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Distinct mesenchymal cell states mediate
prostate cancer progression

Hubert Pakula1,12, Mohamed Omar 1,2,12, Ryan Carelli1,12, Filippo Pederzoli1,
Giuseppe Nicolò Fanelli 1,3, Tania Pannellini1, Fabio Socciarelli1,
Lucie Van Emmenis 1, Silvia Rodrigues1, Caroline Fidalgo-Ribeiro1,
Pier Vitale Nuzzo 1, Nicholas J. Brady 1, Wikum Dinalankara1, Madhavi Jere 1,
Itzel Valencia1, Christopher Saladino1, Jason Stone1, Caitlin Unkenholz1,
Richard Garner1, Mohammad K. Alexanderani1, Francesca Khani 1,
FranciscaNunes deAlmeida4, Cory Abate-Shen4,5,6,7,8,MatthewB. Greenblatt 1,
David S. Rickman 1, Christopher E. Barbieri 2,9, Brian D. Robinson 1,2,9,
Luigi Marchionni 1 & Massimo Loda 1,2,10,11

In the complex tumor microenvironment (TME), mesenchymal cells are key
players, yet their specific roles in prostate cancer (PCa) progression remain to
be fully deciphered. This study employs single-cell RNA sequencing to
delineate molecular changes in tumor stroma that influence PCa progression
andmetastasis. Analyzingmesenchymal cells from four genetically engineered
mousemodels (GEMMs) and correlating thesefindingswith human tumors,we
identify eight stromal cell populations with distinct transcriptional identities
consistent across both species. Notably, stromal signatures in advanced
mouse disease reflect those in human bone metastases, highlighting perios-
tin’s role in invasion and differentiation. From these insights, we derive a gene
signature that predicts metastatic progression in localized disease beyond
traditional Gleason scores. Our results illuminate the critical influence of
stromal dynamics on PCa progression, suggesting new prognostic tools and
therapeutic targets.

Prostate cancer (PCa) ranges from an indolent disease to aggressive,
castration-resistant prostate cancer (CRPC), associated with a poor
prognosis1,2. However, genetic alterations in epithelial cancer cells do
not fully explain the different clinical behaviors of this malignancy3,4.

Previous studies linked stromal gene expression to prostate carcino-
genesis and progression5–7, and our group described that stromal
transcriptional programs vary in areas surrounding low vs. high Glea-
son score PCa. Notably, benign stroma is transcriptionally distinct in
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tumor- vs. non-tumor-bearing specimens, while benign epithelium
does not display significant variability8. Furthermore, a stromal gene
signature enriched in bone remodeling and immune-related pathways,
largely overlapping with one derived from human xenografts that
eventually metastasized9, predicts metastases8,9. Importantly, prior
analyses show that the stroma is composed of heterogenous and
diverse cell populations whose roles in mediating disease progression
have yet to be dissected10. In addition, whether the stromal micro-
environment differs in the presence of diverse epithelial molecular
subtypes of PCa remains to be determined. Therefore, genetically
engineeredmousemodels (GEMMs) driven bydifferentmutations and
representing the different stages of prostate carcinogenesis can dis-
entangle the complex stromal remodeling in PCa, shedding a light on
complex interactions amongst epithelial, stromal, and immune
components.

The Tmprss2-ERG (T-ERG) knock-inmurinemodel11 displays amild
epithelial phenotype and serves as a model of PCa initiation. The
Nkx3.1creERT2;Ptenf/f (NP) mice12–15, and the Tg(ARR2/Pbsn-MYC)7Key
(Hi-MYC) GEMMs16 represent prostatic intraepithelial neoplasia (PIN)
with subsequent invasion. Advanced, aggressive, invasive adenocarci-
noma and neuroendocrine prostate cancer (NEPC) is represented by
the Pb-Cre4 +/-;Pten f/f; Rb1 f/f;LSL-MYCN +/+ (PRN) model17,18.

To investigate the tumor microenvironment (TME) in detail,
particularly the mesenchymal cells associated with different epi-
thelial lesions in these GEMMs, we are generating a comprehen-
sive single-cell transcriptomic (scRNA-seq) compendium of the
mouse PCa mesenchyme. This analysis contributes to the char-
acterization of stromal cell subtypes with distinct expression
profiles, which are likely regulated by key transcription factors
orchestrating specific signaling pathways. We observe mesench-
ymal cell populations that are common across all GEMMs and wild-
type (WT) mice, while others exhibit unique phenotypes that are
associated with specific PCa drivers. Our investigations also cover
the interactions within mesenchymal cell populations and
between mesenchymal and other cell types, such as epithelial or
immune cells. The regulons and interaction networks we identify
suggest additional roles of the PCa stroma in mediating interac-
tions within the tumor microenvironment. Moreover, there
appears to be a preservation of cluster identity and spatial tissue
architecture from murine models to human prostate cancer. Our
ongoing work is illuminating distinct mesenchymal cell popula-
tions that may play varied roles in influencing the progression
of PCa.

Results
Distinct stromal populations associated with different stages of
prostate cancer
The stroma of PCa GEMMs differed significantly from that of their WT
counterparts. In particular, stromal remodeling, characterized by an
increase in collagen-rich extracellular matrix (ECM) deposition
begins early in PCa carcinogenesis. Indeed, a significant expansion of
the stromal compartment, as measured by image analysis. This
expansion increases frommodels displaying PIN/microinvasion to the
PRN model, which displays the greatest ECM deposition (Supple-
mentary Fig. 1a, b). This finding highlights active remodeling of the
stroma during tumor progression, suggesting that mesenchymal cells
may change in function and composition during tumorigenesis.

To gain further insights into the composition and the function of
the mesenchymal populations responsible for this stromal reaction,
scRNA-seq profiles of 43,582 genes from 101,853 cells in 38 mice were
collected using pooled single-cell suspensions of all lobes of themouse
prostate without a priori marker selection (Supplementary Data file 1).
Cells of epithelial, lymphoid, endothelial, and neural origin based on
the expression of canonical marker gene sets (Supplementary Data
file 2)were excluded, yielding a dataset of 8574mesenchymal cells. The

number of cells and transcripts from all models are shown in Supple-
mentary Fig. 2a and Supplementary Data file 1. After correcting for
batch effects and reducing dimension using a conditional variational
autoencoder (VAE) (see “Methods”), we determined the different
stromal cell types across allmousemodels. To this end,we constructed
a k-nearest neighbor graph in the VAE latent space using Euclidean
metric, and clustered with the Leiden algorithm. This analysis revealed
12 stromal cell populations. Based on an analysis of cluster-cluster
covariance and overlappingmarker genes, three of these clusters were
merged, while an additional cluster was removed as it had <5% of cells
in WT mice. This resulted in a final number of eight distinct clusters
(referred to as c0-c7). The distribution of the 8 mesenchymal clusters
among the various GEMMs is shown in Fig. 1a. Some clusters are shared
by GEMMs and WTs (c0-c2), while others are strongly enriched in
particular mutant models (c3-c7) (Fig. 1b and Supplementary Fig. 2b).

Using ligand-receptor (L-R) interaction analysis, we found that the
number and strength of signaling interactions between the stroma,
epithelium, and immune compartments are greater in GEMMs com-
pared toWTs (Fig. 1c). Specifically, outgoing signaling from the stroma
of GEMMs is mainly mediated through interactions between subunits
of collagen types I, III and IV on the stroma and their corresponding
receptor, the collagen-binding integrin Itga2/Itgb1 on the epithelium
(Supplementary Data file 3). In addition, epithelium signaling to the
stroma is mediated through the Wnt4-Fzd1/Fzd2 and Areg-Egfr inter-
actions (see Fig. 1d and Supplementary Data file 3). On the other hand,
theonly significant epithelial-stromal interaction inWTs is between the
ligand Gas6 in the epithelium and its receptor Axl in the stroma
(Fig. 1d). Statistically significant signaling networks from the stroma to
the epithelium in the prostates of WTs were not observed. This sug-
gests that, while stroma to epithelium interactions do exist in normal
prostates, they occur at a lesser frequency and strength compared to
those found in GEMMs. Similarly, signaling from immune to stromal
cells is significantly increased in GEMMs compared to WTs, mainly
through the Hbegf-Egfr and Mif-Ackr3 interactions (see Fig. 1d and
Supplementary Data file 3). Overall, these results show that specific
epithelialmutations do not just alter the stromal composition, but also
induce significant changes in the inter-cellular communication net-
works in the microenvironment.

Since transcription factors (TFs) can play a role in cell lineage
determination, knowledgeof drivingGeneRegulatoryNetworks (GRN)
would improve cluster designations19,20. To this end, cis-regulatory
network inference was used to identify potential regulons, consisting
of a TF and its putative targets, driving either genotypes or clusters21.
First, modules of highly correlated genes were identified, then pruned
to include only those for which a motif of a shared regulator could
explain the correlations. Subsequently, the activity of each regulonwas
scored in each cell and a set of regulons with different activity were
identified in the eight mesenchymal clusters (Supplementary Fig. 2c).
Differentially expressed genes (DEGs) in each cluster versus the
remaining clusters (Supplementary Data file 4) were determined using
the MAST approach, which employs a hurdle model to identify DEGs
between two cell groups22.

Common mesenchymal clusters across different mouse models
Contractilemarker genes including Acta2, Myl9, Myh11, and Tagln, and
“muscle and smooth muscle cells contraction” by Reactome, are
enriched in the c0 cluster. These cells also highly express Mustn1,
Angpt2, and Notch3, suggesting a level of transcriptional complexity
greater than previously suggested23–25.

Interestingly, two distinct subpopulations of c0, named sub-
clusters c0.1 and c0.2, are identified (Fig. 2a). Mesenchymal cells from
c0.1 express myofibroblast marker genes such as Rspo3, Hopx, and
Actg2 (Fig. 2b, c)24–26 while c0.2 overexpress pericyte markers (Rgs5,
Mef2c, Vtn, Cygb, and Pdgfrb). Thus, the c0 cluster is composed of both
bonafidemyofibroblasts andpericytes. Althoughboth sub-clusters are
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represented in all genotypes, sub-cluster 0.1 (c0.1) is predominantly
found in PRN and sub-cluster 0.2 (c0.2) is enriched in NP (Fig. 2a).
Regulon analysis confirmed the separation of these two sub-clusters,
with c0.1 having a high expression of Egr4, Crem, and Sox4 regulons, in
contrast to c0.2whichhas a high expressionof Egr2, Cebpa, Pparg,Klf2,
and Klf4 (Fig. 2d).

