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Universal machine learning aided synthesis
approach of two-dimensional perovskites in
a typical laboratory

Yilei Wu1,4, Chang-Feng Wang2,4, Ming-Gang Ju 1,4 , Qiangqiang Jia2,
Qionghua Zhou1, Shuaihua Lu1, XinyingGao1, Yi Zhang 2 & JinlanWang 1,3

The past decade has witnessed the significant efforts in novel material dis-
covery in the use of data-driven techniques, in particular, machine learning
(ML). However, since it needs to consider the precursors, experimental con-
ditions, and availability of reactants,material synthesis is generallymuchmore
complex than property and structure prediction, and very few computational
predictions are experimentally realized. To solve these challenges, a universal
framework that integrates high-throughput experiments, a priori knowledge
of chemistry, and ML techniques such as subgroup discovery and support
vector machine is proposed to guide the experimental synthesis of materials,
which is capable of disclosing structure-property relationship hidden in high-
throughput experiments and rapidly screening out materials with high
synthesis feasibility from vast chemical space. Through application of our
approach to challenging and consequential synthesis problem of 2D silver/
bismuth organic-inorganic hybrid perovskites, we have increased the success
rate of the synthesis feasibility by a factor of four relative to traditional
approaches. This study provides a practical route for solvingmultidimensional
chemical acceleration problems with small dataset from typical laboratory
with limited experimental resources available.

The discovery of advanced functional materials has the power to help
combat the major global challenges facing humanity1,2. However,
materials synthesis is a typical complex, multidimensional challenge
that requires experts to evaluate various reaction conditions, such as
precursors, additives, solvents, concentration, and temperature3.
Owing to an inherent limitation based on the availability and provision
of chemical precursors and experimental instruments, synthetic che-
mists can only evaluate a small subset of these conditions during a
standard optimization campaign in a typical and simple laboratory.
Likewise, the exploration of conditions is often left in the hands of
predefined optimal design, limited literature on solid-state synthetic
reactions, and the experienceof chemists. The fundamental challenges

associated acceleration of material synthesis in a typical laboratory
with limited experimental support is an urgent concern4.

Data-driven machine learning (ML) techniques have emerged as a
powerful tool for thedesign anddiscoveryof advancedmaterials in the
past few years5–8. These techniques can excavate the
structure–property relationship and uncover in-depth physical
insights from existing data, and then make rapid predictions for
properties of unexplored materials9,10. Although ML techniques have
been successfully utilized in data-rich systems such as predicting the
formability and properties of materials11–13, the utilization of these
techniques to guide the experimental synthesis of new materials has
still been limited14–16. The major challenge is the acquisition of big and
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complete experimental synthesis data for conventional ML techni-
ques. As an important source of material data, experimental synthesis
data in literature exhibits a strong bias toward successful experiments,
namely, materials that have been synthesized. The failed experiments
are often recorded in the unpublic laboratory notebook, leading to the
imbalanced distribution of experimental synthesis data. Another
common source of material data, first-principles calculations, how-
ever, usually exhibit a large gap with actual experiments. Due to the
discards of several factors impacting the synthesis stage, such as
experimental conditions and availability of precursors, only a rather
small fraction of theoretically designed materials have been synthe-
sized experimentally. Very recently, a closed-loop automated synthesis
framework based on ML techniques and robotic experimentation has
proven to be efficient in accelerating the experimental synthesis pro-
cess, coming with high experimental costs17. Moreover, many time-
consuming experiments enable only the provision of small-scale
datasets, which are incommensurate with conventional ML methods
because of the inherent sparsity and imbalance of the available data18.
Small datasets and imbalanced data distributions can easily bring
about serious issues like overfitting, underfitting, and limited extra-
polating abilities of ML models19,20. Several strategies have been pro-
posed to address class imbalance problems based on over-sampling

and under-sampling method21. Although there are numerous attempts
to address these challenges, a comprehensive ML framework suitable
for unfaithful datasets inmaterial science has not yet been established.
Therefore, the development of a framework integratingML techniques
and small-scale experiments to rapidly accelerate the material synth-
esis process is especially important for branching out into new mate-
rial space.

Two-dimensional hybrid organic–inorganic perovskites (2D
HOIPs) have emerged as one of the most promising functional mate-
rials, with the benefits of enhanced environmental stability22, superior
optical properties23–25, diverse electronic properties26–28, and accessible
and cost-effective fabrication29,30. Inspired by their excellent perfor-
mance, there exists an ever-growing interest in developing novel,
stable, and environmentally friendly 2D HOIP materials. To date, the
design and discovery of new 2D perovskites heavily relies on the tra-
ditional trial-and-error method. With several millions of experimental
available organic molecules and dozens of inorganic frameworks, the
unexplored chemical space contains a large number of potential novel
2D HOIPs, making searches based on the traditional trial-and-error
method frustratingly slow and expensive. One possible solution is to
integrate small-scale perovskite synthesis experiments, non-learned
representation approaches from knowledge of chemistry or mechan-
isms a priori17, and innovative ML techniques. For instance, Sun et al.
fabricated and characterized 73 unique perovskite-inspired composi-
tions, and usedML techniques to classify compounds into 0D, 2D, and
3D structures15. Kirman et al. reported a high-throughput experimental
framework with the aid of ML techniques for the discovery of new
perovskite single crystals14. This strategy that combines small-scale
high-throughput experiments with ML techniques points out a pro-
mising direction for new material discovery and improves the experi-
mental efficiency in comparison with the trial-and-error method.

