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UniKP: a unified framework for the
prediction of enzyme kinetic parameters

Han Yu 1,2,3,4,9, Huaxiang Deng1,3,4,9, Jiahui He1,3,4, Jay D. Keasling 4,5,6,7,8 &
Xiaozhou Luo 1,2,3,4

Prediction of enzyme kinetic parameters is essential for designing and opti-
mizing enzymes for various biotechnological and industrial applications, but
the limited performance of current prediction tools on diverse tasks hinders
their practical applications. Here, we introduce UniKP, a unified framework
based on pretrained language models for the prediction of enzyme kinetic
parameters, including enzyme turnover number (kcat), Michaelis constant
(Km), and catalytic efficiency (kcat / Km), from protein sequences and substrate
structures. A two-layer framework derived from UniKP (EF-UniKP) has also
been proposed to allow robust kcat prediction in considering environmental
factors, including pH and temperature. In addition, four representative re-
weighting methods are systematically explored to successfully reduce the
prediction error in high-value prediction tasks. We have demonstrated the
application of UniKP and EF-UniKP in several enzyme discovery and directed
evolution tasks, leading to the identification of new enzymes and enzyme
mutants with higher activity. UniKP is a valuable tool for deciphering the
mechanisms of enzyme kinetics and enables novel insights into enzyme
engineering and their industrial applications.

The study of enzyme catalysis efficiency to a specific substrate is a
fundamental biological problem that has a profound impact on
enzyme evolution, metabolic engineering, and synthetic biology1–3.
The in vitro measured values of kcat and Km, themaximal turnover rate
and Michaelis constant, are the indicators of the efficiency of an
enzyme in catalyzing a specific reaction and can be used to compare
the relative catalytic activity of different enzymes4. Currently, the
measurement of the enzyme kinetic parameters relies primarily on
experimental measurements, which are time-consuming, costly, and
labor-intensive, resulting in a small database of experimentally mea-
sured kinetic parameters values5. For instance, the sequence database

UniProt contains over 230 million enzyme sequences, while enzyme
databases BRENDA and SABIO-RK contain tens of thousands of
experimentally measured kcat values6–8. The integration of Uniprot
identifiers in these enzyme databases has facilitated the connection
betweenmeasuredparameters andprotein sequences.However, these
connections are still far smaller in scale compared to the number of
enzyme sequences, limiting the advancement of downstream appli-
cations such as directed evolution and metabolic engineering.

Researchers have attempted to utilize computational methods to
accelerate the process of enzyme kinetic parameters prediction, but
current approaches have exclusively concentrated on addressing one
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of these issues, overlooking the similarity of both tasks in reflecting the
relationship of protein sequences towards substrate structures. A
statistical approach has been proposed to infer Km values across spe-
cies based on the known parameters of related enzymes9. An
organism-independent model has been built which successfully pre-
dicts Km values for natural enzyme–substrate combinations using
machine learning and deep learning10. Machine learning has also been
demonstrated to be able to predict catalytic turnover numbers in
Escherichia coli based on enzyme biochemistry, protein structure, and
network context11. In addition, a deep learning-based method for kcat
prediction from substrate structures and protein sequences has been
developed, enabling high-throughput prediction12. Despite various
prediction tools for kcat and Km, they often fail to accurately capture
the relationship between these two parameters. Consequently, the
calculated kcat / Km values from these models often deviate sig-
nificantly from the experimental measurements. This discrepancy
highlights the importance of a demonstration of a unified method for
calculating or predicting kcat / Km, which is a crucial parameter
reflecting catalytic efficiency. As a result, this has hindered the prac-
tical application of these methods in biotechnological and industrial
contexts. Additionally, current models have failed to account for
environmental factors such as pH and temperature, which can sig-
nificantly impact enzyme kinetics13. Furthermore, the present models
struggle to address high-value prediction problemsdue to imbalanced
datasets, despite their importance in various biological research
applications14,15. All these limitations have confined the current use of
these tools to data analysis and model development, with no sub-
stantial impact on practical challenges such as enzyme discovery and
directed evolution, which are of significant relevance to asso-
ciated fields.

