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Gene-SGAN: discovering disease subtypes
with imaging and genetic signatures via
multi-view weakly-supervised deep
clustering

A list of authors and their affiliations appears at the end of the paper

Disease heterogeneity has been a critical challenge for precision diagnosis and
treatment, especially in neurologic and neuropsychiatric diseases. Many dis-
eases can display multiple distinct brain phenotypes across individuals,
potentially reflecting disease subtypes that can be captured using MRI and
machine learningmethods. However, biological interpretability and treatment
relevance are limited if the derived subtypes are not associated with genetic
drivers or susceptibility factors. Herein, we describe Gene-SGAN – a multi-
view, weakly-supervised deep clustering method – which dissects disease
heterogeneity by jointly considering phenotypic and genetic data, thereby
conferring genetic correlations to the disease subtypes and associated endo-
phenotypic signatures. We first validate the generalizability, interpretability,
and robustness of Gene-SGAN in semi-synthetic experiments. We then
demonstrate its application to real multi-site datasets from 28,858 individuals,
deriving subtypes of Alzheimer’s disease and brain endophenotypes asso-
ciated with hypertension, fromMRI and single nucleotide polymorphism data.
Derived brain phenotypes displayed significant differences in neuroanatomi-
cal patterns, genetic determinants, biological and clinical biomarkers, indi-
cating potentially distinct underlying neuropathologic processes, genetic
drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to
disease subtyping and endophenotype discovery, and is herein tested on
disease-related, genetically-associated neuroimaging phenotypes.

Neurologic and neuropsychiatric diseases are associated with patho-
logic processes, which lead to heterogeneous brain changes modified
by underlying genetic determinants, as well as lifestyle and environ-
mental factors. Imaging has been a cornerstone of studying the human
brain over the past three decades, enabling the observation and
measurement of these changes in vivo1, thereby deepening our
understanding of how aging and diseases affect brain structure and
function. The combination of artificial intelligence (AI) methods and
imaging has recently allowedus to transcend the limitations of patient-

control comparisons and identify imaging signatures on an individual
basis, thereby deriving imaging-AI (iAI) signatures for early disease
detection and individualized prognostication2–4. However, many such
iAI signatures have been developed independently of underlying
genetic influences, despite the increasing evidence for strong asso-
ciations between these iAI biomarkers and genetic variants in brain
diseases5–8. This has limited their biological interpretability and ability
to providemechanistic insights, as well as their clinical applicability for
potential gene-guided therapy and drug discovery9.
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The heterogeneity of brain diseases and aging poses further
challenges in the biological interpretability and clinical utility of these
iAI signatures. In particular, multiple co-occurring pathologic pro-
cesses can simultaneously and jointly affect the brain. For example,
amyloid plaques, tau tangles, and medial temporal lobe neurodegen-
eration are hallmarks of Alzheimer’s pathology, whereas cere-
brovasculardiseases, frequently co-existingwithAD, alsocontribute to
cognitive decline andneurodegenerationwithdistinctbut overlapping
effects10. Various commonly obtained imaging measurements such as
volumes of brain structures, cortical thickness, or strength of func-
tional networks lack specificity by virtue of being affected by multiple
such pathologies. Methods for disentangling such heterogeneity11–15

can enable precision diagnostics and disease subtyping by identifying
the type and extent of pathologic processes that actively influence an
individual’s brain phenotype.

To address these challenges, we develop a deep learningmethod,
Gene-SGAN (Gene-guided weakly-supervised clustering via generative
adversarial networks), tomodel the heterogeneity of disease effects by
estimating respective endophenotypic iAI signatures that reside inside
the causal pathway from genetic variants to disease symptoms/diag-
nosis, which may be considered an ‘exophenotype’16. Critically, by
linking imaging phenotypes with genetic factors, Gene-SGANendorses
biologically interpretable in vivo measurements of genetically-
associated brain changes related to pathologic processes and dis-
eases, or an ‘endophenotype’. Based on the expression of endophe-
notypic iAI signatures, Gene-SGAN clusters patients into disease
subtypes with relatively more homogeneous and genetically asso-
ciated brain phenotypes. This subtyping aims to contribute to preci-
sion diagnostics, patient stratification into clinical trials, and a better
understanding of heterogeneous neuropathologic processes giving
rise to similar clinical symptoms.

The foundation of our methodology is a deep learning archi-
tecture that links imaging and genetic data in a latent space encoding
genetically-associated imaging subtypes of brain pathologies. Criti-
cally important in our approach is the generative modeling of patho-
logic processes, such as effects of a disease or a risk factor on brain
structure, via a GAN17 which maps brain measurements from a refer-
ence population (healthy controls) to a target population (disease
cohort). This generative modeling of pathologic brain change is linked
to genetic risk factors for a disease or a clinical condition. Moreover,
clustering in the latent space directly leads to disease subtyping
according to these genetically-associated brain phenotypes. Several
mechanisms (Method 1) regularize this process, thereby enabling the
stability, robustness, and interpretability of the derived subtypes.

In this work, we present GeneSGAN from the perspective of brain
aging and dementia, although it is a general methodology. We first
demonstrate its generalizability, interpretability, and robustness
through semi-synthetic experiments using data from seven studies.
Subsequently, leveraging data from 28,858 individuals from two large
studies, we seek to unravel genetically-linked heterogeneity of neu-
roanatomical changes in two different populations: (1) patients with
clinical AD or Mild Cognitive Impairment (MCI); and (2) cognitively
normal older adults with hypertension, a known risk factor for cere-
brovascular diseases that contribute to dementia18. Within both of
these populations, Gene-SGAN identifies reproducible subtypes dis-
tinguished by their replicable neuroanatomical patterns, genetic
underpinnings, and clinical profiles.

Results
Gene-SGAN: gene-guided weakly-supervised clustering via gen-
erative adversarial network to derive disease-related subtypes
with distinctive imaging and genetic signatures
Gene-SGAN aims to identify genetically-associated disease subtypes
fromphenotypic andgenetic features. In thepresentwork, specifically,
we focused on brain phenotypic features derived from magnetic

resonance imaging (MRI) and disease-associated single nucleotide
polymorphisms (SNPs) as genetic features. The methodological
advances of Gene-SGAN are two-fold. First, a deep generative model
learns one-to-many mappings from phenotypic measures of a refer-
ence population (e.g., brain measurements from healthy controls) to
those of a target population (e.g., a patient cohort), thereby capturing
the diversity of brain changepatterns related todisease. This approach
aims to reduce confounders from disease-unrelated variations such as
demographic factors or disease-unrelated genetic influences on the
brain phenotype. Second, a low-dimensional latent space in Gene-
SGAN unravels phenotypic and genetic heterogeneity into latent
variables that reflect disease subtypes. In particular, the latent space
separately encodes phenotypic subtypes associated with genetic fac-
tors through the variables z1, while capturing unlinked phenotypic and
genetic variations via two ancillary sets of variables z2 and z3,
respectively (Fig. 1a).

For estimatingheterogeneousdisease effects onbrainphenotypic
features, one-to-many mappings were constructed via a GAN that
learns a transformation function mapping the reference phenotypic
features into various types of generated features (Fig. 1b). The latent
variables z1 and z2 influence the transformation function and aim to
summarize disease-related brain variations among the target popula-
tions. As typical in GANs, a discriminator attempts to distinguish the
real from the generated disease effects on the brain phenotype,
thereby ensuring that the generated brain features follow the dis-
tribution of the real target brain features. As a key component of this
framework, an inverse mapping is introduced to re-estimate the latent
variables z1 and z2 from the generated target features so that the latent
variables capture distinct and recognizable brain signatures, which
contributes to interpretability of respective iAI phenotypes. Estimation
of these unknown latent variables with comparison to a reference
population is referred to as weakly-supervised learning in this study.

Gene-SGAN also incorporates genetic features into the model
framework to identify disease-related subtypes with genetic under-
pinnings. Through a Variational Inference (VI) approach (Fig. 1b), the
model approximates the distribution of genetic features based on the
latent variables z1 and z3 through a decoding neural network. In par-
ticular, disease-related phenotypic signatures associated with genetic
features are summarized by the variable z1, which is estimated by the
same inverse mapping incorporated in the GAN training process.
Moreover, another encoding neural network estimates the posterior
distribution of the latent variable z3 that captures the genetic variance
not reflected by brain characteristics. Refer to Method 1 for mathe-
matical details.

Incorporated in the frameworks for both GAN and VI, the
M-dimensional categorical variable z1 is the key latent variable that
characterizes disease-related variations induced by phenotypic-
genetic associations. The inverse mapping of the trained Gene-SGAN
model is applied to participants’ phenotypic features only to estimate
their latent variables z1, which indicate their probabilities belonging to
theM subtypes that display genetic associations. Each participant was
subsequently assigned to a single subtype based on the maximum
probability.