Further investigation reveals the conservation of mesenchymal
cells expressing innate immune response genes across different gen-
otypes. Specifically, the common cluster c1 shows increased expres-
sion of Sfrp1 and Gpx3, as well as major complement system
components such as C3, C7, and Cfh compared to wild type. In addi-
tion, c1 shows a unique set of immunoregulatory and inflammatory
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genes (Ccl11, Cd55, Ptx3, and Thbd) as well as members of the
interferon-inducible p200 family (Ifi204, Ifi205, and Ifi207) (Fig. 3a).
Enrichment of GPX3 and C3 proteins in the stroma surrounding PIN
and invasive tumor can be seen in Fig. 3b.

L-R interaction analysis revealed several communication networks
from the epithelium to c0 and c1 stromal cells (Fig. 3c). These com-
munications are mostly mediated through interactions between Thbs1
found on epithelial cells exhibiting high expression of luminal marker
genes (henceforth termed luminal-like cells) and Sdc1, Sdc4, and Cd47
found on the stromal cells of c0 and c1, and through interactions
betweenMif expressed in luminal-like cells andAckr3 expressedmainly
in c1 (see Fig. 3c and Supplementary Data file 3).

Notably, a distinct distribution of immune cell types is present in
different mouse models (Fig. 3d). Immune signaling to c0 and c1 is
dominated mainly by macrophages and to a lesser extent by dendritic
cells (Fig. 3e). Macrophages signaling to c0 and c1 is mediated mainly
through Spp1 (expressed in macrophages) and integrins (expressed in
c0 and c1). Specific Macrophages-c0 interactions are conducted
throughGzmaonmacrophages and Pard3on c0, in contrast to specific
macrophages-c1 interactions, which are mediated through the ligands
Mif and Hbegf on macrophages and their corresponding receptors
Ackr3 and Egfr on c1 cells.

Through gene regulatory network analysis, several regulons were
found to be specific to c0 and c1 stromal cells, including Cebpalpha
andGabpb1. In addition, other regulons govern inflammatory signaling
systems such as Nfkb1, along with downstream genes involved in
immune activation, which exhibit putative binding sites for these TFs
(see Fig. 3a and Supplementary Fig. 2c).

Mesenchymal cells from c2 were found in all genotypes (Fig. 1b
and Supplementary Fig. 2b). Components of the c-Jun N-terminal
kinase (JNK) pathway were prominently expressed in this population.
This is supported by high levels of Ap-1 components including Jun,
JunB, JunD, Fos, FosD, FosB, and Fosl2, activating factors (Atf3)
(Fig. 3a). These were concomitant to increased expression of nega-
tive regulators of Erk1/2 such as Dusp1, Dusp6, and Klf4 (Fig. 3a). GRN
analysis revealed candidate TFs regulating MAPK superfamily such as
Atf3, Arid5a and Stat3 (Fig. 3a and Supplementary Fig. 2c).
Mesenchymal cells in c2 also express both negative regulators of the
Stat pathway and Stat-induced Stat inhibitors (SSI) (Fig. 3a). Inter-
estingly, the expression of SSI family members is concomitant with
strong expression of Il6, Irf1, which attenuate cytokine signaling. In
addition, similar to c1, c2 interactions with immune cells in the TME
are mediated mainly through the SPP1 and MIF signaling path-
ways (Fig. 3e).

GEMM-specific mesenchymal clusters and communication
amongst epithelial, stromal, and immune cells
Clusters c3 and c4 are predominantly enriched in T-ERG, Hi-MYC, and
NP models. They express core components of the Wnt pathway
including ligands, enhancers, negative regulators as well as master
transcription factors (Fig. 4a). In situ validation of c3 and c4markers by
multiplex immunohistochemistry (mIHC) imaging confirms the

expression of WIF1 in T-ERG mesenchyme compared to the stroma of
other mouse models, including NP, Hi-MYC, and PRN (Fig. 4b).

Signaling occurring between epithelial and immune cells and
stroma in clusters c3 and c4 reveals GEMM-specific L-R interactions.
For instance, in T-ERG, signaling from luminal-like cells to c3 and c4
stroma is mainly mediated through Edn1-Ednrb, Thbs1-Sdc1/Sdc4, and
Wnt4-Fzd1/Fzd2 interactions, while basal-like cells (epithelial cells with
high expression of basal marker genes) and stromal signaling is mainly
mediated through Gas6-Axl, Col4a1-Sdc4, and Jag1-Notch2 interactions
(see Fig. 4c and Supplementary Data file 3). On the other hand, luminal-
stromal signaling in Hi-MYC is mediated solely by the Mif-Ackr3 inter-
action, while basal-stromal signaling is conducted mainly by interac-
tions between Tgfb1 and its receptor TGFbR1 (Supplementary Data
file 3). Finally, in the NPmouse model, there is an increased activity of
Wnt signaling from luminal-like andbasal-like cells to c4 stroma,mainly
through interactions between Wnt4 andWnt7b and their receptors on
stromal cells including Fzd2 and Fzd5 (Supplementary Data file 3).

Immune-mediated signaling to c3 and c4 stroma also shows sig-
nificant differences between the T-ERG, Hi-MYC, and NP models. For
instance, in T-ERG, signaling fromNK and cytotoxic T cells to the c3-c4
stroma are mediated mostly through Fasl-Fas and Gzma-F2r interac-
tion (Fig. 4c) while in Hi-MYC, these networks involve mainly the
Lgals9-Cd44 interaction (Supplementary Data file 3). Similarly, signal-
ing from dendritic cells to c3-c4 stroma is mediated through different
L-R interactions across the three mouse models, with T-ERG char-
acterized by increased activity of Wnt11-Fzd1 and Nectin1-Nectin3
interactions (Fig. 4c), while Hi-MYC and NP characterized by increased
activity of the Spp1-Itgav/Itga5 interaction (Fig. 4d).

Importantly, the immune tumor microenvironment of the NP
model has a more prominent infiltration of monocytes/macrophages
compared to the other models (Fig. 3d).

Several signaling networks between c3, c4 and other stromal cells
in the TME especially the PRN clusters (c5-c7) were identified. TheWnt
and non-canonical (nc) Wnt signaling pathways in particular are pre-
dominantly involved inmediating signaling fromc3and c4 (expressing
several Wnt ligands like Wnt5a, Wnt2, and Wnt4) to the PRN clusters
which express several Wnt receptors like Fzd1 and Fzd2 (Supplemen-
tary Fig. 3a).

Although both c3 and c4 have similar transcriptional and func-
tional profiles, GRN analysis identified several candidate TFs under-
lying gene expression differences between the two clusters. For
instance, while Wnt-stimulatory TFs, including Sox9 and Sox10, drive
c3, Wnt-repressive TFs such as Foxo1 and Peg3 are enriched in c4
(Fig. 4a and Supplementary Fig. 2c). Overall, these results suggest that
the Wnt pathway plays an important, yet very complex role in these
two clusters.

Cells belonging to clusters c5-c7 are associated with the NEPC
mouse models, PRN17,18. Generally, cells in these clusters express cell
cycle and DNA repair-related genes, neuronal markers, as well as a
unique repertoire of collagen genes, Tgfβ activation, and again Wnt
signaling. Specifically, these cells express high levels of the pro-
liferative markers such as Mki67 (Fig. 4a). They also show high

Fig. 1 | Differential enrichement of stromal cell clusters in wild type versus
genetically-engineered mouse models (GEMMs). a Visualization of 8574
mesenchymal cells usingUniformManifold Approximation and Projection (UMAP),
color-coded based on their assignment to different clusters by graph-based clus-
tering (left panel). Themiddle and right panels color-code these cells basedon their
model of origin (mutant vs. wild type). b Parallel categories plot showing the dis-
tribution of mesenchymal cell clusters (left) across the different mouse models
(right). c Heatmap of the significant outgoing ligand-receptor (L-R) interaction
patterns in the GEMMs (left) and wild-type (right) mice. The color bar represents
the relative strength of a signaling pathway across cells. The top-colored bar plot
represents the total signaling strength of each compartment by summing all the
signaling pathways shown in the heatmap. The right gray barplot indicates the total

signaling strength of a particular pathway by summing all compartments presented
in the heatmap. d Chord diagrams displaying the significant signaling networks
between the stroma, epithelium, and immune compartments in mutants (left) and
wild types (right). Each sector represents a distinct compartment, and the size of
the inner bars represents the signal strength received by their targets. Up- and
down-regulated signaling L-R pairs were identified based on differential gene
expression analysis betweenmutants andwild types,with a log-fold change (logFC)
of 0.2 set as a threshold. Communication probabilities for the L-R interactionswere
calculated after adjusting for the size of cell populations, and then aggregated on
the signaling pathway-level. UMAP: Uniform Manifold Approximation and
Projection.
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expression of several downstream targets of the Wnt signaling path-
way, Wnt receptors such as Fzd1, as well as Wnt-secreted decoy
receptors Sfrp’s (Fig. 4a). Importantly, these clusters also highly
express components of other signaling pathways such as Tgfβ-induced
Postn, together with neuronal markers such as Tubb3 (Fig. 4a). The
complex stromal response in the PRNmousemodel is also highlighted
by a unique repertoire of upregulated collagen genes, such as Col12a1,

Col14a1, Col16a1, and metalloproteinase Mmp19, suggesting active
remodeling in the TME (Fig. 4a). Several regulonsdriving these clusters
involve transcription factors that generally define lineage in
mesenchymal stemcells includingGata6, Runx127–29,Gata230, Lhx6, and
Snai331,32 (Fig. 4a and Supplementary Fig. 2c).