To overcome these limitations, a unified enzyme kinetic para-
meters prediction model with high accuracy needs to be developed.
Recent breakthroughs in deep learning, particularly in the area of
unsupervised learning from natural language processing, have led to
novel data representation approaches that have been applied to bio-
logical problems with great success16–20. The advancement of pre-
trained language models for proteins and small molecules,
represented using SMILES notation18–20, has illuminated the path
towards a more effective model for predicting enzyme kinetic para-
meters. The absence of datasets documenting the impact of environ-
mental factors on kinetic parameters constitutes a major impediment
to the prediction of parameter values under these conditions. Con-
structing a dataset that encompasses this information, and employing
a two-layer ensemblemodel that integrates information frommultiple
models12,21, is crucial to enhance the accuracy of these predictions. The
distribution of experimentally measured kinetic parameters is
imbalanced12, characterized by a scarcity of high-value kinetic para-
meter samples, much like imbalanced and long-tailed datasets com-
monly encountered in the field of visual recognition, where a few
categories are heavily populated, while most categories only contain a
limited number of samples22. In visual recognition problems,
researchers have utilized various techniques to improve the accuracy
of the model in predicting high values23,24. One effective and straight-
forward approach is the re-weighting method, which enhances the
significance of underrepresented categories by increasing their weight
in the model25.

Here, we present a pretrained language model-based enzyme
kinetic parameters prediction framework (UniKP), which improves the
accuracy of predictions for three enzyme kinetic parameters, kcat, Km,
and kcat / Km, from a given enzyme sequence and substrate structure.
We conducted a comprehensive comparison of 16 diverse machine
learning models and 2 deep learning models, and demonstrated its
remarkable improvement over previous prediction methods. Addi-
tionally, we have proposed a two-layer framework to consider envir-
onmental factors and validated its effectiveness on two representative

datasets, including pH and temperature. We also applied typical re-
weighting methods to the kcat dataset and successfully reduced the
error of high value prediction. Lastly, we employed UniKP to assist the
mining and directed evolution of tyrosine ammonia lyase (TAL),
leading to the discovery of one TAL homolog from a database exhi-
biting significant enhanced kcat, and the identification of two TAL
mutants with the highest kcat / Km values reported to date. We also
validated that EF-UniKP consistently identifies highly active TAL
enzymes with remarkable precision, when accounting for environ-
mental factors.

Results
Overview of UniKP
The UniKP framework is comprised of two key components: a
representation module and a machine learning module (Fig. 1). The
representationmodule is used to encode information about enzymes
and substrates using pretrained language models. Specifically, the
amino acids in the enzyme sequence are transformed into a 1024-
dimensional vector using the ProtT5-XL-UniRef50 model (Fig. 1a).
Mean pooling is applied to obtain per-protein representation, which
has been found to be the most effective method for per-protein
tasks18. On the other hand, the substrate structure is converted to a
simplified molecular-input line-entry system (SMILES) format and
processed by the pretrained SMILES transformer, resulting in a 256-
dimensional vector for each symbol. The mean and max pooling of
the last layer and the first outputs of the last and penultimate layers
are then concatenated to generate a per-molecular representation
vector of 1024 dimensions20 (Fig. 1b). The concatenated representa-
tion vector of both the protein and substrate are then fed into the
following machine learning module. Here, the projections of
t-distributed Stochastic Neighbour Embedding (t-SNE) with different
perplexity and iterations demonstrated that a solely concatenated
representation vector cannot discriminatewell between high and low
kcat values26, further emphasizing the need for the machine learning
model (Supplementary Fig. 1).

For the machine learning module, in order to explore the per-
formance of different models, we conducted a comprehensive com-
parison of 16 diverse machine learning models, including basic linear
regression to complex ensemble models, as well as 2 representative
deep learning models, the Convolutional Neural Network (CNN) and
the Recurrent Neural Network (RNN) (Fig. 2). Overall, the results
showed that simpler models like linear regression displayed relatively
poor prediction performance (Linear Regression R2 = 0.38). In con-
trast, ensemble models demonstrated better performance. Notably,
random forests and extra trees significantly outperformed other
models, with extra trees exhibiting the highest performance (Extra
Trees R2 = 0.65). However, both categories of deep learning models,
due to their demanding requirements for intricate network design and
fine-tuning, did not perform as effectively in comparison (CNN
R2 = 0.10, RNN R2 = 0.19). The results confirmed the significant advan-
tage of ensemble models, with the extra trees model standing out as
the best model. It’s worth noting that the datasets are relatively small
(~10 k) and the features are high-dimensional (2048d), making
ensemble models more suitable. Simpler linear models exhibit lower
fitting capability, while more complex neural networks require a large
amount of labelled data, potentially making them unsuitable for this
problem. Therefore, the concatenated representation vectors of both
the protein and substrate are subsequently input into the interpretable
extra trees model for the prediction of three distinct enzyme kinetic
parameters (Fig. 1c).