Semi-synthetic experiments
We validated the Gene-SGAN model in extensive semi-synthetic
experiments, using regions of interest (ROIs) from brain MRI and
SNP as input phenotypic and genetic features. Using real HC partici-
pant ROI data,we constructed Pseudo-patient (Pseudo-PT) data, which
we refer to as semi-synthetic data. Specifically, to construct the ROIs of
Pseudo-PT participants, we imposed synthetic volumetric change in a
set of predefined ROIs on the real HC participants’ ROI measures to
simulate disease effects. Simultaneously, we constructed completely
synthetic genetic data modulating disease effects by randomly sam-
pling minor allele counts of 100, 250, or 500 simulated SNPs. These
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Pseudo-PT participants weredivided into three ground truth subtypes.
Each subtype shared one similar imaging pattern (Fig. 2e) and had
higher minor allele frequencies (MAFs) in four selected SNPs com-
pared to the remaining Pseudo-PT participants (Fig. 2d). Moreover, we
introduced confounding imaging patterns to subsets of Pseudo-PT
participants who did not have shared genetic features (Fig. 2e). Simi-
larly, higher MAFs in confounding SNPs were simulated to subsets of
Pseudo-PT participants without shared imaging patterns. In the simu-
lation, we retained disease-unrelated variations in imaging features
and provided the known ground truth of simulated imaging patterns,
SNPs, and subtypes. More details of data simulation are presented in
Method 6.

Gene-SGAN is generalizable to test data
The generalizability of Gene-SGAN’s performances to test data
underpins the reliability of derived subtypes. We evaluated Gene-
SGAN’s generalizability and examined hyperparameter selections in
the semi-synthetic experiments (Method 6). To this end, we adopted a
50-repetitionholdout cross-validation (CV, 20% for testing) procedure.
Gene-SGAN consistently achieved comparable clustering accuracies

on the training and test sets, endorsing the robustness of the model’s
generalizability (Fig. 2a, Supplementary Fig. 1). Furthermore, the
hyperparameter (gene-lr) impacted the clustering performance. Gene-
lr regulates the importance of genetic features relative to imaging
features in optimization (Method 1). With increasing simulated ima-
ging confounders in datasets (from one to two), a higher gene-lr
(4 × 10�4 vs. 1 × 10�4) led to the optimal performance, suggesting the
reliance on genetic data to guide the clustering solution when many
non-genetically related confounding factors play a role (Fig. 2a).

The optimal gene-lr in different caseswas selected through theCV
procedure with a selection metric, N-Asso-SNPs (i.e., the number of
significantly associated SNPs in the test set) (Method 6). N-Asso-SNPs
was positively associated with the clustering accuracy (Supplementary
Fig. 1), thus serving as an appropriate metric for selecting optimal
hyperparameters in real data applications.

Gene-SGAN is robust to missing SNPs
Missing data are common in genomics using SNPs. Gene-SGAN was
designed to handle missing SNPs as a multivariate learning model. To
simulate this situation and test the model’s robustness, we randomly

Fig. 1 | Gene-SGAN identifies disease-related subtypes simultaneously guided
by genetic and phenotypic features. Subtypes: patient clusters based on
genetically-explained phenotypic variations (e.g., brain neurodegeneration) asso-
ciated with pathologic processes; genetic features: disease-associated genetic fac-
tors (e.g., disease-associated SNPs); phenotypic features: features from clinical
phenotype data, such as imaging features obtained from brain MRI. a Overview of
the Gene-SGAN framework, which aims to identify disease-related subtypes by
deriving latent variables z1 that capture linked phenotypic and genetic variations.
To avoid bias in z1, two ancillary latent variables, z2 and z3, are learned to capture
phenotype-specific and genetic-specific variations, respectively. Particularly, z1 and
z2 are learned through a GAN thatmodels one-to-manymappings from a reference
(REF) group’s (e.g., health control (HC) population) to a target (TAR) group’s (e.g.,
patient population) phenotypes, so that they capture disease effects on normal
phenotypic features rather than variance affected by disease-unrelated factors. A
Variational Inference (VI) approach further encourages the genetic associations of
z1 and z3. Taken together, through z1, z2, and z3, our approach identifies disease-

related subtypes with associated phenotypic patterns and genetic underpinnings.
b GAN and VI are trained iteratively to derive the latent variables. First, to model
one-to-many mappings from REF to TAR populations, Gene-SGAN utilizes GAN to
learn a transformation function f that generates TAR phenotypic features fromREF
phenotypic features. As inputs of f, the latent variables z1 and z2 control the
disease-related variations in the generated TAR features (i.e., mapping directions).
An inverse mapping g is introduced to re-estimate z1 and z2 from the generated
TAR features, ensuring that the latent variables characterize sufficiently different
and recognizable phenotypic variations. Second, the VI approach estimates the
posterior distribution of z3 (i.e., mean μz3

and std σz3
) based on the TAR pheno-

typic and genetic features through an encoding neural network r. Simultaneously, a
decoding neural network h infers the distribution of TAR genetic features condi-
tioned on z1 and sampled z3. Here, z1, estimated by the same inverse mapping g in
GAN, summarizes necessary information on the TAR phenotypic features for
inferring the TAR genetic features’ distributions. The plus sign denotes feature
concatenation.
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replaced 10%, 20%, and 30% SNPs with missing values, and retrained
Gene-SGAN fifty times using all semi-synthetic participants with the
optimal gene-lr selected through the CV procedure (Method 6). Gene-
SGANobtained good clustering performance in all cases, albeitwith an
expected, gradual drop in clustering performance with an increased
missing rate (Fig. 2b).

Gene-SGAN outperforms competing methods
With the known ground truth of the simulated subtypes, we compared
the clustering performance of Gene-SGAN to six previously proposed
methods (Method 6 and Supplementary Method 3): Smile-GANmodel
(SGAN,which shares the principal of weakly-supervised clusteringwith
Gene-SGAN)11, Canonical Correlation Analysis (CCA)19, DeepCCA20,
Multiview-Spectral-Clustering (MSC)21, Multiview-KMeans
(MKmeans)22, and Kmeans23. We ran each method fifty times using
the complete datasets for different simulation cases, defined by vary-
ing levels of confounders and dimensions of genetic data. In all cases,
Gene-SGAN outperformed these methods in terms of subtype assign-
ment accuracies (Fig. 2c). The alternative methods were limited
because they either could not incorporate genetic data or cluster

patient phenotypes directly, which can result in confounding by
disease-unrelated variations, such as demographics and disease-
unrelated genetic influences on the brain phenotypes. In contrast,
Gene-SGAN is not only guided by both imaging and genetic data
(multi-omics and multi-view) but also suppresses disease-unrelated
confounding variations by effectively modeling mappings from HC to
patient populations, which aims to cluster disease effects.

Gene-SGAN accurately estimates simulated disease effects and
genetic underpinnings, offering a means for mechanistic
interpretations
Gene-SGAN offers a mechanism for interpreting identified subtypes
and their related pathological processes. As an example, we utilized
the fifty Gene-SGAN models trained for model comparisons on the
dataset with 100 candidate SNPs and 2 confounding imaging patterns,
leveraging outputs of functions h and f for interpreting the derived
subtypes and model performances. (Method 6) The function h accu-
rately inferred the simulated genetic distributions (MAFs of SNPs) of
subtypes (Fig. 2d). Moreover, the derived transformation function f
recovers the true simulated brain changes due to the subtype-specific

Fig. 2 | Gene-SGAN identifies the ground truth in semi-synthetic experiments.
For constructing different ground truth subtypes, we impose distinct synthesized
imaging patterns, specifically volumetric change in brain regions of interest (ROIs),
on HC imaging features, simulating disease effects modulated by completely syn-
thetic SNP variations. (Method 6). With known synthetic ground truth, we tested
Gene-SGAN’s clustering performance in several experimental scenarios: (a) gen-
eralizability, (b) robustness to missing genotype, (c) comparison to previous
methods, and (d, e) interpretability formodel performances. In (a), (b), (c), the box
plots were generated from 50 datapoints that reveal clustering accuracies in 50-
iteration of hold-out cross validation or model runs. a Gene-SGAN shows robust
generalizability to test data. With different hyperparameter (gene-lr) settings,
Gene-SGAN consistently achieves comparable clustering accuracies on the training
and test sets. With increasing confounders in imaging features (bottom vs. top),
achieving the model’s optimal performance necessitates a higher gene-lr. b Gene-
SGAN is robust to different levels of missing SNPs. Clustering accuracies remain
high but gradually decrease as the SNPs’ missing rate increases. c Gene-SGAN
outperforms other clustering methods. We report the clustering performances of

the sevenmodels (Gene-SGANvs. others) with different levels of simulated imaging
confounders and dimensions of genetic data. SGAN: Smile-GAN; CCA: Canonical
Correlation Analysis; MSC: Multiview-Spectral-Clustering; MKmeans: Multiview-
KMeans. d Gene-SGAN accurately recovers SNPs’ minor allele frequency (MAF)
within each simulated subtype. We present the simulated subtype-associated SNPs
(marked with asterisk) and the simulated confounding SNPs (not marked,
Method 6). e Gene-SGAN captures dominant characteristics of the ground truth
imaging patterns (associated with subtypes) but avoids confounding ones. The
ROIs in the ground truth imaging patterns are colored with a ratio of 0.15, the
average ratio of simulated changes (ranging from 0 to 0.3). The ROIs in the con-
founding patterns are left blank. Imaging patterns characterized by the model are
defined as ratios of ROI changes made by the transformation function that
approximates the disease effects. (Method 6) For visualizing important ROIs cap-
tured by f, we only color ratios > 0.05. MTL: medial temporal lobe. (Centerline,
median; red marker: mean; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, outliers).
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disease effects, elucidating the identified iAI signatures corresponding
to each subtype. (Fig. 2e) Therefore, these functions of Gene-SGANnot
only explain how the model determines the subtypes but also offer
mechanistic insights into how the disease changes brain character-
istics via genetically-mediated processes. (Method 1 and 6) Addition-
ally, ancillary latent variables z2 also accurately characterize two
simulated confounding imaging patterns, proving the GeneSGAN’s
functionality in disentangling informationandmitigating the impactof
confounding factors (Supplementary Fig. 1).

