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Pathway centric analysis for single-cell
RNA-seq and spatial transcriptomics data
with GSDensity

Qingnan Liang1, Yuefan Huang1, Shan He1 & Ken Chen 1

Advances in single-cell technology have enabled molecular dissection of het-
erogeneous biospecimens at unprecedented scales and resolutions. Cluster-
centric approaches are widely applied in analyzing single-cell data, however
they have limited power in dissecting and interpreting highly heterogenous,
dynamically evolving data. Here, we present GSDensity, a graph-modeling
approach that allows users to obtain pathway-centric interpretation and dis-
section of single-cell and spatial transcriptomics (ST) data without performing
clustering. Using pathway gene sets, we show that GSDensity can accurately
detect biologically distinct cells and reveal novel cell-pathway associations
ignored by existing methods. Moreover, GSDensity, combined with trajectory
analysis can identify curated pathways that are active at various stages of
mouse brain development. Finally, GSDensity can identify spatially relevant
pathways in mouse brains and human tumors including those following high-
order organizational patterns in the ST data. Particularly, we create a pan-
cancer ST map revealing spatially relevant and recurrently active pathways
across six different tumor types.

scRNA-seq methods have been widely applied to delineate cellular-
molecular heterogeneity of tissues, with novel cell types and cell states
uncovered inmany different contexts1–5. The current practice of scRNA-
seq analysis usually split cells into discrete clusters6 and then focus on
one or a few clusters of interest to study their biological meanings,
which is herein referred to as ‘cell-centric’ data analysis (Fig. 1a, top).
However, clustering process itself becomes less reliable when samples
contain cells under active state transition, which is a common situation
in tumor or developmental datasets3,7–9. In such cases, the performance
of cluster-level pathway analysis methods, such as gene ontology (GO)
enrichment analysis, are hampered by unreliable clustering results.
Moreover, the list of pathways obtained from these analyses is often
fairly long, limited by gene sets and annotations available in the data-
bases, and the statistical P-values are often difficult to interpret. In
contrast, for a given single-cell dataset, nominating pathways of interest
is often more straightforward than nominating cell subpopulations of
interest, because the former could be more easily obtained from bio-
logical domain knowledge, or functional screen experiments such as

those in DepMap (https://depmap.org/portal/). Thus, given a single-cell
dataset, focusing directly on pathways of interest in a cluster-
independent manner, or ‘pathway-centric’ data analysis (Fig. 1b, bot-
tom), could be a powerful, alternative approach in single-cell analysis to
generate highly interpretable results.

Successful pathway-centric analysis of single-cell data should
contain at least two functions: first, it should distinguish whether a
pathway, in the format of a gene set, is truly heterogenous among the
cells without clustering them; second, it should be able to accurately
evaluate pathway activity at single-cell level and fetch the most rele-
vant cells for downstream analysis. Some computational tools
are available for evaluating single-cell level activity or enrichment of
a given gene set (the second function), such as single-sample
gene set enrichment analysis (ssGSEA10), AUCell11, and CelliD12, etc.,
but they all lack an overall evaluation of pathway heterogeneity among
the cells (the first function). Also, some of these methods are suscep-
tible to sparsity and technical noise in single-cell data. Matrix
factorization-based tools, on the other hand, can partition genes to a
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set of ‘factors’ (or ‘patterns’), and these factors usually demonstrate
certain levels of heterogeneity among the cells13. However, construc-
tion of these factors are mostly data driven, lack of input from
knowledgebases, and thus the functional interpretation of these fac-
tors still relies on manual annotation using tools such as GO enrich-
ment analysis.

Here, we present a computational framework, GSDensity, for
pathway-centric analysis of single-cell and ST data. GSDensity uses
multiple correspondenceanalysis14 (MCA) to co-embedcells and genes
into a latent space and quantifies the overall variation of pathway
activity levels across cells by estimating the density of the pathway
genes in the latent space. Pathway activity for each cell can be calcu-
lated using network propagation in a nearest-neighbor cell-gene
graph, with pathway genes used as seeds for random walks. When
spatial information of cells is available (e.g., in ST datasets), the spatial
relevance of a pathway is reflected by the density of cells in the two-
dimensional image, weighted by their pathway activity scores.
Through validation and benchmarking on multiple real and simulated
datasets, we prove that GSDensity is capable of distinguishing truly
heterogenous gene sets and inferring pathway activities in each cell
with superior accuracy, compared to six widely applied frameworks.
Wedemonstrate the usage of GSDensity in cluster-free, pathway-based
classification of tumor cells and found an association between the
GAS6-TYRO3 signaling and tumor cell division in multiple indepen-
dently collected triple negative breast cancer samples. We also show
how GSDensity can be used in conjunction with trajectory analysis

tools to group signaling pathways by their activity patterns over var-
ious developmental stages. Finally,weuse three examples to showhow
GSDensity can identify spatially related pathways in the context of
brain functions and of immune infiltration of different tumor types.

Results
An overview of the GSDensity method
In the context of scRNA-seq data, considering a curated functional
gene set, when the genes from this gene set are highly and specifically
expressed in a subpopulation of the cells, we call such a gene set
‘coordinated’. This subpopulation of cells is thus defined as highly
relevant cells to this gene set. A randomly selected list of genes is
anticipated to beof low coordination, with no relevant cells. GSDensity
is designed to detect this coordination of a gene set without having to
partition cells beforehand. GSDensity first projects cells and genes in
scRNA-seq data into the same low dimensional space using MCA
(Fig. 1b), inspired by a previous study, CelliD12. In the MCA space, dis-
tances among cells, genes, or between cells and genes reflect their
association. Thus, we hypothesize that when a gene set has true
coordination, the genes would appear clustered in the MCA space,
occupying a relatively small subspace (Fig. 1c, top). In contrast, they
would appear randomly distributed when they are not coordinated
(Fig. 1c, bottom). The level of gene set coordination can be measured
by contrasting the density of the pathway genes and that of all the
genes using KL-divergence. The density level of a gene set is calculated
using kernel density estimation (Gaussian kernel) in the MCA space.
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Fig. 1 | Overview of the GSDensity method. a GSDensity allows for ‘pathway
centric’ analysis of scRNA-seq data. Current analysis approaches often focus on a
cell population of interest and apply pathway analysis to functionally annotate the
population (top). GSDensity allows for cluster-free testing of whether genes from
the same pathway display coordination towards a cell population, and then fetch
the cell population. This allows for direct investigation of whether a pathway of
interest is heterogenous in a scRNA-seq data (bottom). b GSDensity first projects
genes and cells to the same low-dimensional embeddings using MCA. c For each
gene set (gene set A and B in the top and bottom panel), the density in the MCA
space is estimated and compared with the density of all genes (gray contour) using

KL-divergence as the metric. Size-matched random gene sets are used to evaluate
the significance of the KL-divergence. Gene sets with coordination have higher KL-
divergence. d A nearest-neighbor graph containing both cells and genes is con-
structed utilizing the MCA embedding. The genes in the gene set of interest are
treated as ‘seeds’ for label propagation. This approach is to evaluate the relevance
of each cell towards the gene set. e To evaluate the spatial relevance of a gene set,
we perform two kernel density estimations on the two-dimensional spatial map
with each cell having equal weights or using the pathway scores as the cell weights,
respectively. The KL-divergence between these two density distributions is used to
evaluate the spatial relevance of the gene set.
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Randomization is used to estimate how likely a differential density
level is reachedbychance.We randomly samplemultiple size-matched
gene sets and compute differential density in the same way (Fig. 1c,
middle), and the resulting differential density levels are used to gen-
erate a null distribution for estimating statistical significance (Meth-
ods). This whole process does not require any information of cell
clustering or annotations.

Calculating pathway activity levels (PALs) in each cell is a critical
step for fetching the cells most relevant for a pathway. GSDensity first
constructs a nearest-neighbor graph based on the projected distances
between the cells and the genes in the co-embeddingMCA space. Using
a low-dimensional embedding generated by MCA is beneficial for alle-
viating the effect of sparsity and technical noise in single-cell data. For a
gene set, GSDensity calculates the PAL of each cell, by performing
random walk with restart on the graph using pathway genes as seeds
(Fig. 1d). After convergence, each node (both cell and gene) will have a
score, reflecting its relevance to the pathway. For single-cell pathway
activity analysis, we normalize the PAL scores across cells and further
split the cells into two groups with high and low relevance to the
pathway by binarizing the PAL scores with the antimode.

We then extend GSDensity to evaluate whether a pathway is
spatially related in a ST data. The single-cell PALs are calculated the
same way as described above, and the activity scores are then used as
weights for cells to calculate a weighted kernel density in the two-
dimensional spatialmap.We also calculate a referenceweighted kernel
densitywith each cell having anequalweight, reciprocal to the number
of cells. The difference of these two density measurements could then
reflect the level of spatial relevance of a pathway, again quantified by
the KL-divergence between the density distributions (Fig. 1e). For each
pathway, we use label shuffling to generate a set of density distribu-
tions as controls for random chance.