Furthermore, to address two specific subproblems, we have fine-
tuned the model for a better enzyme kinetic parameter prediction.
One focuses on improving prediction performance by considering
environmental factors (Fig. 1d). The other emphasizes optimization
within the high-value range with higher error (Fig. 1e).
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High accuracy of UniKP in enzyme kcat prediction
We first validated our proposed framework, UniKP, on a kcat prediction
task, using the DLKcat dataset, which comprises 16,838 samples. The
results were comparedwith thoseofDLKcat using the same evaluation
metrics in the original publication12. Without any additional optimi-
zation of parameters, the average coefficient of determination (R2)
value on the test set from five rounds of random splitting was 0.68, a
20% improvement over DLKcat (Fig. 3a). Additionally, the highest
value of DLKcat in these five rounds was 16% lower than the lowest
value of UniKP, further demonstrating the robustness of UniKP. The
rootmean square error (RMSE) between predicted and experimentally
measured kcat values was also lower in UniKP compared to DLKcat,
both in the training and test sets (Fig. 3b). We found a strong corre-
lation between the predicted and experimentally measured kcat values
in the test set (Fig. 3c; Pearson correlation coefficient (PCC) = 0.85) and
the entire dataset (Supplementary Fig. 2a; PCC=0.99), which were
higher than those of DLKcat by 14% and 11%, respectively. Additionally,
UniKP showed better prediction performance on amore stringent test
set where either the enzyme or substrate was not present in the
training set (Supplementary Fig. 2b; PCC=0.83 vs. 0.70). UniKP also
demonstrated superior performance in various kcat numerical intervals
(Fig. 3d). In conclusion, UniKP outperforms DLKcat in enzyme kcat
prediction across multiple evaluation metrics.

Furthermore, to demonstrate UniKP’s ability to distinguish
enzymes fromdifferentmetabolic contexts, we separated the enzymes
and their corresponding substrates into two categories, primary cen-
tral and energy metabolism, and intermediary and secondary meta-
bolism. Theoretically, the former should exhibit higher values27,28. Our
results found that theprimarycentral and energymetabolism category
was significantly higher than the latter, consistent with expectations
(Fig. 3e; p = 9.33 × 10−8). To gain insights into the model’s learning
process, we used SHapley Additive exPlanations (SHAP) to analyze
feature importance29. Higher values indicate more significant features.
We calculated the SHAP value of each enzyme and substrate feature in
the test set based on the trained UniKP. Our findings showed that 15

out of the top 20 features belonged to the enzyme category, while the
rest belonged to the substrate (Fig. 3f). This confirms that the
embedded enzyme features are more critical than those of the sub-
strate. Furthermore, among the top 20 features, 12 were positively
correlatedwith predicted kcat values, and 8were negatively correlated.
These results indicate that UniKP has a distinct preference for enzyme
features, underscoring the decisive role of enzyme information.

In order to evaluate the potential data leakage, we used a reported
method to compare the performance of UniKP with the geometric
mean of experimental data which represent the potential data
leakage30. The result demonstrated a clear advantage (higher correla-
tion and lower RMSE) of UniKP over the geometric means, indicating
the absence of data leakage in the training process (Supplemen-
tary Fig. 3).