The L-R interactions analysis revealed several signaling networks
between the PRN stroma (c5-c7) and epithelial cells including luminal-

c0 subtypesc0 subtypesc0: smooth muscle cells c0: smooth muscle cells c0 distribution across mouse modelsc0 distribution across mouse models
a

c d

b

Fig. 2 | A common cluster of contractile mesenchymal cells encompasses
myofibroblasts and pericytes. a Canonical myogenic and smooth muscle genes
characterize c0 (n = 1401 cells) as contractile mesenchymal cells (left panel), but
2 subpopulations: c0.1 (n = 902 cells) and c0.2 (n = 499 cells) can be further sub-
classified (middle panel). Relative contribution of the different GEMMs andWTs to
c0 is shown in the right panel. b UMAP projection of cells from c0 (n = 1401 cells),
showing the expression of different myogenic and smooth muscle genes. Acta2,
Myl9, Myh11, and Tanglmark myofibroblasts and pericytes, while Rgs5, Mef2c, and

Pdgfrbdistinguish pericytes (c0.2). The color scale is proportional to the expression
levels. c Dot plot showing the expression levels of genes that distinguish myofi-
broblasts (c0.1) from pericytes (c0.2). The color scale represents the mean gene
expression in the cell groups. d The expression levels of regulons that distinguish
myofibroblasts (c0.1) from pericytes (c0.2). The color scale represents the mean
expression levels. GEMMs: genetically-engineered mouse models; UMAP: Uniform
Manifold Approximation and Projection; WT: wild type.
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like, basal-like and NE-like (epithelial cells with high expression of NE
marker genes) cells (Fig. 4d and Supplementary Data file 3). For
instance, signaling from the luminal-like and basal-like epithelium to
the stroma is mediatedmainly through Tgfβ1 and Tnf interactions with
their respective receptors, as well as Wnt-mediated signaling.

In the immune TME, the inferred macrophage signaling to the PRN
mesenchyme is driven mainly by interactions between Spp1 and Fn1

(expressed inmacrophages) and their receptors on c5-c7 including Sdcs,
Cd44 and integrins (Fig. 4d). Several L-R interactions are also inferred
between the interleukins 1a/b and Tnf with their respective receptors.
Unlike other clusters, c5 appears to communicate via Il17a signalingwith
Tregs (Fig. 4d). In contrast, NK/cytotoxic T cells and the PRN mesench-
yme communicate via the Interferon-gamma (IFNγ) signaling pathway
(Fig. 4d). Stromal signaling through the Periostin pathway in particular is

d
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restricted to the PRN mesenchyme with few interactions involving c0
and c1 and no statistically significant interactions involving c3 and c4
(Supplementary Fig. 3b and Supplementary Data file 3).

Postn expression in c5-c7 is inversely correlated with Ar expres-
sion in the stroma. InterestinglyAr expression lowest in the PRNmodel
compared to that in all other GEMMs (Fig. 5a, b). This reciprocal
expression is found in all mousemodels of advanced adenocarcinoma
and NEPC including PRN (Fig. 5c), PBCre4;Ptenf/f;Rb1f/f (DKO) and
PBcre4;Ptenf/f;Rb1f/f;Trp53f/f (TKO) models33 (Supplementary Fig. 4), as
well as in human samples (Fig. 5d). Generally, highest expression of
POSTN/low AR is seen adjacent to the invasion front and surrounding
foci of neuroendocrine differentiation (Fig. 5c, d). These findings are
supported by Visium spatial transcriptomics (ST) profiling of prostate
tissues performed in the PRN mouse model and respective
WT (Fig. 5e).

These findings prompted us to assess whether Postn-positive
stroma facilitates invasion, a characteristic of NEPC. Knockdown of
Periostin in fibroblasts induces an over 2-fold decrease of mobility in a
migration assay in 22rv1 cells overexpressing MYCN with additional
Rb1 knockdown to mimick the PRN model (Fig. 5f). In bulk RNA-seq
data froma large cohortofwell-characterizedbenign, locally advanced
PCa, CRPC, and NEPC samples (https://shinyproxy.eipm-research.org/
app/single-gene-expression), POSTN expression is significantly
increased in a subset of CRPC and most NEPC patients compared to
PCa and benign samples (Supplementary Fig. 5a).

Functional validation of stromal cluster identity
These results suggest that specific epithelial mutations can shape the
stromal microenvironment in PCa. To functionally validate these
findings, we co-cultured normal fibroblasts from the FVBN mouse
model with epithelial cells from the T-ERG and PRNmodels. We found
thatfibroblasts co-culturedwith epithelial cells fromT-ERGmodel tend
to exhibit similar expression profiles to those found in c3 and
c4 stromal cells, while those co-cultured with PRN epithelium exhibit
expression profiles of the c5-c7 stromal clusters (Fig. 5g).

Stromal transcriptional profiles are predictive of metastatic
progression
The predictive and prognostic relevance of the PRN-derived clusters
(c5-c7) was examined using gene expression profiles of primary tumor
samples from a large cohort of PCa patients (n = 1239). The expression
levels of the top positive and negative markers of the PRN-derived
clusters were used as a biological constraint to train a rank-based
classifier of PCa metastasis (see “Methods”). The resulting PRN gene
signature consists of 13 up- and down-regulated gene pairs from the
PRN mesenchyme (Supplementary Data file 5). In addition to its
interpretable decision rules, this signature has a robust and stable
performance in both the training (930 samples) and testing
(309 samples) sets with an Area Under the Receiver Operating

Characteristic Curve (AUROC) of 0.69 and 0.70, respectively (Fig. 6a).
Finally, the prognostic value of the signature was tested in the TCGA
cohort which includes 439 primary tumor samples from PCa
patients34,35. In this independent cohort, the PRN signature is sig-
nificantly associated with progression-free survival (PFS)34 using
Kaplan–Meier survival analysis (log-rank p-value < 0.0001) (Fig. 6b),
even after adjusting for Gleason grade in a multivariate Cox propor-
tional hazards model (HR = 3.6, 95% CI = 1.2–11, p-value = 0.022)
(Fig. 6c). Moreover, the PRN signature outperforms a cell cycle pro-
gression (CCP) signature when evaluated on the same testing set
(Supplementary Fig. 6a). Unlike the PRN signature, theCCP signature is
only significantly associated with PFS in univariate survival analysis
(log-rank p-value = 0.001) (Supplementary Fig. 6b), and is not sig-
nificant after adjusting for Gleason grade (HR = 4.5, 95% CI = 0.39–53)
(Supplementary Fig. 6c). Overall, these results show that the PRN-
derived mesenchymal cell clusters are associated with invasiveness,
metastatic progression, and survival in PCa patients independent of
Gleason grade.

Humanmesenchymal clusters in primary andmetastatic tumors
Using the mouse scRNA-seq data as reference, the eight stromal
clusters were mapped to the human scRNA-seq data36. These
includes six ERG-positive (6990 mesenchymal cells) and three ERG-
negative (1638 mesenchymal cells) patients. Notably, c3 is the pre-
dominant cluster in human stromal data (79% of total mesenchymal
cells) (Fig. 7a), a finding attributed to the selection of ERG-positive
cases. Notably, both c0 and c1 have transcriptional profiles similar to
their murine counterparts, with c0 characterized by a high expres-
sion of myofibroblast marker genes (ACTA2 and MYL9), and c2 cells
having a high expression of FOS and JUN (Fig. 7b and Supplementary
Fig. 5b). Notably, the transcriptional profiles of the GEMMs-specific
stromal clusters are also preserved in the human data. For instance,
stromal cells in c3-c4 have a high expression of genes involved in
WNT signaling pathway including WNT4 and RORB (Fig. 7b and
Supplementary Fig. 5c). In contrast, the three PRN-associated stromal
clusters (c5-c7) were found to be less abundant in human tumors
(13% of total mesenchymal cells) compared tomouse specimens (31%
of total mesenchymal cells), a finding explained by the absence of
NEPC cases in the human primary tumor cohort. Nonetheless, these
clusters still show transcriptional profiles similar to their mouse
counterparts, with a high expression of POSTN and SFRP4 (Fig. 7b and
Supplementary Fig. 5d).

Analyses using scRNA-seq profiles of human PCa bone metastasis
revealed transcriptional patterns similar to those present in the
mesenchymal clusters from the PRN model (c5-c7), comprising more
than 60% of bone stromal cells (Fig. 7c) and exhibiting a high expres-
sion of POSTN (Fig. 7d), together with osteoblasts marker genes, such
as BGN, RUNX2, and SPP1 (Fig. 6c, d). While the NEPC-related clusters
are the predominant in the metastatic bone microenvironment, cells

Fig. 3 | A functional atlas of themouse prostate cancermesenchyme. aDot plot
showing the mean expression of marker genes for the common clusters (c0-c2).
The boxes mark the clusters identified by each set of marker genes. The total
number of cells in each cluster is indicated by the bar plot on the right. Significantly
enriched regulons identified by gene regulatory network analysis are denoted on
top of each boxed cluster. The color scale represents the mean gene expression in
the cell groups. b Representative images of C3 and GPX3 overexpression in tumor
desmoplastic stroma in the NPmodel (n = 3) (left panels) andmatchingWTs (n = 3)
(one representative image for each model) (right panels). All images are at ×200
magnification with a scalebar of 300 µm. c Chord diagram of the significant ligand-
receptor interactions from the epithelium to the common stromal clusters (c0-c2).
Each sector represents a different cell population, and the size of the inner bars
indicates the signal strength received by their targets. Communication prob-
abilities were calculated after adjusting for the number of cells in each cluster. The
displayed interactions are derived from all examined mouse models. Non-

transformed basal cells and basal-like tumor epithelial cells are all grouped under
the term basal. P-values are computed from a permutation test by randomly per-
muting the cell group labels (100 permutations), and then recalculating the com-
munication probability. Only significant interactions (p-value < 0.05) are shown.
d Bar plots showing the fraction of different immune cell types in the different
mouse models. e Chord diagram showing the significant ligand-receptor interac-
tions from different types of immune cells to the common stromal clusters c0-c2.
Each sector represents a different cell population, and the size of the inner bars
represents the signal strength received by their targets. Communication prob-
abilities were calculated after adjusting for the number of cells in each cluster. The
displayed interactions are derived from all examined mouse models. P-values are
computed from a permutation test by randomly permuting the cell group labels
(100 permutations), and then recalculating the communication probability. Only
significant interactions (p-value < 0.05) are shown. H&E: hematoxylin & eosin
staining; WT: wild type.
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from c0 and c1 are also common, representing 9% and 27% of the total
cells, respectively.

