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ECOLE: Learning to call copy number
variants on whole exome sequencing data

Berk Mandiracioglu1,5, Furkan Ozden2,5, Gun Kaynar 3, Mehmet Alper Yilmaz3,
Can Alkan 3 & A. Ercument Cicek 3,4

Copy number variants (CNV) are shown to contribute to the etiology of several
genetic disorders. Accurate detection of CNVs on whole exome sequencing
(WES) data has been a long sought-after goal for use in clinics. This was not
possible despite recent improvements in performance because algorithms
mostly suffer from low precision and even lower recall on expert-curated gold
standard call sets. Here, we present a deep learning-based somatic and
germline CNV caller for WES data, named ECOLE. Based on a variant of the
transformer architecture, the model learns to call CNVs per exon, using high-
confidence calls made on matched WGS samples. We further train and fine-
tune the model with a small set of expert calls via transfer learning. We show
that ECOLE achieves high performance on human expert labelled data for the
first time with 68.7% precision and 49.6% recall. This corresponds to precision
and recall improvements of 18.7% and 30.8% over the next best-performing
methods, respectively. We also show that the same fine-tuning strategy using
tumor samples enables ECOLE to detect RT-qPCR-validated variations in
bladder cancer samples without the need for a control sample. ECOLE is
available at https://github.com/ciceklab/ECOLE.

Copy number variants (CNVs) are well-known and important risk fac-
tors for many conditions such as cancer1,2, schizophrenia3,4 and
autism5. High throughput sequencing (HTS) has been the standard
technique for the detection of CNVs over the last decade. Various CNV
detection algorithms that use whole genome sequencing (WGS) data
have been very successful6–12 with sensitivity and precision values
reaching up to 96% and 97%, respectively13. This is in contrast to such
algorithmsworking on thewhole exomesequencing (WES) data, which
suffer from very low precision14–16. WGS is a more accommodating
platform for this task because it does not employ targeting probes that
introduce length, GC, and reference biases17–19. On the other hand,WES
has been more appealing in the clinic due to being more compact,
interpretable, and affordable than WGS. Unfortunately, WES technol-
ogy has limited clinical use for CNV detection due to these limitations.

We recently developed a deep-learning-based polishing approach
which has proven useful in correcting the calls ofmany state-of-the-art

WES-based germlineCNV callers usingmore trustworthy callsmade on
thematchedWGS samples16. While this was an important step forward,
there are still bottlenecks to making it a feasible option for use in the
clinic. The first problem is with the sensitivity of the results. The pol-
isher can only work on the calls (e.g., deletion) returned by the base
algorithm. It either changes these calls (e.g., to duplication) or neu-
tralizes them (e.g., to no-call). While this helps to reduce the false
discovery rate, it has a limited effect on sensitivity as a polisher cannot
make new calls (e.g., convert a no-call to deletion/duplication).
Unfortunately, sensitivity hasmostly been out of the scope of theWES-
based CNV calling domain due to very low performance. The second
problem is that even precision performance after polishing is limited
on expert-curated CNV call sets which are regarded as the golden
ground truth (up to 35%). This is because the polisher uses automated
WGS-based CNV calls as labels for model training but these labels
(calls) have a very different distribution compared to human expert
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decisions. Unfortunately, suchmanually curated call sets are extremely
small in size, whichprohibits trainingmachine learningmodels. Thus, a
caller that achieves high performance on human expert-curated CNV
call setswould enable broaduseofWES-based germlineCNVdetection
in the clinic.

Here, we present the first deep learning-based method (ECOLE:
Exome-based COpy number variation calling LEarner) which can
independently learn to perform somatic and germline CNV calling
on WES data. Our model is based on a variant of the transformer
model20 which is the state-of-the-art approach to process sequence
data in the natural language processing domain21,22. ECOLE pro-
cesses the read-depth signal over each exon. It learns which parts of
the signal need to be focused on and in which context (i.e., chro-
mosome) to call a CNV. It uses the high-confidence calls (i.e., labels)
obtained on the matched WGS samples as the semi-ground truth.
ECOLE improves the exon-wise precision and also the recall of the
next best method’s performance substantially on a benchmark of
automated WGS calls (13.5% and 16.6% improvements, respectively).
It is the only method with balanced precision and recall. Moreover,
for the first time, we also propose using transfer learning and fine-
tuning themodel parameters using a small number of human expert-
labeled samples. We show that this approach improves the precision
and recall by ~18% and ~30%, respectively in predicting human labels.
Similarly, we use the fine-tuning method to adapt ECOLE to call
somatic variations using bladder cancer samples. We show that we
are able to detect PCR-validated copy number aberrations in 13 out
of 16 bladder cancer samples while the state-of-the-art method can
only detect validated calls in 2 samples even after polishing.With the
ability to act as both a germline and a somatic CNV caller and being
flexible to adapt to diseases and human experts easily with fine-
tuning, we propose ECOLE as a feasible option to broaden the use of
exome sequencing technology in the clinic for CNV detection.

Results
ECOLE overview
Ourmodel ECOLE is a deep neural networkmodel which uses a variant
of the transformer architecture20 at its core. The transformer is a
parallelizable encoder-decoder model that receives an input and
applies alternating layers of multi-headed self-attention, multi-layer
perceptron (MLP), and layer normalization layers to it. Transformer
architecture has achieved state-of-the-art results in signal processing
over recurrent neural networks in the natural language processing

domain20 as well as recently over the convolutional-based models in
the computer vision domain23.

Figure 1 shows an overview of the system architecture. ECOLE
takes the read depth over an exon at the base pair resolution. Here, we
focus on coding regions only. Thus, the reads mapped outside the
exons and the corresponding read depth signal is ignored. This
information is transformed into a read-depth embeddingusing amulti-
layered perceptron. We use a classification token to be learned, which
is concatenated with the read depth embedding as also done in ref. 23.
However, in our setting, this token is chromosome-specific to add
further context to the classification task. Finally, the model uses a
positional encoding vector which is summed up with the transformed
read depth encoding and the classification token. This encoding
informs the model on the absolute position of the considered exon.
ECOLE applies 3 transformer blocks to this vector. Doing so, it learns
the importanceof the read depth over a specific base pair,with respect
to the read depth on other base pairs, within the same exon region.
That is, ECOLE uses an attentionmechanism to learn to focus onwhich
base pairs in which context (i.e., deletion, duplication, or no-call). This
is in analogy to natural languages where the same word (read depth)
having a different stress in different paragraphs (exons) and in differ-
ent chapters of a text (chromosomes). Finally, we perform classifica-
tion per-exon using a two-layered perceptronwhich uses the output of
the final transformer block. ECOLE uses higher confidence CNV calls
obtained on 1000 Genomes WGS data as the “semi"-ground truth (i.e.,
compared toWES) to train the model. We use the CNVnator algorithm
as the WGS-based germline CNV caller which provides has high sen-
sitivity (86–96%), and high precision (80–97%)13.