Validation and benchmarking for GSDensity
We first evaluate whether GSDensity can distinguish gene sets with
true coordination from those with no coordination. We would like to
use the peripheral blood mononuclear cells (PBMC) dataset for illus-
tration. This dataset was curated and annotated by the SeuratData
program (‘pbmc3k’ dataset; Supplementary Fig. 1a). For illustration, let
us focus on the B cell marker genes. After co-embedding genes and
cells (Supplementary Fig. 1b), we visualized the density of all genes, B
cell markers, size-reduced B cell markers with three-folds random
genes, and size-matched random genes (Fig. 2a). B cell markers dis-
played a compact distribution in the space which appeared very dif-
ferent from that of all genes. On the other hand, the random gene set
showed a relatively similar density with that of all genes. The size-
reduced markers with three-folds random genes showed some differ-
ences to all genes, but not as compact as the gene set with all markers.
This result intuitively demonstrated the feasibility of using density to
measure whether a gene set has true coordination, without focusing
on any cell clusters at the first place. For a more systematic validation,
we collected 8 real-world datasets (Table 1) and curated cell type
marker genes from public databases (Methods): XCell15, PanglaoDB16,
and CellMarker217. Known marker gene sets were treated as ground-
truth coordinated gene sets to validate GSDensity. We also created
additional gene sets by mixing subsets of marker genes with random
genes at various set sizes and proportions (Fig. 2b). We found that for
all the 8 real-world datasets, the marker sets received the highest sig-
nificance values at an alpha level of 0.05 (Fig. 2c–e, Supplementary
Fig. 2), while the mixed sets resulted in lower significance and those
with random genes showed almost no significance. For better
demonstrating the performance of GSDensity, we showed the original
p-value without adjustment. These results suggested that GSDensity
can distinguish gene sets with true coordination from those with weak
or no coordination. It is worth noting that the sizes of themarker gene
sets vary from dozens to hundreds, which are in the same range of

most curated pathway gene sets, and thus indicating that GSDensity is
reliable to be applied in practical pathway analysis settings.

We also wanted to test whether GSDensity performs well in
scoring PALs on single cells and how it compares with other gene set
scoring tools.We applied twometrics for assessing the performance of
a method. First, given a cell type specific gene set, an optimal tool
would assign high scores to cells from the corresponding cell type and
low scores to other cells (Supplementary Fig. 1c). Such a specificity
could thus be quantified using area under curve (AUC) in recovering
the correct cell type at various score thresholds. Second, if a marker
gene list were available for every cell type in a dataset, the PAL scores
canbe used to predict cell type identities: a cell is predicted to the type
whose marker set has the highest score. Thus, an optimal tool would
have the highest prediction accuracy (Supplementary Fig. 1d).We used
both simulated scRNA-seq data and real-world data to perform the
benchmarking experiments.

For simulation, we generated datasets from 3 modes, including
the scenarios of stable, discrete cell types and dynamic, continuous
cell states using SERGIO18, which models transcriptional regulation of
single-cell gene expression. We simulated dropout rate at three levels:
65%, 78%, and 90% zeros in the final expression matrices, in a range
similar to what is often observed in real data. We were also able to
define ground-truth gene sets at various levels of specificity, strong,
medium, or weak, to a given cell type or state (Methods). For each
mode, we included three repeats out of random initiation, and thus
resulted in 27 simulated datasets in total (Table 2). SD (simulated data)
1-9 were fromMode-1with three stable cell states. SD10-18 fromMode-
2 with four continuous cell states under a bifurcation trajectory, and
SD19-27 fromMode-3 with six continuous cell states with a trifurcation
trajectory. We found that GSDensity can well distinguish ground-truth
marker gene sets from random gene sets (Supplementary Fig. 3). We
compared GSDensity with another six popular gene set scoring
methods, including ssGSEA10, GSVA19, AUCell11, VAM20, scGSEA21, and
CelliD12, using the two metrics introduced above. We found that
GSDensity consistently outperform other methods in all the cases
(Fig. 2f, Supplementary Fig. 4a–c). As expected, the performance of all
methods decreased as the drop-out rate increased, with GSDensity
being the least affected. For the simulated datasets, CelliD often
achieved the second best performance, which implied the benefit of
utilizing the MCA method in the PAL scoring task.

Similarly, we used the eight real-world datasets mentioned above
to benchmark the PAL scoring ofGSDensity and the other sixmethods.
Since we did not have prior knowledges to constructmarker gene sets
with different specificity levels, we reduced the specificity of the
marker sets by reducing the size and mixing them with randomly
selected genes (Fig. 2g, Supplementary Fig. 4d, Supplementary
Fig. 5a–e). Cell typing accuracy varied widely across datasets and gene
sets. For example, the performance of all the methods were better in
the dataset ‘heart’ (Supplementary Fig. 5c) than in the dataset ‘lung’
(Fig. 2g). Across the conditions, GSDensity outperformed most of the
methods or at least achieved the top 3 position. We summarize the
performance of PAL scoring methods in simulated and real-world
datasets in Fig. 2h (simulated) andFig. 2i (real-world), andwe show that
GSDensity has the most stable performance, as it shows more resis-
tance to the increasing dataset sparsity or decreasing gene set speci-
ficity. In general, besides GSDensity, CelliD, scGSEA, and VAM showed
reasonable performance.

Classification of TNBC tumor cells using GSDensity
GSDensity allows examining any gene set, originated from biological
insights or external studies, on a single-cell dataset, and thus enabling
the utilization of domain knowledge to generate novel testable
hypotheses and overcome limited data collection. Here we present an
example. Cell proliferation or cycling has been known as a hallmark of
cancer cells22,23 and associated specifically to TNBC subtypes with poor
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prognosis24. However, which subsets of cells are involved and how are
proliferation sustained in the complex tumor immune microenviron-
ment (TIME) are often unknown and difficult to hypothesize. We
examined a scRNA-seq dataset25 (TNBC-1) obtained from a triple-
negative breast cancer (TNBC) patient. Since we are particularly
interested in understanding why certain tumor cells are more pro-
liferative and what are the associated TIME features, we used the

‘hallmark G2M checkpoint’ gene set26 to classify tumor cells and fetch
the actively dividing cells (Fig. 3a). The subset of cells also appeared
associated with other hallmark features such as mitotic spindle,
mTORC1 signaling and glycolysis (Fig. 3b–d), which are features indi-
cative of actively dividing cells. This set of cells also showed higher
expression ofMKI67 (encoding Ki-67) thanother tumor cells (Fig. 3e, p-
value < 2.2e−16, Wilcoxon test). The transcriptomes of tumor cells

Article https://doi.org/10.1038/s41467-023-44206-x

Nature Communications |         (2023) 14:8416 4



were highly affected by their CNV profiles, while interestingly, neither
CNV-based nor transcriptome-based clustering would detect these
cells as a group, using cluster-centric approaches. With CNV-based
clustering (Supplementary Fig. 6a), the actively dividing cells appeared
as disjoint subpopulations in all four tumor clones (Fig. 3f). With
transcriptome-based clustering, the number of clusters were difficult
to decide in this dataset (Fig. 3g). The degree of overlap between
transcriptome-based clusters and the actively dividing cells was low
(Supplementary Notes).

The proliferative ability of tumor cells could be regulated
through their interactions with the TIME27,28. We then compared
these actively dividing cells with other tumor cells from the angle of
cell-cell interaction between tumor and TIME. We annotated the
normal cells in the TNBC-1 dataset into two groups, fibroblasts, and
immune cells (Supplementary Fig. 6b, c) and inferred the ligand-
receptor interactions29 between immune and tumor cells and
between tumor and tumor cells.We displayed all the ligand receptor-
pairs in Supplementary Fig. 7a and found that the dividing cells
showed a distinct profile of the GAS6-TYRO3 axis. All the other
ligand-receptor pairs showed differential enrichments in either
immune-tumor interaction or tumor-tumor interaction, while GAS6-
TYRO3 was the only pair that showed differential enrichments in
both groups. We then found that both the tumor cells and the
immune cells could express the ligand, GAS6, while only the dividing
tumor cells displayed high expression of the receptor, TYRO3
(Fig. 3h), which indicated the specific activation of the TYRO3
downstream signaling in those cells. For confirmation, we also fet-
ched actively dividing tumor cells from another two TNBC datasets25,
TNBC-2 and TNBC-5, and these cells also consistently showed high
relevance to glycolysis, mTORC1 signaling, and mitotic spindle
(Supplementary Fig. 6d–k, p-value < 2.2e−16 for all groups, Chi-
squared test). The high expression of TYRO3 in actively dividing cells
was also observed in the TNBC-5, confirming the previous finding (p-
value = 3.18e−8, Wilcoxon test, Supplementary Fig. 6l–m). We then
investigated this TYRO3 expression pattern in another published
cohort with 8 TNBC patient samples30. TYRO3 were lowly detected in
7 of the samples (detected in 1–8% of tumor cells). In the only sample

(GSM4909284_TN-MH0114-T2) with relative high expression of
TYRO3 (detected in 24% of tumor cells), the actively dividing cells
showed higher expression of TYRO3 than other tumor cells (p-
value = 0.039, Wilcoxon test, Supplementary Fig. 6n). These results
indicated that the overall expression level of TYRO3 in breast cancer
cells is highly patient specific, while the high-TYRO3 expressing
samples always had TYRO3 preferably express in a small group of
actively dividing cells. The GAS6-TYRO3 axis has been associated
with tumor cell proliferation, malignancy, and anti-PD1/PD-L1 resis-
tance in previous studies31–35. Thus, through the integration of data
and prior knowledge using GSDensity, we postulated a potential role
TYRO3 in TNBC proliferation using only a few TNBC samples with
very sparse single-cell gene expression profiles and generated a tes-
table hypothesis for further studies.

