P <0.0001. Two-tailed student’s t-test. No adjust-
mentsweremade formultiple comparisons test. Box plots indicatemedian (middle
line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as all
data (single points).
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constructed following Illumina standard protocols and sequenced on
the NovaSeq platform (Illumina) by the Berry Genomics company
(Beijing) to produce 150-bp paired-end reads.

mRNA in situ hybridization
mRNA ISH was performed as described previously with some
modifications56. Briefly, sequences ofmarker-gene cDNAswere used to
design the probes. All probes were synthesized and labeled using the
DIG RNA Labeling Kit (SP6/T7) (cat. no. 11175025910, Roche) according
to themanufacturer’s instructions. 7 DAP kernels of the B73 inbred line
were formalin-fixed and paraffin-embedded for sectioning. 8μm sec-
tions were hybridized with the labeled probes, reacted with anti-
digoxigenin-alkaline phosphatase (AP) (cat. no. 11093274910, Roche),
and detected using nitro-blue tetrazolium chloride (NBT) and 5-
bromo-4-chloro-3′-indolyphosphate p-toluidine salt (BCIP) stock
solution (cat. no. 11681451001, Roche). Relevant primer sequences are
given in Supplementary Data 26.

Dual-luciferase transient transcriptional activity assay
The dual-luciferase transient transcriptional activity assay was per-
formed as previously described75. To generate promoter reporters for
the assays, the 1000-bp promoter fragment upstream of the tran-
scription start site (TSS) of the genes were inserted at the Kpn1 and
HindIII sites of pGreenII 0800-LUC using MultlF Seamless Assembly
Mix (cat. no. RM20523, ABclonal). 35 S:TF effectors were created by
inserting their coding sequences into the HindIII and XbaI site of the
pHB vector using theMultlF Seamless AssemblyMix. The empty vector
was used as a negative control.We performed transient dual-luciferase
assays in mesophyll protoplasts of maize B73 etiolated leaves. Firefly
luciferase (LUC) and Renilla luciferase (REN) activities were measured
with dual-luciferase assay reagents (cat. no. E1960; Promega) using a
microplate reader (SPARK, TECAN). We calculated the ratio between
LUC and REN activities with at least three biological replicates. Rele-
vant primer sequences are given in Supplementary Data 26.

ampDAP-seq analysis
Trimmomatic (version 0.39)76 was used to trim the fastq files as fol-
lows: ILLUMINACLIP: TruSeq3-PE-2.fa:2:30:10, LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:15, HEADCROP:0, MINLEN:75; and bowtie2 (ver-
sion: 2.4.1)77 was used to align them to the B73 v4 reference genome
with the following parameters: -I 75 -X 1000 --no-discordant --no-
mixed. The “MarkDuplicates” tool of Picard (version 2.25.6) was used
to remove the duplicates formed by PCR amplification. Peaks were
identified using GEM (version 3.4)78 using a background subtraction
sample of the pUC57-Halo control sample. Peak identification was
identified using the following parameters: --k_min 4 --k_max 12 --fold 3
--q 3 --nrf --outNP --outHOMER –outMEME. Individual datasets were
transformed into bigWig format using bamCoverage from deepTools
(version 3.5.1) with a bin size of 100 bp and normalized by counts per
million (CPM) for visualization. Integrative Genomics Viewer (IGV)
(version 2.10.0) was used to visualize the bigWig files. Peak annotation
was performed with the B73 v4 reference genome annotation file
created by maize TxDb based on GenomicFeatures (version 1.44.0)79,
and then ChIPseeker (version 1.28.3)80 was used to determine peak
annotation. The promoter region was defined as the 3000bp region
upstream and downstream of the TSS. To identify target genes for the
regulons, high-confidence target genes were defined as those having a
peak within 1 kb upstream and 1 kb downstream of the TSS.

Analyzing the detection and enrichment of transcription factor
binding sites
First, the top 600 peaks were sorted based on their q-value and fold
enrichment. Then, the 200bp sequence located at the summit of each
peak was analyzed for enriched motifs using two methods. De novo
motifs were identified using MEME-ChIP from the MEME software

toolkit (version 5.5.1)81, whereas known motifs from the JASPAR 2022
database were detected using TOMTOM82 and Centrimo83 from the
same toolkit.