UniKP markedly discriminates between kcat values of enzymes
and their mutants
The ability to screen mutated enzymes is crucial in the process of
enzymeevolution and its downstreamapplications. To further validate
the discriminative power of UniKP, the dataset was segregated into
wild-type and mutated enzymes based on DLKcat annotation12. The
prediction results of UniKPwere remarkable for bothwild-type (Fig. 4a
for the test set, PCC=0.78; Supplementary Fig. 4a for the whole
dataset, PCC =0.98) and mutant enzymes (Fig. 4b for the test set,
PCC =0.91; Supplementary Fig. 4b for the whole dataset, PCC=0.99).
On the test set for both wild-type and mutant enzymes, the PCC of
UniKP was found to be 13% higher than that of DLKcat (Fig. 4c).
Moreover, we obtained R2 values of 0.60 for wild-type enzymes and
0.81 formutant enzymes, alongwith RMSE values of 0.90 for wild-type
enzymes and 0.67 formutant enzymes. In order to further validate the
ability of the proposed UniKP framework, we conducted additional
experiments. We randomly selected 5 groups of enzymes for each
category of Enzyme Commission (EC) number, with each group con-
sisting of two enzymes and their corresponding kcat values for one
specific substrate6. Our frameworkwas found to outperformDLKcat in

Fig. 1 | The overview of UniKP. a Enzyme sequence representation module:
Information about enzymes was encoded using a pretrained language model,
ProtT5-XL-UniRef50. Each amino acid was converted into a 1024-dimensional vec-
tor on the last hidden layer, and the resulting vectors were summed and averaged
by mean pooling, generating a 1024-dimensional vector to represent the enzyme.
b Substrate structure representation module: Information about substrates was
encoded using a pretrained language model, SMILES Transformer model. The
substrate structure was converted into a simplified molecular-input line-entry
system (SMILES) representation and input into a pretrained SMILES transformer to

generate a 1024-dimensional vector. This vector was generated by concatenating
the mean and max pooling of the last layer, along with the first outputs of the last
and penultimate layers. c Machine learning module: An explainable Extra Trees
model took the concatenated representation vector of both the enzyme and sub-
strate as input and generated a predicted kcat, Km or kcat / Km value. d EF-UniKP: A
framework that considers environmental factors to generate an optimized pre-
diction. It is validatedon two representative datasets: pH and temperaturedatasets.
e Various re-weightingmethods were used to adjust the sample weight distribution
to generate an optimized prediction for high-value prediction task.
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differentiating the kcat values of different enzymes for a given substrate
(Supplementary Fig. 4c; 80% vs 53%).

A two-layer framework considering environmental factors
In order to simulate amore realistic biological experiment and predict
more accurate kcat values considering environmental factors, we pro-
posed a two-layer framework called EF-UniKP (Fig. 5a). This strategy is
based on a two-layer framework that considers the influence of
environmental factors such as pH and temperature. The base layer of
the framework consists of two individual models, namely UniKP and
Revised UniKP. The UniKP was trained using a dataset without envir-
onmental information to predict a rough kcat value, while the Revised
UniKP was trained using a smaller dataset that considered an arbitrary
environmental factor, such as pH or temperature. The input of the
Revised UniKP is a concatenated representation vector of the protein
and substrate, in combination with the pH or temperature value. The
meta layer of the framework is a linear regressionmodel that takes the
predicted kcat values fromboth theUniKP andRevisedUniKP as inputs.
By considering information from both datasets with and without
environmental information, the final predicted kcat value is more
accurate.

To prospectively evaluate our proposed strategy, we assessed the
influence of pH and temperature on enzyme-substrate reactions by
creating two datasets. These contained enzyme sequences, substrate
structures, and corresponding pH or temperature values and were
sourced from UniProt and PubChem6,31. The pH and temperature
datasets comprised 636 and 572 samples, respectively, and exhibited a
wide range of values from 3 to 10.5 and 4 to 85 degrees (Supplemen-
tary Fig. 5a, b). To validate the effectiveness of the Revised UniKP, we
conducted five-fold cross-validation on both datasets. Our results
showed a strong correlation between predicted and experimentally

measured kcat values (Fig. 5b, c),with a PCCof 0.61 and0.69 for pH and
temperature, respectively. Moreover, the R2 value was 0.36 and 0.47
for pH and temperature, respectively, indicating that the Revised
UniKP performs well.