ECOLE is able to transfer the highly accurate decision-making of a
WGS-based CNV caller into theWES domain to achieve state-of-the-art
performance. Yet, no algorithm in the literature is able to achieve high
performance human expert-labeled data is available for a very small
number of samples which is insufficient for training a complex model
like ECOLE. Here, we apply transfer learning for the first time in the
CNV calling domain and create variant ECOLEmodels tailored towards
certain label sets. First, we further tune the parameters of the ECOLE
model (trained with the semi-ground truth) using only 4 human
expert-labeled samples and generate the ECOLEFT−EXPERT model. Sec-
ond, we fine-tune the parameters of again the base ECOLE model with
the MetaSV-based24 CNV call set generated by the Genome in a Bottle
(GiaB) consortium using only the NA12891 sample (Ashkenazi father)
and generate the ECOLEFT−GiaB model. Finally, to enable the model to

Fig. 1 | ECOLE’s system overview. The model inputs per exon (i) the read depth
signal (length 1000, padded and masked), (ii) chromosome number, and (iii) start
and end coordinates of the region. It maps each 1000 read depth value to a higher
dimensional vector Xembed 2 R192 (input embedding) using a fully connected (FC)
layer, which is concatenated with a chromosome-specific classification token vec-
tor of ct 2 R192 for each chromosome t. These chromosome-specific tokens enable
the model to learn the chromosome context of the exon samples to perform calls.
Transformer layers use a multi-head attention mechanism that learns the connec-
tionsof each readdepth valueofbasepairswith respect to all other basepairs in the

given exon sample. Therefore, the attention mechanism also learns to which read
depth values the classification token needs to pay attention for the respective CNV
call. To further learn the positional context of the base pairs within the chromo-
some, the start and end coordinates of the sample are used to calculate the exon-
specific positional encoding Epos 2 R192× 1001. Two matrices are concatenated and
input to a cascade of 3 transformer encoders which generate an output vector
O3 2 R192 × 1001. Then, the mapped transformation of chromosome-specific classi-
fication token c0t is fetched, which has the size R192. Finally, for the final decision
(DEL, DUP, or NO-CALL), we use 2 FC layers followed by softmax activation.
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call somatic CNVs, fine-tune the parameters of the base ECOLE model
with bladder cancer samples with semi-ground-truth labels (CNVna-
tor). We call this model ECOLEFT−SOMATIC.

ECOLE achieves high performance in WES-based germline CNV
calling
Evaluation criteria. We consider calls per exon as our fixed evaluation
unit. That is, for each exon, ECOLE makes a CNV prediction. For
compared methods, we intersect their CNV call segments with the
exons, if they report CNVs for larger regions than exons (e.g., merged
bins, exons, etc). Each exon has a unique semi-ground truth label (i.e.,
deletion, duplication, or no-call) assignedwith respect to the callmade
on WGS data of the same sample. See Supplementary Fig. 1 for the
visual demonstration of this procedure.

CNV calling performance of ECOLE on a WGS-based semi-ground
truth call set. We compare the performance of ECOLE with the state-
of-the-art germline CNV callers from the literature on the 1000 Gen-
omes WES samples (test split, see Section 4.1 for data set details). The
semi-ground truth CNV calls are obtained using CNVnator on theWGS
samples of the same individuals. We show the distribution of deletion
and duplication call sizes in the training set in Supplementary Figs. 2
and 3. Compared methods are XHMM, CODEX2, CONIFER, CNV-kit,
Control-FREEC, GATK17,25–29. Among those, CNV-kit and Control-FREEC
predict integer copy numbers while the others report the CNV (i.e.,
deletion or duplication). To be able to fairly compare the performance
with them, we discretize their predictions. We also polish the call sets
of these tools using available call-polisher DECoNT models and com-
pare ECOLE with the polished versions of the call sets of these algo-
rithms (See Section 4.2 for details of compared methods).

Figure 2 shows the precision, recall, and F1 score results for each
algorithm. Supplementary Table 1 shows the corresponding values and
Supplementary Table 2 shows the respective confusion matrices.

ECOLE achieves the best average precision values over even polished
versions of the other algorithms andprovides 13.5% improvement over
the next best performance by DECoNT polished XHMM call set
(DECoNT-XHMM). Also in terms of deletion and duplication precision,
we provide the best results with 21.9% and 5.2% improvements,
respectively. ECOLE achieves 50.1% overall recall which is a 16.6%
improvement over the second-best model, DECoNT-Control-FREEC.
While ECOLE is able to achieve high recall and it is also the firstmethod
that is able to balance precision and recall. ECOLE yields an F1-score of
60.6% which corresponds to an improvement of 25.4% over the
second-best result obtained by theDECoNT-Control-FREEC call set For
all other methods, if the precision is high, the recall is low due to the
small number of callsmade and if the recall is high, the precision is low
due to the large number of predictions made. Please also see the
precision-recall curve of ECOLE in Supplementary Fig. 4. We also
analyzed the specificity (NPA) and the negative predictive value (NPV)
performance of ECOLE and compared it with other tools. We observe
that ECOLE achieves 99.9% overall NPA and outperforms other tools
with 99.6% overall NPV. Please see Supplementary Tables 3 and 4 for
the detailed NPV and NPA results, respectively.

We also compare ECOLE with CNLearn which is a random forest-
basedmethod that creates an ensemble of fourWES-based callers (See
Section 4.2 for details). We compare our results on the 28 samples for
which we obtained results via personal communication with Santhosh
Girirajan. As shown in Table 1 ECOLE performs substantially better in
all metrics considered, and see Supplementary Table 5 for the corre-
sponding confusion matrix.

CNV calling performance generalizes to other sequencing plat-
forms and capture kits. The WES data we used to train the ECOLE
model were obtained using Illumina HiSeq 2000 and Illumina Genome
Analyzer II platforms. Here, we show that ECOLE’s performance gen-
eralizes to other sequencing platforms that are not used during

Fig. 2 | The performance comparisonof theWES-based CNV callers on the 1000
Genomes test set which contains 157 samples. Left: Unpolished results vs. ECOLE
and Right: DECoNT-polished results vs. ECOLE. CNVnator calls on the matched
WGS samples are used as the ground truth. CNVkit and Control-FREEC return exact

(integer) copy number predictions, which are discretized into deletion, duplica-
tion, and no-call. We also used the DECoNT tool to polish call sets of all considered
tools which are denoted by DECONT-tool_name. Source data are provided as a
Source Data file.
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training. Here, we test the ECOLE model using the sequencing data of
the NA12828 sample obtained using (i) BGISEQ 500, (ii) HiSeq 4000,
(iii) NovaSeq 6000, and (iv) MGISEQ 2000. We did not use any related
data for this sample during the training process.

The results are shown in Supplementary Table 6 and Supple-
mentary Fig. 5. See Supplementary Tables 7–10 for the corresponding
confusion matrices. We observe that ECOLE is the best-performing
method in all categories with overall F1-scores ranging between 49.9%
and 58.6%. Note that the performance for BGISEQ and MGISEQ plat-
forms is relatively more important for this set of experiments as these
platforms are built by an entirely different manufacturer. In BGISEQ
and MGISEQ, we observe that the ECOLE remains to be the best-
performing tool with respect to all considered benchmarks, providing
at least ~14% overall F1-score improvements over the second-best
method, DECoNT-Control-FREEC. Once again, ECOLE is the only
methodwith balancedprecision and recall. Similarly, in NovaSeq 6000
andHiSeq 4000 platforms, we observe ~40% and ~30% overall F1 score
improvements.

These results demonstrate the robustness of ourmodel in dealing
with systematic biases and noise introduced by different systems. We
show that our model can be used across platforms when there is not
enough WGS-matched data samples to train a ECOLE model obtained
on the platform of interest.

We also analyze the effect of the WES capture assay design on
ECOLE’s CNV calls. We compare ECOLE’s performances on the
NA12878 samples sequenced with NimbleGen SeqCap v3 and SeqCap
EZ Human Exome Library v3.0 capture kits which cover 99.3% and
67.8% of the exome by single probes, respectively. About 85% of pro-
besets are overlapping with each other. As it can be seen in Supple-
mentary Table 11, ECOLE achieves similar scores for both capture kits.
It’s expected because even if the breakpoint does not fall into the same
capture region within the same exon, the model is informed about the
read depth and the label information of other exons within the same
chromosome through the positional encoding and the chromosome
specific classification token. So, read depth differences and decisions
made for other exons affect the decisions made for the exons.

We observe that probe count does not substantially affect the
model performance for the SeqCap EZ Human Exome Library v3 cap-
ture kit (see Supplementary Table 12). For NimbleGen SeqCap v3,
performance on single probe-covered exons is better compared to
multiple probe-covered exons. There are only a few multiple probe-
covered exons (0.7%) by NimbleGen SeqCap v3 and theymostly reside
in chromosomes 9 and 10 (51%). As discussed in Section 2.5, ECOLE
performs relativelyworseevenwhenpredictingon samples sequenced
with the same capture kit. This might explain the reason for the low
performance in multiple probe-covered exons in NimbleGen SeqCap
v3. We also stratify exons with respect to their GC contents and
compare ECOLE’s performance on varying GC content rates for both
capture kits. We observe that GC content does not substantially affect
the overall performance. The results can be seen in Supplementary
Figs. 6 and 7.