Application of GSDensity in trajectory analysis to identify
developmental stage related pathways
Current trajectory pathway analysis relies mostly on finding stage-
related factors through factorization-based approaches36,37 or finding
stage-related gene co-expression modules38, followed by manually
annotating the factors and modules, while GSDensity could directly
test curated gene sets and thus does not require efforts for factor

Fig. 2 | Benchmarking theGSDensitymethod. aAn illustration of gene set density
in pbmc3k data using all genes (top left), B cell markers (top right), reduced B cell
markers with random genes (bottom left) and randomly sampled genes (bottom
right). It is worth notice that in the real data analysis, GSDensity directly estimate
the density of gene sets in the MCA space, not the UMAP space. b Schematic of the
gene sets used for panel c–e. c–e Validation of the sensitivity of GSDensity to
identify gene sets with coordination. Marker sets generated following the strategy
in b were used as input in the pbmc3k (c), lung (d), and pancreas (e) data,
respectively. The red dashed line showed the unadjusted p-value equal to 0.05.
One-sided t-test was used (Method). The center line of the box plot showed the
median of data; the box limits showed the upper and lower quartiles; the whiskers
showed 1.5 times interquartile range and points showed outliers. n = 40 for each
box. Source data are provided as a Source Data file for panels c–i. f Benchmarking

the reliability of gene set scoring aspect of GSDensity and six popular tools on
simulateddatasets. Each row represents amethod, and each column represents the
gene set and dataset condition. The colors and the sizes of the dots both demon-
strate the AUC score. g Benchmarking the reliability of gene set scoring aspect of
GSDensity and six popular tools on real datasets. Cell type markers were first used
with their original sizes, and then got their specificity decreased by reducing the
size to 70% and 30%, and further by mixing with random genes. h Summary of
benchmarking experiments with simulated data using the AUC metric. For each
simulated dataset, the median of the AUC scores were used as a data point in this
boxplot. n = 9 for each box. i Summary of benchmarking experimentswith real data
using the AUC metric. For each simulated dataset, the median of the AUC scores
were used as a data point in this boxplot. n = 8 for each box.

Table 1 | Basic information for public, real-world datasets collected for benchmarking experiments

Data # Genes # Cells # Cell types Sparsity Technology Reference

pbmc3k 11139 2638 8 92.42% 10x Genomics SeuratData

bmcite.small 17009 9521 10 94.9% RNA-seq data from CITE seq SeuratData

pancreas 15117 3390 9 88.41% inDrop Baron et al.84

liver.immune 14550 5729 9 91.40% 10x Genomics Zhao et al.85

spleen.immune 14452 4888 11 87.97% 10x Genomics Zhao et al.85

hcortex 30046 2920 8 90.50% Fluidigm C1 Nowakowski et al.86

lung 14483 7193 7 88.19% 10x Genomics Muus et al.87

heart 15971 3474 7 87.94% 10x Genomics Koenig et al.88

Table 2 | Basic information for simulated datasets (scRNA-
seq) for benchmarking experiments

Data # Genes # Cells # Cell types Sparsity

SD1-3 5000 4500 3; stable ~65%

SD4-6 5000 4500 3; stable ~78%

SD7-9 5000 4500 3; stable ~90%

SD10-12 5000 4000 4; dynamic ~65%

SD13-15 5000 4000 4; dynamic ~78%

SD16-18 5000 4000 4; dynamic ~90%

SD19-21 5000 4800 6; dynamic ~65%

SD22-24 5000 4800 6; dynamic ~78%

SD25-27 5000 4800 6; dynamic ~90%

Article https://doi.org/10.1038/s41467-023-44206-x

Nature Communications |         (2023) 14:8416 5



identifications and annotation. To demonstrate this utility, we
explored how GSDensity could synergize with pseudotime inference
tools to find trajectory related pathways. We first performed pseudo-
time analysis on a subset of E17.5 mouse brain scRNA-seq data39

(Fig. 4a, Supplementary Fig. 8a, b) and the direction of the trajectory
was decided based on the expression of several developmentally
related marker genes (Supplementary Fig. 8c). We applied GSDensity
to this dataset and identified 97 KEGG and BIOCARTA pathway gene
sets with significant coordination in some subpopulations of cells. We
thengrouped the cells basedonpseudotime into equal sizedpartitions
and calculated thepathwayactivity along thepseudotime trajectory by
averaging single-cell PALs within each partition. We then clustered the
fitted curves into 8 clusters using k-medoids clustering (Fig. 4b). Each
of the 8 clusters except Cluster 6 had pathways specific to a different
stage along the developmental trajectory, for example, Cluster 1
included the pathways enriched for the earliest stage while Cluster 2
for the following stage. Cluster 6 included pathways being relatively
constant along the trajectory.We showedonepathway for each cluster
as an example (Fig. 4c–j) and found several of them consistent with
prior knowledge. For example, the term ‘cell cycle’ is the most highly
relevant to the cells from the earliest developmental stage, since these
cells are likely with the highest stemness and are actively dividing.
Regulation of actin cytoskeleton also appeared to be an early pathway
and it is known to be required for the cell migration during brain
development40. Here we demonstrated the utility of GSDensity in
identification of trajectory-related pathways.

GSDensity identifies spatially relevant pathways
We first tested whether GSDensity could distinguish gene sets with
spatial relevance from randomness by simulating ST datasets with four
different modes: ‘hotspot’, ‘hotspot with gradient’, ‘streak’, ‘gradient’,
inspired by a previous study41 (Supplementary Fig. 9). The number and
identity of spatially relevant genes were set through the simulation
using SRTsim42 (Methods). With PAL scores for pathways of interest,
GSDensity can compare the background cell spatial density and the
pathway-driven density by calculating the KL-Divergence between the
two density distributions. It is worth mentioning that GSDensity was
packaged in a flexible way that it can work with PAL scores from any
PAL calculationmethods for spatial relevance examination. For eachof
the simulated ST datasets, we visualized the spatial relevance of
ground-truth gene sets and random gene sets, using a metric called
‘delta-KLD’ which equaled to logðDKLðPjjQÞÞ �meanðlogðDKLðPr jjQÞÞÞ,
whereQ represents the background cell density, P the pathway-driven
cell density, and Pr the cell density with shuffled cell-PAL scores. We
calculated the PAL scores with GSDensity and CelliD, respectively, and
observed that in both cases, GSDensity could distinguish ground-truth
spatially relevant gene sets from random gene sets.

We applied GSDensity to a ST mouse forebrain dataset generated
by the 10X Visium technology. We first clustered the data spots based
on the transcriptome (Fig. 5a) and observed that all the clusters were
also spatially segregated on the spatial map (Fig. 5b). Thus, the path-
ways with cluster-wise specificity would naturally display spatial rele-
vance in this data. However, it is unclear whether there are high order

Fig. 3 | GSDensity enables pathway centric analysis of tumor scRNA-seq data.
UMAP visualization of the TNBC-1 data using different hallmark gene sets (a: G2M
checkpoint; b: mTORC1 signaling; c. glycolysis; d: mitotic spindle) to classify cells.
Cells which are the most relevant to the hallmark are labeled as ‘positive’. The
UMAP was calculated using RNA expression (transcriptome) with default para-
meters using Seurat. e Violin plot visualization of the proliferation marker, MKI67,
in TNBC-1 data, with the cells classified by G2M checkpoint gene set. Wilcoxon test
(two-sided) was applied here. Source data are provided as a Source Data file for
panels e–h. f UMAP visualization of the TNBC-1 scRNA-seq dataset. The cells are

colored based on the clustering information from the inferred CNV profile. g The
Silhouette scores and number of clusters out of choices of the ‘resolution’ para-
meter to cluster tumor cells in TNBC1 dataset with Seurat. The x-axis is the scanned
‘resolution’ (0.1 to 1.2) in Seurat ‘FindClusters’, and y-axis shows the Silhouette
score. The text label (numbers) shows the number of clusters out of such para-
meter. h The expression level of GAS6 and TYRO3 genes in immune cells, G2M
checkpoint positive, and G2M checkpoint negative tumor cells from the TNBC-1
data. Wilcoxon test (two-sided) was applied here.
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organization of pathway activities across multiple clusters, which
would be undetectable in cluster-centric analysis. To address this
question, we first identified 727 GO biological process terms with
coordination in the dataset using GSDensity. For each term, we

calculated its spatial relevance and specificity for each cluster. The
spatial relevance is quantified by KL-divergence between the pathway
weighted kernel density estimation (KDE) and the equally weighted
KDE (Methods). The specificity of a pathway for a cluster is quantified

Fig. 4 | Applying GSDensity to single-cell trajectory analysis reveals develop-
mental stage related pathways. a UMAP visualization of the inferred pseudotime
in E17.5 mouse cerebral cortex data. b Pathway gene sets can be grouped into 8
clusters based on their pattern along the trajectory. Source data are provided as a