Furthermore, we divided the two datasets into training and test
sets, allocating 80% and 20% respectively. Our results on independent
test sets revealed that EF-UniKP outperforms both UniKP and Revised
UniKP (Fig. 5d;R2 = 0.44, R2 = 0.38). On the pHdataset, the R2 values for
EF-UniKP were 20% and 8% higher than for UniKP and Revised UniKP,
respectively. On the temperature dataset, the R2 values were 26% and
2% higher, respectively. This was further supported by smaller errors
and high correlation (Supplementary Fig. 6a, b). To prevent overfitting
on the training set, we performed a stricter analysis and selected only
those samples in the test set where at least either substrate or enzyme
was not included in the training set, resulting in 62 and 61 samples for
pH and temperature, respectively. Our results showed that EF-UniKP
outperformed both UniKP and Revised UniKP, with R2 values 13% and
10% higher on the pH dataset and 16% and 4% higher on the tem-
perature dataset (Fig. 5e; R2 = 0.45, R2 = 0.31). The advantages in RMSE
and PCC also confirmed the effectiveness of EF-UniKP (Supplementary
Fig. 6c, d). Overall, our newly established pH and temperature dataset
confirmed that our two-layer framework can effectively consider
environmental factors and improve model performance.

Enhancing high kcat prediction through re-weighting methods
We further analyzed the kcat value distribution of the dataset used and
found that it was highly imbalanced, with only a few samples at both
ends and most samples in the middle, resembling a normal distribu-
tion (Fig. 6a). This presented a challenge for amachine learningmodel
to extract the critical information23. However, predicting high kcat
values has been essential in enzymology and synthetic biology14,15. To

Fig. 2 | Performance comparison of different models. Comparison of RootMean
Square Error (RMSE) (a), Pearson Correlation Coefficient (PCC) (b), Mean Absolute
Error (MAE) (c), and R2 (Coefficient of Determination) (d) values between experi-
mentally measured kcat values and predicted kcat values of 16 diverse machine
learning models and 2 deep learning models. The kcat values of all samples were

predicted independently using 5-fold cross-validation. Each bar in the graph
represents the models’ performance with respect to this metric. The “Extra Trees”
model is highlighted in yellow, while other models are depicted in blue. The cor-
responding numerical values for each bar are provided on the right side. Source
data are provided as a Source Data file.
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illustrate this, we implemented five-fold cross-validation on the entire
dataset to independently scan the predicted kcat for all samples, from
which we observed that the error was higher at both ends of the
dataset compared to the middle (Fig. 6b). To address this issue, we
utilized representative re-weighting methods, including Directly
Modified sampleWeight (DMW), Cost-Sensitive re-Weightingmethods
(CSW), Class-Balanced re-Weighting methods (CBW), and Label Dis-
tribution Smoothing (LDS), on the kcat dataset24,32,33. For each method,

we applied several commonly used hyperparameters to the entire
dataset and performed five-fold cross-validation using UniKP to pre-
dict kcat values for all samples, whereas 149 samples with kcat greater
than 4 were selected to represent high kcat samples for DMW optimi-
zation and downstream comparison (Supplementary Figs. 7–11). We
found that all of these methods outperformed the initial UniKP, with
CBWbeing themost effective. The RMSE of high kcat samples was 6.5%
lower with CBW than with the initial model (Fig. 6c). We further

Fig. 4 | UniKPmarkedly discriminateskcat valuesof enzymesand theirmutants.
Scatter plot illustrating the Pearson coefficient correlation (PCC) between experi-
mentally measured kcat values and predicted kcat values of UniKP for wild type
enzymes (a) (N = 936) and mutated enzymes (b) (N = 748). The color gradient

represents the density of data points, ranging from blue (0.02) to red (0.28). c PCC
values of wild-type andmutated enzymes on the test set of DLKcat andUniKP. Dark
bars represent PCC values of DLKcat and light bars for UniKP. Source data are
provided as a Source Data file.