CNV calling performance on human expert calls. Here, we use the
highly validated CNV call set produced by Chaisson et al.30 as the
ground truth to test the performance of the WES-based CNV callers.
Note that this call set contains CNV calls for 9 individuals from the
1000 Genomes Project WGS samples. This is a human expert-curated,

consensus call set that relies on the results of 15 WGS-based CNV
callers compared against structural variations generated using PacBio
with single base pair breakpoint resolution.Weuse8 samples from this
call set that have matching WES data. Calls on 4 of these samples are
used for training and the rest are used for testing (see Methods for
details). We show the distribution of deletion and duplication event
sizes of the test set (Chaisson et al.) in Supplementary Figs. 8 and 9.

Results are shown in Fig. 3. Please see Supplementary Table 13 for
the values in this figure and Supplementary Table 14 for the corre-
sponding confusion matrices. All compared CNV callers and their
polished versions have much lower F1-score performance on predict-
ing human expert calls compared to predicting the WGS-based semi-
ground truth labels (i.e., CNVnator calls). The top F1-score perfor-
mance reachesup to ~10%asopposed to ~20%, andnoalgorithmshows
balanced precision and recall. These are in line with the observations
in ref. 16.

We also observe that ECOLE exhibits lowperformance. It provides
only 3.7% overall F1 score improvement over CONIFER which is the
next bestmethod. This is expected as the label distributionon thisdata
set is different from what ECOLE is trained with. Samples from Chais-
sonet al. study have 4 timesmoreDEL calls and 2 times fewerDUP calls
compared to samples in our training set which are labeled by
CNVnator. This call set is more than two orders of magnitude smaller
than what we use to train ECOLE which prohibits training an ECOLE
model from scratch.

To address this issue, we use transfer learning and use the left-out
4 samples from Chaisson et al. to fine-tune the parameters of the
trained ECOLE model. That is, we further train the final ECOLE model
using the humanexpert labeled samples and adjust themodelweights.
We call this fine-tuned model ECOLEFT−EXPERT. Note that none of the
other methods have a way of incorporating this information.

We observe that ECOLEFT−EXPERT outperforms all other methods
including the baseline ECOLE with an overall precision of 68.7% and an
overall recall of 49.6%. It effectively balances precision and recall and
obtains the top F1-score in all categories. It provides substantial
improvements in F1-scoreswith 42.6%, 50.5%, and46.8% increases over
the next best method in deletion, duplication, and overall F1-scores,
respectively. ECOLEFT−EXPERT also achieves better NPV and NPA than
ECOLEwith 99.4% and 99.7% overall scores, respectively. These results
show that ECOLEFT−EXPERT have more accurate positive and negative
predictions than ECOLE. ECOLEFT−EXPERT reduces the number of false
negatives for duplication, and deletion calls by 1088 and 5234,
respectively. Please see Supplementary Tables 15 and 16 for detailed
NPV and NPA results, respectively.

To test if fine-tuning works on an independent call set, we fine-
tune the base ECOLE model with the call set provided by GiaB for the
Ashkenazi father (NA12891) to obtain the ECOLEFT−GiaB model. We test
this model on the Ashkenazi mother (NA12892). The base ECOLE
model achieves 0.8% precision and 8.1% recall and ECOLEFT−EXPERT

achieves 1.25% precision and 5.5% recall for this sample. On the other
hand, ECOLEFT−GiaB achieves 68.6% precision and 58.6% recall. This
result shows that even a single sample with labels is effective in con-
figuring the model to work on an independent CNV call set.

SomaticCNVcalling performance. ECOLE is a germlineCNV caller by
design as it is trained with normal tissue samples. Similar to the dif-
ference between the automated WGS-based calls and the human

Table 1 | Performance comparison of ECOLE with CNLearn on 28 samples from the 1000 Genomes Project

Tool DEL Precision DUP Precision Overall Precision DEL Recall DUP Recall Overall Recall DEL F1 Score DUP F1 Score Overall F1 Score

CNLearn 0.084 0.221 0.152 0.002 0.010 0.006 0.004 0.019 0.012

ECOLE 0.834 0.679 0.757 0.541 0.500 0.520 0.656 0.675 0.617

Note that these 28 samples are not included in the training set of ECOLE and the predictions are obtained via personal communication with the authors.
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expert calls, germline CNV calls and somatic CNV calls have different
distributions. This is due to thedifferencebetween theWES readdepth
signal of the tumor and control samples. For this reason, specific
callers or specific modes of callers are designed for somatic CNV
calling which often requires paired control and tumor samples to
account for the difference which increases the computing and
sequencing cost.

Here, using the same fine-tuning strategy, we update the para-
meters of the ECOLE model with bladder cancer samples from31 (SRA:
SRP017787). This study reports matched WES and WGS samples of 16
bladder cancer samples and RT-qPCR validated CNVs in 4 regions.
These events coincide with the following genes and affect the corre-
sponding samples: A deletion in CDKN2A/B (samples B63, B112, and
B80-0), a duplication in CCDN1 (samples B37 and B103), a duplication
inDHFR (samples B15, B18, B19, B24, B34, and B50) and a duplication in
ERBB2 (samples B9, B23, B80, B80-5, and B86) genes.

We fine-tune ECOLE to ECOLEFT−SOMATIC using (i) the CNVnator
semi-ground truth labels obtained on the WGS data of samples B112,
B24, and B80 and (ii) the corresponding WES read depth signal
obtained on the matched WES data of samples B112, B24, B80. We use
the remaining 13 bladder cancer samples to test if we can detect the
RT-qPCR-validated CNVs for each sample.We compare ECOLEFT−SOMATIC

with XHMM which consistently obtains the highest precision, its
polished call set DECoNT-XHMM, and ECOLE.

As shown in Table 2, XHMM is able to detect the validated deletion
event in the CDKN2A/B gene for one sample (B112) and does not return
any calls for the remaining 10 samples. The polished version of XHMM’s
call set verifies these calls. ECOLE does not make any calls for any of the
samples in the validated regions. On the other hand, ECOLEFT−SOMATIC is
able to detect all of the 13 validated CNVs in the corresponding 13 test
samples (all samples except the samples used in the fine-tuning). This
shows that the model is flexible and can be easily configured to make
somatic calls even without the need for a control sample.

We also computed the genome-wide precision, recall, and F1-
score performances with respect to the semi-ground truth labels
obtained on the matched WGS data of the 13 test samples obtained
using CNVnator. Please refer to Supplementary Table 17 for the cor-
responding confusion matrices. We find that ECOLE has both lower
precision and lower recall than others. Table 3 and Supplementary
Fig. 10 show that ECOLEFT−SOMATIC outperforms others and provides an
F1 score improvementof 25.2%over thenext bestmethodwhich shows
that fine-tuning improves the performance (See Supplementary
Table 17 for the corresponding confusion matrix). ECOLEFT−SOMATIC

trades some precision of ECOLE for a large gain in the recall. We
wanted tomake sure thatfine-tuningdoes not act as a simple threshold
that is relaxed so that ECOLEFT−SOMATIC makes more calls than ECOLE to
achieve higher recall. For this, we relaxed the call threshold of ECOLE
tomake itmore liberal (i.e., it makes a call even if the probability is less
than 0.33). Despite the increase in recall in this case, ECOLE was not
able to a make call for any of the validated regions. This shows us that
fine-tuning effectively teaches the algorithm about making calls in
somatic samples and does not serve as a simple filtering mechanism.

CNV calling performance on merged CNV segments
Evaluation Criteria. WES-based CNV callers oftenmake calls for exons
or bins which sometimes exceed exon bounds and then use a seg-
mentation method to merge the subsequent calls into a larger call
region.

On the other hand, the ground truth calls on the WGS data are
often shorter. A merged call on the exome can span multiple WGS-
based calls. Toassign aWGS-based semi-ground truth label to theWES-
based call, the covered calls made on the WGS data are merged and a
consensus label is assigned16. Supplementary Fig. 11 exhibits this pro-
cedure visually for further reference.