Source Data file. Highlighting the cell relevance to a representative pathway from
eachof the 8 clusters (c: Cluster-1;d: Cluster-2; e: Cluster-3; f: Cluster-4;g: Cluster-5;
h: Cluster-6; i: Cluster-7; j: Cluster-8).
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by a specificity score based on Jensen-Shannon divergence, with larger
values being more specific. We then plotted the 727 GO terms with
their spatial relevance and maximum cluster-wise specificity (Fig. 5c).
As expected, the spatial relevance showed largely positive correlation
with cluster-wise specificity. Among the GO terms with high cluster-
wise specificity (Fig. 5c, red) are dopamine receptor signaling for
Cluster 1, amyloid beta formation for Cluster 5, ARP2/3 complex
mediated actin nucleation for Cluster 8/11, and oligodendrocyte
development for Cluster 2 (Fig. 5d–g). Interestingly, we also observed
some GO terms with high spatial relevance and low cluster-wise spe-
cificity (Fig. 5c, blue). The cells highly relevant to these terms consisted
of data spots from multiple clusters with higher-order spatial organi-
zation (Fig. 5h–k). For example, positive regulationof cellular response
to insulin stimulus appeared highly active in the spots close to the
caudal side (Fig. 5i), while fatty acid oxidation to the ventral side
(Fig. 5j). It has been known that insulin receptors are expressed in
hypothalamus and hippocampus43 which are both located close to the
caudal side of this anterior section. Although GSDensity was designed
to perform cluster-independent data analysis, we demonstrated that

the pathway activity calculation by GSDensity can be easily integrated
with cell information, such as cluster partition or spatial coordinates,
when available.

Besides 10X Visium, multiple other ST technologies have been
developed with whole transcriptome coverage. We applied GSDensity
to a ST human prefrontal cortex dataset generated by the Slide-tags
technology44. Cellswere pre-annotated to several cell types as is shown
in the UMAP and the spatial map (Supplementary Fig. 10a). Similarly,
we identified 1061 GO terms enriched in some cell subpopulations,
from over 7000 Biological Process terms using GSDensity (Supple-
mentary Fig. 10b). Like the scenario of the mouse brain data, some
pathways were both highly spatially relevant and highly cell-type spe-
cific, for example, protein localization to synapsewas highly specific to
inhibitory neurons and sensory perception of smell was highly specific
to excitatory neurons, both of which occupied localizations with spa-
tial relevance on the map (Supplementary Fig. 10c, d). On the other
hand, we noticed some terms with relatively low cluster-wise specifi-
city, and they turned out to be specific to subpopulations of cells. We
found that amongexcitatory neurons, therewerea subpopulationwith

Fig. 5 | Applying GSDensity to reveal spatial relevant molecular programs in
mouse anterior brain. a UMAP visualization of 15 cell clusters in the mouse
anterior brain dataset. b Visualization of the 15 cell clusters in the spatial map.
c Visualization of 727 gene ontology (biological process) terms based on their
cluster-wise specificity and spatial relevance. The gene ontology terms are the ones
having significant coordination in themouse anterior brain dataset (Methods). The

data points highlighted with red represent the ones with high cluster-wise speci-
ficity. The data points highlighted with blue represent the ones with low cluster-
wise specificity and high spatial relevance. Source data are provided as a Source
Datafile.d–g Examples of gene setswith high cluster-wise specificity.h–k Examples
of gene sets with low cluster-wise specificity but high spatial relevance.
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higher translational activity while another subpopulation with higher
cell respiratory activity, and interestingly they appeared in two dif-
ferent layers (Supplementary Fig. 10e, f).

GSDensity identifies common spatially relevant pathways in six
cancer ST datasets
To investigate whether there were common spatially relevant path-
ways in different cancer types, we applied GSDensity to create a pan-
cancer pathway activity map using six publicly available cancer ST
datasets generated by the 10X Visium technology. The cancer types
included were breast cancer (BC), cervical cancer (CC), intestinal
cancer (IC), ovarian cancer (OC), prostate acinar cell carcinoma
(PACC), and prostate cancer (PC). One section is analyzed for each
cancer type. For each dataset, we tested the spatial relevance for over
10k pathway gene sets, including GO biological processing terms,
MsigDB hallmarks, and canonical pathways from the MsigDB C2 col-
lection. We identified 34 pathways that showed spatial relevance in all
the six datasets (Supplementary Fig. 11 and Methods). To learn the
relationship between these pathways and tumor cells, we first identi-
fied tumor cells based on their CNV profiles (Supplementary
Fig. 12a–f), using ‘normal’diploid cells as the control.We observed that
the BIOCARTA granulocyte pathway displayed patterns that generally
surrounded the tumor cells, which were visualized as contours
(Fig. 6a–f, Supplementary Fig. 13). This observation was statistically
significant (Methods, Chi-square test) in the PC (p-value = 1.575e−14),
IC (p-value = 0.014), OC (p-value = 2.429e−12), and PACC (p-value =
0.030), while not for BC or CC. This observation suggested granulo-
cytic infiltration towards the tumor cells, which has been found to be
associated with tumor progression and metastasis45–48. We also saw
that the spots with highly active granulocyte pathway are not homo-
geneously surrounding all the tumor clones, such as those in the cer-
vical cancer (Fig. 6c) and in the prostate cancer samples (Fig. 6f). We
also noticed that the mesenchyme morphogenesis pathway from GO
biological process terms, showed spatial relevance in all the datasets
(Supplementary Figs. 14 and 15). The data spots with high activity of
this pathway overlapped with the tumor cells and appeared enriched
at the borders of the tumor clones (Methods. for BC, p-value = 1.805e
−11; CC, p-value < 2.2e−16; IC, p-value < 2.2e−16; PACC, p-value =
0.004). This is consistent with the current understanding that
mesenchymal cells are highly related to tumor invasion49,50. Here we
demonstrated that GSDensity could be used to infer tumor-TIME
interface enriched pathways and identify recurrently activated path-
ways when multiple datasets were available.

Discussion
Here, we report a computational framework, GSDensity, to perform
directed pathway analysis on single-cell and ST data. Current practice
in single-cell data analysis largely relies on assigning cells into discrete
clusters and focuses ononeor someclusters that appear interesting6,51.
However, the clustering assignmentprocess couldbequite complex or
even cause negative effect in many cases. For example, when the cells
are sampled from a series of transition states or developmental states,
it is impractical to group the cells into discrete clusters. Moreover,
cluster-dependent analysis may suffer from the effect of ‘double dip-
ping’, when the clustering is decided by gene expression profiles and
the clustering is then used to learn differential genes or gene sets. On
the other hand, in recent years we noticed several cluster-independent
analysis tools for differential expression analysis52,53 and differential
cell enrichment analysis54,55 showing superior sensitivity and resolu-
tion. GSDensity fills the gap that there are no dedicated tools for
cluster-independent pathway analysis on single-cell data. For example,
in this study, we showed thatGSDensity can be used to directly classify
cells using pathway relevance and performdownstream analysis based
on the classification.

Through extensive benchmarking experiments using both real-
world and simulated datasets, we showed that GSDensity performed
consistently better than a set of popular frameworks in accurately
score pathway activity on at single-cell level. The major challenge of
this task is the sparsity and technical noise in scRNA-seq data.
Embedding the data to lower dimensions is a useful method to
enhance the signal-to-noise ratio. For example, factorization-based
methods benefit from the lower-dimensional representation of data,
however the interpretation of the ‘factors’ or ‘patterns’ is less
straightforward. Moreover, the pattern discovery could have limited
resolution due to both biological complexity and technical challenges.
The application of MCA embedding in scRNA-seq studies was first
reported in the CelliD12 method, which generally performed the sec-
ondbest in the benchmarking. GSDensity uses networkpropagation to
estimate the pathway relevance at single-cell level, while CelliD per-
forms hypergeometric test on pathway gene sets and cell signature
genes and reports transformed p-values.We consider that the pathway
activity from network propagation is more smooth and easier to be
implemented with other algorithms, such as what we did in treating
the pathway activity as cell weights for spatial relevant pathway iden-
tification. Although varying by datasets, the cell embeddings and the
gene embeddings produced by the MCA are largely comparable, as
shown by the overlapping distance distributions inmultiple real-world
scRNA-seq datasets (Supplementary Fig. 16). In theMCA biplots, a cell-
gene distance reflects themutual specificity between a gene and a cell.
The coordinates of the genes (or cells) are determined by the coordi-
nates of the associated cells (or genes) weighted by their mutual spe-
cificity. The information of ‘seed’ genes can then be amplified by
similar cells through highly specific cell-gene pairs. This design would
make the size of neighborhood an important parameter when con-
structing the cell-gene graph. In our experiments, we found that the
performance of GSDensity is robust and stable with respect to this
parameter (Supplementary Figs. 17–19, Methods). With GSDensity, we
also offer an option of PAL-based cell binarization for downstream
analysis, as was demonstrated in the TNBCdata analysis. Since the PAL
calculation is an outcome of network propagation, for most coordi-
nated gene sets (Fig. 1c), the PAL among all cells would have two or
more modalities because the network propagation is restricted to the
highly relevant cells and converges before propagating to less relevant
cells. Thus, we recommend performing binarization on only gene sets
that pass the coordination test. In our experience (e.g., PBMCdata, GO
Biological Process gene sets), over 98% of coordinated pathways (1160
gene sets from the GO Biological Process collection) demonstrated
more than one modalities (adjusted p-value < 0.05, mode testing
method by Ameijeiras-Alonso et al.56. using the R package ‘multi-
mode’). Occasionally, certain pathways can demonstrate more than
twomodalities. Thus, we recommend users to visually inspect the PAL
distributions of important pathways to validate the automatic results
and perform correction as necessary.

