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Effective binning of metagenomic contigs
using contrastive multi-view representation
learning

Ziye Wang 1, Ronghui You1, Haitao Han 1, Wei Liu1, Fengzhu Sun 2 &
Shanfeng Zhu 1,3,4,5,6

Contig binning plays a crucial role in metagenomic data analysis by grouping
contigs from the same or closely related genomes. However, existing binning
methods face challenges in practical applications due to the diversity of data
types and the difficulties in efficiently integrating heterogeneous information.
Here, we introduce COMEBin, a binning method based on contrastive multi-
view representation learning. COMEBin utilizes data augmentation to generate
multiple fragments (views) of each contig and obtains high-quality embed-
dings of heterogeneous features (sequence coverage and k-mer distribution)
through contrastive learning. Experimental results on multiple simulated and
real datasets demonstrate that COMEBin outperforms state-of-the-art binning
methods, particularly in recovering near-complete genomes from real envir-
onmental samples. COMEBin outperforms other binning methods remarkably
when integrated into metagenomic analysis pipelines, including the recovery
of potentially pathogenic antibiotic-resistant bacteria (PARB) andmoderate or
higher quality bins containing potential biosynthetic gene clusters (BGCs).

Metagenomics provides a culture-free method to study microorgan-
isms by directly analyzing genomes and genes collected from micro-
bial populations1 and mining important information related to the
environment and human diseases2–4. Corresponding computational
methods have been developed rapidly in the past two decades,
including metagenome assembly, contig binning, and microbial
profiling5. Binning, which groups DNA fragments (such as contigs)
from the same or close genome into the same bin, is important in
analyzing metagenomic sequencing data. The quality of the binning
results will affect the microbial community structure and function
analysis, the discovery of microbes, and other follow-up metage-
nomics investigations2,6,7. How to provide reliable and high-
performance contig binning results for metagenomics research has
become an important research topic.

Many binning methods have been developed. According to the
features utilized, they canbemainly divided into three groups: sequence
composition (k-mer frequency) based, abundance (contig coverage)
based, and hybrid methods (combine both the k-mer frequency and
coverage features)8. Although hybrid methods are usually superior to
those using only one kind of information, efficiently integrating het-
erogeneous features remains challenging. Researchers havemademany
attempts to address this problem. For example, CONCOCT9 directly
concatenates two kinds of features, easily affected by the normalization
method of heterogeneous features and the number of sequencing
samples. MaxBin210,11 multiplies the probabilities obtained by the two
kinds of features, which requires high accuracy of the two kinds of
information. Moreover, MaxBin2 can be computationally prohibitive on
datasets with a substantial number of sequencing samples. MetaBAT112
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combines two distance measures by weighted summation so that only
the linear relationshipbetween thedistances of the twokinds of features
can be obtained. As an upgraded version, MetaBAT213 integrates two
distance scores by computing their geometric mean. The recently
developed MetaDecoder14 is a two-layer contig binning model using a
modified Dirichlet Gaussian mixture model to create preliminary clus-
ters based on k-mer frequency and coverage. Then, it employs a semi-
supervised k-mer frequency probabilistic model and a modified Gaus-
sian mixture model for coverage to generate pure clusters.

The emergence of deep learning-based binning methods has pro-
vided improved capabilities in handling heterogeneous information.
VAMB15 connects the two heterogeneous features, including oligonu-
cleotide frequency and coverage features, and obtains latent repre-
sentations through variational autoencoder16. However, VAMB does not
use additional information to guide the learning of representations for
clustering. CLMB17 extends the methodology of VAMB by incorporating
contrastive learning. Contrastive learning is a self-supervised learning
technique used for learning an informative representation of the input
data by bringing similar instances closer together while pushing dis-
similar instances farther apart18. CLMB introduces a pair of augmented
data for each contigby addingnoise to the feature vector. Subsequently,
CLMB obtains the embedded representations that integrates hetero-
geneous features. Nevertheless, adding simulated noise for data aug-
mentation in CLMB has only slight improvement compared to VAMB
due to the difficulty in simulating the data noise for the complex
metagenomes. SemiBin119 is a semi-supervised binning algorithm based
ondeep learning. It constructs pairwisemust-link constraints by splitting
long contigs into two equal-length segments and constructs pairwise
cannot-link constraints from the taxonomic annotation information.
SemiBin1 utilizes a semi-supervised autoencoder to extract the con-
straint information and obtain embeddings for subsequent clustering.
As an upgraded version, SemiBin220 adopts the same approach as
SemiBin1 for generating must-link constraints, but it introduces cannot-
link constraints through random sampling of pairs of contigs. However,
the quantity and quality of the must-link constraints are influenced by
the length distribution of the contigs within the datasets.

Here we propose COMEBin, a contig binning method based on
contrastive multi-view representation learning. The key contributions
of COMEBin can be summarized as follows: 1) We introduce a data
augmentation approach that generatesmultiple views for each contig,
enabling contrastive learning and yielding high-quality representa-
tions of the heterogeneous features; 2) COMEBin incorporates a
“Coverage module” to obtain fixed-dimensional coverage embed-
dings, which enhances its performance across datasets with varying
numbers of sequencing samples; 3) COMEBin employs the advanced
community detection algorithm, Leiden21, for clustering.Moreover,we
adapt the settings of Leiden specifically for the binning task, con-
sidering single-copy gene information22 and contig length. This adap-
tation ensures that COMEBin produces robust and reliable binning
results across diverse datasets.

Recently, three kinds of binning modes have been used in related
studies5,15,19,23: co-assembly, single-sample, and multi-sample binning.
In single-sample binning, each sequencing sample is independently
assembled and binned. In multi-sample binning, each sequencing
sample is still individually assembled, but the sequencing reads from
all the samples are used for generating the abundance for binning. In
contrast to single- and multi-sample binning, different sequencing
samples are pooled together for assembling and binning in co-
assembly binning. We have validated the performance of COMEBin on
ten simulated and six real datasets in co-assembly binning and three
real datasets in single- and multi-sample binning. Advanced binning
methods for comparison include three widely used binning methods
(CONCOCT9,MetaBAT212,13, andMaxBin210,11), four deep learning-based
binning methods (VAMB15, CLMB17, SemiBin119, SemiBin220), and a
newly published binner, MetaDecoder14.