This procedure comes with the following problems: First, it
reduces the resolution in the ground truth due to smoothing. Second,

Fig. 3 | The performance comparisonof theWES-based CNV callers on the 1000
Genomes test set which contains 157 samples. Chaisson et al.’s human expert-
curated calls on the matchedWGS samples are used as the ground truth30. We also
used the DECoNT tool to polish call sets of all considered tools which are denoted

by DECONT-tool_name. ECOLEFT−EXPERT corresponds to the fine-tuned version of
ECOLE model with human expert calls. Source data are provided as a Source
Data file.
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this results in the ground truth changing with respect to the break-
points of calls made by each WES-based caller. This makes it impos-
sible to forma global ground truth call set to calculate recall. It was not
a problem earlier in the literature as methods were mostly focused on
precision. Here, we compare the precision of ECOLE with others when
we merge the exon-level calls to obtain larger call segments that also
cover noncoding regions. Note that, ECOLE works at a base-pair
resolution and makes a call per exon. Here, we merge subsequent
exons with the same call to obtain a merged CNV segment to compare
with other algorithms which often rely on a segmentation step, and
compare the precision performance.

Supplementary Table 18 and Supplementary Fig. 12 show the
precision of each algorithm for the samples in the 1000 Genomes
Dataset test split. We use themerged CNV segments as predictions for
all algorithms and use merged the semi-ground truth labels obtained
on the WGS data for the same samples. We can observe that ECOLE is
able to perform comparably to the top performing tool (DECoNT-
XHMM) in terms of precision. This is still important as ECOLE achieves
this precision quality while maintaining over 18% improvement in the
average recall metric. Evidently, ECOLE is able to make calls on a
greater scale (merged CNV segments) just as it is able to perform on
high resolution (i.e., exon-level).

We show the size distribution of deletion and duplication calls
(merged CNV segments) in the training set in Supplementary Figs. 13
and 14. We stratify the deletion and duplication performances of
ECOLE with respect to the call sizes. As shown in Supplementary
Figs. 15 and 16, ECOLE performs well for a wide range of exon sizes.
Specifically, ECOLE’s performance for deletion calls is low for small
exons (50–100 bp) and exons that are longer than 4,000 bp. This is

mainly due to the small number of samples in these size ranges. For the
former, it is also due to the signal being quite short and thus possibly
being noisy for the model to generalize. As for the duplication per-
formance,wedonot have any events at the 50–100bp range (excluded
from thefigure) and see a similardecrease of recall for very long exons.

The comparison of precision performances with CNLearn is pro-
vided in Supplementary Table 20. We observe that ECOLE has better
precision than CNLearn. It provides a 49.3% improvement on average
precision while providing a substantial average recall improvement as
discussed before.

Supplementary Table 22 and Supplementary Fig. 17 show the
precision performances of every method when using the human
expert-curated labels as the ground truth30. See Supplementary
Table 23 for the corresponding confusion matrices. We obtain a 14.3%
average precision improvement over the next best method, CONIFER.
While CONIFER achieves perfect precision in the DUP category, it has
zero precision in the DEL category and it only makes a handful of calls.
The actual second best-performing method with an acceptable num-
ber of calls is polished CODEX2 which is 30% behind ECOLEFT−EXPERT.

Supplementary Table 24 and Supplementary Fig. 18 shows the
performances of the tools on the NA12878 sample which was
sequenced on various platforms. ECOLE is able to maintain its pre-
eminence over all performance metrics when merged CNV segments
are considered. We observe that our model is providing at least ~28%
average precision improvement over the second-best performing
method in all the sequencing platforms considered.

Finally, we investigate the performance of ECOLE on single exon
events, which are critical to detect in clinical use cases. We see that
ECOLE has 56.9% overall precision and 78.7% overall recall for single

Table 2 | CNV calls for the RT-qPCR validated regions of 16 bladder cancer samples from Guo et al.31

Gene Chromosome Region Start Region End Call Sample Name XHMM DECoNT-XHMM ECOLE ECOLEFT−SOMATIC

CDKN2A/B 9 20.3 m 24,1 m DEL B63_Cancer No No No Yes

CDKN2A/B 9 20.3 m 24,1 m DEL B112_Cancer Yes Yes No N/A

CDKN2A/B 9 20.3 m 24,1 m DEL B80-0_Cancer No No No Yes

CCDN1 11 69.8 m 69.8 m DUP B37_Cancer No No No Yes

CCDN1 1 69.8 m 69.8 m DUP B103_Cancer No No No Yes

DHFR 5 79.9 m 80 m DUP B15_Cancer No No No Yes

DHFR 5 79.9 m 80 m DUP B18_Cancer No No No Yes

DHFR 5 79.9 m 80 m DUP B19_Cancer No No No Yes

DHFR 5 79.9 m 80 m DUP B24_Cancer No No No N/A

DHFR 5 79.9 m 80 m DUP B34_Cancer No No No Yes

DHFR 5 79.9 m 80 m DUP B50_Cancer No No No Yes

ERBB2 17 35 m 35.2 m DUP B9_Cancer No No No Yes

ERBB2 17 35 m 35.2 m DUP B23_Cancer No No No Yes

ERBB2 17 35 m 35.2 m DUP B80_Cancer No No No N/A

ERBB2 17 35 m 35.2 m DUP B80-5_Cancer No No No Yes

ERBB2 17 35 m 35.2 m DUP B86_Cancer No No No Yes

The table lists the genes, regions, validated calls, and the predictions of each method. Note that ECOLEFT−SOMATIC is fine-tuned on samples B112, B24, and B80. The calls of ECOLEFT−SOMATIC for these
samples are denoted as N/A as they are used during training. Bold denotes captured CNV.

Table 3 | Somatic CNV calling performance comparison on 13 bladder cancer test samples from Guo et al.31

Tool DEL Precision DUP Precision Overall Precision DEL Recall DUP Recall Overall Recall DEL F1 Score DUP F1 Score Overall F1 Score

XHMM 0.235 0.962 0.698 0.012 0.028 0.020 0.023 0.054 0.038

DECoNT-XHMM 0.193 0.950 0.572 0.010 0.023 0.017 0.019 0.045 0.033

ECOLE 0.373 0.673 0.523 0.019 0.010 0.015 0.036 0.020 0.029

ECOLEFT−SOMATIC 0.243 0.423 0.333 0.147 0.372 0.260 0.183 0.395 0.292

CNVnator calls are used as the semi-ground truth to calculate the metrics.
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exon events. Please see Supplementary Figs. 19 and 20 for the dis-
tribution of the number of exons in deletion and duplication calls in
the merged CNV segments. We stratify ECOLE’s deletion and duplica-
tion performance by the number of exons in merged segments in
Supplementary Figs. 21 and 22. We find that ECOLE’s deletion detec-
tion performance on single-exon events is lower (~50% F1-score) than
on multi-exon events (~70% F1-score). We observe an increase in
ECOLE’s deletion detection performance as the number of exons in the
call increases. On the other hand, ECOLE’s duplication detection per-
formance on single-exon events is on par with the multi-exon event
performance (~80% F1-score).

We conclude that ECOLE improves the state-of-the-art CNV calling
precision even when outputting merged CNV calls instead of exon-
level calls. Note that this is a disadvantageous benchmark setting for
our approach as our approach works on a base-pair resolution and the
merge process decreases the resolution of our calls.

Interpretability of the CNV calls
Transformer-based neural networks are inherently interpretable as
they incorporate an attention mechanism. The attention component
of the network learns which parts of the read depth signal have to be
focused on by the model to make the decision, similar to humans
selectively focusing on certain parts of an image to recognize. How-
ever, it is not straightforward to visualize the parts of the read depth
signal focused by ECOLE since the model uses a multi-head attention
mechanism which means multiple attentions are calculated over the
signal which is then concatenated and transformed (linear) into the
same dimensions as input (192 x 1001). Therefore, there is an implicitly
learned complex relationship between these attention maps that the
model uses to get the final decision. As Voita et al. demonstrate that
every attention head carries different importance for the final classi-
fication and a simple average over the multiple heads causes noisy
relevance maps for visualization32.