Given the rapid development of spatial genomics
technologies57,58, we also expanded GSDensity to identify spatially
relevant pathways. Our approach benefits from the relatively accurate
pathway activity scoring when the spatial information is not con-
sidered. Once the single-cell level pathway activity scores are com-
puted, metrics ormethods for spatial pattern discovery other than our
weighted-KDE could also be applied, such as Moran’s I for spatial
autocorrelation. Also, as we pointed out, it is worth carefully con-
sidering the effect of cluster-specificity when we try to find spatially
relevant pathways, given that the cluster information could display
strong spatial relevance. In other words, the pathways showing both
high cluster-specificity and high spatial relevance are likely the ones
that can be discovered even without spatial information. GSDensity
has two ready-to-use functions to compute the spatial relevance and
cluster-wise specificity of pathways for dissecting these two situations.
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Wedemonstrated the application of GSDensity on scRNA-seq and
STdata of the 10xVisiumplatformandSlide-tags,while GSDensity also
has utility in other types of data. For example, GSDensity can do
pathway analysis on Single-Nuclei Assay for Transposase-Accessible
Chromatinwith high-throughput sequencing (snATAC-seq) data, when
gene expression can be inferred from the chromatin accessibility
(often referred to as gene activity). GSDensity can also be applied to ST
data generated by technologies such as seqFISH59, seqScope60, or
DbiT-seq60, since GSDensity requires only gene expression matrixes
and spatial maps of cells as the inputs, not relying on any technique-
specific data types. Also, GSDensity has a flexible framework that can
testmanually curatedgene sets by users, such as the ones fromCRISPR
screening experiments, the ecotype features from Ecotyper61, the
multicellular programs discovered from DIALOGUE62, or gene sets
identified from large-scale datasets of molecular program discovery
projects such as HTAN, HuBMAP, etc.

GSDensity can also be applied as a cell type annotator when
marker genes were available. We showed that GSDensity performed
best among pathway analysis tools in this task (Supplementary Fig. 4).
For the benchmarking experiment, we used randomly truncated
marker gene sets to control the uncertainty causedby variablegene set
sizes. We further found that the performance of GSDensity in cell type
prediction would increase when using full marker lists (with variable
sizes) in most of the scenarios introduced in the 27 SERGIO-simulated
datasets (Supplementary Fig. 20). We also compared the performance
of GSDensity with another marker-based cell type annotation tool,

scSorter63 and a clustering-based strategy for automatic cell annota-
tion (Methods), using the 27 SERGIO-simulated datasets (Methods,
Supplementary Fig. 21). We noticed that GSDensity and the clustering-
based strategy generally out-performed scSorter. In the scenarios with
dynamic cell states, especially as the data sparsity increases, GSDensity
showed superior performance over the clustering-based strategy. It is
worthnoting thatwith an increase in cellular throughput, datasetswith
sparsity close to or higher than 90% became very common in recent
single-cell studies64. Additionally, we examined automatic cell anno-
tation in spatial transcriptomics data comparing GSDensity with
DR.SC65, a clustering-based strategy encouraging spatial-smoothness
(Methods). With the labeled human tonsil data, we found that
GSDensity performed better than the clustering-based strategy
(59.32% vs 55.69%; Supplementary Fig. 22) indicating the importance
of performing accurate molecular dissection in annotating ST data.

GSDensity is implemented in R with high efficiency. The largest
memory cost was in the MCA embedding step, with about 25Gb for a
medium sized dataset (‘hcabm40k’ SeuratData dataset, 40,000 cells
with 17369 genes). The runtime for the MCA step with different num-
ber of cells were tested (Supplementary Fig. 23a). It appeared
increasing linearly with respect to the number of cells. The runtime for
gene set coordination testing (without considering the MCA embed-
ding calculation time) is more related to the number of gene sets
instead of number of cells (Supplementary Fig. 23b). We further
compared the pathway activity scoring speed among five methods:
GSDensity, CelliD, AUCell, ssGSEA, and VAM (Supplementary Fig. 23c).

Fig. 6 | Applying GSDensity to reveal the spatial distribution of granulocyte
pathway in tumor samples ofdifferent tumor types.Visualizationof granulocyte
pathway in breast cancer (a), cervical cancer (b), intestinal cancer (c), ovarian

cancer (d), prostate acinar cell carcinoma (e), and prostate cancer (f). Red contour
lines represent the density of tumor cells.
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In general, CelliD was the fastest, followed by GSDensity, AUCell, VAM,
and ssGSEA. AUCell was faster than GSDensity when the number of
cells was small while GSDensity was more scalable. GSDensity could
calculate the pathway activity for 1000 gene sets in a dataset with
40,000 cells in about 10min while AUCell took about 27min. Options
for parallel computing (through ‘future.apply’ R package) are imple-
mented in GSDensity for gene set activity scoring, binarization, and
spatial density evaluation and are highly recommended. Given the
GSDensity algorithm, the tool relies on a background gene set to
evaluate the density of pathway gene sets. Thus, GSDensity is applic-
able to spatial whole transcriptomic data but is not suitable for tar-
geted gene data having limited numbers of genes. Imputation of
unmeasured genes could be a strategy to overcome this limitation.

For integrated datasets from multiple origins with strong batch
effects, since the MCA uses the original gene expression data, the
batch effect correction should also be performed on the original gene
expression data, instead of on the low-dimensional embeddings, using
methods suchasComBat66, CarDEC67, or Scanorama68.We showed that
although GSDensity performed reasonably well without having batch
correction, using ComBat to adjust the gene expression data can
improve its performance (Supplementary Fig. 24). Proper batch cor-
rection improves the performance of GSDensity, while over- or under-
correction may introduce bias. Thus, we suggest to carefully evaluate
batch correction outcome before performing pathway analysis. We
also tested whether the performance of GSDensity will be affected by
different normalization and transformation strategies for scRNA-seq
data by comparing three strategies: the default Seurat normalization
(also used by GSDensity by default), the SCTransform69 implemented
by Seurat, and the scran70 strategy offered by the scran R package. We
found that these normalization strategies gave highly consistent
results for both gene set coordination test (Supplementary Fig. 25a–c)
and gene set PAL calculation (Supplementary Fig. 25d).

Our original motivation of developing GSDensity is to build a tool
for ‘pathway-centric’ analysis, with which we can dive into the data
directly from the angle of pathways of interest. Initial gene sets could
come from any prior knowledge, information, or preliminary data,
such as RNA-seq data, CRISPR screen results, or GWAS genes, etc.
When there lacks a prior knowledge regardingwhich specific pathways
to test, users can start with carefully curated pathways in the public
databases. For example, in the E17.5 mouse example, we used KEGG
and BIOCARTA but not GO Biological Processes, because the latter
included many cell type-related terms, while the mouse cells are lar-
gely un-differentiated at that stage. We chose to use GO Biological
Processes for adult mouse brain ST data. For cancer ST data, since we
aimed at finding common spatially relevant programs from multiple
datasets, we chose to broaden our hypothesis space by using all gene
sets from GO, Hallmarks, BIOCARTA, and KEGG.

We anticipate that GSDensity can play a critical role in meta-
analysis type studies71 focusing on specific pathways, for example, to
find subgroupsof tumor cells enriching the samepathway acrossmany
types of tumors. This could be very promising given the number of
datasets collected nowadays. Additionally, many approaches in ana-
lyzing single-cell data can be transformed to ‘assigning each cell a
score using a gene set’. It is also possible to apply GSDensity in the
identification of themostly affected cells upon treatment of drugs that
blocks the whole pathway; or finding the cells where a transcription
factor (TF) is highly active given the targets; or discovering the sub-
group of cells the most relevant to a trait when there is a set of GWAS
genes available.

Methods
The MCA method for co-embedding cells and genes
The first step of GSDensity is to co-embed cells and genes into the
same low-dimensional space using the MCA method. Here is a brief
description of the calculation. LetX be a scRNA-seqmatrix with K cells

c1,c2, . . . ,cK and M genes g1, . . . . . . ,gM as rows and columns, respec-
tively. A matrix Y is then created as the binarization of each gene for
each cell in the matrix X. For a cell ci in the matrix Y, the degrees of
membership for gene gj are calculated by this membership function:

g +
j =

Xij�minðXj Þ
maxðXj Þ�minðXj Þ and g�

j = 1--g +
j . Here Xij is the expression of gj in ci

and Xj is the vector of the expression of gj in all cells, so Y has K rows

(c1,c2, . . . ,cK ) and 2M columns (g +
1 , . . . :::,g

+
M ,g

�
M). The ‘+’ and ‘−’ are

seen as two categories for each gene and the values reflects the
degrees of membership for each cell. This step is often referred to as
‘fuzzy coding’ to code a dataset with continuous measurement to
categorical variables, required by theMCA algorithm12,72. Thematrix of
relative frequencies is R = Y

sumðYÞ, and sumðYÞ=K ×M. The matrix of

standardized relative frequencies Z is calculated by Z=D�1=2
r RD�1=2

c ,
where Dr and Dc are diagonal matrices with diagonal values equal to

the row-sums (R1) and column-sums (1TR) ofR (1 is a columnvector of

1’s). Z is then decomposed Z=UDαV
T where both U and V are ortho-

normal (UTU = I;VTV= I). Dα is the diagonal matrix with singular

values. The coordinates of cells and genes are C=D�1=2
r U and

G=D�1=2
c ZTU, relatively. Since this step is looking for a low-

dimensional embedding, only the first several singular vectors are
used and are tunable. Empirically setting 10 to 50 gives comparable
results. This part was inspired by the previous study, CelliD, and we
directly implemented its R function ‘RunMCA’ to perform this step in
our method. Also as is implemented in CelliD, only the coordinates of
(. . . ,:::,g +

M), representing the presence of the gene expression, are
retained.