This work showcases the synthesis feasibility of 2D silver/bismuth
(AgBi) iodide perovskites, which have been suggested for application
on photodetectors31, light-emitting diodes32, and X-ray imagers33. We
develop a framework combining small-scale high-throughput experi-
ments, quantifying steric and topological properties of organic pre-
cursors, and ML techniques to rapidly screen 2D HOIPs with high
synthesis feasibility (Fig. 1). The material dataset is acquired by per-
forming high-throughput experiments, containing synthesis results of
80 tested amines,which canbedivided into 14 succeeded and66 failed
synthesis experiments. In view of the interaction between inorganic
layers and organic spacers of 2D perovskites, a set of informative
features to quantify steric and topological properties of organic pre-
cursors is developed. With the aid of the subgroup discovery method,
a region that is more favorable to form the 2D AgBi iodide perovskites
is derived. Then an equation that can quantitatively evaluate the
synthesis feasibility of 2D AgBi iodide perovskites is acquired by
applying the ML techniques and 344 of 8406 organic spacers are
predicted to hold the potential for the formation of 2D AgBi per-
ovskites. Further interpretableML technique, namely SHapleyAdditive
exPlanations (SHAP) analysis, highlights the importance of molecular
topology of organic spacers on the formation of 2D AgBi perovskites.
In the end, 8 of 13 predicted 2D AgBi iodide perovskites with high
synthesis feasibility are successfully synthesized, validating the good
predictive ability of our ML-guided perovskite design strategy.

Results
High-throughput synthesis experiments
The quality and quantity of training dataset is the cornerstone of the
development of high-performance ML models. Regrettably, only a
limited number of inorganic frameworks of 2D HOIPs have been
experimentally realized. While the synthesis feasibility and properties
of 2D HOIPs can be flexibly modulated through the use of various
organic spacers during thematerial synthesis process, it is evident that
the physicochemical properties of the organic spacers play a crucial
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Fig. 1 | Screening framework for two-dimensional silver/bismuth (2D AgBi)
iodide perovskites. The screening framework integrates high-throughput experi-
ments, physicochemical insights, and ML techniques, each step of which is repre-
sented by a gray box. a Material database is acquired from high-throughput
synthesis experiments, containing 14 positive samples and 66 negative samples.
b Based on chemical intuition and machine learning (ML) techniques, a support
vector classification (SVC) model to evaluate the synthesis feasibility of 2D AgBi
iodide perovskites is developed. Here, w represents the normal vector to the
hyperplane. 3κ and y represent the third-order kappa shape index and width of
molecules, respectively. c The synthesis feasibility of compounds in the prediction
set is assessed and visualized by applying the t-distributed stochastic neighbor
embedding (t-SNE) method62. d 13 predicted 2D perovskites with commercially
available precursors are unbiased and selected to experimentally validate the
reliability of our proposed equation.
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role in determining the synthesis feasibility of 2D HOIPs. Previous
studies30 and our extensive laboratory experience have provided
valuable chemical intuitions into the selection of organic spacers that
are conducive to forming the 2D perovskite structure. To satisfy the
charge neutrality condition, monovalent and divalent organic spacers
are generally incorporated into 2D perovskites. Furthermore, these
organic spacers should have moderate size to fit in the inorganic fra-
mework of 2D perovskites. Linear and cyclic organic spacers, whether
aliphatic or aromatic, are found to be favorable for the formation of 2D
perovskite structures. Taking into account organic spacers employed
in previously reported 2D perovskites, along with the chemical intui-
tions mentioned above, and the commercial availability of amines, we
have selected 79 promising amines for use in 2D AgBi iodide per-
ovskite synthesis (Fig. 2).