On the sixteen datasets evaluated in co-assembly binning,
COMEBin achieves the best overall performance. For example,
COMEBin achieves the best results regarding the number of recovered
near-complete bins (>90% completeness and <5% contamination) on
fourteen datasets. Compared with the best of other methods (the best
results of other binners for all datasets come from different binning
methods), COMEBinhas an average improvement of 9.3%and22.4%on
the simulated datasets and the real datasets, respectively. In the eva-
luation conducted on the three datasets in both single- and multi-
sample binning, COMEBin has an average improvement of 33.2% and
28.0%, respectively, compared with the best of other methods.

We replaced the advanced binning methods with COMEBin in
metagenomic analysis pipelines, including identifying potential
pathogenic antibiotic-resistant bacteria (PARB) and recovering mod-
erate or higher quality bins containing potential biosynthetic gene
clusters (BGCs). COMEBin increases the number of identified potential
PARB by an average of 33.3%, 74.5%, and 60.5% in comparison to the
utilization of MetaBAT2, MetaDecoder, and SemiBin2, respectively.
COMEBin recovers 126% and 70.6% more moderate or higher quality
bins containing at least one BGC, compared to the second-best per-
formers in single- and multi-sample binning, respectively.

Results
COMEBin outperforms other binning methods on simulated
datasets
To compare COMEBin with other binning methods on the simulated
datasets, we used ten benchmark datasets, including four CAMI II toy
datasets (CAMI Gt, CAMI Airways, CAMI Skin, and CAMI Mouse gut)
and six benchmark datasets from the second round of CAMI
challenges5 (Marine GSA, Marine MA, Plant-associated GSA, Plant-
associated MA, Strain-madness GSA, and Strain-madness MA), where
“GSA” denotes gold standard assembly and “MA” denotes MEGAHIT
assembly. See the “Methods” section for details.

For the four CAMI II toy datasets, COMEBin outperforms other
binning methods, including deep learning-based binning methods
(VAMB, CLMB, SemiBin1, and SemiBin2), in terms of the number of
recovered near-complete bins (>90% completeness and <5% con-
tamination; see Fig. 1a). Notably, COMEBin achieves these results
without relying on semi-supervised taxonomic information used by
SemiBin1. Compared to the second-best methods, COMEBin increases
the number of recovered near-complete bins from 135, 135, 154, and
415 to 156, 155, 200, and 516, respectively. Figure 1b illustrates that
COMEBinconsistently attains thehighest accuracy values across all the
datasets. Moreover, as shown in Supplementary Fig. S1, COMEBin
achieves the best overall performance in terms of the F1-score (bp),
Adjusted Rand Index (bp), percentage of binned bp, and accuracy (bp)
metrics. Thenotation “(bp)” indicates that the evaluations are basedon
base pair counts as done in refs. 5,23,24.

For the CAMI II challenge datasets, COMEBin performs best on the
four marine and plant-associated datasets, as shown in Fig. 2a, and the
second-best methods are different. Especially on the Marine GSA
dataset, COMEBin increases the number of recovered near-complete
bins from 285 to 337 compared with the second-best method. The
quality of assemblies has a significant impact on binning performance.
All the binners perform better on the gold standard assembly (GSA)
than the corresponding MEGAHIT assembly (MA), and the average
number of recovered near-complete genomes of Marine, Plant-asso-
ciated, and Strain-madness datasets have increased by 218%, 242%, and
318%, respectively, when transitioning from MA to GSA datasets. Max-
Bin2, SemiBin1, and SemiBin2 are particularly influenced by assembly
quality, potentially due to the utilization of single-copy gene informa-
tion in clustering. Supplementary Fig. S2 shows the performance of the
F1-score (bp), ARI (bp), percentage of binned bp, and accuracy (bp). In
terms of the accuracy values on different datasets (see Fig. 2b and
Supplementary Fig. S2), COMEBin achieves the best performance.
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Regarding the strain-madness datasets, no singlemethod exhibits
a distinct advantage. The presence of closely related strains (genomes
with an average nucleotide identity (ANI) of no less than 95% to at least
another genome) in the strain-madness datasets poses challenges for
recovering high-quality bins using existing binningmethods.COMEBin
(no k-mer) is a variant of COMEBin that only utilizes coverage infor-
mation. It recovers 52 near-complete bins on the Strain-madness GSA
dataset, surpassing COMEBin, which recovers 39 near-complete bins.

Additionally, all methods perform poorly on the Strain-madness MA,
indicating the continued difficulties in assembly and binning for
datasets containing highly similar strains.

COMEBin outperforms other binning methods on real datasets
We utilized CheckM225 to obtain the numbers of the high-quality bins
recovered by different binning methods. Figure 3a illustrates that
COMEBin consistentlyoutperformsother binners across all six datasets.

a

b

Fig. 1 | Comparisonof binningmethods on the four simulateddatasets. aThe number of recovered binswith contamination <5% and varying completeness thresholds.
b The accuracy (bp) for the binning methods.

Article https://doi.org/10.1038/s41467-023-44290-z

Nature Communications |          (2024) 15:585 3



While VAMBperformswell on the two datasets with a higher number of
samples (STEC and MetaHIT datasets), its effectiveness diminishes on
the three Water Group datasets, which consist of fewer than ten
sequencing samples. One possible explanation is that VAMB directly
concatenates two types of features and learns embeddings of hetero-
geneous data, making it susceptible to the dimensionality of coverage
features (i.e., the number of sequencing samples). Conversely, COME-
Bin still achieves good performance on the datasets with few samples.
Firstly, COMEBin incorporates a “Coverage network” module, capable
of generating fixed-dimensional embedded representations for cover-
age features. Furthermore, COMEBin employs contrastive learning,
enabling the discovery of more informative features.