Subtypes of brain changes associated with AD and genetic
variants
We first testedGene-SGAN in the context of AD using 472 CN, 784MCI,
and 277 clinical AD participants from the ADNI study. We applied the
Gene-SGAN model to the 144 imaging ROIs and 178 AD-associated
SNPs of these participants, withM being set as 3, 4, and 5. Gene-SGAN
identified consistent and refined imaging subtypes from a coarse (e.g.,
M = 3) to a refined resolution (e.g., M = 5) (Supplementary Fig. 2 and
Supplementary Note 1.3). The reproducibility of the identified sub-
types was demonstrated through nested cross-validation, as well as
experiments with external reference groups (Supplementay
Method 7.1 and Supplementary Note 1.2). We presented the results
with M = 4 because previous studies11,14 consistently reported four
distinct imaging subtypes in AD. Results for other resolutions ofM are
presented in Supplementary Fig. 2a and Supplementary Data 1. We
denoted the four subtypes related to AD as A1, A2, A3, and A4. Besides
subtypes determined by themajor latent variable z1 of Gene-SGAN, we
also examined z2 and z3 derived on this dataset, thereby validating
their functionality in capturing non-linked imaging-specific and
genetic-specific variations. (Supplementary Fig. 4).

Subtypes related to AD show distinct imaging signatures
The participants assigned to each subtype showed distinct imaging
patterns, as demonstrated in comparisons to cognitively normal HC
participants (Fig. 3a) and in among-subtype comparisons (Fig. 3b). In
voxel-based morphometry analyses, A1 (N = 311) exhibited relatively
preserved regional brain volumes; A2 (N = 197) displayed focal medial
temporal lobe (MTL) atrophy, prominent in the hippocampus and the
anterior-medial temporal cortex; A3 (N = 281) showed widespread
brain atrophy over the entire brain, including MTL; A4 (N = 272) dis-
played dominant cortical atrophy with relative sparing of the MTL.

Subtypes related to AD show distinct genetic architectures
We tested SNP-subtype associations among 178 AD-associated SNPs
using a likelihood-ratio test on two multinomial logistic regression
models fitted with and without each SNP (Method 8), adjusting for
covariates, including age, sex, APOE ε4, intracranial volume (ICV), and
the first five genetic principal components. Through the test, we found
that four subtypes are significantly different in 5 SNPs after Bonferroni
correction (p = 2.81× 10�4), including rs7920721 (p = 1.1 × 10�4),
rs11154851 (p = 3.2× 10�6), rs9271192 (p = 4.2× 10�6), rs9469112
(p = 2.7× 10�4), and rs4748424 (p = 2.4× 10�4). Without controlling for
APOE ε4 as a covariate, rs429358 (p = 7.8× 10�19) was the most sig-
nificantly associated SNP – the strongest genetic risk factor in sporadic
AD24 (Fig. 3c and Supplementary Data 1). Detailed differences among
subtypes in each SNP are demonstrated in Fig. 3c, which shows
effective allele frequencies (EAF) within each subtype. A higher EAF
indicates a higher risk of AD based on previous literature.

The effective incorporation of genetic features in Gene-SGAN
significantly boosts the statistical power to detect robust SNP-subtype
associations, as demonstrated by the comparison with the SmileGAN
model11, which derives four subtypes based on imaging features only
using the similar weakly-supervised approach, yet the same test of SNP
data within these subtypes does not identify any SNP-subtype asso-
ciations on the same dataset after adjusting for APOE ε4.

Subtypes related to AD show different clinical profiles
The four subtypes differed in age, sex, Aβ/tau measurements, white
matter hyperintensity (WMH) volumes, and cognitive performance
(Fig. 3d). Among participants diagnosed as MCI at baseline, A4 parti-
cipants were the youngest group (p <0.001 vs. all other groups) and
included more females than A1 and A3 (p =0.004 vs. A1 and p <0.001
vs. A3). A3 participants had the most abnormal CSF Aβ (p <0.001 vs.
A1&A4 and p =0.039 vs. A2). However, A2 participants showed sig-
nificantly higher CSF p-tau than A3 participants (p = 0.019). For cog-
nitive scores, A1 and A3 participants showed the best and the worst
performances in memory, executive function, and language. A3-
dominant participants also exhibited higher WMH volumes than all
other dominant groups (p < 0.001 vs. A1&A4 and p = 0.017 vs. A2).

We also characterized the four subtypes with regard to additional
229 plasma and CSF biomarkers. Tested through one-way ANOVA, the
four subtypes had significant differences in 18 plasma/CSF biomarkers
after adjusting formultiple comparisons via Benjamini-Hochberg (B-H)
method (Fig. 3e and Supplementary Data 2). In contrast, subtypes
derived by Smile-GAN did not show significant differences in these
biomarkers. The comparison suggests the increased power of Gene-
SGAN in identifying subtypes that reflect heterogeneity not only in
imaging and genetic features but also in other clinical biomarkers,
implying greater ‘biological relevance’ for these subtypes. For exam-
ple, among the associated biomarkers, tissue factor (TF) and von
Willebrand factor (VWF) are highly expressed at blood-brain
barrier25,26, playing important roles in hemostasis; macrophage
colony-stimulating factor (MCSF), CD40, chromogranin A (CgA),
Cystatin-C contribute to microglial activation or proliferation27–31;
angiotensin-converting enzyme (ACE) and heparin-binding EGF-like
growth factor (HB-EGF) are involved in the process of Aβ degradation
and clearance32,33. These results suggest potential biological pathways
affected by AD disease mechanisms34–36, which could be involved in
disease pathogenesis or a direct or indirect response todisease-related
neuroanatomical heterogeneity.

Subtypes of brain changes associated with hypertension and
genetic variants
In our second set of experimentswith real data,we testedGene-SGAN in
the context of hypertension using 10,911 non-hypertensive and 16,414
hypertensive participants from the UKBB study. (Method 7) Hyperten-
sion has been a well-established risk factor for cerebrovascular diseases
that contribute todementia18 viamultiplepotential processes, including
atherosclerosis, small vessel ischemic disease, inflammation, andblood-
brain barrier compromise. We used 144 imaging ROIs, total WMH
volumes, and 117 hypertension-associated SNPs as features to train the
model, withM being set as 3, 4, and 5. Gene-SGAN identified consistent
and refined imaging subtypes from a coarse (e.g., M = 3) to a refined
resolution (e.g., M= 5) (Supplementary Fig. 3 and Supplementary
Note 1.3). The reproducibility of the identified subtypes was demon-
strated throughbothnestedcross-validation andexperiments involving
independent reference or patient groups (Supplementary Method 7.2
and Supplementary Note 1.1). We denoted the five subtypes of brain
changes associated with hypertension: H1, H2, H3, H4, and H5. Results
for other resolutions of subtypes are presented in Supplementary
Fig. 3a and Supplementary Data 3.

Subtypes related to hypertension show distinct imaging
signatures
Participants assigned to each subtype showed distinct imaging pat-
terns compared to HC, non-hypertensive participants (Fig. 4a). H1
(N = 4652) participants showed mild atrophy in the midbrain. H2 par-
ticipants (N = 3543) exhibited severe atrophy in subcortical graymatter
(GM) regions as well as other white matter (WM) regions. H3 partici-
pants (N = 5044) showed larger volumes in deep structures of WM
compared to HC. H4 participants (N = 1341) showed mild atrophy in
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cortical and WM regions, as well as larger putamen, caudate, and
higher WMH volumes. Finally, H5 (N = 1834) participants displayed
widespreadcortical atrophy inGMandWMwithhigherWMHvolumes.

We further performed split-sampled analyses (Method 7) to test
the replicability of imaging patterns associated with five subtypes.
Patient data was evenly divided into the discovery set (N = 8207) and
the replication set (N = 8207). The Gene-SGANmodel, retrained on the
discovery set, was applied to both sets to re-derive the five
hypertension-related subtypes. Highly consistent imaging signatures
were observedbetweendiscovery and replication sets (Supplementary
Fig. 5), which also have strong agreements with the subtypes derived
from the entire dataset (Fig. 4a).

Subtypes related to hypertension show distinct genetic
architectures
We first tested SNP-subtype associations among 117 hypertension-
associated SNPs and 5 subtypes using all available hypertensive patient

data (N = 16,414). 27 SNPs were identified to be significantly different
among subtypes after Bonferroni correction for multiple comparisons
(Fig. 4c and Supplementary Data 3). We further examined the replic-
ability of SNP-subtype associations in split-sampled analyses
(Method 7 and Supplementary Method 4). Among the discovery set,
we found 15 significant SNP-subtype associations (Method 8) after
Bonferroni correction. Among these, 10 SNP-subtype associations
(66.7%) were replicated in the replication set at B-H corrected sig-
nificance, and 7 (46.7%) were significant after Bonferroni corrections
for multiple comparisons (Supplementary Method 4).