To reduce experimental cost in this work, the same experimental
conditions such as inorganic precursors, solvent, concentration, and
temperature, are utilized in practice. High-throughput experimental
results revealed that only 13 kinds of organic spacers can form 2D AgBi
iodide perovskite structures, leading to the chemist intuition success
rate of 16.4% (Supplementary Figs. 1 and 2, Supplementary Data 1).
Based on the results of synthesis experiments, organic spacers are
labeled as “2D perovskite” and “non-2D perovskite”. The single-crystal
structures of 13 synthesized 2D AgBi perovskites are obtained by
single-crystal X-ray diffractometer, and the purity of bulk phases is
confirmed by powder X-ray diffraction (PXRD) measurements (Sup-
plementary Figs. 4 and 5). All synthesized 2D AgBi iodide perovskites
show the typical single-layer structure, which can be further divided
into Ruddlesden–Popper (RP) phase with the stoichiometry A4AgBiI8
(A =monovalent cation) or Dion–Jacobson (DJ) phase with the stoi-
chiometry A2AgBiI8 (A = divalent cation) (Supplementary Tables 1–5).
A-site organic cations are incorporated as spacers between inorganic
layers, which are formed by alternating AgI6 and BiI6 octahedra. Metal
cations (Ag and Bi) and iodine sit at the center and vertex of metal
halide octahedra, respectively. Due to the avoidance of van der Waals
interaction between organic spacer layers, 2D DJ perovskites with
monolayer divalent A-site organic cations exhibit higher stability than
2D RP perovskites with bilayer monovalent A-site organic cations22.
Moreover, the semiconducting properties of 13 synthesized 2D AgBi
perovskites are further investigated by measuring ultraviolet–visible
(UV–vis) diffuse reflectance spectroscopy. The gradually decreasing
absorption in the UV absorption spectrum indicates that 13 synthe-
sized 2D AgBi perovskites hold indirect bandgaps, thus the optical
bandgap is determined by fitting the variant Tauc equation

(Supplementary Figs. 6 and 7). The bandgaps of synthesized 2D AgBi
perovskites are in the range of 1.84–1.99 eV, suggesting that the inor-
ganic framework plays a dominant role in bandgap values of 2D per-
ovskites and modifying organic spacers can further subtly modulate
the electronic properties of 2D perovskites. In addition, a reported 2D
RP phase perovskite with formula (C10S2N2H18)2AgBiI8 is also collected
as successful synthesis data34.

Subgroup discovery
Although datasets from high-throughput experiments contain both
positive and negative material data, subjective preferences still exist
due to idiosyncratic human choice and hard-to-control variables such
as commercial availability. The subjective preferences reflect not only
on the distribution of material synthesis data but also on the data that
we can obtain. This can result in ML models that optimize and mini-
mize global model errors based on prediction accuracy not being able
to draw reliable conclusions, or ML models that perform well in spe-
cific subdomains but poorly on the entire dataset. In order to improve
predictive accuracy and dig out reliable physicochemical insights, the
biased distribution issue of the training set needs to be addressed. A
promising solution is applying data-mining approaches to identify the
applicable subdomains forMLmodels, then trainingMLmodels on the
identified subdomain, demonstrating improved performance and
more distinctive descriptors thanmodels training on the whole biased
dataset35. In practice, various ML techniques can be utilized to recog-
nize subgroups of datasets, such as clustering and subgroup
discovery35,36. Notably, the data distribution in the specific subdomain
should be statically “most interesting”, i.e., as large as possible while
the target variable has the most distinctive distribution. Therefore,
subgroup discovery is applied in this work to determine suitable
subdomains for ML models to achieve the synthesis feasibility of 2D
AgBi perovskites.Given a dataset for a specific challenge, the subgroup
discovery approach can identify the subgroup with the most “infor-
mative distribution” and describe the identified subgroup in the form
of “(f1 < a) and (f2 > b) and…”, where fi represents the ith descriptor, a
and b represent the calculated threshold of corresponding descrip-
tors, respectively37. As a descriptive technique, results obtained by
subgroup discovery can be directly understood by human experts.

To develop high-performance MLmodels based on the subgroup
discovery, appropriate material descriptors with respect to the target
property are essential. Material synthesis is a complex process that
depends not only on the kinetics and thermodynamic stability of
materials itself, but also on the synthesis routes and the experimental

2D perovskite Non-2D perovskite

Fig. 2 | Summary of high-throughput experimental synthesis results.Organic spacers are classified into the box of “2D perovskite” and “non-2D perovskite” based on
whether the 2D perovskite structure is formed.
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conditions such as synthetic methods, experimental parameters, and
precursor species30. Note that the same synthesis method and para-
meters are utilized for high-throughput experiments in this work
(Synthesis methods in Supplemental Methods, Supplementary Fig. 8),
and the inorganic framework of all explored 2D HOIPs is AgBiI8.
Therefore, organic species featuring subtle structural and physico-
chemical characteristics, such as topological shape and size of mole-
cules, are themost important variables to the synthesis feasibility of 2D
HOIPs for a given inorganic framework. A set of common physico-
chemical descriptors obtained from the open-source cheminformatics
package RDKit is first utilized to explore the quantitative structure-
activity relationship (Supplementary Table 6)38. The distribution of
features in the dataset is visualized as boxplots (Supplementary
Figs. 9–12), where 50% of materials are located within the box (the
lower and upper edges of the box represent the first and third quartile,
respectively). In addition, the horizontal line in the box is the middle
value of the dataset, and outliers distributed significantly differently
from other data in the dataset are plotted as individual points outside
the box. The data distribution results reveal that two descriptors stand
out with a high correlation with the synthesis feasibility of 2D AgBi
iodide perovskites, i.e., the molecular weight MolWt and the third-
ordered kappa index 3k.