In terms of the number of near-complete genomes recovered by
the binningmethods, COMEBin is the best-performingmethod. VAMB
is the second-best method on the datasets with more than 50
sequencing samples (STEC and MetaHIT datasets), while MetaBAT2 is
the second-best performer on the threeWaterGroupdatasetswith less

than ten sequencing samples. On average, COMEBin outperforms the
second-best performing methods by recovering 22.4% more near-
complete bins. It is worth highlighting that the second-best results are
achieved by different binners across the datasets.

We further annotated the bins with >50% completeness and <5%
contamination produced by MetaBAT2 and COMEBin on the holdout
datasets (refer to “Benchmark datasets” section) using GTDB-Tk26,27. As
illustrated in Fig. 3b, COMEBin recovers more distinct taxa at the var-
ious taxonomic levels. Additionally, Supplementary Fig. S3 demon-
strates that COMEBin recoversmore knownandunknownmoderate or
higher quality bins at the species level in the real datasets.

COMEBin demonstrates effectiveness across diverse datasets
and different binning modes
We summarize the comparison results obtained from the holdout
datasets (refer to “Benchmark datasets” section) and demonstrate the
usability of COMEBin for single-sample and multi-sample binning on

a

b

Fig. 2 | Comparison of binning methods on CAMI II datasets. a The number of recovered bins with contamination <5% and varying completeness thresholds. b The
accuracy (bp) for the binning methods.
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three real datasets (Water Group2, Water Group3, and MetaHIT (10-
sample)). Detailed descriptions of binning modes can be found in the
“Binning modes” section.

Regarding the simulated holdout datasets, COMEBin exhibits
the best performance regarding the number of bins with an F1-score
greater than 0.9, except the Strain-madness GSA dataset, as shown
in Supplementary Fig. S4. Notably, COMEBin outperforms the second-
highest performers by recovering 19.4% and 19.8% more bins with
an F1-score greater than 0.9 in the Marine GSA and Marine MA data-
sets, respectively. Furthermore, we evaluated the performance of
COMEBin on challenging common strains, defined as genomes with an
averagenucleotide identity (ANI) of no less than 95% to at least another
genome in the dataset5. Remarkably, COMEBin recovers 16.7% more
bins with an F1-score greater than 0.9 compared to the second-highest

performer in theMarine GSA (common) dataset. COMEBin (no k-mer),
a variant of COMEBin utilizing only coverage information, recovers
14.9% more bins with an F1-score greater than 0.9 compared to the
second-best performer in the Strain-madness (common) dataset, as
shown in Supplementary Fig. S5. These results underscore COMEBin’s
capability to handle highly similar strains effectively.

To further demonstrate the usability of COMEBin across different
binning modes, we evaluated COMEBin’s performance in single- and
multi-sample binning on the MetaHIT (10-sample), Water Group2, and
Water Group3 datasets. Supplementary Fig. S6 provides a detailed
comparison. COMEBin achieves the best overall performance in both
modes. It recovers an average of 33.2% and 28.0%more near-complete
genomes compared to the best of other methods in single- and multi-
sample binning, respectively.

a

b
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Fig. 3 | COMEBin outperforms other binners in real datasets. a The number of
recovered bins with contamination <5% and varying completeness thresholds.
b The numbers of distinct taxa at the species, genus, family, order, class, phylum,

and domain levels. GTDB-Tk was utilized to annotate the bins with >50% com-
pleteness and <5% contamination.
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Contrastive multi-view learning improves binning results
We ran different variants of COMEBin for comparison on six datasets
to show the effect of contrastive multi-view learning. The following
describes the variants of COMEBin.
(1) COMEBin NoContrast (combine)

The “COMEBin NoContrast (combine)” method uses the con-
catenated original nucleotide frequency features and coverage
features as the inputs and uses the samemethod of COMEBin to
cluster the contigs.

(2) COMEBin NoContrast (coverage)
The “COMEBinNoContrast (coverage)”method uses the original
coverage features as the inputs and uses the same method of
COMEBin to cluster the contigs.

(3) COMEBin NoContrast (k-mer)
The “COMEBin NoContrast (k-mer)” method uses the original
k-mer frequency features as the inputs and uses the same
method of COMEBin to cluster the contigs.

(4) COMEBin (VAMB embeddings)
The “COMEBin (VAMB embeddings)” method uses the embed-
dings generated by VAMB15 as the inputs of the COMEBin clus-
tering methods.

(5) COMEBin (CLMB embeddings)
The “COMEBin (CLMB embeddings)” method uses the embed-
dings generated by CLMB17 as the inputs of the COMEBin clus-
tering methods.

(6) COMEBin (SemiBin1 embeddings)
The “COMEBin (SemiBin1 embeddings)” method uses the
embeddings generated by SemiBin119 as the inputs of the
COMEBin clustering methods.

(7) COMEBin (SemiBin2 embeddings)
The “COMEBin (SemiBin2 embeddings)” method uses the
embeddings generated by SemiBin220 as the inputs of the
COMEBin clustering methods.

As shown in Supplementary Fig. S7, COMEBin achieves much
better performance than the “COMEBin NoContrast” methods on all
datasets. To further evaluate the effectiveness of COMEBin’s embed-
dings for binning, we utilized the embeddings generated by VAMB,
CLMB, SemiBin1, and SemiBin2 as inputs for the COMEBin clustering
methods. The results demonstrate that COMEBin’s embeddings out-
perform the alternative approaches, emphasizing their potency for
binning. Notably, compared with COMEBin (CLMB embeddings),
COMEBin exhibits an average improvement of 50.4% in the number of
recovered near-complete genomes. These findings indicate that con-
trastive multi-view learning enhances the quality of binning results.