We use the Generic Attention-model Explainability method pro-
posed by Chefer et al. to visualize the parts of the signal that are
deemed important for making the CNV calls33. Figure 4 shows the read
depth signal observed over 15 exons. The background heatmap indi-
cates which parts of the signal are attended by the model where
brighter color indicates more attention. ECOLE classifies the examples
in the first row asNO-CALL, the second row as duplication, and the last
rowasdeletion. For the duplication calls, the sharp shifts in read depth
signals, mostly elevations, were focused by the model. Likewise, for
deletion calls, we can observe that themodel focused on locations that
have sharp downfalls of read depth values. For both cases, the rest of
the signal receives almost no attention and is ignored by the model.

For the exons with no calls, we observe that the model still focuses on
the inclines anddeclines in the readdepth signal, but other parts of the
signal receive relatively more attention compared to the exons with
calls. Since the model cannot detect a concrete pattern and is not
confident enough, it opts for a no-call.

This is a nice feature of ECOLE as the user (e.g., the clinician) can
visualize the reasoning behind ECOLE making a CNV call over an exon
and check if the change in the read depth signal is credible to make a
call. The beginning and the endof the attention ranges implicitlymight
correspond to the breakpoints as the method learns that regions with
such sharp changes are important tomake calls but this does not have
to be the case. This is because the model also takes into account the
context, which is the read depth across other exons in that chromo-
some to make a decision.

Insights from ECOLE’s CNV calls
First, we focus on ECOLE’s calls made on pseudoautosomal regions of
Chromosome X - PAR1 and PAR2 which are diploid regions and are
usually problematic for CNV callers. We compare the performance
with XHMM. The polished XHMM call set has a precision of 37% and
50% in these regions, respectively. On the other hand, ECOLE achieves
a precision of 73.6% and 73.8%, respectively. On the X chromosome as
a whole, ECOLE has an exon-wise precision of 65% whereas polished
XHMM has a precision of 16%. We find that the model is very con-
servative in making DEL calls for the males on the X chromosome. It
makes 6 DEL calls and attains a precision of 50%. While the perfor-
mance is not perfect, the result shows that the model is not making
spurious deletion calls for males due to lower read depth signal and
learns to correct this issue as expected. We also analyze the perfor-
mance of ECOLE on the segmental duplication results to see how our
models behave in hard-to-map regions. We use segmental duplication
region data from UCSC dataset (https://genome.ucsc.edu/cgi-bin/
hgTables?clade=mammal&org=Human&db=hg38&hgta_group=
allTracks&hgta_track=genomicSuperDups&hgta_regionType=
genome). ECOLE achieves a precision of 87.1% for the 157 test samples
from the 1000 Genomes dataset. These results show that ECOLE per-
forms well in this challenging setting.

Figure 5 shows the chromosome-wise stratification of the calls
where each dot represents a call made by ECOLE for each sample on
our test set (1000 Genomes WES data): Green if the call is correct with
respect to matching WGS-based semi ground-truth calls and gray
otherwise.Weobserve that themethod’s performance is lower for very
short exons (less than 100 bps). This is expected as the read depth
signal length in these regions is shorter and is more prone to noise as
the method is input with less information. The length distribution of

Fig. 4 | The figure shows the read depth signal over 15 exons with 5 NO-CALLs
(row 1), 5 DUP calls (row 2), and 5DEL calls (row 3).Heatmaps in the background
denote the relevance score of the corresponding part of the signal assigned by the
model. The brighter the color the higher the attention devoted to that region. For

each panel, the x-axis denotes the index of the base pair, the left y-axis denotes the
read depth value, and the right y-axis denotes the relevance score (attention).
Source data are provided as a Source Data file.
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exons is shown in Supplementary Fig. 23 and there are only very few
exonswith length less than 100bpwhichmakes it harder for themodel
to generalize We also observe that the success of the method varies
across chromosomes. The method performs well in chromosomes 14,
21, and Y with accuracy reaching up to 80%. On the other hand, the
performance is lower on chromosomes 9, 10, and 13, where the
accuracy is below 10%. Except for chromosome 9, these are chromo-
somes with short exons and a relatively low number of calls which
might explain why the model had difficulty in learning the true dis-
tribution of the calls.

Finally, we analyze the effect of read depth changes on the per-
formance of the model. We sub-sample the reads for the NA12892
sample (originally 200x coverage) at varying rates (80%, 60%, and
40%) and compare the performance of ECOLEFT−GiaB with decreasing
coverage on this sample. As shown in Supplementary Fig. 24, precision
and recall tend to decrease and sometimes stay constant with some
noise. The lowest F1-score is close to 40% even at 80x coverage. We
think the results show that the method can perform reasonably well
even at very low coverage data but we suggest higher coverage for
better performance.

Discussion
Copy number variants have a large spectrum of phenotypic effects
from just playing a role in genetic diversity to underlying complex
genetic disorders by affecting roughly 10% of the genome34. Accurate
CNV calling onWES data for use in clinics has been a long sought-after
goal due to cost, size, and time advantages compared to WGS. Indeed
with its high diagnostic yield, WES has been a mainstream tool in
routine practice in genomic medicine35. Yet, WES-based CNV callers
have suffered from low precision and concordance14,15. As we have
recently shown, it has been possible to transfer the satisfactory CNV
calling performance of WGS-based CNV callers to the WES-based
callers, using a deep learning-based polishing approach16. Polishing
selectively prunes out false positive CNV calls and substantially
improves precision. However, by design, a polisher cannot make new

calls as it is dependent on the calls of the base caller.While it is possible
to change a false positive to a true negative call, it is rare and it is not
possible to change a false negative call (i.e., no call) to a true positive
call. This hinders improving the recall. Here, we show that it is possible
to use deep learning techniques to process the read depth signal and
train a stand-aloneWES-basedCNV callerwhich is able to achieveWGS-
level precision and recall performance at the same time.

We use WGS-based calls as labels to train our model obtained
using CNVnator. These must be regarded as semi-ground truth rather
than absolute ground truth data as CNVnator reports an 86-96% recall
and a 3-20% false discovery rate. The ideal case is using a human
expert-curated set of calls to train ECOLE. However, such a call set is
only available for 9 samples from the 1000 Genomes Dataset30.
Unfortunately, it is orders of magnitude smaller compared to the
CNVnator call set and it is not possible to be able to train a complex
model like ECOLE. As human expert decision-making does not
resemble the decision-making of automated tools, the overall preci-
sion in predicting human expert calls even after polishing was limited
at 35%16. Here, we show that it is possible to use a pretrained ECOLE
model and further train it using this limited set of human calls. This is
called fine-tuning in machine learning literature. That is, we take the
model trained with large-but-not-fully-confident WGS-based calls and
then continue training with small-but-confident human expert calls.
We show that fine-tuned ECOLE (ECOLEFT−EXPERT) is the first method to
achieve high performance on this call set. Similarly, germline CNV
calling and somatic CNV calling differ due to the difference in typical
read depth signatures between a control and a tumor sample. We use
the fine-tuning strategy to convert ECOLE, which is a germline CNV
caller, into a somatic CNV caller using matched WES and WGS tumor
samples. ECOLEFT−SOMATIC is specific to bladder cancer as the sampleswe
used were as such. However, the storage, computational and time cost
of configuring ECOLE into any cancer type of interest is very low as the
model requires only a few samples andonly a fewepochs for themodel
update. We think with high performance on human expert call set and
the ability to perform accurate somatic CNV calling, ECOLE is a

Fig. 5 | Eachdot in thisfigure representsaCNVcall by ECOLE for each sampleon
our test set (1000GenomesWESdata).The ground truth is theCNV callsmadeby
CNVnator on the correspondingWGS samples.We separated each call basedon the
chromosomes. The y-axis of the plot shows the length of exons (bp) in the log scale.