Moreover, the derivation of the rigid sphere model in our recent
work has revealed that the width y of organic spacers is critical for the
structural stability of 2D HOIPs, consistent with the different dis-
tribution between y of organic spacers in 2D perovskites and non-2D
perovskites (Supplementary Fig. 12)39,40. 2D projections of this 3D data
distribution map are generated, making scatter plots with reduced
dimensionsmore suitable for human visualization ability. Red and blue
plots in 2D projections correspond to organic spacers of 2D per-
ovskites and non-2D perovskites (Fig. 3), respectively. Among these
three projections, the distribution in (y, 3k) plane of organic spacers of
non-2D perovskites is significantly different from that of 2D per-
ovskites, in detail, molecules in the black box subdomain exhibit the
most interesting distribution. The boundary of the subdomain is
derived by utilizing the weighted relative accuracy (WRAcc), a popular

interestingness measurement in the subgroup discovery algorithm
(Supplemental Methods). The WRAcc of subgroups with y ranging
from 486 to 550 pm and 3k ranging from 1.01 to 1.89 is calculated
(Supplementary Fig. 13), while y and 3k of the most interesting sub-
domain ranges from 496 to 546 pm and from 1.07 to 1.82, respectively.
Notably, subtle change might occur among optimized molecular
structures obtained by different basis sets41, and this adds a tolerance
region for the boundary of y.

Due to the constraint of molecular size, all molecules in the
determined specific subdomain are based on the 5-membered or
6-membered ring, implying that cyclic organic spacers are more likely
to stabilize the 2D AgBi perovskite structure than linear organic
spacers. Recently, Wu et al. proposed that organic spacers with fewer
branches and cycles are conducive to forming the 2D Pb perovskites42.
The difference in preferred organic spacers between AgBi perovskites
and Pb perovskites can be attributed to the inorganic framework. Our
first-principle calculations reveal that the average metal-iodine bond
length andmetal-metal distance of PbI4 are larger than those of AgBiI8,
indicating that the inorganic framework of AgBiI8 consists of smaller
octahedra, providing smaller semicuboctahedral cage for organic
spacers (SupplementaryNote 1, Supplementary Fig. 14, Supplementary
Table 7). Moreover, the calculated Young’s modulus of
(CH3NH3)2AgBiI6 is higher than CH3NH3PbI3, reflecting that the inor-
ganic framework of AgBi perovskites exhibits lower softness. On the
basis of the simplified model of perovskite lattice softness developed
by Yin et al.43, the enhanced modulus of AgBi perovskites originates
from the reduced metal-halogen bond length. Therefore, the semi-
cuboctahedral cage provided for organic spacers of 2D AgBi per-
ovskites is not only small but also rigid. Linear organic spacers show
high flexibility and diversity molecular conformations, which might
damage the rigid inorganic framework of 2D AgBi perovskites, thereby
further destabilize the 2D perovskite structure.

Problem-specific descriptors
The distribution of 2D perovskites and non-2D perovskites is balanced
in the determined specific subdomain, which contains 10 2D
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Fig. 3 | Visualizing synthesis feasibility of 80 compounds with material
descriptors. Boxplots of synthesis feasibility of 80 compounds with (a) molecular
weight (MolWt), (b) the third-order kappa shape index 3k, and (c) width y. In each
boxplot, the central thick black line represents the median, color-shaded boxes
represent the first and third quartiles (the 25th and 75th percentiles), and the

whiskers extend no further than 1.5 times the distance between the first and third
quartiles. d–f 2D projections of 3D scatter plot synthesis feasibility of 80 com-
poundswith three important descriptors. In particular, the suitable range for y and
3k is marked by a black box. 2D and non-2D represent 2D perovskites and non-2D
perovskites, respectively.
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perovskites and 10 non-2D perovskites (Supplementary Fig. 15). Note
that three above features are insufficient for distinguishing 2D per-
ovskites and non-2D perovskites in the specific domain, more dis-
tinctive descriptors related to the synthesis feasibility of 2D AgBi
perovskites should be developed. The development of problem-
specific descriptors is actually integrating physicochemical insights
related to the specific problem at hand into ML models. To satisfy the
requirements of high accuracy and convenience for prediction,
material descriptors should bypass time-consuming first-principles
calculations and be workable for target properties10. Therefore,
although the dipole of organic spacers is highly correlated to the
synthesis feasibility of 2D AgBi perovskites (Supplementary Fig. 12),
four quantum chemical descriptors obtained from first-principles
calculations are unadopted for training ML models. Accordingly,
problem-specific descriptors are developed by utilizing the molecular
graph theory, which is a useful tool for translatingmolecular structures
into numerical topological indexes44–46. By disregarding hydrogen
atoms to emphasize the molecular framework, the molecular topolo-
gical structure can be extracted as a graph consisting of vertices and
edges, where the vertices and edges represent atoms and chemical
bonds, respectively.