Discussion
While different mutations in epithelial tumor cells partially explain the
phenotypic and clinical heterogeneity of PCa, roughly one fourth of

prostate tumors are genomically “quiet”35, indicating that additional
undiscovered determinants play a significant role in the biological
behavior of PCa.Mesenchymal cells, which represent the predominant
component of the microenvironment, have been suggested for dec-
ades to play a major role in this regard37–39. Recently, studies by Kar-
thaus et al. and Crowley et al. described a detailed cluster analysis of
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mesenchymal cells in the mouse prostate by scRNA-seq, revealing a
level of complexity greater than that suggested previously24,26. Here,
we analyzed in detail by scRNA-seq all mesenchymal cells utilizing all
prostate lobes in the mouse prostate from several established GEMMs
and corresponding WT mice. The significant and progressive increase
in the mesenchymal cell component in increasingly aggressive GEMM
models suggests a pivotal role of the stroma in tumor progression. We
identified eight distinct stromal cell states that were defined by dif-
ferent gene expression programs and by underlying regulatory tran-
scription factors. Three clusters represent fibroblast states that are
common to all genotypes, and they display conserved functional
programs across all stages of tumor growth. Five stromal cell states on
the other hand, are specifically linked to defined epithelial mutations
and disease stages, pointing to mutation-specific epithelial to stromal
signaling.

There is growing evidence that innate immunity and inflammation
play a role in prostate and other cancers39–41. While the focus of this
study was not on immune cells, we found a cluster of mesenchymal
cells conserved across all genotypes in prostate mesenchyme expres-
sing genes associated with immunoregulatory and inflammatory
pathways and driven by transcription factors such as Nfkb. Immune
cells including tissue-resident macrophages are recruited and subse-
quently activated to modulate prostate tumorigenesis. In addition,
stromal cells produce cytokines, chemokines, and components of
complement protein pathways42–44. The complement system is an
established component of innate immunity. Components of comple-
ment activation via the C3 alternative pathway were previously found
to be activated by KLK3 (a.k.a. PSA), with a special affinity for iC3b that
in turn stimulates inflammation45. In addition, a pronounced expres-
sion of Cd55 in common clusters, inhibits complement C3 lysis46. The
role of the complement as mediator of the stromal-immune crosstalk
in c1 was also confirmed by the ligand-receptor analysis which showed
significant interactions between C3 and both ITGAM_ITGB2 and
ITGAX_ITGB2 receptors in dendritic cells. This suggests that the
expansion of cells expressing C3 can stimulate innate immune
response in the TME. Complex and bidirectional interactions between
stroma and immune cells, mostly involve dendritic cells, monocyte/
macrophages, and Tregs. Model-specific variations in the composition
of the tumor immune microenvironment were seen, e.g., a prominent
infiltration of monocytes/macrophages in the Pten model. Further
functional analyses of those interactions will reveal how the stroma
influences the response to immunotherapy in PCa47–49.

Roughly half of prostate tumors have ETS translocations with
TMPRSS2 as the most frequent fusion partner35, one of the earliest
alterations in prostatic carcinogenesis50–52. Yet, genetically engineered
mouse models driven by the TMPRSS2-ERG fusion display a minimal
epithelial phenotype. Here, we found that induction of mesenchymal
cell expansion is a significant early event in thismodel.We harmonized
the eight murine clusters with human PCa cases sequenced using the
same scRNA-seq approach. Strikingly, the mesenchyme associated
with the TMPRSS-ERG translocation was conserved between mouse
and human. Thus, epithelial ERG fusion in the mouse triggers early
changes in the adjacent stroma, creating a TME that supports ERG-
positive epithelial cells. Given the conservation of these mesenchymal
clusters in humans, these findings shed a light on the role of this

prevalent alteration in the pathogenesis of prostate cancer. It will be
important to determine the prevalence of these stromal cluster asso-
ciated with TMPRSS-ERG in patients of African descent, where the
prevalence of this translocation is low53.

Stromal populations contribute to the structural and functional
TME ecosystem through different autocrine and paracrine mechan-
isms. Among them, the stromal AR signaling cascade is known to
influence prostate epithelial cells’ behavior at different stages of
development and carcinogenesis37,54. Stromal AR signaling may pre-
vent invasion by maintaining a non-permissive TME for cell
migration55. Indeed, loss of stromal AR was associated with upregula-
tion of ECM-remodeling metalloproteinases (e.g., MMP1) and of CCL2
and CXCL8 cytokines, factors that promote invasion55,56. In the trans-
genicHi-MYC and the testosterone+estradiol hormonal carcinogenesis
models, stromal AR deletion favors prostate carcinogenesis57. In line
with these observations, we show decreased mesenchymal Ar
expression in the PRN model, which recapitulates late-stage PCa and
progression toward neuroendocrine differentiation. Stromal AR may
play a master role in committing and maintaining epithelial prostate
cell identity in at least two ways. During development, its expression
induces epithelial cells to differentiate into prostate cells, and during
prostate carcinogenesis it prevents progression toward undiffer-
entiated/neuroendocrine status.

Low expression of Ar in the PRN model was inversely associated
with an increased expression of periostin (Postn), and in situ analyses
confirmed that Postn-positive cells were enriched in areas of neu-
roendocrine differentiation. Stromal expression of periostin in PCa has
been associated with decreased overall survival58,59 and higher Gleason
score60. We show that stromal cells expressing Postn confer invasive
ability to poorly differentiated/NE carcinoma. The increased expres-
sion of Postn and of genes typical for the bonemicroenvironment (e.g.,
Bgn, Runx2, and Spp1) suggest that invasive PCa cells and the asso-
ciated, invasion-primed mesenchyme modify the prostate TME to
resemble thatof bone, a common siteofmetastases in thismalignancy.
In this fashion, the primary site TMEmay pre-condition tumor cells for
skeletal metastatic seeding. Importantly, we discovered shared char-
acteristics between the stroma of the advanced/neuroendocrine
GEMM and that of scRNA-seq stromal profiles from human bone
metastases. Specifically, the bone stroma had a high frequency of
POSTN+ cells. It is yet to be determined whether these cells were
inherently present in the bone microenvironment or expanded as a
result of themetastatic process. These cells were also characterized by
the expression of genes involved in osteoblast differentiation and
proliferation like RUNX2, BMP2, IGF1, and IGFBP361 together with Cad-
herin 11 (CDH11) previously found to inducePCa invasiveness and bone
metastasis62,63.

The role of complement is important not only in bothmodulating
innate immunity but also invasion. A pronounced expression of C1QA,
B and C was identified especially in models of advanced disease. C1q
has been shown to promote trophoblast invasion64 as well as angio-
genesis in wound healing65. This was in line with our previously pub-
lished stromal signature derived from laser capture-microdissected
(LCM) mesenchyme adjacent to high-grade tumors that predicted
lethality in an independent PCa cohort8. Three of the 24 signature
genes were in fact C1Q A, B, and C suggesting that complement

Fig. 4 | GEMM-specific mesenchymal clusters define complex signaling path-
ways in the reactive stroma. a Dot plot showing the mean expression of marker
genes for model-specific clusters c3-c7. Boxes indicate the clustersmarked by each
marker gene set. The total number of cells in each cluster is indicated by the bar
plot on the right. Significantly enriched regulons identified by gene regulatory
networks are denoted on top of each boxed cluster. The color scale represents the
mean gene expression in the cell groups. b Representative images of WIF1
expression in tumor desmoplastic stroma in the T-ERG (n = 4), NP (n = 3), Hi-MYC
(n = 3), and PRN (n = 3) mouse models (one representative image for each model).

Magnification for all images×200. Scalebar: 300 µm. cChorddiagrams showing the
significantly upregulated ligand-receptor interactions from the luminal-like and
basal-like epithelium (upper panel), and immune cells (lower panel) to c3 and c4 in
T-ERG compared to Hi-MYC mouse models. d Chord diagrams showing the sig-
nificant ligand-receptor interactions from the luminal, and neuroendocrine-like
epithelium (upper panel), and also from immune cells (lower panel) to the PRN-
associated clusters (c5-c7) in the PRN mouse model compared to its wild type.
Communication probabilities were calculated after adjusting for the number of
cells in each cluster. H&E: hematoxylin & eosin staining.
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activation by the stroma plays a role in the invasive potential of
aggressive prostate tumors (with diverse epithelial genetic altera-
tions). The unexpected resemblance between PCa mesenchyme of
locally aggressive tumors and that of bone metastases suggests that
locally advanced PCa tumors prone to metastasize display a bone-like
microenvironment. Since transcriptional profiles of stromal cells in
aggressive models were conserved in the stroma of human localized

high-grade tumors8, aswell as in stromaof bonemetastases in patients’
biopsies66, a broad set of cellular andmolecular changes in the stromal
cells may be either permissive or directly affect progression and
metastatic disease.

Importantly, while our findings offer valuable insights on the role
of the stroma inmediating PCa progression and invasiveness, they also
show a strong translational relevance. For instance, we have used the
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scRNA-seq transcriptional profiles of the PRN-derived mesenchymal
clusters (c5-c7) to develop a robust gene signature for predicting PCa
metastases in a large cohort of patient samples with bulk tran-
scriptomic profiles. This signature was also associated with worse
progression-free survival in a separate cohort (TCGA) before and after
adjusting for Gleason grade. In contrast, a cell-cycle progression (CCP)
signature67, did not have as robust a performance at predicting
metastasis when tested on the same testing cohort. Furthermore, the
CCP signature was not significantly associated with progression-free
survival after adjusting for Gleason grade.

In summary, here we provide a molecular compendium of
mesenchymal changes during PCa progression in genetically engi-
neeredmice that generalize to humans. Specifically, in the early phases
of prostate carcinogenesis, we provide evidence that the TMPRSS-ERG
translocation reprograms the mesenchyme which in turn may sustain
progression. In advanced PCa models we found transcriptional
mesenchymal programs linked to metastasis, some of them in com-
mon with the bone microenvironment to which PCa cells metastasize.
The findings from those murine models have been validated and
confirmed using publicly available and internally generated scRNA-seq
data from ERG+ human tumors and PCa bonemetastases. Collectively,
these data from both mice and humans present clear evidence of
significant shifts in stromal composition that accompany PCa pro-
gression, which are influenced by genotype-specific factors. These
findings highlight the substantial role of mesenchymal changes as
contributors to PCa progression and phenotypic diversity, emphasiz-
ing an impact that is more substantial than what has been detailed in
existing literature.