Bulk RNA-seq analysis
Trimmomatic (version 0.39)76 was used to trim the sequence reads,
and STAR (version: 2.7.5c)84 was used to align them to the B73 v4
reference genome. Gene-expression levels for uniquely mapped reads
were computed with featureCounts (version 2.0.1)85. To conduct a
correlation study of gene expression comparing endosperm tissues
before and after protoplast preparation, as well as between the bulk
RNA-seq and the integrated scRNA-seq data, the log2(mean CPM+1)
expression levels for each gene were computed and the Pearson cor-
relation coefficient (PCC) was calculated in R.

Cell-type clustering and marker-gene identification
The scRNA-seq data at 6 and 7 DAP samples were aligned and counted
using the Cell Ranger pipeline (version 4.0). For additional data ana-
lysis, the raw count matrix was imported into R using the Seurat
(version 4.0.3) package86. Cells with less than 500 but more than 7500
features were filtered, as were cells with fewer than 1000 counts and
cells with a log2(feature/count) of less than 0.8. The data was then
normalized using the “NormalizeData” functionwith the LogNormalize
method and a scaling factor of 10,000. We identified variable genes
using the “FindVariableGenes” function with the vst method and
selected 2000 features. The datawas then scaled using the “ScaleData”
function. We performed principal component analysis (PCA) using the
“RunPCA” function and retained 50 principal components. The sig-
nificance of the PCA scores was determined using the “JackStraw”
function, and all datasets were integrated using Harmony87, clustered
according to resolution = 0.75, and the clustering binning results
visualized using the Seurat functions RunUMAP and RunTSNE (dim=
1:50), respectively. In order to address the impact of cell cycle het-
erogeneity on cell clustering, the “CellCycleScoring” function was
utilized to determine the cell cycle score for each individual cell, based
on the cycling orthologous genes found in rice and maize known
cycling gene (Supplementary Data 3). The “ScaleData” function was
then employed to eliminate these cell cycle effects, utilizing the “var-
s.to.regress” parameter. When selected clusters were extracted to
generate plots, the data was re-normalized and re-scaled prior to the
downstream analyses. The function FindAllMarkers (Wilcoxon rank-
sum test, min.pct = 0.3, logfc.threshold =0.25) was used to find all the
marker genes in each cluster. Temporal differential expression for
each cell type was analyzed using the Seurat package’s FindAllMar-
kers(Wilcoxon rank-sum test, min.pct = 0.3, logfc.threshold =0.25)
function, treating each cell as a replicate and applying Bonferroni
correction for p-value adjustment.

Doublet detection
DoubletFinder algorithm (version 2.0.3)88 was employed to identify
potential doublets by utilizing three input parameters: expected real
doublets (nExp) calculated as the cell count divided by 100,000, arti-
ficial doublets (pN) set at 0.25, and neighborhood size (pK). To infer
the optimal pK value, paramSweep_v3, summarizeSweep, and find.pK
functions were used for a more comprehensive analysis.

Identification of one-to-one orthologs
To identify homologous genes between maize and rice, we down-
loaded the maize and rice immediate homologous gene correspon-
dence table frommaizeGDB (https://download.maizegdb.org/Zm-B73-
REFERENCE-GRAMENE-4.0/Orthologs/ZmB73v4.Gramene_53.rice_
orthologs.txt), and the correspondence was divided into one-to-one
immediate homologs, one-to-many groups, and many-to-many
groups, and we used only one-to-one immediate homologs for the
conversion.
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Gene ontology enrichment analysis
GO enrichment analysis was performed with gprofiler2 (version
0.2.0)89 in R. The default hypergeometric test was employed for
determining statistical significance. The g:SCS (graph-based stratified
Cox-Snell) algorithm was used for multiple testing correction.

Pseudotime analysis
The Monocle2 (version 0.2.1)90 and CytoTRACE (version 0.3.3)91 pro-
grams were used to analyze cell differentiation throughout pseudo-
time and determine the destiny of individual cells. An analysis was
performed on a portion of the raw data with target clusters to inves-
tigate the developmental trajectory of particular cell types. The spe-
cific steps were as follows: First, the dispersiontable () function was
used to determine the variation across cells in the expression of each
gene. The highly variable genes were ordered according to their
average expression. Second, we used the reduceDimension function
(set max components = 2, method = ‘DDRTree’) to reduce the dimen-
sionality. The cells were finally placed in order using the orderCells ()
function. Plot cell trajectory in Monocle2 was used to create the tra-
jectory. Thedifferentiation potential of the cells was investigated using
CytoTRACE; all settings were left at their default values. CytoTRACE
scores range from 0 to 1, with lower values indicating more differ-
entiation and higher values indicating less differentiation.