Fig. 3 | High accuracy of UniKP in enzyme kcat prediction. a Comparison of
average coefficient of determination (R²) values for DLKcat and UniKP after five
rounds of random test set splitting (n = 1684). b Comparison of the root mean
square error (RMSE) between experimentally measured kcat values and predicted
kcat values of DLKcat and UniKP for training (n = 15,154) and test sets (n = 1684).
Dark bars represent RMSE of DLKcat and light bars for UniKP. c Scatter plot illus-
trating the Pearson coefficient correlation (PCC) betweenexperimentallymeasured
kcat values and predicted kcat values of UniKP for the test set (N = 1684), showing a
strong linear correlation. The color gradient represents the density of data points,
ranging from blue (0.02) to red (0.28). d Comparison of RMSE between experi-
mentally measured kcat values and predicted kcat values of DLKcat and UniKP in
various experimental kcat numerical intervals. Dark bars represent RMSE of DLKcat
and light bars for UniKP. e Enzymes with significantly different kcat values between
primary central and energy metabolism, and intermediary and secondary

metabolism. An independent two-sided t-test to determine whether the means of
two independent samples differ significantly. Primary central and energy metabo-
lism (n = 3098) and intermediary and secondary metabolism (n = 4201) were
examined in this analysis. f Shapley additive explanations (SHAP) analysis for the
top 20-feature Extra Trees model. The impact of each feature on kcat values is
illustrated through a swarm plot of their corresponding SHAP values. The color of
the dot represents the relative value of the feature in the dataset (high-to-low
depicted as red-to-blue). The horizontal location of the dots shows whether the
effect of that feature value contributed positively or negatively in that prediction
instance (x-axis). In each box plot (a, e), the central band represents the median
value, the box represents the upper and lower quartiles and thewhiskers extendup
to 1.5 times the interquartile range beyond the box range. Source data are provided
as a Source Data file.
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subdivided the high kcat value samples into two numerical intervals,
higher than 5 and between 4 and 5, and found that the smaller errors in
both intervals confirmed the effectiveness of our approach (Supple-
mentary Fig. 12). Overall, our use of representative re-weighting
methods enabled us to adjust the sample weight distribution and
effectively improve high kcat value prediction.

Unified framework for Km and kcat / Km predictions
Next, we investigated the performance of UniKP on Km and kcat / Km

prediction. Although kcat is traditionally considered as independent
of Km, in light of the principle that the primary sequence of a specific
protein determined its three-dimensional structure, and therefore its
function, we believed that hidden information in the primary
sequence could also be used to predict itsKm and kcat / Km values. For
the prediction of Michaelis constant Km values, a reported repre-
sentative dataset was selected10, consisting of 11,722 natural enzyme-
substrate combinations and their corresponding Km values. The
dataset was randomly divided into a training set (80%) and a test set
(20%) which was used to train a predictor capable of predicting Km

with enzyme sequence. The results showed that the Km predictor
trained by UniKP outperformed most baseline models and achieved
the prediction performance of the state-of-the-art model, with
R2 = 0.530 and a RMSE value smaller than or equal to the previous
models on the test set (Fig. 6d, e). There was also a high correlation

between the predicted Km values and experimentally measured Km

values (PCC = 0.73).
For kcat / Km prediction, an additional dataset was collected from

BRENDA, UniProt and PubChem6,7,31, containing 910 enzyme sequen-
ces, substrate structures, and their corresponding kcat /Kmvalues. Five-
fold cross-validation was performed and a high correlation was found
between the predicted values and real values (Fig. 6f; PCC=0.81). The
R2 was 0.65 and the RMSEwas 1.07. As there was no predictor available
to directly predict kcat / Km value from enzyme sequence and
substrate structures, the state-of-the-art kcat predictor and Km pre-
dictor were used to predict the corresponding kcat and Km parameters
which were used to calculate the kcat / Km values10,12. The PCC of these
calculated kcat / Km values with the corresponding experimentally
measured ones was −0.02, demonstrating the significant advantages
of UniKP. The advantage of UniKP can be attributed to the high pre-
diction consistency of its unified framework. In conclusion, the gen-
eralizability of UniKP on similar tasks with small molecule-protein
interactions was verified.