Estimating and evaluating the density for gene sets of interest
To evaluate whether a gene set has true coordination, we need to
estimate its density in the MCA space and compare that with the
density of all genes. In this step, only the coordinates of genes, not
cells, are considered, and the coordinates are scaled for each MCA
dimension. To estimate the density of points in a spacewithmore than
2 dimensions, GSDensity first select a few ‘grid points’ in the MCA
space and estimate the local density of genes at these points as a
representation of the overall density. This is inspired by a previous
study, singleCellHaystack52. When selecting grid points, we partition
the cells into N groups of the same size, based on their distance in the
MCAspace, and thus the centroids are selected asgrid points. This is to
ensure that the grid points are relatively close to genes but not too
close to each other. The grid point selection is done with the ‘bal-
anced_clustering’ function in the ‘anticlust’ package73. The default
number of N is 100 and can be set by users. All the analysis in this
manuscript used N = 100; a larger number ofN will allow for capturing
more subtle alternations and on the other hand cost more computa-
tional time. For each grid point, the density is an aggregation of the

density contributions of all data points. The density contribution dij of

a gene gi to a grid point pj is dij = expð� distðgi ,pj Þ2
2 Þ. Here

distðgi,pjÞ=
Distðgi ,pj Þ
bandwidth, where Distðgi,pjÞ calculates the Euclidean dis-

tances between two points. The bandwidth is the median of the dis-

tance of all genes to their closest grid points.

With this method, we first calculate the density of all the grid
points using all genes and these values are directly appended to form a
background density distribution Q. Q is a vector of length equal to N,
the number of grid points, and is normalized that sumðQÞ= 1. We then
calculate the density of all the grid points using genes from specific
pathways and forma density distributionP. P has the same length asQ
and is also normalized to 1. The Kullback-Leibler divergence (KL-
divergence) is calculated DKLðPjjQÞ= PN

1 P½x� logðP½x�Q½x�Þ. For each path-
way, we create L size-matched control gene sets by random sampling
without replacement. We calculate their density P1

r . . . ,:::,P
L
r and
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KL-divergence DKLðPr jjQÞ using the same method. By default, we set
L= 100 as the number of control gene sets for each pathway tested. To
perform statistical tests, we calculate Pðz ≤ xÞ= 1ffiffiffiffiffi

2π
p

R x
�1e�t2=2dt where

x = logðDKLðPjjQÞÞ�meanðlogðDKLðPr jjQÞÞÞ
sdðlogðDKLðPr jjQÞÞÞ as the p-value. We perform this using

the ‘pnorm’ function in R, for each pathway considered. Quantile-
quantile plots showed that the logðDKLðPr jjQÞÞ values approximated
normal distributions for randomgene sets of different length, from 30
to 500 (Supplementary Fig. 26). Whenmultiple pathways are tested at
the same time, the p-values will be FDR-adjusted.

Calculating the gene set activity at single cell level
Network propagation has been widely applied to the analysis of gene-
gene networks for candidate gene prioritization74 and recently cell-cell
networks to find phenotype relevant cells75. Here network propagation
is applied to the calculation of gene set activity scores for each cell. We
first construct a nearest neighbor graph with cells and genes as nodes
based on their Euclidean distance in the MCA space. The default
number of neighbors is set to be 300 and can be tuned by users. We
have evaluated the robustness of GSDensity performance to this
parameter in terms of pathway activity in the PBMC data (Supple-
mentary Fig 17) and in terms of cell type classification in the 8 real-
world datasets (Supplementary Figs 18 and 19). We found that, con-
sistently across datasets, the performance of GSDensity increases as
thenumber of neighbors increases from20 to 200 and reaches plateau
afterwards. This graph is unweighted and undirected and is converted
to a simple graph with no multiple edges. We then use random walk
with restart (RWR) for the label propagation, where the genes in the
pathway of interest are used as ‘seeds’. The restart rate is set to 0.75 by
default, and the convergence will be reached when the L1-norm
between the state matrices of two consecutive steps is less than 1e-6.
The RWR step is done with calling the ‘dRWR’ function from the ‘dnet’
R package76. The output of the RWR is a vector H with length equal to
M +K, and each item represents the relevancebetween the cell or gene
to the pathway. We subset W, a vector of length K from H which only
contains items as cells and normalizeW that sumðWÞ= 1. This vectorW
is then the gene set activity scores for the cells.

Using weighted kernel density estimation to find spatially rele-
vant pathways
To test whether a pathway is spatially relevant, we require a pre-
compute of the activity score of cells for that pathway (W), and the
two-dimensional spatial coordinates for the cells, F. F is a K × 2 matrix
with rows for cells and columns for coordinates (the x-y plane). Grid
points are uniformly picked along the two axes. The density of a grid

point pj is dj =

PK

i
wi+ððxpj�xiÞ=h1Þ+ððypj�yiÞ=h2Þ

Kh1h2
, where wi is the weight for

cell ci, xi and yi are coordinates of ci,K is the number of cells, h1 and h2

are estimated bandwidths for the x and y axes, and xpj
and ypj

are

coordinates of pj . The bandwidths h1 and h2 are decided using the
‘bandwidth.nrd’ function in the ‘MASS’ R package. + calculates the

probability density of standardGaussiandistribution:ϕðxÞ= 1ffiffiffiffiffi
2π

p e�x2=2.

This function is different from the ‘kde2d’ function in the ‘MASS’ R
package only by the wi item. The implementation of this algorithm is
from the online resource: https://stat.ethz.ch/pipermail/r-help/2006-
June/107405.html. We first compute a background cell density by
setting all wi equal to

1
K. For each pathway, we calculate a pathway-

specific cell density by directly using items in W (pathway scores) as
the corresponding wi. In both the background cell density and the
pathway-specific cell density, the weights aggregates to 1, and the
output density distributions are thus directly comparable. Here,
comparing the two density distributions is performed the same way as
we described in ‘Estimating and evaluating the density for gene sets of
interest’. We also used randomization to evaluate the statistical sig-
nificance of the pathway-specific cell density.

Curation of real-world datasets
We collected 8 real-world datasets for validating the performance of
GSDensity and compare it with several other tools. The selection of
real-world datasets was generally based on the availability of pre-
annotation (by original data generators) labels and cell typemarkers in
public databases, to ensure the fairnessof benchmarking.Wealso tried
to cover different types of tissues or organs. General information for
these datasets can be found in Table 1. Markers for cell types were
searched from three public databases: XCell15, PanglaoDB16, and
CellMarker217. The marker curation was performed in a sequential way
by searching XCell first, then PanglaoDB then CellMarker2 until a hit is
found. The cell type annotation was matched with the cell type names
in these databases to curate the marker list for the cell type. The cell
types were removed when markers cannot be found in any of the
databases. The code for curation the datasets and marker lists, as well
as the marker collection files, were available at https://github.com/
qingnanl/GSDensity_manuscript_code. For the ‘heart’ dataset, the R
object needs to be downloaded from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE183852. For the ‘lung’ dataset, the expres-
sion matrix needs to be downloaded from https://singlecell.
broadinstitute.org/single_cell/study/SCP886/hca-lungmap-covid-19-
pittsburgh-lafyatis-2019-morse#study-download. The other datasets
were curated by either ‘SeuratData’ or ‘scRNA-seq’, both being R
packages.

Simulation of scRNA-seq datasets with SERGIO
SERGIO required two inputs for generating steady-state datasets: the
expression of master regulators for each cell type and the relation
between each gene and its regulator(s). In SERGIO, genes could be
defined as master regulators (cannot be target; must predefine), reg-
ulators (can regulate other genes and be regulated by other regulators
ormaster regulators), and targets (can only be regulated by regulators
or master regulators). To ensure the reliability of ground truth for the
purpose of this study, we did not include regulators in the simulation.
We simulated 3 steady-state datasets fromMode-1 (3 types, 1500 cells
per type, 5000 genes) by randomly generating master regulator
expression matrices (from uniform distribution from 0.1 to 5) and
randomly defining the relationship between master regulators and
targets three times. In each time, we defined 25 genes as master reg-
ulators (0.5% of all genes), 500 genes as strong targets (10%), 500 as
medium targets, 500 as weak targets. Each of these 1500 target genes
had one master regulator attributed through random sampling. The
differences among the strong, medium, and weak targets are the
‘strength’ parameters in SERGIO. This was a hyperparameter related to
the contribution of the regulator towards the target. Strong targets
had the absolute value of the strength parameters ranging from 2 to 5,
with medium ones having 1 to 2 and weak ones having 0.5 to 1. The
strength parameter could be positive or negative with 0.75 and 0.25
probabilities, respectively, defined by the author, to better represent
real single-cell datasets. Negative targets were not used as markers for
the following benchmarking experiments. The rest of the genes were
assigned multiple master regulators.