Cellular differentiation score
Bulk RNA-seq data from endosperm of 6 and 7 DAP at two different
stages of endosperm development were analyzed using edgeR (ver-
sion 3.34.0)92. The significantly expressed genes were identified based
on the following criteria: a FDR (False Discovery Rate) of less than 0.05
and a log2-fold change greater than 2, with endosperm from the 6 DAP
period serving as the control group. The gene signature scores (GSCs)
of 6 and 7 DAP marker genes were calculated using UCell (version
1.0.0)93. The cellular differentiation score was calculated as a log2 ratio
of all 7 DAP/6 DAP marker genes GSCs.

Identifying regulons and inferring their activity
GRNboost2 (version 0.1.6)94 was used to generate GRNs from scRNA-
seq data. The single-cell expression matrix and TF list were used to
identify coexpression modules between TFs and probable target
genes, averaging 40× results to obtain reliable coexpression modules.
The top 1 million regulatory pairs were extracted to form the top-
ranked GRN. TF direct target genes for each coexpression module
were inferred from the high-confidence target genes in the ampDAP-
seq,DAP-seq andChIP-seqof the associatedTF.Next, each regulonwas
defined as a collection of TFs and their direct target genes. The result
was visualized by Cytoscape (version 3.8.0)95. AUCell (version 1.14.0)96

was used to identify cells with an active regulon in single-cell RNA-seq
data. The regulon active scores (RAS) in each individual cell were
determined by the area under the recovery curve. In order to calculate
the RAS, we separately checked whether the genes in the regulonwere
within the top 1%, top 5%, top 10%, top 15% and top 20%, and then
determined the most appropriate parameters for each regulon (Sup-
plementary Data 21). The RAS estimates the proportion of genes in the
regulon that are highly expressed in each cell. The function “AUCel-
l_exploreThresholds()” was used to automatically plot all histograms
and calculate several thresholds that can be used to consider regulon
“activity”, using the default threshold.

Defining regulon specificity scores
A previously published entropy-based approach was used to calculate
regulon specificity scores (RSS) to assess a regulon’s cell-type
specificity97 in R with the package philentropy (version 0.5.0). The
RAS matrix was used as the input matrix to calculate RSS. The top 5
most specific regulons were displayed using the R package ggplot2
(version 3.3.5).

Regulon module analysis
The connection specificity Index (CSI)98 was used to discover regulon
modules. The CSI is a context-dependent metric for detecting parti-
cular associated partners. The assessment of CSI is a two-step process.
Firstly, the PCC of activity ratings for each pair of regulons is deter-
mined. The CSI of regulon P and regulonQ is defined as the proportion
of all regulon pairs correlated with P, Q for which the PCC is less than
PCC(P, Q). The larger the CSI, the greater the correlation between
regulon A and regulon B.

The CSI of regulons P and Q is calculated as follows:

mP,Q
i =

1 PCC P,ið Þ<PCCðP,QÞorPCCðQ,iÞ< PCCðP,QÞ
0 others

�

CSIðP,QÞ=
P

i m
P,Q
i

ðN � 2Þ2

N stands for the number of regulons.
Hierarchical clustering with complete linkage was performed

based on the CSI matrix to identify different regulon modules. Addi-
tionally, 5 was selected as a cutoff for the regulon association network
in order to examine the connection between various regulons. The
relationship between different regulons was visualized by Cytoscape
(version 3.8.0)95. The activity score associated with a cell type for each
regulon module is defined as the average of the activity scores of its
regulon members in all cells within that cell type. The result was then
displayed on a UMAP plot.

Quantifying cluster relationship
The association between various cell types was assessed based on the
similarity of total regulon activities, which was defined by the PCC,
using the gene regulatory network analysis as a reference (Supple-
mentary Data 22). The results were visualized with Cytoscape (ver-
sion 3.8.0).