In contrast, we found only 5 SNPs significantly associated with
Smile-GAN subtypes in the discovery set. Among them, only 1 SNP
was replicated in the replication set at both B-H corrected and
Bonferroni corrected significance (Supplementary Data 5). Details
of the reproduced SNPs are presented in Supplementary Data 4.
These results further support the increased power of Gene-SGAN
in GWAS.

Fig. 3 | Gene-SGAN identifies four subtypes of brain changes related to AD (A1,
A2, A3, andA4). a The four subtypes showdifferent imaging patterns compared to
HC.Warmer color denotesmore brain atrophy in the subtype versusHC.bThe four
subtypes show distinct imaging patterns when compared with each other. In a
comparison (subtype-i vs subtype-j), warmer color denotes relatively larger tissue
volumes in subtype-i, and conversely for cooler color. In both (a, b), Voxel-wise
group comparisons (two-sided t-test) were performed between two groups of
participants. False discovery rate (FDR) correction was performed to adjust mul-
tiple comparisons with a p-value threshold of 0.05. c The four subtypes show
distinct genetic underpinnings. TheManhattan plots show significant SNP-subtype
associations among 178 AD-associated SNPs (one tailed likelihood-ratio test with
multinomial logistic regressionmodels)with (below) andwithout (above) adjusting
for APOE ε4. The two dashed lines denote the p-value thresholds of 0.05 after
adjusting for multiple comparisons via Bonferroni (top) and Benjamini-Hochberg
(B-H, bottom) methods, respectively. We manually annotated the significant SNPs

that survived the Bonferroni correction with the SNP numbers and the mapped
genes via their physical positions. We defined the effective allele of each SNP to be
the allele positively associated with AD reported in previous literature. EAFs
(effective allele frequencies) among each subtype are shown with bar plots. A
higher frequency indicates a higher risk of AD. d The four subtypes show distinct
clinical, cognitive, and demographic characteristics, including CSF Aβ and p-tau
(other CSF biomarkers were separately evaluated in e). Box and whisker plots and
bar plots reveal clinical, demographic, and cognitive variables of MCI participants
by subtype. Sample sizes of each variable are presented beside their variable
names. e The four subtypes show significant differences in CSF and plasma bio-
markers. The Manhattan plots show the significance of differences (ANOVA test;
one tailed test) among four subtypes related to AD. The dashed line represents the
B-H corrected significance line. Orange-colored names: plasma biomarkers; green-
colored names: CSF biomarkers. (Centerline,median; redmarker:mean; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers).
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Subtypes related to hypertension show distinct clinical profiles
We examined the clinical profiles of the five subtypes with regard to
demographics, comorbidities, and cognitive scores (Fig. 4b). WMH
volumes were the highest among H4 participants (p <0.001 vs. all
other H) and the second highest among H5 participants (p <0.001 vs.
H1-H3). In terms of comorbidities, H5 participants had significantly
higher rates of diabetes (p <0.001 vs. H1, H3, H4, andp =0.004 vs. H2),
while H2 and H4 participants also displayed significantly higher rates
of diabetes than H1 and H3 participants (p <0.001 for H2 vs. H1&H3,
p =0.039 for H4 vs. H1, and p = 0.001 for H4 vs. H3). The five subtypes
did not exhibit significant differences in hyperlipidemia. H1 and H3

participants had a significantly smaller proportion of smokers
(P < 0.001 vs. all other groups). In cognition, H4 and H5 participants
showed the worst performance as measured by DSST and TMT-B
(p < 0.001 vs. H1-H3 in three scores), while H2 participants showed
worse performance thanH1 andH3participants (p <0.001 inDSST and
TMT-B).

Discussion
In the current work, we proposed Gene-SGAN – a novel deep weakly-
supervised clustering method – to unravel disease heterogeneity and
develop genetically-explained disease subtypes having distinct brain

Fig. 4 | Gene-SGAN identifies five subtypes of brain changes related to hyper-
tension (H1-H5). a The five subtypes show distinct imaging patterns. Voxel-wise
group comparisons (two-sided t-test) were performed between HC participants
(i.e., non-hypertensive participants) and participants assigned to H1, H2, H3, H4,
and H5, respectively. False discovery rate (FDR) correction for multiple compar-
isons with a p-value threshold of 0.05 was applied. Warmer color denotes brain
atrophy (i.e., HC> subtype), and cooler color represents larger tissue volume (i.e.,
subtype >HC). b The five subtypes show distinct clinical, cognitive, and demo-
graphic characteristics. Box andwhisker plots and bar plots show the characteristic
of demographic, clinical, and cognitive variables. In TMT B plots, outliers are
excluded for visualization purposes. (center line, median; red marker: mean; box
limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,

outliers). Sample sizes of each variable are presented below each figure. c The five
subtypes show different genetic architectures. The Manhattan plot displays sig-
nificant SNP-subtype associations among 117 hypertension-associated SNPs (one
tailed likelihood-ratio test with multinomial logistic regression models) using all
hypertensive patients’ data. The two dashed lines denote the p-value thresholds of
0.05 after adjusting for multiple comparisons via Bonferroni (top) and B-H meth-
ods (bottom).Wemanually annotated significant SNPs that survived the Bonferroni
correction with the SNP numbers and the mapped genes via their physical posi-
tions. In thisfigure,wedefined the effective alleleof eachSNP as the allelepositively
associated with hypertension or WMH (SNPs identified in hypertension-gene
interaction analyses54) reported in previous literature. The bar plots reveal EAFs of
the top nine significant SNPs within each subtype.

Article https://doi.org/10.1038/s41467-023-44271-2

Nature Communications |          (2024) 15:354 7



phenotypes. The novelty of Gene-SGAN lies in its multi-view modeling
nature, which ensures that the derived disease subtypes not only
reflect distinct neuroanatomical patterns but are also associated with
underlying genetic determinants. The following two central points
bolster the advantage of Gene-SGAN over other clustering
methods11,19–23. First, through the generative and weakly-supervised
modeling of disease heterogeneity, Gene-SGAN seeks to cluster based
on disease-related variations in phenotypic data, achieved via clus-
tering of transformations of brain phenotypes, which helps avoid
confounding variations associated with demographic and disease-
irrelevant genetic factors. Second, Gene-SGAN links phenotypic and
genetic variations through three sets of latent variables, which sepa-
rately encode linked and non-linked genetic and phenotypic varia-
tions, thereby enabling the identification of unbiased phenotypic
subtypes with genetic associations. Through extensive and systematic
semi-synthetic and real data experiments, we demonstrated the effi-
cacy and applicability of Gene-SGAN in deriving biologically and
clinically distinct disease subtypes.

Our experiments focused on applying Gene-SGAN to imaging
features from brain MRIs and SNPs. However, Gene-SGAN is widely
applicable to other multi-omics biomedical data, including various
sources of phenotypic (e.g., other clinical variables) and genetic fea-
tures (e.g., gene expression data). Specifically, with preselected refer-
ence populations and genetic features, Gene-SGAN can effectively
discover genetically-associated subtypes of phenotypic features rela-
ted to various diseases or disorders. Moreover, commonly observed
missing genotypes limit the applicability of many multivariate meth-
ods that require dropping participants with missing features. In con-
trast, Gene-SGAN is robust tomissing genotypes and optimallymodels
disease heterogeneity with all available genetic features. This property
is essential in imaging genomics studies, which often suffer from
relatively small sample sizes due to the difficulty in data collection. The
high tolerance and sophisticated adoption of missing data enable
Gene-SGAN to be a general method for modeling disease hetero-
geneity in biomedical studies. In our experiments, we demonstrated
the robust applicability of Gene-SGAN by applying it to two indepen-
dent datasets for studying two distinct pathologies: AD and hyper-
tension. The method effectively discovers genetically and
neuroanatomically associated subtypes in AD/MCI and hypertension,
yielding increased statistical power for downstream statistical
analyses.

Gene-SGAN identified four AD-related subtypes with distinct
characteristics. A1 is characterized by preserved brain volumewith the
lowest levels of cognitive impairment and Aβ/tau deposition, indicat-
ing a resilient subtype. A2 is associated with focal MTL atrophy and
high CSF-tau, suggesting a subtype driven by limbic-predominant,
likely rapidly progressive neuropathology (high tau levels, despite the
localized nature of neurodegeneration). A3 is characterized by severe
atrophy in cortical and MTL regions, the most abnormal CSF-Aβ, the
worst cognitive performances, and thehighestWMHvolumes. Patients
assigned to this subtype might mainly have a manifestation of typical
AD pathology as well as vascular co-pathology. A4 participants exhibit
severe cortical but relatively modest MTL atrophy patterns, indicating
a mixture of participants with a cortical presentation of AD and those
with other neural degenerative processes (e.g., advanced brain aging4).
A significantly lower age range of A4 participants suggests the inclu-
sion of EOAD participants, who were characterized by hippocampal-
sparing disease with posterior cortical atrophy37. Notably, the four
subtypes were significantly associated with known AD-related genetic
variants. Among all subtype-associated SNPs, rs429358 in the APOE
gene was the strongest genetic risk factor for sporadic AD24 and was
associated with hippocampal atrophy and cognitive decline38,39. Two
other SNPs (rs9469112 and rs9271192) weremapped to the HLA region
that was involved in immune response modulation40–42. Our results
showed a lower frequency of EAFs of these three SNPs among A1

participants, indicating a protective effect contributing to the
observed resilience. In contrast, the highest EAFs of rs429358 and
significant MTL atrophy of A2 participants resemble the previously
reported characteristics of limbic-predominant AD43. Higher EAFs in
rs9469112 and rs9271192 in A2 and A3 suggest the potential inflam-
matory mechanisms contributing to these two subtypes. A4 partici-
pants have the highest EAF in rs7920721, an SNP exclusively associated
withADamongparticipantswhodon’t carryAPOE ε444. Our A4 subtype
supports this findingwhile further linking the effect of this SNPwith an
atypical atrophy pattern of AD, likely accompanied by co-pathologies.