Methods
Genetically engineered mouse models of prostate cancer
In this study, only males were utilized. All animals used in this study
received humane care in compliance with the principles stated in the
Guide for the Care and Use of Laboratory Animals (National Research
Council, 2011 edition), and the protocol was approved by the Institu-
tional Animal Care and Use Committee of Weill Cornell Medicine,
Dana-Farber Cancer Institute and Columbia University Irving Medical
Center.We focused on threemodels of prostate cancer that reflect the
most common mutations in human localized disease, plus a fourth
model that recapitulates the transition to NEPC. The choice of these
models was also taken to reflect different stages of the disease.

Specifically, the TMPRSS2-ERG (T-ERG) (#RRID:MGI:5578645)
fusion model has an N terminus-truncated human ERG together with
an ires-GFP cassette into exon 2 of the mouse Tmprss2 locus11,68, dis-
plays a minimal epithelial phenotype in the mouse, and was chosen
since it represents the most frequent mutation in human prostate
cancers35. These mice were bred on the same mixed genetic

background (FVB/N; Charles River Laboratories Stock CRL#: 207).
T-ERGmice together with their WT counterparts were euthanized and
analyzed at the age of 6 months. Pten knock-out (NP) (Jackson
Laboratory, #RRID:IMSR_JAX:033751)14,15 mice develop high grade PIN
with areas of invasion. To obtain Nkx3.1creERT2;Ptenf/f; EYFPf/f (NP)
Nkx3.1creERT2 driver (Jackson Laboratory #RRID:IMSR_JAX:032753) was
crossed to the conditional allele for Pten (Ptenflox/flox)12 Jackson
Laboratory #RRID:IMSR_JAX:006440) with loxP. For induction of Cre
activity in NP mice, tamoxifen (Sigma Cat #T5648) (or corn oil alone)
was delivered by IP injection (225mg/kg) for 4 consecutive days, to
mice at 2 months of age. Six months later NPmice were sacrificed and
analyzed. Hi-MYC16 shows both PIN and microinvasion. FVB Hi-MYC
mice (strain number 01XK8, #RRID:MGI:5486199), expressing the
human c-MYC transgene in prostatic epithelium, were obtained from
the National Cancer Institute Mouse Repository at Frederick National
Laboratory for Cancer Research. These mice were bred on the same
mixed genetic background (Charles River Laboratories Stock CRL#:
207). Hi-MYC mice together with their WT counterparts were eutha-
nized and analyzed at the age of 6 months. PRNmice recapitulates the
transition to NEPC18. In brief, mice carrying the CAG-LSL-MYCN human
transgene at the Rosa26 locus (LSL-MYCN+/+)69 were crossed with
mice expressing Cre recombinase under the control of rat Probasin, a
prostate-specific promoter (Jackson Laboratory, #026662, RRI-
D:IMSR_JAX:026662), along with Pten homozygous floxed alleles
(PbCre+/−; Ptenf/f). Resultingmales that carried theMYCN transgene, Cre
recombinase, and Pten floxed alleles were crossed with females car-
rying Rb1 homozygous floxed alleles (Jackson Laboratory, #026563,
RRID:IMSR_JAX:026563). Prostate-specific Cre expression results in
removal of LSL cassette by Cre and humanN-Myc expression driven by
the chicken actin promoter. Simultaneously, Cre recombinase con-
verts the Pten and Rb1 floxed alleles to knockout alleles in the mouse
prostate. All lines of mice were bred on the same mixed genetic
background (C57BL6/129 × 1/SvJ) andhavebeenpreviously described68.
PRN mice together with their WT counterparts were euthanized and
analyzed at the age of 8 weeks. In addition, non-littermate WT mouse
strains, FVB/N Charles River Laboratories, CRL#RRID:IMSR_CRL:207),
C57BL/6 (JacksonLaboratories RRID:IMSR_JAX:000664) andB6129SF2/J
(Jackson Laboratory RRID:IMSR_JAX:101045) were used. All mice were
housed in a specific pathogen-free (SPF) environment maintained at
72 ± 2 °F (21.5 ± 1 °C), relative humidity between 30% and 70%, with a
12/12 h dark-light cycle (lights on at 7:00 a.m.), with free access to food
and water. For all in vivo studies, limits to tumor size of 10% of the
average mouse body weight or 2 cm in any one dimension were
applied as approved by the Weill Cornell Medical College IACUC.
These limits were not exceeded in any studies.

The number of GEMMs and their WTs and/or littermates are
provided in Supplementary Data file 1.

Fig. 5 | Mesenchymal Periostin overexpression is associated with aggressive,
neuroendocrine prostate cancer. a UMAP projection of PRN clusters c5-c7
(n = 2645 cells) (left), along with the expression levels of Postn (middle) and Ar
(right) in prostatemesenchyme (n = 8574 cells). bDot plots of themean expression
of Postn and Ar in the differentmousemodels. The color scale represents themean
gene expression. c, d Multiplexed staining for a panel of proteins including Peri-
ostin, AR, and Chromogranin in PRNmodel (n = 3; one representative image of PRN
is shown) (c) and human samples (n = 3; one representative image of human sample
is shown) (d) showing high Periostin and low AR expression in stroma adjacent to
neuroendocrine prostate cancer (NEPC) foci (right panel), and weak to moderate
AR expression around in the stroma surrounding adenocarcinoma foci (left panel).
Images are captured at ×200 and ×150magnification for the PRNmodel and human
cases, respectively with a scalebar of 300 µm. e Visium spatial transcriptomics of
prostate tissue from the PRN mouse model and its wild type validates the expres-
sion of c5-c7 markers. Shown are the H&E-stained tissue sections (left) and overlay
of the identified cell types based on gene expression (right). The violin plots
compare the expression of Ar and Postn in the stroma. The p-values are derived

from a two-tailed t-test, and are as follows: Ar versus Postn expression in PRN
stroma (n = 1638 cell spots): p = 1.41e−39, Ar versus Postn expression in WT stroma
(n = 1166 cell spots): p = 9.94e−09. f Quantification of 22rv1 overexpressing MYCN
and with Rb1 knockdown migration in Boyden chamber transwell assay. Data are
expressed as mean ± SEM values of three independent experiments (n = 3, mean±
SEM). One-way ANOVA with Tukey’s test, *p <0.05, **p <0.01, ***p <0.0003.
g Comprehensive analysis of scRNA-seq data obtained from primary prostate
fibroblasts co-cultured with T-ERG and PRN epithelial cells. The UMAP plot on the
left illustrates fibroblasts clustering, with each group annotated based on their
genotypic identity indicating their co-culture conditions: T-ERG (n = 10529 cells),
PRN (n = 7535 cells), or control group (n = 6921 cells). The UMAP plot on the right
shows the fibroblast populations annotated according to their transcriptional
similarities to the stromal subtypes identified in the scRNA-seq analysis of prostate
tissues: c0 (n = 27), c1 (n = 8182), c2 (n = 19), c3 (n = 9327), c4 (n = 7), c5 (n = 8), c6
(n = 1066), and c7 (n = 6349). CAFs: cancer-associated fibroblasts; H&E: hematox-
ylin & eosin staining; IF: immunofluorescence; NEPC: neuroendocrine prostate
cancer; UMAP: Uniform Manifold Approximation and Projection; WT: wild type.
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Fig. 6 | The transcriptional profiles of thePRN-derivedclusters are predictive of
metastatic progression in prostate cancer. a Receiver Operating Characteristics
(ROC) curve displaying the predictive performance of the PRN signature for
metastasis in both the training (n = 930) and testing (n = 309) data. The signature
was trained and validated on bulk expression profiles derived from primary tumor
samples of PCa patients. AUC: area under the ROC curve. b Kaplan–Meier survival
plot illustrating the differences in progression-free survival (PFS) between patients
predicted to have metastasis (predicted PFS:1) and those predicted to be
metastasis-free (predicted PFS:0) in the TCGA prostate adenocarcinoma cohort

(n = 439). The x-axis represents survival time inmonths. The observed difference in
survival is statistically significant with a p-value of <0.0001, assessed using the log-
rank test. c Forest plot for multivariate Cox proportional hazards model depicting
the hazard ratio (HR) (central black square) and 95% confidence interval (CI)
(horizontal lines) forboth thePRN signature (p =0.02) anddifferentGleason grades
(Gleaon 7 p =0.18, Gleason 8 p =0.06, Gleason 9 p =0.01, Gleason 10 p =0.02).
Significance, indicated by an asterisk, is based on the p-value from the Wald test in
the Cox model (*p-value < 0.05).
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Description of human prostate cancer specimens
Human prostate tissue specimens were obtained from patients
undergoing radical prostatectomy at Weill Cornell Medicine under
Institutional Review Board approval with informed consent (WCM IRB
#1008011210, #1302013582). The study included a total of 13 subjects,
all of whom were male. No blinding, randomization, or exclusion

criteria were applied. Of these, 9 samples (comprising 3 ERG-negative
and 6 ERG-positive cases) were utilized for single-cell RNA sequencing
studies, while 4 samples were employed for the mIHC Vectra Polaris
staining. The clinical and molecular characteristics of these patients
are provided in Supplementary Data file 6. Immediately after surgical
removal, the prostate was sectioned transversely through the apex,
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mid, andbase70. Tissue for scRNA-seqwas placed in RPMImediumwith
5% fetal bovine serum (FBS) on ice, and quickly transported for single-
cell RNA sequencing. A small portion of the regions of interest,
including the areas selected for single-cell RNA sequencing, index
lesion, and contralateral benign peripheral zone, was concomitantly
frozen in optimal cutting temperature (OCT) compound, cryosec-
tioned, and a rapid review was performed by a board-certified surgical
pathologist (BR) to provide a preliminary assessment on the presence
of tumor, normal epithelium, stroma near and away from the tumor.
Adjacent tissue was processed by formalin fixation and paraffin
embedding, followed by sectioning, histological review, histochem-
istry (trichrome stain), and immunostaining71.

Isolation of single cells for RNA-Seq
Dissociated murine prostate cells were prepared as described
previously72. Briefly,mouseprostate tissuesweredigested inAdvanced
DMEM/F12/Collagenase II (1.5mg/ml)/Hyaluronidase VIII (1000u/ml)
(Thermo Fisher Scientific) plus 10μM Y-27632 (Tocris) for 1 h at 37 °C
with 1500 rpm mixing, continuously agitated. Subsequently, after
centrifuging at 150 × g for 5min at 4 °C, digested cells were suspended
in 1ml TrypLE with 10 µMY-27632 and digested for 15min at 37 °C and
neutralized in aDMEM/F12/FBS (0.05%). Dissociated cells were subse-
quently passed through 70 μm and 40 μm cell strainers (BD Bios-
ciences, San Jose, CA) to obtain a single cells suspension. Samples were
resuspended in 1x PBS and sorted by Flow Cytometry (Becton-Dick-
inson Aria II and/or Becton-Dickinson Influx) for 4′,6-diamidino-2-
phenylindole (DAPI) to enrich for living cells.