Identification of mutant
We generatedmybr29 CRISPR-Cas9 transgenic lines using the simplex
strategy, as previously described99. Specifically, the 20-bp target edit-
ing sequence is located within the first exon of MYBR29
(GAGTGTCTCCGAGATCAAGA). Agrobacterium-mediated maize
transformationwasemployed, following the sameprocedure as for the
simplex strategy. To ensure genetic stability, both mybr29-1 and
mybr29-2 were backcrossed to the B104 genetic background for at
least two generations. Lu et al.100 identified two singlemutants,mybr19
and ereb108, in a large population of sequence-indexed mutations
resulting from EMS mutagenesis. These mutants can be obtained
through the website http://elabcaas.cn/memd/. Segregating F2 ears
were utilized in this study. The CRISPR-Cas9-targeted site and EMS-
targeted site were amplified from genomic DNA with specific primers
(SupplementaryData 26), and the PCRproductwas analyzedbySanger
sequencing for genotyping.

MP3RNA-seq and qRT-PCR of mutant
At 8 DAP, 5–10 maize endosperms of the wild type and mutant of the
three genes were collected, and total RNA was extracted using the
RNAprep Pure Plant Kit (cat. no. DP441, TIANGEN). Three biological
replicates were extracted from the kernels of three independentmaize
ears library construction using the MP3RNA-seq method101. cDNA
libraries were constructed following Illumina standard protocols and
sequenced on the NovaSeq platform (Illumina) by the Berry Genomics
company (Beijing) to produce 150-bp paired-end reads. qRT-PCR was
performed using SuperReal PreMix Plus (SYBR Green; TIANGEN, Beij-
ing, China; cat. no. FP205) on aCFX96Real-Time PCR System (Bio-Rad,
Hercules, CA, USA) to analyze gene-expression levels. Three indepen-
dent RNA samples from the kernels of three F2 ears were used as
biological replicates to ensure reproducibility. The expression of
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maize 18s was used as an internal control for normalization of gene-
expression data. The 2−ΔΔCt method was used to calculate the relative
gene-expression level102. The primer sequences used for qRT-PCR are
provided in Supplementary Data 26.

MP3RNA-seq analysis
The analysis method is as described in the previous101. In brief, raw
sequencing reads were sorted into different libraries based on the
index read and further separated into different samples based on
barcode sequences. Reads were aligned to the respective reference
genomes using Hisat2 (version 2.2.1)103 software, and duplicates were
removed using UMI sequences. CPM was used to measure gene-
expression levels, we removed the genes with expression values
greater than 50%, differentially expressed genes (q-value < 0.05)
between the samples were identified using the R package edgeR92

(version 3.34.0).

Cell wall staining
Cell wall staining was performed as described24. Briefly, we prepared
sections of the 10 DAP maize seed mutant and wild type, the sections
were subjected to cellulose staining using 0.1% calcofluor Fluorescent
Brightener 28 (Sigma-Aldrich), a commonly used fluorescent dye for
cellulose detection. Upon excitation by 405 nm light, fluorescence
signal was detected under a Zeiss LSM880 confocal microscope,
cellulose-containing primary walls exhibit dark blue fluorescence,
while newly deposited wall thickenings appear as light blue fluores-
cence. This staining method allowed for visualization and localization
of cellulose in the plant cell walls.

Statistical analysis
Statistical analyses for Figs. 3f, 7b, h, i, j, Supplementary Figs. 16e,
and 20d, g, h were conducted using a two-tailed Student’s t-test via
GraphPad Prism 9, with no adjustments for multiple comparisons. For
Supplementary Fig. 14d, the hypergeometric test was employed;
Supplementary Fig. 14e utilized the χ2 test, and Supplementary
Fig. 20c applied Fisher’s exact test, all performed using R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq, bulk RNA-seq and DAP-seq source data are deposited
at the Gene Expression Omnibus website (https://www.ncbi.nlm.nih.
gov/geo/) under the SuperSeries accession number GSE201701. A
genome browser displaying mapped reads is available at https://dap-
seq.maize-endosperm.cn/. To facilitate researchers, we have provided
a list correlating gene symbols with their respective gene IDs (Sup-
plementary Data 27). Source data are provided with this paper.

Code availability
The codes used in this article can be accessed at https://github.com/
Huo-qiang/maize-endosperm-scRNA-seq104.
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