The identified AD-related subtypes exhibit similarities to
other neuroimaging-based clustering studies, including the
identification of MTL- and cortical-predominant patterns11,13,14,45.
However, Gene-SGAN’s subtypes were specifically refined to
maximize genetic associations. As such, it focuses on deriving
imaging endophenotypes, rather than just phenotypic clusters.
For instance, we observed two extreme subtypes characterized by
highly focal hippocampal atrophy and preserved brain volume,
showing significantly differences in rs429358 (APOE) with the
highest and lowest EAFs, respectively. The minimal differences in
APOE ε2 and APOE ε4 among the other neuroimaging-based
subtypes13,14,45 indirectly verify the refinements provided by Gene-
SGAN. Moreover, in direct comparisons to the subtypes pre-
sented in ref. 11, Gene-SGAN’s subtypes demonstrate much
stronger genetic associations, further validating the effectiveness
of refinements. It is worth noting that certain previously identi-
fied atrophy subtypes, such as occipital atrophy patterns45, are
primarily captured by latent variables z2, suggesting their limited
genetic associations. Critically, compared to AD-related subtypes
derived with imaging features only11, these four subtypes possess
more significant differences in a large set of plasma/CSF bio-
markers, which are related to distinct biological mechanisms
contributing to the heterogeneity of AD. Taken together, the four
AD-related subtypes identified by Gene-SGAN support the con-
clusion that disease heterogeneity modeling with genetic gui-
dance better reflects upstream biological processes and boosts
downstream analyses’ statistical power.

Gene-SGAN identified five clinically distinct hypertension-related
subtypes, which reflect the remarkable heterogeneity of the effects of
hypertension on brain structure. The H1 and H3 participants exhibit
the best cognitive performances and lowest rates of comorbidities.
Though sharing similarities in preserved GM volumes, these subtypes
differ inWMstructures. TheH2 subtype is characterizedby subcortical
and WM atrophy, with a higher rate of diabetic participants. Previous
studies have reported hypertension-related influence on subcortical
morphology46 and WM integrity47,48. However, WMmicrostructures of
these subtypes need to be further explored through diffusion MRI.
Both the H4 and H5 subtypes are associated with high WMH volumes,
the most commonly used biomarker of cerebral small vessel ischemic
disease, and worse cognitive performances. In addition, a higher rate
of diabetes is observed amongH5participants,which partially explains
thewidespread atrophy patterns associatedwith theH5 subtype based
on previous studies49,50. These five subtypes not only resemble the
previously reported associations among blood pressure, comorbid-
ities, and neuroanatomical changes47–53, but also further dissect varia-
tions in brain changes, potentially elucidating heterogeneous effects
from various underlying hypertension-related or hypertension-
inducing pathological processes. Among subtype-associated SNPs,
rs72934583, rs4843553, and rs3762515 were previously associatedwith
WMHvolumes54, whichare consistentwith their higher EAFs amongH4
and H5 participants in our findings. rs11191580, rs7756992, and
rs13107325 were linked in previous GWAS to diabetes and obesity55–58,
two comorbidities of hypertension.

We demonstrated the generalizability of Gene-SGAN clustering
through cross-validation and independent replication. The
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reproducibility crisis59 has drawn much attention in machine learning
and casts a shadow over future clinical translation. For genetic studies,
replication of associations also underpins the reliability of discovered
genetic variants with modest effect sizes60. First, extensive cross-
validated experiments on semi-synthetic datasets supported the gen-
eralizability of Gene-SGAN’s performance to unseen data in identifying
simulated subtypes. Second, reproducible subtypes and latent vari-
ables could be identified on real datasets using cross-validation, dif-
ferent model scales (M), as well as completely independent reference/
target groups. Furthermore, we validated Gene-SGAN’s ability to
identify subtypes with replicable genetic associations on real datasets
through split-sampled experiments on the hypertensive population.
Several methodological considerations ensure the reproducibility of
Gene-SGAN subtypes. For example, the incorporation of ancillary
latent variables (e.g., z2 and z3) and sparse transformations implicitly
regularized SNP-subtype associations identified in the discovery set.
The ensemble learning procedure for deriving the final subtypes (e.g.,
the consensus of models derived through hold-out CV) further
encouraged the replicability of SNP-subtype associations. In conclu-
sion, Gene-SGAN can derive reproducible subtypes that are also bio-
logically and genetically interpretable.

The potential clinical impact of Gene-SGAN is versatile. In general,
it helps dissect the heterogeneity of diseases into relatively more
neuroanatomical subtypes that also have genetic underpinnings, and
hence it contributes to precision diagnostics that can have down-
stream effects on any subsequent analysis. For example, deriving
robust disease-related subtypes may help improve classification per-
formance for individualized disease diagnosis and prognosis. More-
over, modeling disease heterogeneity provides new patient
stratification and treatment evaluation tools for future clinical trials,
which remain important in the setting of mixed results and clinical
limitations of anti-amyloid treatments. It is well recognized that eval-
uating treatment responses within relatively more homogeneous
subgroups of patients can significantly increase the power of clinical
trials. Our results also suggest that disease subtyping via Gene-SGAN
could augment our ability to detect significant imaging and genomic
characteristics of AD, which would be diluted in case-control com-
parisons due to the underlying heterogeneity. Finally, Gene-SGAN
subtypes are genetically relevant by modeling, which serves as a reli-
able endophenotype to pinpoint potential causal genetic variants for
drug repurposing and discovery.

There are potential improvements to the current study. First, the
MCI/AD subtypes were derived from a relatively modest sample size
(N = 1061). Ongoing efforts, including the unprecedented consolida-
tion of large-scale imaging-genomic consortia of AD, such as theAI4AD
consortium (http://ai4ad.org/), may provide opportunities to produce
more reproducible and diverse disease subtypes, including less com-
mon genetic-structural patterns. Second, though Gene-SGAN identi-
fied consistent subtypes across different model scales, promoting a
hierarchical relationship among multiscale clustering results could
potentially provide better interpretations of the identified subtypes in
certain scenarios. Third, in this study, we validated the performance of
Gene-SGAN using candidate SNPs directly associated with the disease
of interest. For future applications of Gene-SGAN, it might deserve to
try different SNP selection criteria that restrict or relax the scope of
candidate SNPs. For instance, we could incorporate SNPs based on
information from druggable genes61, thereby providing more insights
into drug discoveries.

In summary, Gene-SGAN effectively unravels phenotypic varia-
tions associated with genetic factors into multiple disease-related
subtypes to comprehensively understand disease heterogeneity.
Gene-SGAN can be widely and easily applied to biomedical data from
different sources to derive clinically meaningful disease subtypes.
These iAI subtypes provide great potential for drug discovery and

repurposing, optimization of clinical trial recruitment, and persona-
lized medicine based on an individual’s genetic profile.

Methods
Method 1. The Gene-SGAN model
Gene-SGAN is amulti-view, deepweakly-supervised clusteringmethod
based on GAN and variational inference (VI). Gene-SGAN aims to
cluster patients from varying sources of phenotypic (e.g., clinical
variables or imaging features derived from MRI) and genetic features
(e.g., SNP). For this purpose, the model learns three sets of latent
variables. The M-dimensional categorical variable, comprising the
vector z1, captures joint genetic and phenotypic variations and indi-
cates the probabilities of M output clusters, referred to as subtypes.
Two ancillary sets of variables, comprising the vectors z2 and z3,
summarize phenotypic-specific and genetic-specific variations,
respectively. Critically, the model avoids confounders from disease-
unrelated variations in phenotypic features under the framework of
weakly-supervised clustering62. To sumup, Gene-SGANemploys aGAN
generative model to construct one-to-many mappings from a refer-
ence population (i.e., HC) to a target population (i.e., patient) instead
of clustering based on global similarity/dissimilarity in the patient
population, which might be affected by demographics, lifestyle, or
disease-unrelated genetic influences. In addition, VI is used to ensure
that disease-related genetic features jointly guide the clustering solu-
tion. The framework of Gene-SGAN (Fig. 1b) consists of two main
optimization steps: the Phenotype step (via GAN) and the Gene step
(via VI), as detailed below.

For conciseness, we denote the following variables: x: the
REF phenotypic features; y : the TAR phenotypic features; y’ : the
synthesized TAR phenotypic features; v : the genetic features;
z1,z2,z3: the three latent variables in Gene-SGAN. The distribu-
tions of these variables are denoted as: x∼pref xð Þ, y∼ptar yð Þ,
y0 ∼psyn y0ð Þ, z1 ∼pθz1

ðz1Þ, z2 ∼pz2
z2
� �

, z3 ∼pz3
ðz3Þ, where pθz1

ðz1Þ is a
parametrized distribution updated during the training procedure.
In addition, θD,θf ,θg,θh,θr, represent parameters of the five
parametrized functions (Fig. 1b).