We further employed t-SNE28 to visualize the raw features and the
embedded representations derived by COMEBin, which incorporate
heterogeneous information. Figure 4 illustrates the feature visualiza-
tion results of the ten genomes with the largest number of contigs
(longer than 1000bp) in the CAMI Airways dataset. Figure 4a presents
the visualization of nucleotide frequency features. The results reveal
that, except for the three categories at the edges, the contigs of other
genomes exhibit mixing with no discernible boundaries. Figure 4b
corresponds to the visualization results using only the original contig
coverage features, where seven clusters exhibit distinct boundaries.
Subsequently, Fig. 4c demonstrates the visualization results after
concatenating the two original features. Although there is a significant
improvement for the “OTU_97.38219.0” cluster compared to using
only the coverage feature, only four clusters exhibit distinct bound-
aries. Finally, Fig. 4d displays the visualization of the embedded
representations with heterogeneous information obtained by COME-
Bin. The results clearly indicate strong separability among the
embedded features of the ten genomes, with distinct boundaries
observed between each cluster.

Our method generates five sets of augmented data for each
dataset, resulting in six views for each contig, including the original
view. To investigate the impact of augmented data volume, we

a b

c d

Fig. 4 | Feature visualization of the CAMI Airways dataset (10 genomes with
the highest number of contigs). The t-SNE28 was employed to visualize the raw
features and the embedded representations derived by COMEBin. Each point

represents a contig, and points with the same color indicate that they originate
from the same genome. a Raw data of k-mer frequency features. b Raw data of
coverage features. c Raw data of concatenated features. dCOMEBin-encoded data.

Article https://doi.org/10.1038/s41467-023-44290-z

Nature Communications |          (2024) 15:585 6



conducted experiments by varying thenumberof augmenteddata sets
and evaluated the performance on four simulated and two real data-
sets. The results, as presented in Supplementary Fig. S8, indicate that
the overall performance improves as the number of views increases for
2, 4, and 6 views. Regarding the real datasets, the results obtained
using six views exhibit similar performance to those achievedwith four
and eight views.

Running time and memory usage
We measured the running time and memory usage for COMEBin,
SemiBin2, andVAMBacrossCAMIGt and STECdatasets in co-assembly
binning, as well as ten Bermuda-Atlantic Time-series Study (BATS)
metagenomes in both single- and multi-sample binning (Supplemen-
tary Table S1). More details on the BATS samples are given in Supple-
mentary Table S2. The binners were executed on a machine with two
2.50GHz Intel Xeon Processor E5-2678 CPUs and an RTX 4090 GPU in
both CPU-only and GPU modes. We ran the binners with 48 threads.
We excluded the running time for aligning reads to contigs, as this step
is necessary for all binning methods. We ran each binner on each
dataset three times and computed the average running time and
memory usage. On the STEC dataset, which includes 53 sequencing
samples and over 250,000 contigs, COMEBin’s memory usage does
not exceed 11GB. Additionally, the GPU version of COMEBin runs for
~6 h. As shown in Supplementary Table S1, the running time of
COMEBin varies greatly between CPU-only and GPU modes. The run-
ning time of COMEBin in GPUmode is comparable to SemiBin2, but in
CPU-only mode, its running time is noticeably longer than the other
two methods. We recommend using COMEBin in GPU mode.

COMEBin assists analysis of potential pathogenic antibiotic-
resistant bacteria (PARB)
Identifying potential pathogenic antibiotic-resistant bacteria
(PARB) is crucial in microbiological risk assessment29. And the
three Water Group datasets used for benchmarking in our
study were sampled to analyze potential PARB in aquatic
environments29. To demonstrate the ability of COMEBin to assist
the microbiological risk assessment, we compared the results of
COMEBin and the advanced binners (MetaBAT2, MetaDecoder,
and SemiBin2) in the recovery of potential PARB on the three
datasets. Following the study29, a “moderate or higher” quality bin
with at least one antibiotic resistance gene (ARG) and one viru-
lence factor gene (VFG) is defined as a potential PARB.

When integrating COMEBin into the PARB identification work-
flow, as depicted in Fig. 5a, the number of potential PARB identified
from the Water Group datasets has shown an average increase of
33.3%, 74.5%, and 60.5% in comparison to the utilization of MetaBAT2,
MetaDecoder, and SemiBin2, respectively (see Fig. 5b). This improve-
ment underscores the effectiveness of COMEBin in enhancing the
identification of PARB, thus facilitating more accurate microbiological
risk assessment.

COMEBin helps to recover moderate or higher quality bins
carrying potential BGCs
Secondary metabolites in bacteria and fungi are bioactive compounds
with potential anti-tumor or antibiotic activities,making themvaluable
resources for drug discovery30. Biosynthetic gene clusters (BGCs)
contain the genes responsible for the production of these secondary
metabolites31,32. Exploring metagenomes for potential BGCs is crucial
for unlocking their therapeutic potential. To demonstrate the effec-
tiveness of COMEBin in recovering moderate or higher quality bins
containing potential BGCs, we evaluated COMEBin by comparing its
performance to MetaBAT2, MetaDecoder, and SemiBin2 using ten
metagenomes from the Bermuda-Atlantic Time-series Study (BATS)33.
Both single-sample and multi-sample binning were evaluated. Binning
results were assessed using CheckM2 to identify moderate or

higher quality bins. Potential BGCswere identified in these bins using a
secondary metabolite genome mining tool, antiSMASH34. COMEBin
outperforms the compared binning methods in recovering moderate
or higher quality bins in both binning modes (see Fig. 5c). In single-
sample binning, it demonstrates a notable 162% enhancement in the
number of potential BGCs from the recovered moderate or higher
quality bins, compared to the second-best performer (MetaDecoder)
(see Fig. 5d). COMEBin recovers 126% and 70.6% more moderate or
higher quality bins containing at least one BGC, compared to the
second-best performers in single- and multi-sample binning, respec-
tively (refer to Fig. 5e). Moreover, the total lengths of BGCs within
moderate or higher quality bins recoveredbyCOMEBinexhibit a 64.8%
improvement over the second-best performer in single-sample bin-
ning (refer to Fig. 5f). These findings highlight the substantial potential
of COMEBin for metagenomic research focused on secondary meta-
bolite discovery.