UniKP assisted enzyme mining and evolution
Discovering alternative enzymes with enhanced activity for specific
biochemical reactions and improving known enzyme efficiency
through directed evolution are vital in synthetic biology and bio-
chemistry research. However, enzymemining and evolution processes

Fig. 5 | A two-layer framework considering environmental factors. aA two-layer
framework called EF-UniKP that consists of a base layer and a meta layer. The base
layer contains two models, namely UniKP and Revised UniKP. The UniKP takes the
concatenated representation vector of the enzymeand substrate as input, while the
Revised UniKP uses a concatenated representation vector of the enzyme and
substrate, combined with the pH or temperature value. Both models are trained
using the Extra Trees algorithm. The meta layer of this framework includes a linear
regressor that uses the predicted kcat values from both the UniKP and Revised
UniKP to predict the final kcat value. Scatter plot illustrating the Pearson coefficient
correlation (PCC) between experimentally measured kcat values and predicted kcat
values of Revised UniKP for pH set (b) (N = 636) and temperature set (c) (N = 572).

The color gradient represents the density of data points, ranging from blue (0.02)
to red (0.28). d Coefficient of determination (R2) values between experimentally
measured kcat values and predicted kcat values on pH and temperature test sets of
EF-UniKP, Revised UniKP and UniKP. Light bars represent R2 of EF-UniKP, dark bars
for Revised UniKP and darkish bars for UniKP. e R2 values between experimentally
measured kcat values and predicted kcat values on more strict pH and temperature
test sets of EF-UniKP, Revised UniKP and UniKP. These are the samples in the test
set where at least either the substrate or enzyme was not included in the training
set, resulting in 62 and 61 samples for pH and temperature, respectively. Light bars
represent R2 of EF-UniKP, dark bars for Revised UniKP and darkish bars for UniKP.
Source data are provided as a Source Data file.
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can be time-consuming and labour-intensive. Tyrosine ammonia lyase
(TAL), a key rate-limiting enzyme in flavonoid biosynthesis, has been
extensively studied to identify superior TAL variants. For example, one
study selected 107 representative TALs from 4729 unique sequences
found in over ten distinct microbial species through bioinformatic
analysis34. However, enzymatic assays revealed that only four TALs
displayed higher activities, with the highest kcat of 4.32 s−1, con-
siderably lower than the kcat of 114 s−1 reported for a TAL from Rho-
dotorula glutinis, identified from bacterial and fungal TAL enzymes
based on empirical knowledge35–37. Directed evolution of RgTAL
resulted in only a slight improvement in its kcat, from 114 to 142 s−1,
from laborious screening of 4800 mutants36.

To employ UniKP for enzyme mining, we first used RgTAL as a
template to perform BLASTp search and identified the top 1000 TAL
sequenceswith high similarity. UniKP then predicted the kcat values for
each sequence. The top 5 sequences with the highest predicted kcat
values were selected for experimental validation. The results demon-
strated that 5 RgTAL analogues canbe successfully expressed in E. coli,
of which 4 samples exhibited catalytic activity (Table 1, entry 1).
Interestingly, 2 of the 4 samples surpassed RgTAL, with AsTAL from
Armillaria solidipes displayed the highest kcat of 448.8 s−1, four times
greater than RgTAL.

To showcase UniKP’s ability to assist directed evolution, we
generated all variants with single-point RgTAL mutation, where
each variant involved mutating an amino acid at a specific position
to one of the other 19 canonical amino acids. This resulted in a total
number of variants equal to the product of 19 and the length of the
sequence (19*693 = 13,167). We performed an in-silico screening of
all 13,167 single-point RgTAL mutations using UniKP by predicting
their corresponding kcat and kcat / Km values. A total of 10 sequences,
with the top 5 hits with highest predicted kcat and 5 with highest
kcat / Km, were chosen for experimental validation (Table 1, entry 2).

Among the mutants with highest predicted kcat, one exhibited a
slightly higher kcat / Km of 493.6mM−1s−1, indicating increased effi-
ciency compared to the wild-type enzyme. In contrast, among the
mutants with highest predicted kcat / Km, two mutants, RgTAL-10Y
and RgTAL-489T, displayed significantly higher kcat / Km of
1079mM−1s−1 and 1150mM−1s−1, respectively. RgTAL-489T was 3.5-
fold more efficient than the wild-type enzyme, representing the
most efficient TAL reported to date. Moreover, through BLASTp
analysis, the result showed that the most similar sequence in the
whole dataset for kcat / Km predictor shares only a 35.42% identity.
This demonstrates that UniKP indeed captures deep-level
information, enabling effective screening of enzyme-substrate
combinations that have not been presented in training set. These
results confirm that UniKP is a rapid and effective method for
mining new enzymes or improving existing enzymes for specific
substrates.