Green dots represent a correct CNV call made by ECOLE for that sample, whereas
grey dots represent an incorrect call made by ECOLE. We added jitter to each
sample on the x-axis for better visualization. Source data are provided as a Source
Data file.
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promising candidate CNV caller to use in the clinic. If one would like to
use an ECOLE model with a different CNV calling strategy than avail-
able ECOLE models, they can label CNVs on a few WES data with their
technique and fine-tune the base ECOLE model. This would tweak the
decision-making of ECOLE towards their strategy. The tool is easily
configurable to other specific CNV calling techniques without gen-
erating WES data.

We observe some limitations and potential future directions. For
instance, very short exons are more difficult for ECOLE to generalize
and the performance is relatively stable across exon sizes otherwise
(Supplementary Figs. 15 and 16). The performance is relatively lower
for chromosomes with a small number of examples. While ECOLE is
released as an organism or condition-agnostic tool for broad use, it is
possible to incorporate prior condition-specific knowledge into the
model tomake it work in amore optimized fashion for such regions or
conditions. For instance one can group certain nearby exons to have a
longer and more informative read depth signal or one could let the
chromosome-specific tokens be shared across some chromosomes to
increase the performance in relatively low-performing chromosomes.
The model is designed to work with the read depth signal only but
using more information from the aligner would potentially benefit the
calling performance and may enable detecting balanced rearrange-
ments such as flagging regions with split reads, discordant read pairs
or reads with aberrant mapping orientation.

Methods
Data Sets
Training and test sets from the samples in the 1000 Genomes
Project. We use 707 samples from the 1000Genomes Project36 to train
and test ECOLE. This corresponds to samplesHG00096 toHG02356 in
alphabetical order. We use both the WES and the WGS data for each
sample. TheWES data were sequencedwith Illumina GenomeAnalyzer
II and Illumina HiSeq 2000 while the WGS data were generated using
NovaSeq36 and for WES data NimbleGen SeqCap v3 capture kit was
used. The average read depth is 50× for WES and 30× for WGS data
with average read lengths of 76 bps and 100 bps, respectively. BWA-
MEM is used for alignment onGRCh3837.We use theCNVnator13 tool to
call CNVs on the WGS data of each sample to obtain the semi-ground
truth labels. The training and test sets consist of 550 and 157 samples,
respectively.We use the training set to train and obtain the final ECOLE
model where the WES read depth is used as the input and the WGS-
based CNVnator labels are used as the semi-ground truth. The training
samples are labeled with 740,178 DEL and 953,202 DUP calls in total.
The truenegatives are the restof the exons forwhichno calls aremade.
The test set is used to evaluate the performance as shown in Figure 2
and Table 1. SupplementaryDataset 1 lists the corresponding names of
the samples. The test samples are labeled with 210,597 DEL and
282,698 DUP calls in total.

NA12878 samples for generalizability tests. We use the calls made
for the NA12878 sample to test the generalizability of ECOLE to various
sequencing platforms. This sample has WES data provided by the fol-
lowing platforms: BGISEQ 500, Illumina HiSeq 4000, MGISEQ 2000,
and NovaSeq 6000. We use this sample only for testing and its data is
not included in the training set by any means. Again, we use the
CNVnator calls on the WGS sample of NA12878 to obtain the semi-
ground truth labels per exon for the evaluation. This sample is labeled
with 1,780 DEL and 1,350 DUP calls in total.

Fine-tuning and test sets from the samples in Chaisson et al.
call set. Chaisson et al.30 provide human expert-validated consensus
calls of 15 CNV WGS callers on 9 samples from the 1000 Genomes
project. We obtained the calls made for the 8 samples, for which there
is also matching WES data in the 1000 Genomes dataset, namely:
HG00512, HG00513, HG00731, HG00732, HG00733, NA19238,

NA19239, NA19240. The calls made by Chaisson et al. on theWGS data
were used as the golden standard ground truth for all compared
algorithms and ECOLE. We used the ground truth calls made for
4 samples (NA19238, NA19239, HG00731, HG00512) to fine-tune the
parameters of ECOLE when applying transfer learning. These samples
are labeled with 16,445 DEL and 2,566 DUP calls in total. The true
negatives are the rest of the exons for which no calls are made. We
used the remaining 4 samples (HG00513, HG00732, HG00733,
NA19240) for the test (inference) and comparisonwithother tools. The
test samples are labeled with 14,496 DEL and 2,624 DUP calls in total.
See Supplementary Dataset 1 for the corresponding names of the
samples.

Fine tuning and test sets from the samples inGiaB. GiaBprovides the
MetaSV-based CNV call set for the Ashkenazi family (NA12878 - son,
NA12891 - father and NA12892 - mother). We fine-tune the ECOLE
modelwith the calls forNA12891 for 8 epochs. The training samples are
labeledwith 10,824DEL and 1,362DUP calls in total. The true negatives
are the rest of the exons forwhichno calls aremade.We test themodel
on the MetaSV-based CNV calls provided for NA12892.

Fine tuning and test sets from the samples in Guo et al. bladder
cancer call set. Guo et al. reportmatchedWES andWGS samples of 16
bladder cancer patients (accession number: SRP017787). We fine-tune
the ECOLEmodel with 3 cancer samples (samples B112, B24, B80) from
this data set31. We use the semi-ground truth labels obtained on the
matchedWGSsamples for these 3 patients forfine-tuning. The training
samples are labeledwith 23,383DEL and 282,573DUP calls in total. The
true negatives are the rest of the exons for which no calls are made.

We use the remaining 13 cancer samples for testing in two ways.
First, we check if tools make calls in the RT-qPCR-validated regions in
these samples. Then,weuseCNVnator to obtain the semi-ground truth
labels on the matched WGS samples for these 13 patients to compute
precision, recall and F1-scores. The test samples are labeled with
150,106 DEL and 974,332 DUP calls in total. See Supplementary Data-
set 1 for the respective names of the samples.

Experimental setup
Comparedmethods. We compared ECOLEwith the following state-of-
the-art WES-based germline CNV callers: XHMM v1.0, CODEX2, CON-
IFER v0.2.2, GATK v417,25,26,29. These report categorical CNV predictions
like ECOLE (i.e., deletion, duplication, or no-call). CNV-kit v0.9.7 and
Control-FREEC v11.527,28 are also WES-based germline CNV callers but
they report exact (i.e., integer) CNVs. To be able to also compare with
these two tools,wediscretize their predictions. That is, if the predicted
copy number is larger than 2, it is classified as duplication; if it is less
than 2, it is classified as deletion and no-call if it is equal to 2. We
polished the calls made by all of the aforementioned tools using
DECoNT as described in ref. 16 and used the DECoNTmodels released
on GitHub. Polished call sets of these methods are called DECoNT-
toolname (e.g., DECoNT-XHMM). We also compared ECOLE with
CNLearn v1 which learns to aggregate the calls of other WES-based
germline CNV callers (CANOES, XHMM, CONIFER and CLAMMS).
Throughpersonal communication,weobtained the calls of this tool on
28 samples in our test set.

Parameter Settings. For all samples we align, WES reads to the
reference genome (GRCh38) using BWA with the -mem option and
default parameters. We calculate the read depth using the Sambamba
tool38 with the base -L option to align the reads in the exon regions.We
ran the compared methods using their recommended settings. For
XHMM, the following parameter values were used: Pr(start DEL) =
Pr(start DUP) = 1e−08; mean number of targets is 6; mean distance
between targets is 70kb, and DEL, DIP, DUP read depth distributions
were modeled as ∼N ð�3,1Þ, ∼N ð0,1Þ and ∼N ð3,1Þ, respectively. For
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CODEX2, the minimum read coverage was set to 20. CoNIFER per-
forms SVD on the data to remove top n singular vectors. We set n to 6.
For GATK, Control-FREEC and CNV-kit, we set all parameters to default
values.We rely on the default parameter sets for themethods based on
the comparisons done in Ozden et al., (2022) on the best-performing
method, which shows that (i) the default parameter setting resulted in
thebest performanceon the 1000GenomesDatasetwhichwealsouse,
and (ii) that the polished call sets results in better performance com-
pared to the raw call set regardless of the parameter setting being
relaxed or conservative.