Similarly, human prostate tissues were first digested in aDMEM/
F12/Collagenase II (1.5mg/ml)/Hyaluronidase VIII (1000u/ml; Thermo
Fisher Scientific) plus 10μM Y-27632 (Tocris) for 1 h at 37 °C with
1500 rpm mixing, continuously agitated. Subsequently, after cen-
trifuging at 150× g for 5min at 4 °C, digested cells were suspended in
1ml TrypLE with 10 µM Y-27632 and digested for 15min at 37 °C and
neutralized in aDMEM/F12/FBS (0.05%). Dissociated cells were subse-
quently passed through 70 μm and 40 μm cell strainers (BD Bios-
ciences, San Jose, CA) to get single cells. Samples were resuspended in
1x PBS and sorted for DAPI to enrich living cells.

Barcoded cDNA libraries were created from single-cell suspen-
sions using the Chromium Single Cell 3’ Library and Gel Bead Kit, and
Chip Kit from 10x Genomics73, according to manufacturer recom-
mendations. Briefly, depending on the GEMMs and human samples
used in this study, 8000–16,000 cells were targeted for 3’ RNA library
preparation,multiplexed in an IlluminaNovaSeq6000, and sequenced
at an average depth of 25,000 reads per cell.

Quantification and preprocessing of single-cell RNA
sequencing data
Expression matrices were generated from raw Illumina sequencing
output using CellRanger. Bcl files were demultiplexed by bcl2fastq,
then reads were aligned using the STAR aligner74 with the default

parameters. All data collected from mouse models were aligned to
GRCm38 reference transcriptome. To identify cells with trans-gene
expression, we indexed and aligned to human ERG and GFP from the
T-ERGmodel, humanMYC from the Hi-MYCmodel, and humanMYCN
from the PRNmodel. Human data were aligned to GRCh38. Alignment
quality control was performed using the default CellRanger settings.
Expression matrices from the different mousemodels were converted
to AnnData objects and concatenated into a single count matrix using
the Scanpy library (version 1.5) in Python (version 3.8)36. Similarly, the
expressionmatrices from the nine human samples were concatenated
into a single countmatrix. The rawmouse andhumanscRNA-seq count
matrices were preprocessed as follows: cells with low UMIs (unique
molecular identifiers) count (<400) and low number of expressed
genes (<300) were removed. Subsequently, genes thatwere expressed
in three or fewer cells and cells containing more than 20% mitochon-
drial transcripts were removed after visualizing the distribution of
fraction of counts from mitochondrial genes per barcode75. Con-
tributions from total count, mitochondrial count, and cell cycle were
corrected by linear regression. The resulting matrix was then log1p
transformed75. Finally, the top 4000 genes were selected based on the
coefficient of variation according to the method described in ref. 73,
and genes were scaled to a mean of zero and unit variance75.

Embedding of scRNA-seq expression matrix by deep generative
modeling
We computed batch-corrected embeddings as follows. We fit our data
using a conditional variational autoencoder76. Specifically, we used the
negative binomial counts model included in the single-cell variational
inference (scVI) Python package77. We model (a) a nuisance variable
that represents differences in capture efficiency and sequencing depth
and serves as a cell-specific scaling factor, and (b) an intermediate
value that provides batch-corrected normalized estimates of the per-
centage of transcripts in each cell that originate from each gene. Our
model is implemented in Python using the PyTorch library (v1.7.0)78

and was run on a NVIDIA RTX A4000 GPU.

Clustering and data visualization
A nearest neighbor graph was constructed with Euclideanmetric from
the batch-corrected scVI embeddings, then cells were partitioned by
the Leiden clustering algorithm79,80. Partition-Based Graph Abstraction
(PAGA) was computed from the Leiden partition81 and was used to
initialize the UniformManifold Approximation and Projection (UMAP)
algorithm which projected the data into 2D space82.

Identification of stromal cells
For both the mouse (101,853 cells) and human (83,080 cells) scRNA-
seq datasets, we excluded cells of lymphoid, endothelial, and neural
origin based on Leiden clustering at resolution 1.0 and the expression
of associated lineage markers (Supplementary Data file 2)24,26,83–85. The
resulting mesenchymal datasets for the mouse and human scRNA-seq

Fig. 7 | Analysis of human scRNA-seq data suggests the relevance of prostate
mesenchyme in human PCa pathobiology. a Parallel categories plot showing the
relationship between the mesenchymal clusters and ERG status (left). UMAP pro-
jection of the eight mesenchymal clusters (n = 8628 cells) in the human scRNA-seq
data (center) and AR expression across the human mesenchymal clusters (right).
b Violin plots depicting the expression of marker genes for stromal clusters in the
human scRNA-seq data, derived from n = 9 patients, encompassing a total of 8628
individual cells. Thewidth of the violins at different values represents the density of
the data. The embedded box plots display the median of the data (white dot), the
bounds of thebox represent the 25th and75thpercentiles (interquartile range), and
thedatawithin these bounds represent theminima andmaximaof the non-outlying
data. P: p-value derived from Welch’s t-test comparing the expression of each
marker gene in each corresponding cluster to its expression in the remaining
clusters and are as follows: ACTA2: p <0.0001, MYL9: p <0.0001, JUN: p <0.0001,

FOS: p <0.0001, WNT4: p =0.0004, RORB: p <0.0001, POSTN: p =0.39, SFRP4:
p <0.0001. c UMAP of the selected cell types from the bone metastasis scRNA-seq
data derived from Kfoury66 (left) and their corresponding annotation using the
eight mesenchymal clusters definition (middle). d Violin plots showing the mean
expressionof POSTN,RUNX2, SPP1, andBGN across themesenchymal clusters in the
scRNA-seq bonemetastasis cohort fromKfoury66, derived fromn = 9bone samples,
encompassing a total of 1872 individual cells. The embedded box plots display the
median of the data (white dot), the bounds of the box represent the 25th and 75th
percentiles (interquartile range), and the data within these bounds represent the
minima and maxima of the non-outlying data. P: p-values resulting from Welch’s
t-test comparing the expression of eachmarker gene in c5-c7 versus the remaining
clusters and are as follows: POSTN: p <0.001, BGN: p <0.0001, RUNX2: p <0.0001,
SPP1: p =0.08. UMAP: Uniform Manifold Approximation and Projection.
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data included 8574 and 8628 cells, respectively. These mesenchymal
cells were then clustered using the Leiden algorithm to identify dif-
ferent mesenchymal sub-clusters. Specifically, at resolution 0.05, the
Leiden clustering reflected the separation ofMesenchymal and Smooth
Muscle Cells/Myofibroblasts subtypes. We increased resolution in
increments of 0.05, inspecting the biological plausibility of new clus-
ters until resolution 0.6, after which higher resolution produced new
clusters with differences dominated by noise79.

Identification and annotation of immune cell types
In the mouse scRNA-seq data, cells from the immune compartment
(42,431 cells) were also clustered using the Leiden algorithm. The
resulting clusters were then annotated to different immune cell types
based on the expression of known markers genes. These included B
cells (expressing Cd79a, Cd79b, Cd74, Cd19, and Cd22), CD4 +T lym-
phocytes (expressingCd4, Cd2, Cd28, and Trac), NK or cytotoxic T cells
(expressing Xcl1, Nkg7, Gzmb, Klrc1, and Klrc2), Tregs (expressing
Foxp3, Ctla4, Tnfrsf4, and Tnfrsf18), dendritic cells (expressing Ccl17,
Ccr7, Xcr1, and Cd207), and monocytes or macrophages (expressing
Cd68, Cd74, Cxcl2, and Lgals3).

Differential expression testing
For differential expression (DE) testing,we used a two-part generalized
linear model (hurdle model), MAST, that parameterizes stochastic
dropout and the characteristic bimodal distribution of single-cell
transcriptomic data22. DE was performed by comparing the gene
expression profiles of cells from each cluster to pooled cells from all
other clusters (Supplementary Data file 4). Using the default para-
meters, the DE analysis was limited to genes which show on average at
least 0.25-fold difference between the two cell groups, and only genes
that are detected in at least 10% of cells in either groups.

Gene regulatory network inference (GRN)
Gene regulatory network activity was inferred from the raw counts
matrix by pySCENIC (v0.10.3)21. Specifically, coexpression modules
between transcription factors (TFs) and their candidate targets (reg-
ulons) were inferred using the Arboreto package (GRNBoost2) and
pruned for motif enrichment to separate indirect from direct
targets21,86. The activity of each regulon in each cell was then scored
using the Area Under the ROC curve (AUC) calculated by the AUCell
module from pySCENIC package21,86. Cluster-specific regulons were
identified as those with AUCell Z-score >1 for each mesenchymal
cluster.

Ligand-receptor analysis
We performed ligand-receptor (L-R) interaction analysis using Cell-
ChatDB and CellChat R tool (version 1.1.3) to predict cell–cell interac-
tions within the tumor microenvironment87. Cell communication
networks were inferred by identifying differentially expressed ligands
and receptors between the different mesenchymal clusters, immune
cell types, and the epithelium. The probabilities of these interactions
on the ligand-receptor level were computed using the default ‘trimean’
method setting the average expression of a signaling gene to zero if it
is expressed in less than 25% of the cells in one group. Notably, we
corrected for the effect of population size (number of cells) when
calculating the interaction probabilities. In addition, we summarized
the L-R interaction probabilities within each signaling pathway to
compute pathway-level communication probabilities as described in
ref. 87. Cell–cell communication networks were then aggregated by
summing the number of interactions or by averaging the previously
calculated communication probabilities. To compare the signaling
patterns between mutants and wild types, we performed differential
expression analysis between all the mutants versus wild types in each
of the three compartments (stroma, epithelium, and immune). Upre-
gulated ligands and receptors were identified if each had a log-fold

change (logFC) above 0.1 in the senders and receivers, respectively.
Finally, we extracted the mutant-specific L-R pairs as those with
upregulated ligands and receptors in the mutants compared to wild
types and vice versa. In this analysis, we used a p-value threshold of
0.05 to determine significant interactions.