Since 2D perovskites consist of alternately aligned organic and
inorganic layers, the interaction between organic and inorganic com-
ponents is a critical factor in the formation of 2D perovskite structure.
The organic and inorganic components of 2D perovskites are linked by
hydrogen bonds between amine groups of organic spacers and term-
inal halide of inorganic framework (Fig. 4a). Due to the different
stacking modes between RP perovskites and DJ perovskites, RP per-
ovskites also contain weak van derWaals interaction between adjacent
organic layers. The stackingmodeof 2Dperovskites is attributed to the
valence of organic spacers, which can be obtained by counting the
number of nitrogen atoms NumN. Moreover, the strength of hydrogen
bonds is affectedby the distance betweenbonding atomsand the local
environment of bonding atoms, thus the distance between two nitro-
gen atomsDisNN, steric effect index (STEI) of nitrogen, and the number

of rotational bonds in the alkyl tail NumRot are considered as problem-
specific descriptors (Supplemental Methods, Supplementary Figs. 16
and 17). Note that the degree of molecular branching of organic
spacers can influence the formability of 2D Pb perovskites42,46,
which can be described by the Eccentricity of organic spacer to some
extent.

ML classification model
Simple ML algorithms like support vector machine, linear regression,
and gradient boosting are appropriate for modeling with small
dataset42,47. We compared the performance of several common ML
classification models on the identified subgroup, including logistic
regression classification (LRC) model, decision tree classification
(DTC) model, gradient boosting classification (GBC) model, and sup-
port vector classification (SVC) model (Supplementary Fig. 18). SVC
model stands out for its classification accuracy among four ML clas-
sification models. Furthermore, the SVC algorithm also has the
advantages of inherent simplicity and computation efficiency. There-
fore, the SVC algorithmwith the linear kernel is applied to develop the
equation for the synthesis feasibility of 2D AgBi perovskites48, which
exhibits high interpretability and great predictive accuracy on the
small-scale dataset49. The SVC model is trained by using 10-fold cross-
validation in order to obviate the overfitting problem of the relatively
small dataset (Supplemental Methods). The accuracy and the error of
SVC models are assessed by employing the receiver operating char-
acteristic (ROC) curve and confusion matrix50,51. The area under the
ROC curve (AUC) of the SVCmodel is as high as 85%,meanwhile, only 1
out of 10molecules of 2Dperovskites ismisclassified by theMLmodel,
indicating the goodperformanceof our trainedMLmodel (Fig. 4b). On
the basis of coefficients obtained from the training process of SVC
model, the target property can be predicted as a sum of weighted
feature inputs (SupplementalMethods).However, this equation is only
suitable for the specific subdomain. To extend the applicable scope of
this equation to the wholematerial space, the subgroup discovery and
SVCmodel are combined toobtain thefinal equation for evaluating the
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Fig. 4 | Results and insights fromMLmodel. a Schematic sketch of the problem-
specific descriptors. Here, dNi�Atomj

represents the topological distance between
the nitrogen i and atom j in the molecular skeleton, dNi�Nj

represents the topolo-
gical distance between nitrogen i and j. b Receiver operating characteristic (ROC)
curve and confusion matrix for the synthesis feasibility of 2D perovskites. c The
sorted mean SHapley Additive exPlanations (SHAP) values of selected features in
theMLmodel. d SHAP values for six features of theMLmodels, plots with different

colors represent different features. e SHAP analysis of (ClC6H4CH4NH3)4AgBiI8,
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bility is−0.0138, and theML-predicted synthesis feasibilityof each sample is bolded
in black.
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synthesis feasibility of 2D AgBi perovskites, as formulated
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Here, the value of P indicates the synthesis feasibility of 2D AgBi

iodide perovskites, which is easy to calculate. To test the robustness of
the proposed equation, one sample in the training set is taken out and
the remaining part of the dataset is utilized to train the SVCmodel. The
procedure is repeated such that each sample in the training set is taken
out once. Feature coefficients of most equations obtained from the
trained SVC model are similar to the coefficients of the proposed
equation, verifying the robustness and generalizability of the pro-
posed equation (Supplementary Table 9). The combination of trigo-
nometric function and step function is utilized to remove organic
spacers not in this region. As the P value increases, the synthesis fea-
sibility of 2DAgBi perovskites increases,where 2Dperovskite structure
is expected to form for a determined range of P >0. Moreover, the
normalized coefficients of features are calculated for normalized fea-
tures and listed inTable 1. Since the SVCmodel utilized in thiswork is a
simplistic linear model, the contribution of features to the synthesis
feasibility of compounds can be obtained by straightforward analyzed
normalized coefficients. Positive feature coefficients indicate the

positive relationship between feature values and synthesis feasibility,
and vice versa. Besides, the absolute values of normalized feature
coefficients imply the importance of features, which are comparable to
each other.