Discussion
COMEBin is a binning method based on multi-view contrastive learn-
ing. The contrastive learning approach aims to make the representa-
tions of different views of the same contig as similar as possible while
ensuring that the representations of different contigs are distinct,
resulting in highly discriminative embeddings (refer to Fig. 4). In
addition, we incorporate the “Coverage network” to obtain fixed-
dimensional coverage representations. Compared to VAMB15, COME-
Bin demonstrates superior stability in scenarios where the number of
sequencing samples varies significantly. Finally, we employ the Leiden-
based clustering method to obtain accurate binning results. We opti-
mize the settings of Leiden for the binning task, considering single-
copy marker information and contig length. As a result, COMEBin
consistently delivers excellent and robust binning results across six-
teen simulated and real datasets. Furthermore, to demonstrate
COMEBin’s performance on low-complexity datasets, we randomly
selected ten genomes from the CAMI Skin and CAMI Mouse gut
datasets for testing. As shown in Supplementary Fig. S9, COMEBin
consistently recovers the most near-complete genomes.

CLMB17 is an existing contrastive learning-based binning method,
which constructs a pair of augmented data for each contig for con-
trastive learning by adding noise to the feature vectors. However,
simulating the data noise for the complex metagenomes is challen-
ging, affecting the quality of the augmented data and resulting in
limited improvements compared to its non-contrastive version
VAMB15. In contrast to CLMB, COMEBin employs a more effective data
augmentation approach and generates multiple views for each
sequence by randomly extractingmultiple continuous fragments from
each contig. The multiple-view strategy improves binning perfor-
mance (see Supplementary Figs. S7 and S8). Especially, COMEBin
outperforms CLMB in recovering near-complete genomes, exhibiting
an average improvement of 66.1% across ten holdout datasets in co-
assembly binning.

COMEBin demonstrates effectiveness across different binning
modes. In addition to evaluating its performance on the benchmark
datasets in co-assembly binning, we demonstrate the utility of
COMEBin on the MetaHIT (10-sample), Water Group2, and Water
Group3 datasets in single- and multi-sample binning. COMEBin
recovers an average of 33.2% and 28.0%more near-complete genomes
compared to the best of other methods in single- and multi-sample
binning, respectively (see Supplementary Fig. S6).

We have also compared COMEBin with SemiBin2, MetaDecoder,
and MetaBAT2 using four long-read sequencing datasets, as stated in
the Supplementary Note. Long-read sequencing typically yields highly
contiguous assemblies, resulting in fewer contigs and smaller bins
(measuredby thenumber of contigs)20. According to the results shown
in Supplementary Fig. S10, SemiBin2 (long-readmode) performs best,
followed by COMEBin. In future research, we plan to design a binning
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algorithm specifically for long-read sequencing data and explore the
application of the multi-view contrastive learning method on third-
generation sequencing reads, eliminating the need for generating
assemblies.

In summary, COMEBin outperforms existing state-of-the-art bin-
ning methods in recovering individual genomes from complex

microbial communities, as demonstrated by extensive experiments.
Furthermore, COMEBin can be a valuable tool for analyzing metage-
nomic sequencing data, and we encourage researchers to integrate it
into their metagenomic analysis pipelines, including identifying
pathogenic antibiotic-resistant bacteria and potential biosynthetic
gene clusters (BGCs) in metagenomes (See Fig. 5).
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Methods
COMEBin
The framework of COMEBin is shown in Fig. 6, which is mainly divided
into the following steps: 1) Data augmentation: construct five sets of
augmented data by randomly extracting subsequences from the ori-
ginal contigs, resulting in six views for each original contig; 2) Con-
struct feature vectors: construct nucleotide frequency and coverage
features for each contig (including the original sequences and aug-
mented sequences); 3) Contrastive learning: obtain low-dimensional
representations suitable for binning with heterogeneous information
based on multi-view contrastive learning, and 4) Clustering: generate
binning results based on the Leiden community division algorithm21.

Among them, the network structure used in contrastive learning
includes two parts: 1) “Coverage network”: process coverage features
and 2) “Combine network”: integrate the k− mer features and the
“Coverage network” to obtain representations containing hetero-
geneous information. More descriptions of COMEBin are as follows.

Data augmentation. Contiguous sequence fragments extracted from
the same contig should belong to the samegenome, ignoring potential
errors caused by metagenomic sequence assembly. We proposed a
data augmentation method based on the above assumptions. We
randomly selected five continuous segments of not less than 1000bp
for each contig to obtain five sets of augmented data. Consequently,
we obtained six views for each contig, including one original view
(original contigs) andfive views corresponding to the augmenteddata.

Construct feature vectors. Tetra-nucleotide frequencies (TNF)
We utilized a sliding window of length k with a stride of one to

traverse the contig sequence, generating k-mer fragment sequences.
The resulting k-mer frequency vector of dimension T serves as a fea-
ture representation for the contig sequence, as described in ref. 35. In
our binning algorithm, we set k to 4 and T to 136 (treating k-mers and
their reverse complements as equivalent). The specific formulas
employed are presented as follows.

Fi = ðf i,1, . . . ,f i,j, . . . ,f i,136Þ, ð1Þ

where fi,j represents the frequency of the j-th k-mer feature of the i-th
contig.

Based on Eq. (1), to avoid elements with zero values in the vector,
we let f 0i,j = f i,j + 1, and normalized f 0i,j to remove the effect of different
contig lengths. Let

qi,j =
f 0i,jP136

k = 1 f
0
i,k

, ð2Þ

and

xðcomÞ
i = ½qi,1, . . . ,qi,136�, ð3Þ

where xðcomÞ
i 2 X ðcomÞ represents the nucleotide frequency feature of

the i-th contig.
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Article https://doi.org/10.1038/s41467-023-44290-z

Nature Communications |          (2024) 15:585 9



Contig abundance (coverage)
Each contig assembled from reads of M sequencing samples can

be represented by a coverage vector (2M dimensions) as follows. Let

CðmeanÞ
i = cðmeanÞ

i,1 , . . . ,cðmeanÞ
i,m , . . . ,cðmeanÞ

i,M

� �
, ð4Þ

where cðmeanÞ
i,m represents the average of the number of reads covering

each base of the i-th contig in the m-th sequencing sample. Define

CðstdÞ
i = cðstdÞi,1 , . . . ,cðstdÞi,m , . . . ,cðstdÞi,M

� �
, ð5Þ

where cðstdÞi,m represents the standard deviation of the number of reads
covering each base of the i-th contig in the m-th sequencing sample.
We concatenated CðmeanÞ

i and CðstdÞ
i to form the coverage vector.