Label transfer from mouse to human scRNA-seq data
To transfer the stromal cluster labels from the mouse to human data,
human gene symbols were converted to their mouse counterparts
then both datasets were subset to overlapping genes. Label transfer
was performed using ‘ingest’36 which maps the labels and embeddings
fitted on an annotated reference dataset to the target one. Specifically,
we used the scRNA-seq data from themouseT-ERGmodel as reference
for thehumanERG-positive cases and those from the remainingmouse
models as reference for the human ERG-negative cases. Finally, we
computed the ranking of differentially expressed genes in each cluster
versus the remaining ones using t-test.

Processing of human bone metastases scRNA-seq data
The raw countmatrix of the scRNA-seq dataset previously reported by
Kfoury et al.66 was retrieved from theGene ExpressionOmnibus (GEO).
This dataset included 25 bone metastasis samples derived from PCa
patients, of which 9 samples were derived from solidmetastasis tissue.
Further analysis was limited to these 9 samples (16,993 cells). The data
was preprocessed by keeping cells with at least 200 expressed genes
and less than 15% mitochondrial transcripts (16,536 cells). Subse-
quently, cells were normalized by the total counts over all genes fol-
lowed by log scaling and regressing over the total counts per cell and
percentage of mitochondrial genes to reduce unwanted variation. The
top 4000 highly variable genes were selected and the resulting matrix
was then scaled to unit variance and zero mean. Since this particular
analysis was intended to explore the transcriptional and functional
similarities between the primary tumor stroma and the stromaof bone
metastasis, we further limited the analysis to the cells previously
annotated by the authors as osteoblasts, osteoclasts, endothelial cells,
and pericytes (1872 total cells). Finally, the embeddings and stromal
cluster labels wereprojected onto this dataset using themouse stroma
scRNA-seq dataset as reference and following the same steps
mentioned above.

Development of the PRN signature to predict metastasis in
prostate cancer patients
We collected and curated gene expression profiles from different
datasets comprising 1239 primary tumor samples from PCa patients
with information about metastatic events. These datasets included six
publicly available datasets (GSE11691888, GSE5593589, GSE5106690,
GSE4669191–93 GSE4140894, and GSE7076995), together with a seventh
dataset available from Johns Hopkins University, referred to as the
natural history cohort96 and https://zenodo.org/doi/10.5281/zenodo.
745276997. The expression profiles from each dataset were normalized,
log2-scaled, then z-score transformed (by gene) separately. Subse-
quently, we mapped probe IDs to their corresponding gene symbols
andkept only thegenes in commonbetween all datasets (12,761 genes).

The 1239 sampleswere joined together then split into 75% training
(n = 930) and 25% testing (n = 309) using a stratified sampling
approach to ensure an equal representation of important variables
including the original datasets, Gleason grade, age, tumor stage, and
prostate-specific antigen (PSA) levels. Quantile normalization was
applied to both the training and testing sets separately. The training
set was used for training a classifier that can predict metastasis using
the k-top scoring pairs (k-TSPs) algorithm, which is a rank-based
method whose predictions depend entirely on the ranking of gene
pairs in each sample98,99. Based on the average logFC, we divided the
markers of the PRN clusters into positive (average logFC > 0) and
negative (average logFC < 0) markers. We then paired the top positive
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and negative markers (100 genes each) together to build a biological
mechanism representing the PRN mesenchyme (30,000 pairs). Each
pair consists of two genes, one is up- and another is down-regulated in
the PRN mesenchyme. This mechanism was then used as a priori bio-
logical constraint during the training of the k-TSPs algorithm100, and
the resulting signature was evaluated on the indepedent testing set.

In addition, we evaluated the prognostic relevance of this sig-
nature in the TCGA cohort which included 493 primary PCa samples.
First, we built a logistic regression model using the 26 genes com-
prising the PRN signature and used this model to generate a prob-
ability score for progression-free survival (PFS) in each patient. We
then binarized these probabilities into predicted classes and com-
pared their PFS probability using Kaplan–Meier survival analysis101.
Finally, we calculated the hazard ratio (HR) of the signature prediction
probability scores after adjusting for Gleason grade using a multi-
variate Cox proportional hazards (CPH) model102.

Comparing the predictive and prognostic performance of the
stromal PRN and cell-cycle progression signatures
We retrieved a cell-cycle progression (CCP) signature consisting of 31
genes67 and used it to develop a predictive model for metastasis. Both
the PRN and CCP signatures were trained and tested on the same
training and testing sets described above, utilizing a logistic regression
model to predict metastatic events. The training and testing perfor-
mance of both signatures was compared using the Area Under the
Reciever Operating Characteristics Curve (AUROC). Implementing the
same approach used for the PRN signature, we tested the association
of the CCP signature with PFS in the TCGA cohort using Kaplan–Meier
survival analysis and a multivariate CPH model adjusting for
Gleason grade.

Histopathology studies
Following radical prostatectomy, human prostates were submitted for
gross pathological assessment and sectioning, with ischemic time less
than 1 h. The prostate specimen was serially sectioned from apex to
base into 3–5mm slices. In prostates with grossly identifiable tumor, a
5mmbiopsy punchwas taken from the area of tumor, an area adjacent
to the tumor, and an area distant (>2 slices away) from the tumor. In
prostatectomy specimens where tumor was not definitively grossly
visible, these areas were approximated by anatomic correlation of the
MRI findings and targeted biopsies with the highest tumor grade (as
described in ref. 70).

The prostate slices were fixed in 10% buffered formalin, embed-
ded in paraffin blocks, and hematoxylin & eosin (H&E)-stained slides
were created, per routine clinical pathologic assessment. Upon eva-
luation of the H&E slides, a urologic pathologist (BDR) confirmed that
the punched area of tumor, area adjacent to tumor, and area distant to
tumorwere accurately represented based on the histology of the areas
surrounding the punched area. Prostate from WT and GEMM mice
were dissected. One-half of the prostate from GEMMs was utilized for
scRNA-seq (see above). The contralateral halfwasfixed in 10%buffered
formalin and embedded in paraffin blocks, sections were cut, and
hematoxylin & eosin (H&E)-stained slides103,104. Collagen deposition in
the different GEMMswas assessed byMasson’s trichome staining105,106,
followed by collagen deposition quantification digitally performed
using HALO (Indica Labs, v3.3.2541, Albuquerque, US). A HALO-based
digital classifier was developed to identify collagen, epithelium, mus-
clefiber, and background regions on the digital images. Percentages of
collagen deposition were then quantified and compared using
unpaired t-test. Immunohistochemical stainings were used to confirm
the expression of the GEMMs proteins. Primary antibodies used for
IHC staining were: Rabbit monoclonal Recombinant Anti-c-Myc anti-
body [Y69] (Abcam # ab32072; 1:100); rabbit monoclonal PTEN (D4.3)
XP (Cell Signaling #9188S; 1:125); rabbitmonoclonal P-AKt (S473) (D9E)
XP® (Cell Signaling #4060S; 1:100); rabbit monoclonal N-Myc (D4B2Y)

(Cell Signaling #51705S; 1:100); rabbit monoclonal Anti-ERG antibody
[EPR3864] (Abcam#abab92513; 1:1000). Secondary antibodies used in
IHC were the Poly-HRP IgG reagent from the BOND Polymer Refine
Detection Kit (cat DS9800, Leica Biosystems). Immunohistochemistry
to interrogate for panel markers (Supplementary Data file 7) was per-
formed on 5-μm-thick formalin-fixed paraffin-embedded tissue (FFPE)
of (i) human PCa and (ii) GEMMs sections using previously-established
protocols103,107,108.

Multiplexed immunohistochemistry (mIHC) was performed by
staining 5-μm-thick FFPE core biopsy sections in a BondRX automated
stainer, using published protocols109–111. One panel of primary anti-
body/fluorophore pairs was applied to all cases along with Antibody/
Akoya Opal Polaris 7-Color Automated IHC Detection Kit
(NEL871001KT), and Opal Polymer Anti-Rabbit HRP kit for secondary
antibody (ARR1001KT) fluor combinations were utilized as follows
(Supplementary Data file 7). Primary antibodies used for immuno-
fluorescence were: rabbit monoclonal anti-Gpx3 [EPR22815-112]
(Abcam; #ab256470; 1:200); rabbit monoclonal anti-C3 [EPR19394]
(Abcam; # ab200999; 1:10,000); rabbit monoclonal anti-Wif1
[EPR9385] (Abcam # ab155101; 1:5000); Purified Mouse
Anti-Synaptophysin [2/synaptophysin (RUO)] (BD Biosciences
#611880; 1:100); rabbit monoclonal Anti-Periostin antibody
[EPR20806] (Abcam # ab215199; 1:1000); rabbit monoclonal Recom-
binant Anti-Androgen Receptor antibody EPR179(2) (Abcam
#ab108341; 1:1000); rabbit polyclonal Anti-pan Cytokeratin antibody
(Abcam #ab217916; 1:400). Secondary antibodies used for immuno-
fluorescencewere: the anti-rabbit AkoyaRabbit HRP (cat#ARR1001KT,
Akoya Biosciences) and the anti-mouse Mouse Superboost
(cat #B40961, Thermo Fisher Scientific). The tyramide-conjugated
fluorophores were Opal 480 (cat #FP1500001KT, Akoya Biosciences;
1;75); Opal 520 (cat #FP1487001KT, Akoya Biosciences; 1:75); Opal 570
(cat #FP1488001KT, Akoya Biosciences; 1:100); Opal 690 (cat
#FP1497001KT, Akoya Biosciences; 1:100); Opal 780 (cat
#FP1501001KT, Akoya Biosciences, Opal 780 dilution 1:15, TSA-DIG
dilution 1:50).

The order of processing slides was as follows: primary antibody
incubated for 30min; Blocking for 5min with Akoya Blocking/Ab
Diluent; Opal Polymer Anti-Rabbit HRP incubated for 30min; Opal
480-690 incubated for 10min; Leica Bond ER1 solution incubated
for 20min. All slides were also stained with DAPI for nuclear
identification.