Training ECOLE. We trained our model using the WES data as the
training set of 550 samples from the 1000 Genomes data set. We used
the Adam optimizer39 and the model converged in 4 epochs. We used
Xavierweight initialization40.We started trainingwith a learning rate of
5⋅10−5 and used a cosine annealing learning rate schedule.

To obtain the final ECOLEFT−EXPERT model, we further fine-tuned the
ECOLE model with golden standard ground truth calls on 4 samples
obtained fromChaisson et al. as explained in the Data Sets section. We
again used Adam optimizer and cosine annealing schedule with an
initial earning rate of 5⋅10−5. The model converged in 11 epochs.

To obtain the final ECOLEFT−SOMATIC model, we further fine-tuned
the ECOLE model with the semi-ground truth calls made on 3 cancer
samples obtained fromGuo et al. as explained in the Data Sets section.
We have used the Adam optimizer and cosine annealing learning rate
scheduler with a base learning rate of 5⋅10−5, fine-tuning lasted for 11
epochs.

All models are trained on a SuperMicro SuperServer 4029GP-TRT
with 2 Intel Xeon Gold 6140 Processors (2.3GHz, 24.75M cache) and
256GB RAM. We used a single NVIDIA GeForce RTX 2080 Ti GPU
(24GB, 384Bit) for training. The initial model took approximately
15 days to converge and each fine-tuning took approximately 4 hours.
Note that users do not need to train a model from scratch and can use
the released ECOLE model for inference which is rapid. The average
time to call all CNVs per exome is ~5 mins.

Performance Metrics. ECOLE assigns a pseudo probability score for
each call to be deletion, duplication, or no-call where the event with
the largest score is the final prediction. Wemeasured the performance
of all compared methods and ECOLE using precision and recall which
are defined as follows:

Duplication precision ðPREdupÞ=
TPdup

TPdup + FPdup
ð1Þ

Deletion precision ðPREdelÞ=
TPdel

TPdel + FPdel
ð2Þ

Overall precision =
PREdup +PREdel

2
ð3Þ

Duplication recall ðRECdupÞ=
TPdup

Tdup
ð4Þ

Deletion recall ðRECdelÞ=
TPdel

Tdel
ð5Þ

Overall recall =
RECdup +RECdel

2
ð6Þ

whereTPdup≔ the number of duplication calls that are correctly called;
TPdel≔ the number of deletion calls that are correctly called;
FPdup≔ the number of duplication calls that are incorrectly called;

FPdel≔ the number of deletion calls that are incorrectly called;
Tdup≔ the number of ground truth duplication calls; Tdel≔ the number
of ground truth deletion calls.

ECOLE Architecture
Problem Formulation. Let X be the set of all exons with available read
depth signal and Xi indicate the ith exon where i∈{1,2,....,N} and N = ∣X∣.
Every Xi is associated with the following features: Xi

chr , X
i
start , X

i
end and

Xi
RDSeq. X

i
chr is the chromosome of the exon where chr∈ {1, 2, 3,…,24}.

23 and 24 represent chromosomes X and Y, respectively. Xi
start , X

i
end

are the start and end coordinates of the exonic region. Xi
RDSeq is a

standardized vector of read depth values at a base pair resolution.
Standardization is performed for every read depth value using the
global mean and standard deviation of read depth values in the
training data. EveryXi

RDSeq is −1 padded from left to have themaximum
length of 1000. We experiment with different maximum length values
and proceed with 1000 as, overall, it performs best for ECOLE. Please
see Section 3.5 of the Supplementary Text for these experiments. For
exons longer than 1000 bps, they are considered if the non-zero read-
depth values in that exon are of length < 1000. Yi represents the cor-
responding ground truth label for exon i, either obtained from
CNVnator or from Chaisson et al. depending on the application. Let
Ŷ
i
= f ðXi,θÞ be the CNV prediction (i.e deletion, duplication, no-call)

using the model f (a multi-class classifier) which is parameterized by θ.
The goal is tofind themodel parameters θ thatminimize thedifference
betweenpredicted exon-level CNV labels and their ground truth labels.

Model Description. We illustrate the overview of the model in Fig. 1.
Each exon i is associated with the vector Xi

RDSeq 2 R1000× 1 which
represents the read depth signal in that region.

First, ECOLEmaps each readdepth value jof the readdepth vector
for the ith exon (Xi

RDSeq½j�) into a higher dimension H = 192 by using a
fully connected neural network (see Eq. (7)).

FFN Xi
RDSeq½j�

� �
= Xi

RDSeq½j� �W +bT
� �T

, W 2 R192 × 1,b 2 R192,j 2 ½1,1000�
ð7Þ

We refer to the transformed form of the full vector Xi
RDSeq as the

input embedding and denote it with Xi
embed 2 R192 × 1000 (see Eq. (8)).

Xi
embed = FFNðXi

RDSeq½1�Þ . . . FFNðXi
RDSeq½1000�Þ ð8Þ

ECOLE employs two techniques to learn the context in which the
read depth signal indicates a copy number variation. First, it learns a
Chromosome Specific Classification Token matrix C 2 R192 × 24 where
each chromosome k is represented with a column vector ck of size 192.
That is, ck =C[:,k] where ck 2 R192. The vector for the chromosome in
which exon i resides (cX

i
chr ) is concatenated with Xi

embed to obtain
X̂
i
embed 2 R192 × 1001 (see Eq. (9)). This joint matrix lets the model learn

the meaning of the read depth vector in the context of different
chromosomes to be able to distinguish chromosome-specific read
depth patterns and model the variance across chromosomes.

X̂
i
embed =X

i
embedc

Xi
chr ð9Þ

The second technique is using a positional encoding which
enables the model to learn the relative locations of the read depth
values with respect to each other and absolute position in the entire
exome sequence and extract the position meaning that contributes to
calling CNVs. In thiswork, for an exon i, we create a location vector vof
length 1001. We use sine and cosine functions of different radial fre-
quencies similar to the version in20 to create the positional embedding
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matrix Ei
pos 2 R192 × 1001 as done in Eqs. (10) and (11).

Ei
pos½loc,j�= sinðloc=109*2j=HÞ, loc 2 f1, . . . ,1001g,j 2 f1, . . . ,H=2g

ð10Þ

Ei
pos½loc,2j + 1�= cosðloc=109*2j=H Þ, loc 2 f1, . . . ,1001g,j 2 f1, . . . ,H=2g ð11Þ

To serve as an intuition,we could assume thatpositional encoding
is a clock, then loc and j are hour and minute hands, respectively.
Moving along the loc (i.e., over read depth embedding) and j (i.e.
between 1 and latent dimensionH) values is basically rotating the hour
and minute hands with varying frequencies. The constant 109 allows
the encoding to uniquely map the start and end coordinates,Xi

start ,
Xi
end , whichhave a range of [14.6 ⋅ 103, 290 ⋅ 106). This encoding enables

themodel to get positional and deal with the inherent noise in varying
read depth values. This matrix is summed with X̂

i
embed to obtain the

input to the transformer Oi
0 2 R192 × 1001 (see Eq. (12)).

Oi
0 = X̂

i
embed +E

i
pos

ð12Þ

ECOLE uses an efficient variant of the Transformer architecture41

(only the encoder part). The encoder consists of a sequence of a par-
allel attention block (Multi-head attention,MHA(h)) followed by amulti-
layered perceptron (MLP) block. The multi-head attention mechanism
lets the model learn the pertinence of read depth values in a chro-
mosome in relation to deletion and duplication events (see Fig. 1 and20

for MHA details). That is, it learns which parts of the signal it needs to
focus on. An MHA block uses 8 parallel attention layers (i.e. heads).
Firstly, the inputs for MHA are layer normalized (LN) and are propa-
gated through the MHA block. Later, the outputs of these blocks are
summed with the input of the respective LN block. The summed out-
put is again layer normalized and then passed through an MLP. The
outputs of theMLP block are summed with the input of the respective
LN block to produceOi

1 2 R192 × 1001 (See Eqs. (13) and with the input of
the respective LNblock (14)). This procedure is repeated L timeswhere
L = 3 in our application.