Ci = CðmeanÞ
i ,CðstdÞ

i

� �
: ð6Þ

To avoid zero vectors, we added a small fraction to each value of
ci,m, e.g., c0i,m = ci,m + 1e� 5. The coverage vector is normalized across
samples to remove the effect of different read counts from different
sequencing samples.

xðcovÞ
i,j =

c0i,m
maxNk = 1c

0
k,m

, ð7Þ

where N represents the number of contigs. Define

xðcovÞi = xðcovÞ
i,1 , . . . ,xðcovÞ

i,m , . . . ,xðcovÞi,2M

h i
, ð8Þ

where xðcovÞi 2 X ðcovÞ represents the coverage feature of the i-th contig.

Contrastive learning. Contrastive learning obtains the representa-
tions of instances through unsupervised proxy tasks and optimizing
contrastive losses36. By optimizing contrastive losses, the representa-
tions of similar instances are pulled closer, while those of dissimilar
instances are pushed farther. Whether the instances are considered
similar is based on the specific unsupervised proxy task. In our binning
task, fragments extracted from the same original contig in the data
augmentation step are regarded as similar instances.

The network structure used for contrastive learning is divided
into two main modules: 1) a network used to obtain embedded
representations of coverage features (“Coverage network”) and 2) a
network that integrates the two kinds of features (“Combine net-
work”), which learns through contrastive learning to obtain embedded
representations containing heterogeneous information.

Coverage network (fcov): The “Coverage network” consists of a
three-layer feed-forward neural network. The input layer comprises
contig coverage features obtained through the method described in
“Construct feature vectors”. See Supplementary Table S3 for the
hyper-parameters of the “Coverage network”.

Combinenetwork (fcombine): The “Combine network” consists of a
three-layer feed-forward neural network. COMEBin normalizes the
outputs of the “Coverage network” and concatenates them with k-mer
features together as the input for the “Combine network”. The output
of the “Combine network” is an embedded representation containing
heterogeneous information. The hyper-parameters of the network are
shown in Supplementary Table S3.

Objective function: The COMEBin neural network uses the nor-
malized temperature scale cross-entropy (NT-Xent) loss function37,38

as the objective function. More details on the contrastive learning
training process of COMEBin are given in Supplementary

Algorithm S1. Define

‘ zi,k ,zi,k0
� �

= � log
exp cos zi,k ,zi,k0

� �
=τ

� �
PNbs

s = 1½1½s≠i� exp cos zi,k ,zs,k
� �

=τ
� �

+ exp cos zi,k ,zs,k0
� �

=τ
� ��

ð9Þ

where zi,k and zi,k0 denotes the representation of the k-th and k 0-th view
of the i-th original contig, and Nbs represents the batch size. The
indicator function 1½s≠i� 2 f0,1g is defined to be one if and only if s ≠ i.
And cos a,bð Þ is defined as follows. Let

cos a,bð Þ= aT � b
aj j � b

�� �� : ð10Þ

When under two views, the loss for each batch is as follows. Let

L2view =
1

2Nbs

XNbs

i = 1

½‘ zi,1,zi,2
� �

+ ‘ zi,2,zi,1
� ��, ð11Þ

where zi,1 denotes the representationof thefirst viewof the i-th original
contig and zi,2 denotes the representationof the second viewof the i-th
original contig.

We extended the above loss function under two views to the case
where the number of views is V (V = 6). Each batch has Nbs original
contigs, and each contig has a total of V views. In each batch, the V
views of each contig are mutually positive samples, and all views from
other contigs are mutually negative samples. The loss function for
each batch is defined as follows. Let

L= � 1
NbsV ðV�1Þ

PNbs

i= 1

PV
v= 1

PV
v1 = 1,v1≠v

log
exp cos zi,v ,zi,v1

� �
=τ

� �
exp cos zi,v,zi,v1

� �
=τ

� �
+
PNbs

j = 1

PV

v2 = 1
1½j≠i� exp cos zi,v ,zj,v2

� �
=τ

� � ,
ð12Þ

where zi,v denotes the representation of the v-th view of the i-th ori-
ginal contig, and τ is a hyper-parameter, which represents the tem-
perature coefficient used to adjust the emphasis on similar negative
samples.

Clustering. After obtaining the trained “Coverage network” (fcoverage)
and “Combine network” (fcombine) through contrastive multi-view
learning, representations for the original contigs are generated.
These embeddings are suitable for various clustering methods
(see Supplementary Note), and, in our case, we applied the Leiden
algorithm21, an advanced community detection algorithm.

(1) Leiden-based clustering
Leiden21 does not require a predefinednumber of clusters,making

it well-suited formetagenomes where the exact number of genomes is
unknown. First, we obtained the k-nearest neighbor graph according
to the representations of the contigs and calculated the L2 distance
efficiently using hnswlib package39. To focus on edges with low dis-
tances, we kept 50%, 80%, or 100% of edges with smaller values for
subsequent clustering. Finally, the distance matrix is converted into a
similarity map (see Eq. (13)). Define

Sij = exp
� xi � xj

���
���
2

σ

0
B@

1
CA, ð13Þ

where Sij represents the similarity between the i-th contig and the j-th
contig, xi and xj represent the embeddings obtained by fcombine of the
two contigs, respectively, and σ is a hyper-parameter.