Acquisition and computational analysis of multiplexed
immunofluorescence images
Whole slide images of hematoxylin and eosin, trichrome, and mIHC
sections were acquired using the Vectra Polaris Automated Quantita-
tive Pathology Imaging System (Akoya Biosciences, Hopkinton, MA)112.
Images were processed by linear spectral unmixing and
deconvolved113. Cells were segmented and a human-in-the-loop HALO
random forest (RF) classifier was trainedwith labels from a pathologist
to select stromal cells. Subsequently, these stromal regions of the
entire prostate surrounding glands in WT and GEMMs mice were
preprocessed and analyzed using PathML (v2.0.0) (https://github.
com/Dana-Farber-AIOS/pathml)114 to generate a single cell counts
matrix containing statistics summarizing the expression of each pro-
tein in each cell together with the cell size, coordinates, and eccen-
tricity. To address technical artifacts in the segmentation results, DAPI-
negative cells were filtered out. In addition to the HALO RF classifier,
we used PanCK to validate the presence of epithelial (PanCK+) and
stromal cells (PanCK-), respectively. A nearest-neighbor graph was
constructed from the counts matrix using Euclidean metric as imple-
mented in the Scanpy package36. This graph was clustered using the
Leiden algorithm79 to identify subpopulations of cells and low-quality
cells. Cells were projected to two dimensions and visualized using the
UMAP algorithm82. A binary label indicating the presence/absence of
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each protein was created by thresholding markers for positive or
negative signal with pathologist assistance.

Spatial transcriptomics analysis
We conducted spatial transcriptomics analysis ofmurine PRN tumors
and corresponding tissue from its wild type using 10X Genomics
CytAssist Visium platform (10x Genomics, Pleasanton, CA). Prostate
from WT and GEMM mice were dissected. One-half of the prostate
from GEMMs was utilized for scRNA-seq (see above). The con-
tralateral half was fixed in 10% buffered formalin and embedded in
paraffin blocks and sliced into sections with a thickness of 10 µm
thickness. dried at 42 °C for 3 h and kept in a desiccator at room
temperature overnight, before proceeding with the Visium CytAssist
spatial protocol (guides CG000518, CG000520, and CG000495).
Slides were deparaffinized, H&E stained, and imaged using an EVOS
M7000 Automated Imaging System (10x objective, 3.45 µm/pixel -
Thermo Fisher Scientific, CA). Slides were then de-coverslipped and
tissues were hematoxylin destained, decrosslinked and hybridized
overnight with the whole mouse transcriptome panel which contains
pairs of specific probes for each targeted gene (PN-1000365). After
hybridization, the probe pairs were ligated, the slides loaded on a
Visium CytAssist instrument, ROIs adjusted and ligated probes
transferred and captured on an 11mm Visium CytAssist Spatial Gene
Expression slide containing UMIs and barcoded oligos. Spatially
barcoded libraries were generated and sequenced with paired-end
dual-indexing (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles
Read 2) Sequencing libraries were demultiplexed with bcl2fastq
(Illumina). Spatial transcriptomics libraries were processed and
aligned to the mm10 mouse reference genome using the Space
Ranger software (version 2.0.1), and tissue-associated barcodes were
kept for further downstream analysis. The filtered UMI count matri-
ces were merged to enable their joint analysis. Subsequently, the
data was normalized (each cell was normalized by total counts over
all genes) and log-scaled, then the top 4000 highly variable genes
were identified (by model). The neighborhood graph was computed
using the first 10 prinicipal components and 15 neighboring data
points, then embedded using the UMAP algorithm. Spots were
clustered using the Leiden algorithm with a resolution of 0.5, then
marker genes were computed by comparing each cluster to the
remaining clusters using a Student’s t-test. Spot annotation was
performed using the clusters marker genes.

Generation of murine normal associated fibroblasts (NAFs)
Prostate tissues derived from 3-month-old C57/BL6 male mice were
minced in apron 1mm pieces and placed in p100 using DMEN+ 5%
FBS + 5%NuSerum+ 1%Gln + 1%P/S + 10nMDHT. The fibroblasts were
attached to the plate within 48–96 h and the chunks were removed.
Then the immortalization was performed using Retrovirus with zeocin
resistance and expression of SV40 T antigen (pBabe-Zeo-LT-ST). NAFs
were cultured in normal DMEM+ 10%FBS + 1%Gln+1%P/S.

RNA knockdown
For lentiviral shRNA transduction, mouse NAFs were transduced using
lentiviruses containing shRNA constructs against Postn with 10mg/ml
polybrene (Sigma, TR-1003-G). shPostn1 (F primer: CACCGGGCCAT
TCACATATTCCGAGAACTCGAGTTCTCGGAATATGTGAATGGCTTTTT
G; R primer: GATCCAAAAAGCCATTCACATATTCCGAGAACTCGAGT
TCTCGGAATATGTGAATGGCCC).

shPostn2 (F primer: CACCGGCCACATGGTTAATAAGAGAATCTC
GAGATTCTCTTATTAACCATGTGGTTTTTG; R primer: GATCCAAAAA
CCACATGGTTAATAAGAGAATCTCGAGATTCTCTTATTAACCATGTGG
CC) and shCtrl: Fw: CACCGGCCTAAGGTTAAGTCGCCCTCGCTCGAG
CGAGGGCGACTTAACCTTAGTTTTTTG.

Rv: GATCCAAAAAACTAAGGTTAAGTCGCCCTCGCTCGAGCGAG
GGCGACTTAACCTTAGGCC.

Migration (invasion) assay
For Boyden chamber assays, 100,000 NAFs infected with control of
Periostin-directed shRNAs (shCtrl, shPostn1, or shPostn2) were see-
ded into a 24-well plate in culture media for 24 h. Cells were washed
twice for 15min inminimal media (DMEM (Thermo Fisher, 31053036)
with 1× penicillin/streptomycin (Gibco, 15140-122), 1× GlutaMAX
(Gibco, 35050-061) and 10mM HEPES (Gibco, 15630-130). Cell cul-
ture inserts (Millipore, #MCEP24H48) were coated with Matrigel
(Corning, 354230) diluted 1:10 in PBS, and incubated for 2 h +37 °C.
22rv1 shRb1 NMYC cells were harvested, washed twice for 3min in
minimal media, and seeded in triplicate at a density of 75,000 cells/
insert in 200 µl. Inserts were placed into empty 24-well plates and
incubated for 15min at +37 °C and 5% CO2 before transferring into
the test conditions, minimal media was used as a negative control
and minimal media supplemented with 10% charcoal-stripped serum
(Gibco, A33821-01) was used as a positive control. Cells were then
allowed to migrate at +37 °C for 6 h. Filters were fixed using 4% PFA/
PBS, washed with PBS, and stained using Hoechst before washing,
cleaning, and mounting using Fluoromount-G (SouthernBiotech,
0100-01). Cells that had migrated through the filter were quantified
(5 fields of view per filter) and normalized to the negative control.
22rv1 shRb1 NMYC cell line was kindly provided by Dr. David S.
Rickman. Both human and murine cell lines routinely tested negative
for the presence of mycoplasma, which was performed using a
mycoplasma detection kit (abm #G238).

Co-culture of fibroblasts and epithelial cells derived
from GEMMs
For co-culture experiments, primary prostate fibroblasts were derived
from 12-week-old FVBN mice (JAX). Epithelial cells were derived from
the T-ERG and PRN mouse models. On day 1, individual 12mm Trans-
well® with 0.4 µm pore polyester membrane inserts (Corning #3460)
were coated with a 100μg/ml solution purified bovine type I collagen
(PureCol®, Advanced BioMatrix #5005) on both membrane sides, fol-
lowing the manufacturer’s protocol. After that, 50,000 FVBN fibro-
blasts were seeded on the lower side of themembrane in a 150μl drop
of complete medium (DMEM+ 10%FBS+ 1%Gln+1%P/S), left attached
to the membrane with the insert upside down for about 6 h, and then
placed back in a well of a 12-well plate with completemedium. The day
after, the Transwell® inserts were transferred into fresh plates with
complete mouse organoids medium115 supplemented with 3% Fetal
Bovine Serum (FBS). Organoids cells were detached and single-cell
suspended using TrypLE, pelleted and counted. Then, either 50,000
T-ERG or PRN epithelial organoid cells were resuspended in 200μl of
completemouseorganoidsmedium+ 3%FBS and seededon top of the
Transwell® membrane. The cells were left in co-culture, or as FVBN
fibroblasts-only as controls, up to day 9 (8 days of co-culture), chan-
ging medium in the wells every 2 days. Next, control and epithelial-
induced fibroblasts were collected and submitted to 10x single cell
RNAseq.

Statistics and reproducibility
For differential gene expression testing, a two-part generalized linear
model, known as the hurdle model, was utilized through the MAST
framework. Gene regulatory network activities were inferred from the
raw counts matrix with the SCENIC pipeline. Clustering and data
visualization were achieved using algorithms such as the Leiden clus-
tering algorithm, Partition-Based Graph Abstraction (PAGA), and Uni-
form Manifold Approximation and Projection (UMAP). Label transfer
from the mouse to human scRNA-seq was carried out via the ‘ingest’
method. For the development of the PRN signature to predict metas-
tasis, stratified sampling was implemented to ensure balanced repre-
sentation across the training and testing cohorts, and the k-top scoring
pairs (k-TSPs) algorithm was used for classifier training. Survival
probabilities were estimated using the Kaplan–Meier method and
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evaluated by the Log-rank test. Multivariate survival analysis was per-
formed using the Cox proportional hazards (CPH) model and was
evaluated using the Wald test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell RNA-seq and Visium Spatial Transcriptomics data gen-
erated in this study has been deposited in the Gene Expression
Omnibus (GEO) under the accession codes: GSE244267, GSE244269,
and GSE248466. The gene expression publicly available data used in
this study are available in GEO under the accession codes GSE11691888,
GSE5593589, GSE5106690, GSE4669191–93,116, GSE4140894, and
GSE7076995. The processed countmatrices for the single-cell RNA-seq,
Visium spatial transcriptomics data, together with the expression
matrix and phenotype labels of the natural history cohort have been
deposited in Zenodo https://doi.org/10.5281/zenodo.745276997. The
microscopy data reported in this paper will be shared by the lead
contact. The remaining data are available within the Article, Supple-
mentary Information or Sourcedatafile. Source data are providedwith
this paper.

Code availability
All original code canbe accessed through theGitHubpublic repository
(https://github.com/MohamedOmar2020/pca_TME) and https://doi.
org/10.5281/zenodo.8357518117.
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