Oi
‘

0
=MHAðLNðOi

‘�1ÞÞ+Oi
‘�1, ‘= 1,::::,L ð13Þ

O‘ =MLPðLNðOi
‘

0ÞÞ+Oi
‘

0
, ‘= 1,::::,L ð14Þ

ECOLE passes the column vector corresponding to the chromo-
some of exon i (O3½: ,Xi

chr � 2 R192 × 1) through an MLP to obtain prob-
abilities for deletion, duplication and no-call events and maximum
among these is returned as the prediction for that exon i (see Eq. (15)).

Ŷ
i
= argmaxðSof tmaxðMLPðOi

3½:,Xi
chr �ÞÞÞ Ŷ

i 2 fDEL,DUP,NOCALLg ð15Þ

Processing exons with no read depth available
We developed ECOLE to perform CNV calling on exon target regions
using read depth information, however, it is important to note that
about 20%of the exon targets do not contain readdepth sequences on
average per sample. In order to perform CNV calling to these regions,
we have appliedmajority voting on the predictions of ECOLE based on
the 3 nearest neighbor exon targets. Supplementary Fig. 25 demon-
strates this procedure visually for further reference.

Baseline
We compare ECOLE with various other models which can be con-
sidered as baselines to show the need for a deep-learning method and
a complex architecture like transformers to call CNVs onWES data. We
used the same training and test set we used for training and testing of
ECOLE in all experiments.

First, we use a linear SVM classifier and XGBoost as baseline
methods. Please see Section 3.2 of the Supplementary Text for the
details of hyperparameter selection for baseline models. We input the
read depth signal per exon and use the exon level semi-ground truth
CNVnator labels for performance comparison on the 1000 Genomes
Dataset test set as done in Section 2.2. The precision and recall per-
formances are shown in Supplementary Table 29. We observe that
SVMachieves 58.5%overall recall, and 3%precision. On the other hand,
XGBoost method achieves relatively higher precision rate, which is
64%, yet it is only able to yield 1.9% recall. ECOLEhas 62% recall and 77%
precision which corresponds to a 63.3% and 65% F1-score improve-
ments over SVM and XGBoost baseline methods, respectively. This
shows the need for a complex model like ECOLE to learn an attention-
based embedding on the read depth signal to be able to accurately
classify exons as deleted or duplicated.

We also compare ECOLE’s transformer-based architecture against
convolutional neural network (CNN)-based solutions. First, we train a
CNN model which only takes the read depth as input. We train two
models separately (i) for chromosome 21 where ECOLE performs the
best (88.4% F1-score), and (ii) for chromosome 10 where ECOLE per-
forms the worst (6.67% F1-score). We observe that CNN-based models
perform much worse than ECOLE in their respective chromosomes.
Please see Supplementary Table 30 for detailed results and Supple-
mentary Note 3.3 for the details about the CNN architecture.

We also train aCNNmodelwhich considers all chromosomes. This
CNNmodel takes the read depth vector as input and the chromosome
information is provided as a one-hot encoded vector which is con-
catenated with the read depth vector. The model achieves 5.9% pre-
cision and 6.5% recall (6.2% F1-score). We think that even though
regions with a sharp read depth change is very important for CNV
prediction, it’s not enough. The context, that is the, read depth infor-
mation of other exon regions is also important for successful predic-
tion. The details about the architecture of the CNNmodel can be seen
in Supplementary Notes 3.4.

Ablation study and the need for a complex model like ECOLE
ECOLEuses a rather customizedmodel of the transformer architecture
which was first introduced in ref. 42 and proved its success in various
domains from NLP to computer vision. Our transformer encoder uses
(i) a chromosome-specific classification token, instead of a fixed clas-
sification token, and (ii) an exon-specific positional encoding instead
of a fixed positional encoding to learn which parts of the signal are
important for a CNV call and in which context (i.e., chromosome). To
show the need for these context-specific techniques, we train a stan-
dard transformer architecture that does not have the aforementioned
customized methods and which is otherwise identical to our model.
That is, we use a standard 3-layered transformer model with fixed
positional encoding. The model generates an output vector, which is
the standard classification token (i.e., not chromosome-specific) of
size 2 R192. We start the training with the learning rate of 5 ⋅ 10−5 and
use a cosine annealing scheduler. We used the Adam optimizer during
the training of the base model, and the model converged after 6
epochs.

Supplementary Table 31 shows the precision and recall perfor-
mances of the baseline transformer model and ECOLE. We observe
that ECOLE is able to outperform the baseline by a large margin, pro-
viding 30% average precision and 62% average recall improvements.
The chromosome-specific classification token provides a good prior
for the model to learn the relevance of each read depth value in the
context of their respective chromosome. Moreover, exon-specific
positional encoding renders the model to differentiate the absolute
position of the exon samples along the exome. Hence, it gives the
model the capacity to learn the context of the read-depth values along
with the chromosome-specific classification tokens. As the read-depth
samples can have variant distributions depending on the context (i.e.,
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absolute position and the chromosome), the model is able to learn
context-dependent sample distributions.

We also consider a version of themodel where we provide the GC
content of each exon to the model concatenated with the read depth
vector. The rest of the model is kept the same. Here, we want to see if
the model can use this extra information about the structure of the
sequence to make better predictions. We obtained 52.2% DEL and
49.3% DUP F1-scores. As the performance does not improve compared
to the original model, we prefer the model that does not use the GC
content information.

Interpretability of the ECOLE
In order to explain the predictions of our model, we use the Generic
Attention-model Explainability method33. This method is class-depen-
dent, uses label information, and it is a saliencymethod that highlights
the relevant parts of the input for the classification that predicts the
respective label. In addition, we use the AttentionmatricesA of the last
Transformer blocks and obtain the specified relevance scores. The
derivations for the relevancy scores for the efficient variant of the
Transformer block, i.e. Performer41 can be seen in Supplementary
Note 3.1.

Statistics & reproducibility
We used aligned WES reads from 1000 Genomes Project. We selected
the first 1000 samples from the alphabetically ordered list of WGS
samples (HG00096 to HG02356). We used 707 samples out of these
1000, for which matched WES samples were available. No data were
excluded from the analyses. We randomly selected 550 WES samples
for training and 157 for testing. The investigators were not blinded to
allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data for reproduction is available under the license CC BY-NC-
SA 2.0 at https://zenodo.org/record/8202814(https://doi.org/10.5281/
zenodo.8202814). Please note that ECOLE software is completely free
for academic usage. However, it is licensed for commercial usage.
Source data are provided with this paper for reproducing all Figures in
the manuscript and Supplementary Info.

Features: The input features of the models is theWES read depth
data which is generated using the Sambamba tool (default options).

The 1000GenomeProject sample nameswe used to train and test
the models are provided in the Methods section which are available at
the 1000 Genomes Project. WES andWGS samples are available at the
following links: https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000_genomes_project/data/.

GiaB CNV call sets for the Ashkenazi family are available under
accession codes SAMEA1573615 and SAMEA1573616 [https://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/
Supplementary_Information/metasv_trio_validation/]. Guo et al. sam-
ples are available at Sequence Reads Archive under accession code
SRP017787 [https://www.ncbi.nlm.nih.gov/sra/?term=SRP017787].

Labels: The labels we use for training, fine-tuning, and testing are
available at the following link: https://zenodo.org/record/8202814.
The 1000 Genome Project labels, Guo et al., Chaisson et al. (under
accession code Nstd152 [https://www.ncbi.nlm.nih.gov/dbvar/?term=
nstd152]) and Ashkenazi family labels can be accessed on the Zenodo
repository.

Code availability
Software: ECOLE is implemented and released at https://github.com/
ciceklab/ECOLE43 under CC-BY-NC-ND 4.0 International license. The

scripts used to generate the data for all figures and tables in the
manuscript and the source code are provided at https://zenodo.org/
record/8202814 https://doi.org/10.5281/zenodo.8202814.
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