Afterward, we utilized the community division algorithm Leiden21

to divide the similarity map and obtain the clustering results. Notably,
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our settings differ from the default configuration commonly used in
Leiden in two aspects. Firstly, we assigned a unique cluster for each
contig as the initial membership and designated contigs containing a
particular single-copy gene (SCG) as fixed members, ensuring that the
contigs with the designated SCG are clustered into separate clusters.
This setting is motivated by the fact that single-copy genes exist as a
single copy in a significant proportion (e.g., 97%) of the genomes
within a specific phylum22, and the contigs that harbor the same SCG
are derived from distinct genomes. Secondly, we set the node size of
each contig using its length, regarding each node as an aggregation of
base pairs of the contig.

(2) Choose the best result automatically
The results of Leiden are sensitive to the resolutionparameter and

the σ in Eq. (13). Moreover, it is hard to set the same parameters for
different types of metagenomes. To address this, we ran Leiden using
different parameters in parallel and selected the best result auto-
matically. Parameters include σ in Eq. (13) (0.05, 0.1, 0.15, 0.2, and 0.3),
resolution parameters (1, 5, 10, 30, 50, 70, 90, and 110), and edge ratios
(proportions of edges kept for clustering) of 50%, 80%, and 100%. We
estimated thequality of the Leiden resultswithdifferent parametersby
estimating completeness and contamination of the bins using the
similar method used in MetaBinner40 (see Supplementary Note for
more details). Through this approach, we obtained the estimated
values across six metrics for each Leiden result, including the number
of genomic bins with contamination levels below 5% or 10% and
completeness levels exceeding 50%, 70%, or 90%. Finally, the binning
result with the maximum sum of the estimated values across the six
metrics was automatically chosen as the final output result. Following
SemiBin119 and VAMB15, we removed bins smaller than 200 kbp to get
final bins.

Binning modes
Co-assembly and single-sample binning are commonly utilized to
benchmark the performance of binning methods5,10,12,23. Recently,
VAMB15 and SemiBin119 introduced the multi-sample binning, also
referred to as “multisplit”. In co-assembly binning, reads from all
samples are pooled and assembled to generate the co-assembled
contigs. Binning is performed using these co-assembled contigs and
the coverage information obtained across all corresponding samples.
In single-sample binning, reads from each sequencing sample are
assembled separately, resulting in sample-specific contigs. Then, the
sample-specific contigs and their respective coverage information are
used for binning. Multi-sample binning is performed using the sample-
specific contigs, but coverage information is derived by aligning the
reads from all corresponding samples against the contigs. There are
two available ways for multi-sample binning. VAMB15 and CLMB17

concatenate sample-specific contigs from all samples for binning and
subsequently divide the bins based on the sample ID of each contig.
SemiBin119 uses the sample-specific contigs for binning, and abun-
dance information is aggregated across samples. In this paper, when
referring to multi-sample binning, the mode of VAMB is employed for
both VAMB and CLMB, while the mode of SemiBin1 is utilized for all
other binning methods.

In this paper, unless otherwise specified, the binningmode used is
the co-assembly.

Benchmark datasets
The benchmark datasets were partitioned into training and holdout
datasets following the experimental configuration outlined in ref. 15.
The hyper-parameter selection for COMEBin was performed exclu-
sively using the training datasets. We compared COMEBin with other
state-of-the-art binning algorithms on sixteen datasets, including ten
simulated and six real datasets. Sequence length distribution for the
datasets is given in Supplementary Figs. S11 and S12. Formore detailed
dataset statistics, refer to Supplementary Tables S4 and S5.

Simulated datasets. The four simulated datasets used for training
were provided by the organizers of the CAMI II challenge (https://data.
cami-challenge.org): one from the mouse gut (CAMI Mouse gut) and
three from humanmicrobiomes (CAMI Skin, CAMI Airways, and CAMI
Gastrointestinal tract (CAMI Gt) datasets). The gold standard cross-
sample assemblies were used for binning. We used six benchmark
datasets from CAMI II challenge5 as the hold-out simulated datasets.
These datasets include Marine GSA, Marine MA, Plant-associated GSA,
Plant-associated MA, Strain-madness GSA, and Strain-madness MA. In
this context, “GSA” refers to gold standard assembly, while “MA” refers
toMEGAHIT assembly. As most of the compared binningmethods can
only handle contigs longer than 1000 bp, we kept contigs longer than
1000 base pairs for binning. The organizers of the CAMI II challenges
provided raw simulated sequencing reads and ground truth annota-
tions for contigs. More details are given in Supplementary Table S4.

Real datasets. We also used six real datasets for co-assembly binning
comparison: the STEC dataset, the Water Group1 dataset, the Water
Group2 dataset, the Water Group3 dataset, the MetaHIT dataset, and
the MetaHIT (10-sample) dataset. The STEC dataset41 contains
sequencing data from 53 stool samples from the https://www.ebi.ac.
uk/ena/browser/view/PRJEB1775 project of the European Nucleotide
Sequence Archive. The three river datasets, namely Water Group1,
Water Group2, and Water Group3, consist of 8, 5, and 7 sequencing
samples, respectively. These datasets were employed to evaluate the
performance of different binning methods on datasets with relatively
small numbers of sequencing samples. They were sourced from the
three groupsof river sequencing samples of thehttps://www.ebi.ac.uk/
ena/browser/view/PRJNA542960 project29. As for theMetaHIT dataset,
a widely adopted large-scale multi-sample benchmark dataset, we
utilized the advanced metagenomic assembly algorithm, MEGAHIT42,
to perform co-assembly on 264 sequencing samples from theMetaHIT
consortium (Project: https://www.ebi.ac.uk/ena/browser/view/
PRJEB2054)43, generating contigs. To further demonstrate the usabil-
ity of COMEBin on medium-scale datasets, we randomly selected ten
samples from the MetaHIT sequencing samples, referred to as Meta-
HIT (10-sample).

The STEC dataset and Water Group1 dataset were used as the
training datasets, while the remaining four real datasets served as
holdout datasets. All datasets were co-assembled by the metagenomic
sequence assembly toolMEGAHIT42.We kept contigs longer than 1000
base pairs for binning. Further details can be found in Supplementary
Tables S5 and S6.