Phenotype step. The Phenotype step incorporates only the pheno-
typic features for optimization. Gene-SGAN learns one transformation
function, f : X×Z1 ×Z2 ! Y, that maps REF features x to different
synthesized TAR features y0 = f x,z1,z2

� �
, with the latent variables z1,z2

specifying variations in the synthesized features (i.e., different map-
ping directions). Specifically, z1 contributes to phenotypic variations
with genetic associations. In contrast, z2 contributes to phenotype-
specific variations without genetic associations. The latent variable,
z2 ∼pz2

ðz2Þ, is sampled from a predefined multivariate uniform dis-
tribution U 0,1½ �nz2 with the dimension nz2

; z1 ∼pθz1
z1
� �

follows an
M-dimensional categorical distribution (i.e., anM-dimensional one-hot
vector) parametrized by θz1 (i.e., probabilities of categories). This
enables the model to derive robust clustering solutions with imbal-
anced cluster sizes. An adversarial discriminator D is introduced to
distinguish between the real TAR features y and the synthesized TAR
features y’, thereby ensuring that the synthesized TAR features from f
are indistinguishable from the real TAR features. Moreover, we intro-
duce three types of regularization to encourage that the transforma-
tion function approximates underlying pathological processes: the
sparse transformation, the Lipschitz continuity, and the inverse con-
sistency. The complete objective function of the Phenotype step is
thus a combinationof the adversarial loss and the regularization terms,
as detailed below.

First, we modify the adversarial loss of the basic GAN and the
Smile-GAN model to update the distribution of the latent variable
z1 ∼pθz1

z1
� �

, so that the clusteringmodel is robust to imbalanceddata.
Details of this modification are presented in Supplementary
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Method 1.2. The modified adversarial loss is written as:

LGANðθD,θf ,θz1 Þ=Ey∼ptar yð Þ log D yð Þð Þ� �
+ Ey0 ∼psyn y0ð Þ 1� log D y0ð Þð Þ� �

+ κDKLðpUðz1Þjpθz1
ðz1ÞÞ

ð1Þ

= Ez1 ∼pθz1
z1ð Þ,y∼ptarðyÞ log D yð Þð Þ� �

+Ez1 ∼pθz1
z1ð Þ,z2 ∼pz2

z2ð Þ,x∼pref xð Þ 1� log D f x,z1,z2
� �� �� �� �

+ κDKL pU z1
� �jpθz1

z1
� �� � ð2Þ

=M � Ey∼ptarðyÞ,z1 ∼pU z1ð Þ pθz1
ðz1Þ log D yð Þð Þ

h i
+M � Ez1 ∼pU z1ð Þ,z2 ∼pz2

z2ð Þ,x∼pref xð Þ pθz1
ðz1Þ 1� log D f x,z1,z2

� �� �� �� �h i
+ κDKL pU z1

� �jpθz1
z1
� �� �

ð3Þ
Intuitively, we sample z1 from a discrete uniform distribution,

pU z1
� �

, but penalize the losses with its probability under the dis-
tribution pθz1

z1
� �

: The modified loss function enables z1 to be impli-
citly sampled from the parameterized distribution pθz1

z1
� �

. pθz1
z1
� �

is
controlled to be not far away from pU z1

� �
. Both θf and θz1

are opti-
mized so that the synthesized TAR features follow similar distributions
as the real TAR features. The discriminator D provides a probability – y
comes from the real features rather than the generator – and aims to
distinguish the synthesized TAR features from the real TAR features.
Therefore, the discriminator attempts tomaximize the adversarial loss
function while θf and θz1

are updated to minimize it. The corre-
sponding training process can be denoted as:

min
θf ,θz1

max
θD

LGAN θD,θf ,θz1

� �
=Ey∼ptarðyÞ log D yð Þð Þ� �

+Ey0 ∼psyn y0ð Þ 1� log D y0ð Þð Þ� �
+ κDKL pU z1

� �jpθz1
z1
� �� � ð4Þ

Second, we assume that disease-related processes primarily affect
a subset of phenotypic features (i.e., sparsity). We, therefore, define a
change loss to be the l1 distance between the synthesized TAR features
and the REF features to boost sparse transformations:

Lchange θf

� �
= Ex∼pref ðxÞ,z1 ∼pU z1ð Þ,pz2

z2ð Þ jjf x,z1,z2
� �� xjj1

� �
ð5Þ

Third, the inverse consistency is accomplished by introducing an
inverse mapping function g for re-estimating z1 and z2 from the syn-
thesizedTAR features f x,z1,z2

� �
. For clarity in description,wedefine g1

and g2 as two inverse mapping functions that re-estimate z1 and z2,
respectively, though they share the same encoding neural network.
The cross-entropy loss is used for reconstructing the categorical
variable z1, While the l2 loss is used for the continuous variable z2. By
denoting lc to be the cross-entropy loss with lc a,bð Þ= �Pk

i= 1a
i logbi,

we define the reconstruction loss as:

Lreconsðθf ,θg1
,θg2

Þ=Ex∼pref xð Þ,z1 ∼pU z1ð Þ,z2 ∼pz2
z2ð Þ lc z1,g1 f x,z1,z2

� �� �� �� �
+Ex∼pref xð Þ,z1 ∼pU z1ð Þ,z2 ∼pz2

z2ð Þ jjg2 f x,z1,z2
� �� �� z2jj2

� �
ð6Þ

The minimization of the reconstruction loss enables the trans-
formation function, f, to identify sufficiently distinct features in the
TAR domain depending on the latent variables, z1 and z2

11. Moreover,
the inverse function g1 is critical in the model framework. First, it is
optimized in the Gene step (detailed below) for inferring the dis-
tributions of the genetic features, thereby allowing the clustering
solutions to be genetically guided. Moreover, it serves as a clustering
function after training to estimate z1 from real TAR phenotypic

features, deriving the probabilities of the cluster memberships (i.e.,
subtypes).Moredetails of the inverse functions are stated at the endof
this section and in Supplementary Method 1.1.

Lipschitz continuities of the functions f, g1, g2 are ensured
through weight clipping as described in Supplementary Method 2.2
instead of through additional loss functions. Therefore, the full
objective of the Phenotype step can be written as:

LPhenotype θD,θf ,θg1
,θg2

,θz1

� �
=LGAN θD,θf ,θz1

� �
+μLchange θf

� �
+ λLrecons θf ,θg1

,θg2

� � ð7Þ

where μ and λ are two hyperparameters that control the relative
importance of each loss function during the training process. Through
this objective, we aim to derive parameters, θD,θf ,θg1

,θg2
,θz1

, such
that:

θD,θf ,θg1
,θg2

,θz1
= arg min

θf ,θg1
,θg2

,θz1

max
θD

LPhenotype θD,θf ,θg1
,θg2

,θz1

� �
ð8Þ

Gene step. Different from the Phenotype step, we do not include the
reference group for learning a transformation of genetic features due
to their innateness and immutability. Also, we opt not to incorporate a
feature selection mechanism with respect to reference data within the
model framework, as it requires a large dataset to comprehensively
identify disease-associated SNPs. Instead, we pre-select candidate
SNPs associated with the disease of interest using the GWAS-Catalog63

online portal. The Gene step encourages the clustering solution of the
target group to be associated with the candidate genetic features. This
approach not only provides more comprehensive selection of candi-
date SNPs but also makes Gene-SGAN more available to users lacking
large imaging-genomic datasets.

Specifically, the model learns a parametrized distribution of the
genetic featuresv, conditionedon the phenotypic features y and a new
latent variable z3, pθh ,θg1

vjz3,y
� �

, where z3 characterizes genetic-

specific variations unrelated to the phenotypic features. This is
accomplished through the VImethod for approximating an intractable
posterior distribution, pθh ,θg1

z3jv,y
� �

by a variational distribution

qθr
z3jv,y
� �

. From the KL divergence between pθh ,θg1
z3jv,y
� �

and

qθr
z3jv,y
� �

, we can derive the evidence lower bound (ELBO) for p vjyð Þ.
The derivation is presented in Supplementary Method 1.3.

logp vjyð Þ≥ Ez3 ∼qθr
z3 jv,yð Þ logpθh,θg1

vjz3,y
� �

+ log
pz3

z3
� �

qθr
z3jv,y
� �

" #
ð9Þ

The conditional distribution pθh ,θg1
vjz3,y
� �

, is parametrized by
the functions h and g1. Based on different sources of genetic features,
it can be modeled as different types of distributions. For instance,
herein, we use SNPs as genetic features. We define

pθh ,θg1
vjz3,y
� �

=Bð2,pngenetic

binom Þ as a multivariate binomial distribution,

which has the number of trials equaling two and the dimension
equaling the number of SNPs (ngenetic). The function h takes z3 and
g1ðyÞ as inputs and outputs parameters of the conditional distribution,

pθh ,θg1
vjz3,y
� �

(e.g., the parameters, p
ngenetic

binom, represent MAFs of SNPs

when using SNPs as features). The variational distribution,
qθr

z3jv,y
� �

=Nðμnz3 ,σnz3 Þ, parametrizedby a function r, ismodeled as a

multivariate normal distribution with the dimension equaling nz3
. The

function r takes v and y as inputs and outputs μ and σ for each
dimension of z3. The prior distribution of z3, pz3

z3
� �

=Nð0nz3 ,1nz3 Þ, is
defined as a multivariate standard distribution. In the Gene step, we
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maximize the ELBO for pðvjyÞ by minimizing the following function:

�Ez3 ∼qθr
z3 jv,yð Þ logpθh,θg1

vjz3,y
� �

+ log
pz3

z3
� �

qθr
z3jv,y
� �

" #
ð10Þ

In the case of missing genetic features, we substitute the missing
features with the mean value over observed features among the target
population (e.g., two times MAF within the target population for SNP
data) and use the imputed genetic features, vimpute, as the inputs for
the function r. The conditional distribution, pθh ,θg1

vjz3,y
� �

, in ELBO is
computed with only the observed genetic features vobserve64. There-
fore, the objective function of the Gene step is written as:

LGene θh,θg1
,θr

� �
=�Ez3 ∼qθr

z3 jvimpute,yð Þ

logpθh ,θg1
vobservejz3,y

� �
+ log

pz3
z3
� �

qθr
z3jvimpute,y
� �

" # ð11Þ

Through this objective function, we derive θh,θg1
,θr such that

θh,θg1
,θr = arg min

θh,θg1
,θr

LGene θh,θg1
,θr

� �
ð12Þ

Notably, the term, log
pz3

ðz3Þ
qθr

ðz3 jvimpute,yÞ, can also be considered a reg-

ularization term. Through regularization, we control the contribution
of z3 in the inference of genetic distributions and thus guarantee the
contribution from the phenotypic features y.

The Phenotype and Gene optimization steps are performed
iteratively during the training process. The learning rate of the Gene
step (i.e., gene-lr) controls the weight on genetic features during the
training procedure, serving as a hyperparameter for different cases
(Result). Other implementation details of the model, including net-
work architectures, training details, algorithm, and training stopping
criteria, are presented in Supplementary Method 2.

Subtype assignment. After the training process, the clustering func-
tion g1 can be applied to the training and independent test patient data
to estimate the latent variable z1 that indicates the subtypes of interest
(i.e., categorical subgroup membership). Specifically, g1 outputs M
probability values (Pi) for each participant, with each probability cor-
responding to one subtype and the sum of M probabilities being 1
(
PM

i= 1Pi = 1). We then assign each participant to the dominant subtype,
determined by the maximum probability (subtype = argmaxiPi).
Notably, subject-level reference data is not directly necessary for
trained model applications. Only the parameters estimated from the
reference group are used for PT input feature standardization. We
could directly use the stored parameters estimated from the training
reference group, while the impact of standardization with respect to a

new reference group was analyzed in Supplementary Figure 1 and
Supplementary Note 1.

Method 2. Study populations
MRI (Method 3) and clinical (Method 4) data used in this study
were consolidated and harmonized by the Imaging-Based Coor-
dinate System for Aging and Neurodegenerative Diseases (iSTA-
GING) study. The iSTAGING study comprises data acquired via
various imaging protocols, scanners, data modalities, and
pathologies, including more than 50,000 participants from more
than 13 studies on 3 continents and encompassing a wide range of
ages (22−90 years). Specifically, the current study used MRIs from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)65, the UK
Biobank (UKBB)66, the Baltimore Longitudinal Study of Aging
(BLSA)67,68, the Australian Imaging, Biomarker, and Lifestyle study
of aging (AIBL)69, the Biomarkers of Cognitive Decline Among
Normal Individuals in the Johns Hopkins (BIOCARD)70, the Open
Access Series of Imaging Studies (OASIS)71, PENN, and the Wis-
consin Registry for Alzheimer’s Prevention (WRAP) studies72. In
addition, whole genome sequencing (WGS) data were collected
for ADNI participants; the UKBB study also consolidated the
imputed genotype data (Method 5). Demographics and the
number of participants from each study are detailed in Table 1.
Participants provided written informed consent to the corre-
sponding studies. The protocols of this study was approved by
the University of Pennsylvania institutional review board.

Method 3. Image processing and harmonization
A fully automated pipeline was applied to process the T1-weighted
MRIs. All MRIs were first corrected for intensity inhomogeneities
(ANTs: https://github.com/ANTsX/ANTs/releases/tag/v2.3.1)73. Amulti-
atlas skull stripping algorithm was applied to remove extra-cranial
material (MASS: https://github.com/CBICA/MASS/releases/tag/1.1.1)74.
Subsequently, 144 anatomical ROIs were identified in graymatter (GM,
119 ROIs), white matter (WM, 19 ROIs), and ventricles (6 ROIs) using a
multi‐atlas label fusion method (MUSE 3.0.5: https://github.com/
CBICA/MUSE/releases/tag/3.0.5)75. Voxel-wise regional volumetric
maps for GM and WM tissues (referred to as RAVENS)76, were com-
puted by spatially aligning skull-stripped images to a single subject
brain template using a registration method77. White matter hyper-
intensity (WMH) volumes were calculated through a deep-learning-
based segmentation method75 built upon the U-Net architecture78,
using inhomogeneity-corrected and co-registered FLAIR and T1-
weighted images. Site-specific mean and variance were estimated
with an extensively validated statistical harmonizationmethod79 in the
healthy control population and applied to the entire population while
controlling for covariates.

Table 1 | Participants and studies for the semi-synthetic and real data experiments

Study N Diagnosis Age (years) Sex (male/%) Semi-synthetic Real data experiments

HC MCI AD HTN

ADNI 1533 472 784 277 0 73.58± 7.15 848/55.3% 280 1533

UKBB 27,325 10,911 0 0 16,414 64.43± 7.48 13,116/48.0% 0 27,325

BLSA 341 341 0 0 0 66.15±4.84 146/42.8% 341 0

AIBL 373 373 0 0 0 68.22±3.99 147/39.4% 373 0

BIOCARD 143 143 0 0 0 62.29±5.42 63/44.1% 143 0

OASIS 403 403 0 0 0 66.56±5.33 148/36.7% 403 0

PENN 107 107 0 0 0 67.18±4.30 31/29.0% 107 0

WRAP 90 90 0 0 0 63.60±5.21 27/30.0% 90 0

For age, the mean and the standard deviation are reported. For sex, the number of males and the percentage is presented.
HTN Hypertension, HC healthy control, AD clinical AD,MCImild cognitive impairment, Semi-synthetic number of participants included in the semi-synthetic experiments, Real data experiments
number of participants included in the real data experiments.
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Method 4. Cognitive, clinical, CSF, and plasma biomarkers
For the real data experiments, we included CSF and plasma bio-
markers, APOE ε4 alleles, and cognitive test scores provided by ADNI
and UKBB. For ADNI, all measures were downloaded from the LONI
website (http://adni.loni.ucla.edu). Detailed methods for CSF mea-
surements of β-amyloid (Aβ) and phospho-tau (p-tau) are described in
Hansson et al.80 Other CSF and plasma biomarkers were measured
using the multiplex xMAP Luminex platform, with details described in
“Biomarkers Consortium ADNI Plasma Targeted Proteomics Project –
Data Primer” (available at http://adni.loni.ucla.edu). The ADNI study
has previously validated several composite cognitive scores across
several domains, including ADNI-MEM81, ADNI-EF82, and ADNI-LAN83.
TheUKBBstudyprovides several cognitive tests, includingDSST, TMT-
A, andTMT-B, etc. (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?
id=100026).

Method 5. Genetic data processing and selection
Genetic analyses were performed using thewhole-genome sequencing
(WGS) data fromADNI and the imputed genotype data fromUKBB.We
performed a rigorous quality checkprocedure detailed in our previous
papers6–8. which is also publicly available at our web portal: https://
www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_
protocol.pdf.

To preselect disease-associated SNPs, we performed a manual
search through the NHGRI-EBI GWAS Catalog63. Specifically, we used
the keywords “Alzheimer’s disease biomarker measurement” for AD-
associated SNPs and “hypertension” for hypertension-associated SNPs.
We further filtered out SNPs with reported p-values greater than or
equal to 5× 10−8, removed SNPs with MAF smaller than 5%, included
studies from European ancestries, and removed SNPs in linkage dis-
equilibrium (i.e., window size = 2000 kb, and r2 = 0.2). Finally, we
merged these preselected SNPs with our quality-checked WGS (AD)
and imputed genotype data (hypertension). This procedure resulted in
1533 participants and 178 AD-associated SNPs for the MCI/clinical AD
population and 33,541 participants and 117 hypertension-associated
SNPs for the hypertension population.

Method 6. Semi-synthetic experiments
Data selection. For simulated imaging features, we imposed volume
decrease in predefined imaging ROIs for a proportion of (1200 out of
1739) HC participants (i.e., Pseudo-PT participants), which we referred
to as the semi-synthetic datasets. For simulated genetic features, we
generated fully simulated SNP data for all Pseudo-PT participants. We
included 1739 participants (age < 75 and MMSE > 28) from 7 different
studies (Table 1) and defined 539 participants as the real HC group and
the remaining 1200 participants as the Pseudo-PT group. The Pseudo-
PT group was further divided into three (M= 3) subgroups (three
ground truth subtypes). Each subgroup was imposed with one specific
imaging pattern and simulated genetic features – the ground truth for
each subtype regarding imaging and genetic features.