With these inputs and other default SERGIO parameters, ‘clean’
single-cell gene expression matrices could be simulated and could be
modified to add noises afterwards.We demonstrated theUMAP of one
example with cell types labeled using the clean matrix of Mode-1 in
Supplementary Fig. 27a. The overall expression level of the strong,
medium, and weak markers for each cell type were verified with the
‘AddModuleScore’ function of Seurat, shown in Supplementary
Fig. 27b.Multiple types of noises could be simulatedby SERGIO, and to
ensure simplicity, we fixed most of the noise parameters and only
tuned the ‘percentile’ parameter for dropout simulation, to make the
final matrix with dropout rate at roughly three levels: 65%, 78%, and
90%. Thus, for each of the ‘clean’ matrix, three sparse matrices were
generated. We showed the UMAP of one example (65% drop-out rate)
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in Supplementary Fig. 27c and the verification of marker sets with
different specificity levels in each cell type (Supplementary Fig. 27d).

For simulating ‘dynamic’ datasets to represent continuous or
developmental data, an extra input, in the format of a cell-type by cell-
type matrix, is needed to specify the migration rate from one cell type
to another. We used a bifurcation model and a trifurcation model
previously reported by the SERGIO package. For the bifurcationmodel
(Mode-2, Supplementary Fig. 28a), we simulated 3 datasets (4 cell
types, 1000 cells per type, 5000 genes). For the trifurcation model
(Mode-3, Supplementary Fig. 29a), we simulated 3 datasets as well (6
cell types, 800 cells per type, 5000 genes). For both models, we
defined 50 genes asmaster regulators (0.5% of all genes), 500 genes as
strong targets (10%), 500 asmedium targets, and 500 as weak targets,
similar to the case of steady-state simulation. In these cases, the
expression of the rest of the genes were generated randomly and
combined with the master regulator and target expression to ensure
reasonable runtime and RAM usage. Quantile normalization was per-
formed before each combining. It is also worth mentioning that SER-
GIO actually generated both a ‘spliced’ and an ‘un-spliced’ count
matrices, and here we only used the spliced one. Similar to the clean
matrices ofMode-1, we simulated the noise to reach finalmatrices with
roughly 65%, 78%, and 90% drop-out rates. We demonstrated the
UMAP of clean matrices of Mode-2 and Mode-3 and the overall
expression of themarker sets, as well as thematrices with noise added
and the overall expression of the marker sets in Supplementary
Figs. 28b–e and 29b–e.

All the code used for generating the SERGIO inputs, running
SERGIO, adding noises, and the dynamic migration matrices, were
available at: https://github.com/qingnanl/GSDensity_manuscript_code.

Ground-truth marker gene sets in simulated datasets
The SERGIO simulation used pre-definedmaster regulator expression as
a basis. In our practice, themaster regulator expression is an outcomeof
random sampling from a uniform distribution between 0.1 and 5. For
each cell type, we quantify the specificity of the master regulator by

Specif icity score= Expression of themaster regulator in cell type A
maxðExpression of themaster regulator in other cell typesÞ. Top

three master regulators with highest specificity scores for each cell type
were defined as cell-type specific regulators, and their targets with
positive regulatory strength were then defined as ground-truth
marker genes.

Benchmarking the performance of GSDensity
For the analysis testing whether GSDensity can distinguish gene sets
with true coordination (Fig. 2b–e, Supplementary Fig. 2), we created
four groups of gene sets based onmarker genes and randomsampling.
For the all-marker sets, we generate 5 sets for each marker gene list by
downsampling to 80% of its original size without replacement (notice
that the curatedmarker gene sets have different sizes for different cell
types). For the markers with size-matched random genes, the ‘mar-
ker.mix.1’ and ‘marker.mix.3’ sets, we downsampled each marker gene
sets to 40% size and 20% size andmix themwith 1:1 randomly sampled
gene and 1:3 randomly sampled genes, respectively. This ratio is
designed to ensure these two types of synthesized gene sets have the
same size of the all-marker sets. Again, for each marker gene sets, we
generated 5 sets for each of the two categories. Lastly, we generated
random gene sets of matched sizes with the marker sets and synthe-
sized gene sets. We applied GSDensity with these gene sets to evaluate
the statistical significance of their coordination. One example (Fig. 2a)
was used to show the density of gene sets intuitively. Only for the
visualization purpose, the MCA coordinates of cells and genes were
first embedded to two dimensions using UMAP and the density was
plotted according to the UMAP coordinates.

To compare GSDensity with current methods in the aspect of
single-cell pathway activity calculation, we designed two

benchmarking strategies using pre-annotated scRNA-seq data and
curated gene sets, to ensure unbiasedness (Supplementary Fig. 1c, d).

For the AUC metric (Supplementary Fig. 1c), we assess the cap-
ability of recovering the correct cell type with PAL scores from each
method. For constructing the recovery curves, weorder the cells based
on their PAL score, and calculate the ratioof recovery at sixteenpoints:
0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0. At each point, we recover the cells with top PAL scores (e.g., at
0.025, we recover the top 2.5% of cells with highest scores) and cal-
culate the proportion of the recovered “correct cells” in all the “correct
cells”, which thus gives a value for the y-dimension of the recovery
curve. The AUC score of the curve is calculated using the function
‘AUC’ of the package ‘DescTools’. For real-world datasets, besides the
original marker gene sets, we generated gene sets of five other cate-
gories, by reducing the size of marker gene sets andmixing themwith
randomly sampled genes. This was because in real data analysis,
pathway genes were not as specific asmarker genes inmost cases, and
it was useful to benchmark the performance of tools when the path-
ways were not highly specific. Unlike simulated datasets, we did not
have prior knowledge on the specificity level of each marker gene to
the cell type. When generating downsampled marker gene sets or
mixture gene sets, we performed random sampling five times for each
of the marker gene sets, so there were more data points for down-
sampled marker gene sets or mixture gene sets. For simulated data-
sets, we applied the AUC metric using marker sets with different
specificity levels.

For the ACC (accuracy) metric (Supplementary Fig. 1d), we used
PAL scores in a competitiveway for cell typeprediction. For eachcell in
a dataset, we compute PAL scores for all themarker sets and assign the
cell’s identity to the set achieving the highest PAL score. The perfor-
mance of eachmethod could then be assessed by the accuracy of such
prediction. To control for difference in variable gene set sizes, we
randomly downsampled all the gene sets to 10 genes before calculat-
ing the PAL and repeated each experiment five times.

We compared GSDensity with AUCell11, CelliD12, GSVA19, ssGSEA10,
scGSEA21, and VAM20. We used the default parameter for all the six
methods. We used the ‘gsva’ R package to perform GSVA and ssGSEA.
For benchmarking the runtime of GSDensity and other methods, we
used the public dataset ‘hcabm40k’ (SeuratData R package) which has
40,000 cells. We randomly selected gene sets from theGeneOntology
Biological Processes database, as input to the methods. We dissected
GSDensity into threeparts for runtimebenchmarking: calculatingMCA
embeddings (Supplementary Fig. 23a), testing gene set coordination
(Supplementary Fig. 23b), and calculating pathway activities (Supple-
mentaryFig. 23c).We compared thepathwayactivity calculation speed
between GSDensity and several other methods. For all the methods,
preprocessing steps were not recorded in the runtime benchmarking,
such as the MCA calculation for GSDensity and CelliD, the pre-
calculation of gene rankings for AUCell, etc. The runtime recording
was performed using the R package ‘microbenchmark’. The runtime
benchmarking was performed using Linux (Redhat Enterprise Linux)
system, with 12 cores, 120G RAM.

General single-cell data analysis
We used Seurat 4.077 for most of the data wrangling and visualization,
for both scRNA-seq and STdata. Thepathways used for this studywere
all from the MSigDB database26,78,79, using the ‘msigdbr’ R package.
Default parameters were used for GSDensity analysis. ComBat from R
package ‘sva’ was used for batch correction (Supplementary Fig. 24).

The TNBC data analysis
TheTNBCdatawasdownloaded fromGSE148673 andGSE161529 in the
format of gene expression matrices25. The ‘TNBC-1’ data (from
GSE148673) was mainly used for discovery and others were used for
possible validation purpose. Tumor cells from the TNBC-1 data was
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identified using the ‘copyKat’ R package25 with default parameters
and the number of clusters were set to 4. GSDensity was applied only
to the tumor cells to score them based on their relevance to a set of
hallmark gene sets. To binarize the cells, GSDensity called the ‘loc-
modes’ function of the ‘multimode’ R package80 to identify the anti-
mode of gene set activity of cells and used the antimode for the
binarization.

Fibroblast cells (normal) and immune cells were identified using
previously reportedmarkers. The immune cells were thenused to infer
the ligand-receptor based cell-cell communication with classified
tumor cells using the ‘cellchat’Rpackage29. The ‘negative’ cells for G2M
checkpoint were downsampled to the size of the ‘positive’ cells to
avoid that the comparison between groups being driven by the num-
ber of cells.