To further demonstrate the usability of COMEBin across different
binningmodes, we employed both single- andmulti-sample binning to
three real datasets: Water Group2, Water Group3, and MetaHIT (10-
sample). To generate sample-specific contigs, the reads from each
sequencing sample were individually assembled by MEGAHIT42. We
kept contigs longer than 1000 base pairs for binning.

Evaluation metrics
For the simulated datasets, we used AMBER24 to calculate the number
of high-quality genomes, ARI (bp), percentage of binned bp, accuracy
(bp), and the harmonic mean of average purity (bp) and average
completeness (bp): F1-score (bp).

We used CheckM225 to evaluate the completeness and con-
tamination scores of the putative bins for the real datasets.

Similar to CheckM122 and CAMI II challenges5, we refer bins
with >50% completeness and <10% contamination as “moderate or
higher” quality bins and bins with >90% completeness and < 5% con-
tamination as near-complete genomes.

Compared methods and experimental settings
We conducted a comprehensive comparison between COMEBin and
eight state-of-the-art binning algorithms, namely CONCOCT 1.0.09,
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MaxBin2 2.2.611, MetaBAT2 2.12.113, VAMB 4.1.315, CLMB17, MetaDecoder
1.0.1114, SemiBin1 1.0.019, and SemiBin2 1.5.120. We ran CONCOCT,
MaxBin2, and MetaBAT2 using the binning module of MetaWRAP
1.2.144. The detailed commands for executing the compared
binning methods are given at https://github.com/ziyewang/COMEBin_
benchmark.

The reads were aligned to the contigs using BWA 0.7.1745, and the
per-position coverage information for the contigs, which was used in
COMEBin, was calculated using BEDTools 2.30.0. Binning results on
simulated and real datasets are evaluated by AMBER 2.0.324 and
CheckM2 1.0.125. To assess the taxonomic diversity captured by the
different binningmethods, we employedGTDB-Tk 2.3.026,27 with GTDB
(release_214) to annotate the bins with >50% completeness and <5%
contamination, using the classify_wf workflow with “–skip_ani_screen”
option.

In our proposed method, we set the value of τ in Eq. (12) to 0.07
for assemblies with an N50 larger than 10,000, while for other
assemblies, the value of τ was set to 0.15. The contrastive learning
network was trained for 200 epochs using a batch size of 1024, and we
implemented an early stoppingmechanism. The hyper-parameters for
each networkmodule can be found in Supplementary Table S3. These
hyper-parameterswere determinedbasedon the binning performance
of COMEBin on the six training datasets.

COMEBin was developed with Python. The neural network was
implemented using PyTorch. In the development of the Leiden-based
clustering method, Python packages leidenalg (version 0.8.10), igraph
(version 0.9.9), scikit-learn (version 0.22.1), and hnswlib (version 0.6.2)
were used.

Identification of ARGs and VFGs
We utilized the Resistance Gene Identifier (RGI version 6.0.2)46 with
default parameters to predict ARGs from the bins based on the Com-
prehensive Antibiotic Resistance Database (CARD version 3.2.7).

For the identification of virulence factor genes (VFGs), we pre-
dicted open reading frames (ORFs) in contigs using Prodigal (version
2.6.3). Subsequently, these ORFs were aligned against the VFDB core
dataset protein sequences, accessible at http://www.mgc.ac.cn/VFs,
utilizing BLASTP (version 2.14.1)47. We classified an ORF as a potential
VFG if it exhibited a minimum of 80% identity over more than 70% of
the length of its top hit in the database, following the methodology
outlined in29.

Identification of biosynthetic gene clusters (BGCs)
Potential BGCs were identified in the moderate or higher quality bins
using a secondary metabolite genome mining tool, antiSMASH (ver-
sion 6.1.1)34 with the “–genefinding-tool prodigal” option.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are publicly available. The simulated
datasets, including CAMI mouse gut, CAMI Airways, CAMI Gastro-
intestinal tract, CAMI Skin, Marine GSA, Marine MA, Plant-associated
GSA, Plant-associated MA, Strain-madness GSA, and Strain-madness
MA, were created by CAMI II Challenge5. These datasets can be
accessed from the CAMI portal at https://data.cami-challenge.org.
All the simulated datasets are also downloadable from their respective
DOIs (CAMI mouse gut: 10.4126/FRL01-006421672; CAMI Airways,
CAMI Gastrointestinal tract, and CAMI Skin: 10.4126/FRL01-
006425518; Marine, Plant-associated and Strain-madness: 10.4126/
FRL01-006425521). TheMEGAHIT assemblies (MA) used in the CAMI II
datasets have been archived on Zenodo at https://doi.org/10.5281/
zenodo.10437337. The sequence data (STEC, Water Group, and

MetaHIT datasets) used in the study are publicly available in the ENA
with study accessions PRJEB1775, PRJNA542960, and PRJEB2054. The
sequencing reads of the BATS samples are publicly available in the
NCBI with accession number PRJNA385855, and the corresponding
assemblies are publicly available in the ENA with accession number
PRJEB45951. For long-read datasets, the sequencing reads are publicly
available in the National Genomics Data Center (NGDC) under the
study accession PRJCA007414 (Runs: CRR344871 and CRR344872), in
the ENA under the run accession SRR10963010, and in the NCBI under
the run accession ERR9769275.

Code availability
The COMEBin software is freely available at https://github.com/
ziyewang/COMEBin under the GNU General Public License version
v3. The COMEBin code used in this work48 is also archived on Zenodo
under https://doi.org/10.5281/zenodo.10158246. The commands for
executing the binningmethods, the assembler, and the analysis can be
found at https://github.com/ziyewang/COMEBin_benchmark/tree/
master/benchmark. The source codes for reproducing the figures in
the manuscript, as well as the intermediate results, are available at:
https://github.com/ziyewang/COMEBin_benchmark/tree/master/
visualization.
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