Utilizing model-agnostic interpretation strategies to extract
meaningful physical and chemical insights fromtrainedMLmodels has
been proven to better understand ML predictions10. SHAP analysis52, a
popular strategy to interpret ML prediction results, is utilized in this
work to explore the marginal contribution of individual descriptors
and predict the synthesis feasibility of each sample (Supplemental
Methods). As shown in Fig. 4c, NumRot is themost important feature to
the synthesis feasibility of 2D AgBi perovskites, and the following
features are the Eccentricity and STEI. Note that features related to the
molecular topology exhibit a high correlation with the synthesis fea-
sibility of 2D AgBi iodide perovskites. It is worth pointing out that the
mean SHAP values ranking of selected features are different from the
normalized coefficient obtained from the SVC model since the SHAP
value reveals the marginal contribution of ith feature’s addition cal-
culated by [f(S∪ {i}-f(S)], where S represents all possible sets of the
feature set. Compared to the model-dependent interpretation strate-
gies, the advantages of SHAP analysis include not only sorting the
importance of features but also indicating the negative or positive
impact of each feature on the target property. The dependence
between feature values and SHAP values is displayed in Fig. 4d, where
different colors represent different features. The positive SHAP value
means that the featurewill drive the compound in the direction of high
synthesis feasibility, while a negative SHAP value will push the pre-
diction toward low synthesis feasibility. Note that NumRot is propor-
tionate to the SHAP value, implying the lack of the alkyl tail is harmful
to the synthesis of 2D AgBi iodide perovskites. Whereas other features
are all inversely proportionate to the SHAP value, implying the small
feature values are beneficial for the synthesis of 2D AgBi iodide per-
ovskites. Taking three organic spacers as examples the local impact of
six features is analyzed. As shown in Fig. 4e in bold, the predicted
synthesis feasibility of (ClC6H4CH4NH3)4AgBiI8, (BrC5H4NH)4AgBiI8,
and (NH2C4H7NHC2H6)2AgBiI8 is 2.42, −1.00, and −2.54, respectively,
corresponding to one 2D perovskite and two non-2D perovskites,
respectively. Features with red arrows are beneficial features to
increase the synthesis feasibility of 2DAgBi iodide perovskites, and the
length of arrows is proportional to SHAP values of given features.
Conversely, features with blue arrows make negative contributions to
2D perovskite synthesis. Notably, NumRot makes the key negative
contribution to the synthesis feasibility of (BrC5H4NH)4AgBiI8, and the
most negative feature for the synthesis feasibility of
(NH2C4H7NHC2H6)2AgBiI8 is STEI. The lack of rotation bonds in the
alkyl chain and the high steric hindrance effect of the nitrogen atom

Table 1 | Feature coefficients of the equation for evaluating
the synthesis feasibility of AgBi iodide perovskites

Unnormalized coefficient Normalized coefficient

DisNN
a −1.98 −1.50

STEIb −2.24 −1.53

Eccentricityc −1.04 −1.76

NumN
d −1.58 −0.62

NumRot
e 2.16 2.21

MolWtf −0.03 −0.76

Cg 14.01 −0.20
aDisNN represents the distance between two nitrogen atoms.
bSTEI represents the steric effect index of nitrogen.
cEccentricity represents the maximum distance between nitrogen and other atoms.
dNumN represents the number of nitrogen atoms.
eNumRot represents the number of rotatable bonds on the tail of molecules.
fMolWt represents the molecular weight of molecules.
gC represents the constant of of linear equation.
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Fig. 5 | Screening of 2D AgBi iodide perovskites with high synthesis feasibility
and experiment validation. a The schematic illustration of step-by-step screening
for the prediction set. b The optical image of (C6H11NH3)4AgBiI8,

(FC6H4CH2NH3)4AgBiI8, (ClC6H4CH2NH3)4AgBiI8, (BrC6H4CH2NH3)4AgBiI8,
(FC6H4C2H4NH3)4AgBiI8·H2O, (C6H5C3H6NH3)4AgBiI8·H2O,
(NHC5H4C2H4NH3)2AgBiI8, and (NH3C6H4CH2NH3)2AgBiI8.
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might weaken the strength of hydrogen bonding, resulting in the
failure of 2D perovskite synthesis.

Experiment validation
After training the MLmodel, the obtained equation is utilized to make
a prediction for unexplored molecules. On the basis of molecular
similarity related to molecules in the training and test sets, we col-
lected 8406 molecules from the molecular database PubChem53. The
high-dimensional representation of organic spacers is embedded into
a 2D image by using the t-distributed stochastic neighbor embedding
(t-SNE) method. For clarity, the ML-predicted synthesis feasibility and
molecular structure of eachpoint can beobtainedby clicking the point
in the 2D image (Supplementary Fig. 21, Supplementary Note 2, Sup-
plementary Data 2). Successfully, 344 2D perovskites with high
synthesis feasibility are screened out (Fig. 5a). However, since organic
spacers in the prediction set were collected from the molecular data-
base PubChem, commercial unavailability of some amines results in
only 123 predicted 2D AgBi iodide perovskites hold the potential for
further experimental synthesis (Supplementary Figs. 22–24). Since
certain functional groups can react with HI30, such as hydroxyl54 and
ether (Supplementary Fig. 25), nonreactive solvents or milder experi-
mental conditions should be utilized when choosing organic spacers
with these functional groups. To validate the reliability of our ML
model, 13 commercially available organic spacers without hydroxyl
and ether are unbiased selected and further examined via experiments
(Table 2, Supplementary Fig. 26). As a result, 8 of 13 predicted 2D AgBi
iodide perovskites with high synthesis feasibility are successfully syn-
thesized, indicating that the success rate of ML-guided 2D AgBi iodide
perovskites can reach 61.5%, which is much higher than the success
rate based on the chemical intuition (16.4%). Note that synthesized
single clear plank-shaped crystals are utilized to determine crystal
structures, and the phase purity is verified by the powder X-ray dif-
fraction (Supplementary Tables 10–13, Supplementary Fig. 27).