Imaging feature construction. Three different imaging patterns were
imposed on the Pseudo-PT participants within the three subgroups
(Fig. 2e). The volumes of selected ROIs were randomly decreased by
0−30%, being uniformly sampled within the range. In addition, we also
introduced one or two imaging-specific confounding patterns
(nconfound = 1or2) (Fig. 2e) to one or two sets of randomly sampled
Pseudo-PT participants. Importantly, these Pseudo-PT participants
possessed similar confounding patterns but did not share genetic
features. Details of selectedROIs for the subtypes and the confounding
patterns are presented in Supplementary Data 6.

Genetic feature construction. We constructed an ngenetic-dimensional
vector for each Pseudo-PT indicating the counts of minor alleles (0, 1,
or 2) of ngenetic SNPs. Each subtypewas simulated to be associatedwith

four SNPs (Fig. 2d). That is, the MAF of each SNP within the subgroup
was around 15% higher than the remaining participants – assuming the
minor alleles are risk alleles for the simulatedbrain atrophypatterns. In
addition, we constructed genetic-specific confounders by randomly
sampling two other subgroups of Pseudo-PT and selecting four asso-
ciated SNPs (i.e., confounding SNPs) for each subgroup (Fig. 2d).
Selected confounding SNPs could overlap with subtype-associated
SNPs in the simulation. Other non-selected SNPs had a MAF of 33% in
all Pseudo-PT participants. We set ngenetic to 100, 250, and 500 during
the simulation. A higher ngenetic indicates more complex confounding
factors and leads to a more difficult task for model validations.

Cross-validation. On the semi-synthetic datasets with the known
ground truth, we performed fifty repetitions of stratified holdout
cross-validation (CV, 80% of data for training, and 20% for testing) for
two purposes. First, we set different values (i.e., 5 × 10�5, 1 × 10�4,
2× 10�4, 4 × 10�4) for gene-lr (a hyperparameter introduced in
Method 1) to test the generalizability of the models. Second, we used
theCVprocedure to select the optimal value of gene-lr.We proposed a
new metric, N-Asso-SNPs, for hyperparameter selections in the semi-
synthetic and real data experiments (Method 8), which indicates the
SNP-subtype associations in the test set. We calculated a log-
likelihood-ratio (llr) for each SNP, as introduced in Method 8. N-
Asso-SNPs equals the number of SNPswith llr>3.841. The optimal gene-
lr was chosen based on the highest mean N-Asso-SNPs.

Missing SNP test. To test the influence of the missing SNPs in the
genetic data, we randomly set 10%/20%/30% of the SNPs as missing
values (NAN).We ran the Gene-SGANmodel fifty times on eachdataset
with the optimal gene-lr selected through the abovementioned CV
procedure.

Model comparisons. We compared Gene-SGAN with six previously
proposed methods, including Smile-GAN, Deep Canonical Correlation
Analysis (Deep-CCA), CCA, Multiview-spectral-clustering (MSC),
Multiview-Kmeans (MKmeans), Kmeans. We ran the model fifty times
on each dataset with different ngenetic and nconfound, and derived fifty
clustering accuracies. Implementation details of the six previously
proposed methods can be found in Supplementary Method 3.

The transformation function f for clinical interpretability. We used
the trained function f to post hoc reveal imaging patterns related to
each identified subtype. For the three inputs of f, we set z1 to be the
one-hot vector corresponding to the subtype; additionally, we sam-
pled 539x and z2 from theHCpopulation and the uniformdistribution
U 0,1½ �nz2 , respectively, without replacements. The mean value of 539
calculated change ratios, 1

539

P
x,z2

ðf x,z1,z2
� �� xÞ=x, indicates the

imaging patterns that drive the solution of the searched subtypes. For
example, we presented the average imaging patterns characterized by
50 models trained on the dataset with ngenetic = 100 and nconfound = 2
in Fig. 2e.

The inference function h for clinical interpretability. The trained
function h infers the genetic feature distribution corresponding to
each subtype. For the two inputs of h, we set z1 to be the corre-
sponding one-hot vector and sampled 100 z3 from
p z3
� �

=N 0nz3 ,1nz3
� �

. The average of 100 outputs of h, 1
100

P
z3
h z1,z3
� �

,
was considered the inferred MAFs of SNPs within each subtype. For
example, we presented the average of MAFs inferred by 50 models
trained on the dataset with ngenetic = 100 and nconfound = 2 in Fig. 2h.

Method 7. Real data experiments
Data selection. For the study of MCI/AD, we included baseline parti-
cipants of the ADNI study, comprised of 472 cognitively normal, 784
MCI, and 277 clinical AD participants. The 1061 MCI and clinical AD
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participants were defined as the patient group, and the remaining 472
cognitively normal participants were defined as the HC group. The 144
ROIs and the 178 AD-associated SNPs were used as phenotypic and
genetic features, respectively. For the study of hypertension, we
selected participants from the UKBB study. Participants were defined
as hypertensive patients (N = 16,414) if satisfying one of the three cri-
teria: (1) systole > 130 or diastole>80; (2) history of hypertension (code
1065 or 1072 in UKBB data field: f.20002.0.0); (3) hypertension med-
ication (UKBB data fields: f.6177.0.0 and f.6153.0.0). The HC group
(N = 10,911) was defined as the remaining participants with systole <
130 and diastole < 80. The 144ROIs andWMHvolume (available for all
UKBB participants) were used as phenotypic features, and the 117
hypertension-associated SNPs were used as genetic features. In the
split-sampled experiments for hypertension, we constructed one dis-
covery set with 10,911 HC participants and 8207 hypertensive patients
and one replication set with the remaining 8207 hypertensive patients.

Input features of Gene-SGAN. For both studies, The ROIs/WMH
volumes of all participants were first residualized to rule out the cov-
ariate (i.e., age, sex, and ICV) effects estimated in the HC group via a
linear regression model. Then, the adjusted features were standar-
dized with respect to the HC group to ensure a mean of 1 and a stan-
dard deviation of 0.1 among the HC participants for each ROI. For the
genetic features, each SNP allele was recoded into 0, 1, or 2, indicating
the count of minor alleles per participant. The processed imaging and
genetic features were used as inputs for the Gene-SGAN model.

Output subtypes of Gene-SGAN. For both studies of MCI/AD and
hypertension, we derived three different resolutions of clustering
solutions (M= 3, 4, and 5). As introduced in Method 6, we selected
gene-lr using fifty iterations of the CV procedure with N-Asso-SNPs as
an evaluation metric. Specifically, the value of gene-lr (5× 10�5,
1 × 10�4, 2× 10�4, 4× 10�4) leading to the highest mean N-Asso-SNP
over all three resolutions (M) was considered optimal. Next, for each
M, we utilized all fifty models to derive their consensus as the final
participants’ subtypes (i.e., ensemble learning). In the split-sampled
experiments for the hypertension population, the fifty models trained
using the discovery set were applied to the 8027 patients in the
replication set for deriving their subtypes.

Method 8. Statistical analysis
To test differences in CSF/Plasma biomarkers among the M subtypes,
we performed ANOVA tests and used the Benjamin-Hochberg method
to correct for multiple comparisons. Pairwise subtype comparisons
were performed for other clinical (e.g., cognitive scores) and demo-
graphic variables (e.g., age, sex). For continuous variables, we utilized
Mann-Whitney U tests for certain variables due to large skewness (e.g.,
WMH), and student’s t-tests otherwise. For categorical variables (e.g.,
sex), the chi-squared test was used.

To test SNP-subtype associations, weperformed a likelihood-ratio
test on multinomial logistic regression models with subtype mem-
berships as dependent variables. Specifically, the log-likelihood-ratio
(llr) was calculated between two models fitted with and without each
SNP, adjusting for covariates, including age, sex, ICV, and the first five
genetic principal components. For MCI/AD, the APOE ε4 genotype was
used as another covariate. The Bonferronimethodwas used to correct
for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used for this study were provided from several individual studies
via data sharing agreements that did not include permission for us to

further share the data. However, data fromADNI are available from the
ADNI database (adni.loni.usc.edu) upon registration and compliance
with the data usage agreement. Data from the UKBB are available to
registered researchers upon request from the UKBB website (https://
www.ukbiobank.ac.uk/). Data from the BLSA study are available upon
request at https://www.blsa.nih.gov/how-apply. Data from the AIBL
study are available upon request at https://aibl.org.au/. Data from the
OASIS study are available upon request at https://www.oasis-brains.
org/. The detailed requirements for requesting and accessing each
dataset are listed on the corresponding website. Data requests for
Biocard, Penn, and WRAP datasets should be directed to M.A. (mal-
bert9@jhmi.edu), D.W. (david.wolk@pennmedicine.upenn.edu), and
S.J. (scj@medicine.wisc.edu), respectively, who will provide require-
ments and restrictions on data-use via data-use agreements.
Participant-level derived subtypes generated in this study will be
provided within one month of receiving approval granted from
respective studies. The GWAS summary statistics generated in this
study are provided in SupplementaryDatafiles. All data supporting the
findings described in this manuscript are available in the article and its
Supplementary Information files, and from the corresponding author
upon request.

Code availability
The software Gene-SGAN is available as a published PyPI package.
Detailed information about software installation, usage, and license
can be found at: https://pypi.org/project/GeneSGAN/. Custom code
can be found at: https://github.com/zhijian-yang/GeneSGAN84, which
is archived in Zenodo with the identifier [https://doi.org/10.5281/
zenodo.10058768].
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