The E17.5 mouse brain data analysis
The data was downloaded from GSE153162 in the format of an ‘.h5’
file39. We performed standard clustering and removed the discrete
clusters from the data to ensure the reliability of the trajectory infer-
ence. The trajectory inference was performed using ‘monocle3’ and
Cluster 6 was set to be the root, given its specific expression of SOX2.
We further verified the trajectory by exploring the expression of sev-
eral known genes specific for different developmental stages (Sup-
plementary Fig. 8c). GSDensity was used to identify KEGG and
BIOCARTA pathways with true coordination. The reason we only used
these two pathway curations was that the cells were largely in devel-
opmental stages, and we did not want to use pathway curations with
many cell-type specific terms (e.g., GO terms) due to lacking inter-
pretability in this case. From all the input pathways, we identified 97
pathways with coordination. We equally split the cells into 20 parti-
tions along the pseudotime trajectory based on the inferred pseudo-
time for the purpose of quantifying pathway activity along trajectory.
These partitions were not related to the original clustering shown in
Supplementary Fig. 8a, b. We then averaged the pathway scores within
each partition, so each pathway was summarized into a curve with 20
ordered data points. We then applied k-medoids clustering for these
pathway-time curves using the ‘pam’ function of the ‘cluster’ R pack-
age. We plotted one pathway as an example for each of the clusters
(Fig. 4c–j).

Simulation of ST data with SRTsim
We simulated ST datasets using SRTsim42 with four modes: ‘hotspot’,
‘hotspot with gradient’, ‘streak’, ‘gradient’. We used the reference-free
mode to generate these datasets with R-Shiny. Briefly, cell positions
were randomly initiated, and clusters were created using the lasso tool
in the R-Shiny application of SRTsim. The expression levels of ground-
truth signal genes were designed to increase as new cluster is gener-
ated (in an alphabetical order, for example, Cluster B had higher
expression levels on the signal genes, compared with Cluster A).
Parameters used for simulating the datasets were listed in Table 3.

The mouse brain and human prefrontal cortex ST data analysis
The mouse brain ST data was obtained from the ‘stxBrain’ dataset of
the ‘SeuratData’ R package using only the ‘anterior1’ subset. The data

preprocessing and clustering was completely following the online
tutorial (https://satijalab.org/seurat/articles/spatial_vignette.html).

We applied GSDensity analysis for this data treating each data
spot as a single cell and used all theGObiological process terms to test
their coordination. We then plotted the spatial relevance and cluster-
wise specificity only for the gene sets with significant coordination.
The highlighted gene sets are either with maximum cluster-wise spe-
cificity larger than its 95% quantile (red) or withmaximum cluster-wise
specificity smaller than its 50% quantile and spatial relevance higher
than 80% of its quantile (blue).

The cluster-wise specificity (CWS) between a cluster L and a path-

way A is CWSðL,AÞ= 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSDðIL,WAÞ

p
. JSD is to calculate the Jensen-

Shannon divergence between two vectors. IL is a vector i1L,i
2
L,:::,i

K
L of

length K (number of cells) initiated as ijA =
1, if cell cj 2 cluster L
0, if cell cj =2 cluster L

�
fol-

lowed by normalization to let sumðILÞ= 1. WA is a vector that contains
the single-cell level gene set activity scores for pathway A. This way of
defining the cluster-wise specificity was previously reported81,82. The
CWS computation was packaged with a ready-to-use function of the
GSDensity package.

Thehumanprefrontal cortexdatasetwasdownloaded fromhttps://
singlecell.broadinstitute.org/single_cell/study/SCP2167/slide-tags-
snrna-seq-on-human-prefrontal-cortex#study-download. The cell type
annotation was included in “humancortex_metadata.csv”, and the spa-
tial coordinates were included in “humancortex_spatial.csv”. We used
Seurat for preprocessingof thedata.Other parts of the analysiswere the
same as described in the analysis of the mouse brain ST dataset.

The cancer ST data analysis
The cancer ST datasets were downloaded from the 10x genomics web-
site, and all the six datasets were collected with Visium for FFPE and
preprocessed with Space Ranger 1.3.0. Clustering and preprocessing of
the datasets were following the same tutorial for the mouse brain ST
data analysis. We applied GSDensity analysis for this data treating each
data spot as a single cell and used over 10k gene sets including GO
biological processing terms,MSigDB hallmarks, and canonical pathways
from theMSigDBC2 collection to test their coordination.Wefirst tested
the pathway coordination only considering the gene expression and
then used the pathwayswith coordination to test their spatial relevance.
FDR-based multi-testing correction was applied to the results of both
testes. Thus, for each dataset, we ended up with a list of pathways that
are heterogenous and spatially relevant. To visualize the pathway
activity and tumor cells, we first used the R package ‘copyKat’ to predict
the identity of tumor cells using transcriptome information. Immune
cell clusters were first identified using several markers (CD4, CD3E,
PTPRC, NKG7, CD3D, CD14) and were used as normal cell controls for
the copyKat analysis. The tumor cells were then visualized with their
two-dimensional density. To perform enrichment analysis of certain
pathways in tumor boundary cells, we partitioned the cells in the ST
datasets in two ways. First, we partitioned the cells based on their rele-
vance to the pathways of interest (granulocyte pathway and mesench-
yme morphogenesis pathway in our cases) the same ways as
demonstrated in the TNBC analysis (Methods). Second, we partitioned

Table 3 | Basic information for simulated datasets (ST) for benchmarking experiments

Name Cells Genes Sparsity Dispersion Mean

Spot 4059 500/500/5000 0.85 1 1

Spot.grad 4457 500/500/5000 0.85 1 1

Streak 4457 500/500/5000 0.85 1 1

Grad 4657 500/500/5000 0.85 1 1

The column of genes showed the number of positive signal genes, negative signal genes, and random noise genes. The sparsity, dispersion, and mean were input parameters for SRTsim.
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thecells basedonwhether theywereboundary cells,whichweredefined
as those with at least 1 and atmost 4 of the neighbors being tumor cells,
considering the tightly packing pattern of Visium data. We then per-
formed Chi-square test to examine whether boundary cells enrich cells
of the relevant pathways.

Marker-based cell type annotation
We applied scSorter63 on the 27 SERGIO-simulated datasets, using the
samemarker sets thatwe used for benchmarkingGSDensitywith other
pathway scoring tools. Default settings were used as described here:
https://cran.r-project.org/web/packages/scSorter/vignettes/scSorter.
html. We also employed a ‘cluster plus marker’ strategy (Supplemen-
tary Fig. 21) for cell type annotation. For each dataset, we first used
Louvain clustering (resolution 1.0) to cluster cells. We then use the
“AddModuleScore” function to calculate the normalized average
expression of each marker set in single cells and calculate the average
marker expression level for each cluster. After scaling, we annotate the
cluster based on the highest averagemarker expression level. The ACC
metric was the same as described above to evaluate the method per-
formance. For the ‘cluster plus marker’ strategy with spatial genomics
data, we used DR-SC65 instead of Louvain clustering.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. We
ensure replicates when random sampling was involved in simulations,
ranging from 3 (generation of simulation data of the same condition)
to 40 (simulating coordinated and random gene sets) replicates. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcomeassessment. Student’s t test (one-sided)was
used for gene set coordination test andWilcoxon test (two-sided) was
used to for differential gene expression examination. For all boxplots
used in this manuscript, the center line of the box plot showed the
median of data; the box limits showed the upper and lower quartiles;
the whiskers showed 1.5 times interquartile range. When individual
data points were not displayed, points show outliers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. All real-
world datasets used in this study were downloaded from public
resources. Source data are provided with this paper. The PBMC,
BMCITE, pancreas (for batch correction), hcabm40 (for runtime
benchmarking) scRNA-seq datasets and the mouse brain ST dataset
were obtained from the SeuratData R package. The human cortex,
pancreas (for benchmarking), spleen immune, and liver immune
scRNA-seq datasets were obtained from the ‘scRNAseq’ R package
[https://bioconductor.org/packages/3.16/data/experiment/html/
scRNAseq.html]. The heart scRNA-seq data was downloaded fromGEO
with accession number “GSE183852”. The lung scRNA-seq data was
downloaded from the Broad Institute single-cell portal with accession
number “SCP886”. The TNBC data was downloaded from GEO with
accession numbers “GSE148673” and GSE161529”. The developmental
mouse brain data was downloaded from GEO with accession number
“GSE153162”. The Slide-tags data was downloaded from the Broad
Institute single-cell portal with accession number “SCP2167” and
“SCP2169”. The tumor ST data was obtained from 10x genomics
[https://www.10xgenomics.com/resources/datasets?menu%
5Bproducts.name%5D=Spatial%20Gene%20Expression&query=
& p a g e = 1 & c o n fi g u r e % 5 B f a c e t s % 5 D % 5 B 0 % 5 D =
chemistryVersionAndThroughput&configure%5Bfacets%5D%5B1%5D=

pipeline.version&configure%5BhitsPerPage%5D=500&configure%
5BmaxValuesPerFacet%5D=1000].

Code availability
The GSDensity software is available at GitHub: https://github.com/
qingnanl/gsdensity. Analysis code83 is available at GitHub: https://
github.com/qingnanl/GSDensity_manuscript_code.
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