Moreover, the semiconducting properties of 8 selected 2D AgBi
perovskites are further investigated by recording optical UV–vis
spectra (Supplementary Fig. 28) and performing density functional
theory calculations (Supplementary Fig. 29). These perovskites exhibit
similar UV absorption curve and optical bandgaps relative to 2D AgBi
perovskites in the training set, i.e., (C6H11NH3)4AgBiI8 (1.93 eV),
(FC6H4CH2NH3)4AgBiI8 (1.91 eV), (ClFC6H3CH2NH3)4AgBiI8 (1.89 eV),
(BrC6H4CH2NH3)4AgBiI8 (1.87 eV), (FC6H4C2H4NH3)4AgBiI8·H2O
(1.76 eV), (C6H5C3H6NH3)4AgBiI8·H2O (2.03 eV),
(NHC5H4C2H4NH3)2AgBiI8 (1.80 eV), and (NH3C6H4CH2NH3)2AgBiI8
(1.93 eV). Their electronic structures show that the conduction band
minimum (CBM) of 2D AgBi iodide perovskites ismainly dominated by

the hybrid of Bi p orbital and I p orbital, whereas the valence band
maximum (VBM) is mainly from the Ag d and I p orbitals. The aniso-
tropic interaction between Ag d and I p orbitals slightly incorporates Bi
s orbitals into the highest valence band, which enforces the location of
VBM deviated from the Γ point, leading to the indirect bandgap
characteristic of 2D AgBi perovskites55. Moreover, analogous to tradi-
tional material CH3NH3PbI3

56, organic molecules have no direct con-
tribution to the band edge states of 2D AgBi perovskites. However,
different organic spacers can influence the tilting and distortion of the
inorganic framework via strong hydrogen bonding and further indir-
ectly affect the electronic and optical properties of perovskites. Note
that all synthesized 2D AgBi perovskites exhibit moderate bandgaps,
which can serve as various optoelectronic devices. Furthermore, by
appropriately modifying organic spacers of synthesized 2D AgBi per-
ovskites in this work, more interesting characteristics such as anti-
ferroelectrics can be modulated for the requirements of diversified
functional materials.

Discussion
In the above discussion, an approach that integrates high-throughput
experiments, priori knowledge of chemistry, subgroup discovery, and
SVC model is proposed to overcome the data sparsity and imbalance
problem. Note that the data imbalance problem is common in many
real-world problems, which has been considered one of the most
important issues in training ML classification models. To date, many
strategies have beenproposed to address thedata imbalanceproblem,
such as under-sampling methods like CondensedNearestNeighbour
and EasyEnsembleClassifier and over-sampling methods like synthetic
minority oversampling technique (SMOTE)10,21. To comprehensively
compare the performance of variousmethods, we unbiasedly selected
ten compounds containing both 2D and non-2D perovskites in training
and test sets for validation. As illustrated in Supplementary Table 14,
three ML models (SMOTE, CondensedNearestNeighbour, and Easy-
EnsembleClassifier) exhibit poor predictive ability on non-2D per-
ovskites. In contrast, theMLmodel in this work is trained based on the
identified specific subdomain, and validation results have demon-
strated that our proposed integrated ML-based framework can well
deal with this deficiency. More importantly, our proposed framework
with some frozen experimental conditions can provide the probability
estimates of synthesis feasibility of potential 2D HOIPs, which could
also be further improved with optimization of experimental condi-
tions, such as temperature, pressure, and solvent.

Note that our proposed framework is highly flexible and can
integrate various other ML models with strong predictive power. For
instance, alternative kernelized classification models with different
kernel functions can be selected to distinguish 2D perovskites and
non-2D perovskites in the specific domain. While many ML models
have commendable predictive abilities, they often lack transparency in
their predictions, making it difficult for humans to understand and
extract physical and chemical insights. This lack of transparency hin-
ders the development of new theories and insights. Therefore, it is
essential to choose models that balance predictive accuracy with
interpretability to facilitate the development of new theories and
guide the discovery of advanced functional materials. Based on the
Rashomon set argument57, there is often existing at least one inter-
pretable ML model with high predictive accuracy and interpretability.
Knowledge gained from interpretable MLmodels can help to advance
scientific understanding, which is fundamental to develop material
science. Rather than creatingmodels that are difficult to interpret such
as SISSO, inherently interpretable ML models can provide more reli-
able explanations, which probably contain functions that can be
approximated well by simpler functions related to priori knowledge.
Besides, a set of informative features to quantify electronic, steric, and
topological properties of organic precursors is proposed in this work
(Supplemental Information), including common physicochemical

Table 2 | Prediction and test results of 13 selected 2D
perovskites

Compounds ML-predicted results Test results

(C6H11NH3)4AgBiI8 2D perovskite 2D perovskite

(FC6H4CH2NH3)4AgBiI8 2D perovskite 2D perovskite

(ClC6H4CH2NH3)4AgBiI8 2D perovskite 2D perovskite

(BrC6H4CH2NH3)4AgBiI8 2D perovskite 2D perovskite

(C6H5C3H6NH3)4AgBiI8 2D perovskite 2D perovskite

(FC6H4C2H4NH3)4AgBiI8 2D perovskite 2D perovskite

(NHC5H4C2H4NH3)2AgBiI8 2D perovskite 2D perovskite

(NH3C6H4CH2NH3)2AgBiI8 2D perovskite 2D perovskite

(CH3C6H4CH2NH3)4AgBiI8 2D perovskite Non-2D perovskite

(ClFC6H3CH2NH3)4AgBiI8 2D perovskite Non-2D perovskite

(C6H5CH2NH3)4AgBiI8 2D perovskite Non-2D perovskite

(C6H5C2H4NH3)4AgBiI8 2D perovskite Non-2D perovskite

(NH3C6H4C2H4NH3)2AgBiI8 2D perovskite Non-2D perovskite
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descriptors and problem-specific descriptors related to the specific
problem at hand, which have great potential for use in developing ML
models for subtle properties of HOIPs such as ferroelectric and chir-
ality. Overall, by integrating appropriate ML techniques, physical and
chemical insights, and high-throughput experiments, our proposed
framework exhibits good extrapolating ability and interpretability,
providing a promising avenue for future research in ML-aid synthesis
of advanced functional materials and an in-depth understanding of 2D
HOIP materials.

By integrating small-scale high-throughput experiments, physical
and chemical insights, and ML techniques, we have developed an
effective strategy to rapidly screenout 2DAgBi iodide perovskiteswith
high synthesis feasibility. This strategy involves incorporating hydro-
gen bonding and subtle chemical interaction within 2D perovskite
structures, alongside considering the typical physicochemical, steric,
and topological properties of organic precursors. As part of our
approach, we have defined a set of informative features that are closely
associated with the synthesis feasibility of 2D AgBi perovskites. To
solve the data imbalance problem, the subgroup discovery method is
borrowed todiscover the favorable formation regionof 2DAgBi iodide
perovskites. The trained ML model holds good performance with an
accuracy of 85%, and the interpretable ML algorithm indicates that the
molecular topology is critical for the synthesis of 2D AgBi iodide per-
ovskites. Structure–property relationships reveal that cyclic organic
spacers are more likely to stabilize the 2D perovskite structures than
linear organic spacers. Low steric hindrance effect of nitrogen, fewer
molecular branches, and rotational alkyl chains in cyclic organic
spacers are beneficial for the synthesis of 2D AgBi iodide perovskites.
Most importantly, an equation that can directly estimate the synthesis
feasibility of 2D AgBi iodide perovskites is developed, and 344 mole-
cules are identified as promising organic spacers of 2D AgBi per-
ovskites from 8406 unexplored molecules under the guidance of this
equation. Furthermore, to verify the predicted ability of our proposed
equation, 13 predicted 2D perovskites are selected for experimental
synthesis, and 8 compounds are successfully synthesized (61.5%). This
study not onlyprovides a practical way to rapid discovery of promising
advanced functional materials but also a universal ML-aided synthesis
framework that merges strong predictive capability with physico-
chemical interpretability.

Methods
Synthesis method and experimental characterization
Compounds in synthesis experiments were prepared by utilizing the
evaporation method, the synthetic chemical reagents are reagent
grade and are not further purified when used. The crystal structure of
synthesized single clear crystals was determined by a single-crystal X-
ray diffractometer, and the purity of bulk phases was confirmed by
PXRD measurements. The semiconducting properties of synthesized
2D perovskites were investigated by measuring UV–vis diffuse reflec-
tance spectroscopy, and optical bandgaps were determined by fitting
the variant Tauc equation. The optical image of synthesized per-
ovskites was acquired by employing a polarizing microscope. Details
about synthesis methods and experimental characterization are given
in the Supplementary Information.

ML techniques and DFT calculations
The most suitable subdomain for ML models to achieve the synthesis
feasibility of 2D AgBi perovskites is determined by the subgroup dis-
covery approach37. The SVC model with the linear kernel is applied to
obtain the final equation for evaluating the synthesis feasibility of 2D
AgBi perovskites48. To obviate the overfitting problem of the relatively
small dataset, the 10-fold cross-validation is utilized. The marginal
contribution of individual descriptors is explored by performing SHAP
analysis52. The first-principle calculations for 2D perovskites were
performed by using the Vienna Ab initio Simulation Package 5.4

(VASP)58. To accurately compute the electronic structures, the
Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional59,60 was applied.
Details about ML techniques and DFT calculations are given in the
Supplementary Information.

Data availability
Thedata presented in this study are available in themanuscriptfile, the
Supplementary Information files, and Source Data files. Source data
are provided with this paper.

Code availability
Data generated in this study and codes are available at https://github.
com/wuyileiiiii/2D_perovskite_synthesizability61.
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