Furthermore, in order to illustrate the effectiveness of EF-
UniKP, we also conducted wet-lab experimental validations, using
pH as an example. Specifically, we selected the TALclu38, which
exhibited an optimal catalytic pH of 9.5. We employed a similar
enzyme mining approach as before against TALclu and selected the
top 5 sequences with the highest predicted kcat values by EF-UniKP
for experimental validation. Remarkably, we found that the kcat and
kcat / Km values of all 5 sequences exceeded those of TALclu. The kcat
value of HiTAL from Heterobasidion irregulare TC 32-1 was the
highest at 76.00 s−1, which is 4.6 times greater than that of TALclu.
Additionally, the kcat / Km value of TrTAL from Tephrocybe rancida
was the highest at 863.50mM−1s−1, representing a 2.6-fold increase
compared to TALclu (Table 1, entry 3). This result further demon-
strates that EF-UniKP, when considering environmental factors,
consistently identifies highly active TAL enzymes with remarkable
precision.

Fig. 6 | Enhancing high kcat prediction through re-weighting methods and
unified framework for Km and kcat / Km predictions. a The distribution of kcat
values in the kcat dataset. All samples are divided into 50 bins. b The absolute error
between experimentally measured kcat values and predicted kcat values of each
sample. The kcat values of all samples were predicted independently using five-fold
cross-validation. c Root mean square error (RMSE) between experimentally mea-
sured kcat values and predicted kcat values of 149 samples with kcat values higher

than 4 (logarithm value) using various re-weighting methods and the initial UniKP.
d, e RMSE, coefficient of determination (R2) between experimentally measured Km

values and predicted Km values on Km test set. f Scatter plot illustrating the Pearson
coefficient correlation (PCC) betweenexperimentallymeasured kcat /Kmvalues and
predicted kcat / Km values ofUniKP for kcat / Kmdataset (N = 910). The color gradient
represents thedensity of data points, ranging fromblue (0.02) to red (0.28). Source
data are provided as a Source Data file.
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Discussion
The traditional method of measuring enzyme kinetic parameters of
diverse enzymes and their substrates through labor-insentive and
time-consuming experiments hampers the development of enzymol-
ogy and synthetic biology applications. To address this challenge, we
present a pretrained language model-based enzyme kinetic para-
meters prediction framework, UniKP, which improves the accuracy of
predictions for three essential enzymekinetic parameters, kcat,Km, and
kcat / Km, using only the enzyme sequence and substrate structure.
Here, we conducted a comprehensive comparison of 16 diverse
machine learning models and 2 deep learning models on the machine
learning module of UniKP, with the extra trees emerging as the best
model. We speculated that tree-based ensemble models are better
suited for this issue, with relatively small datasets (~10k) and high-

dimensional features (2048d). They utilized decision trees to effi-
ciently break down high-dimensional data into smaller subsets,
enabling more efficient feature selection and data segmentation. The
combination of multiple decision trees reduced model variance,
thereby balancing the instability of individual trees and decreasing
the model’s sensitivity to training data, contributing to improving the
model’s generalization abilities. The simplermodels may be limited by
insufficient fitting capabilities, while deep learning models rely on a
large number of labelled samples, complicated network designs, and
tedious parameter tuning.

UniKP demonstrated remarkable performance compared to the
previous state-of-the-artmodel, DLKcat, in the kcat prediction taskwith
an average coefficient of determination of 0.68, whichwas 20% higher.
We speculated that pretrained models have greatly contributed to the
performance ofUniKPby creating aneasily learnable representation of
enzyme sequences and substrate structures using unsupervised
information from the entire database18. Our analysis of model learning
showed that protein information has a dominant effect, possibly due
to the complexity of enzyme structure compared to substrate struc-
ture. Additionally, UniKP can effectively capture the small differences
in kcat values between enzymes and their mutants, including experi-
mentally measured cases, which is crucial for enzyme design and
modification. And The disparity between the high identity region (>70
identity) and low identity region (<50 identity) of the R2 of UniKP
predicted values and R2 of the gmean method underscores the
adeptness of UniKP in extracting deeper interconnected information,
thereby demonstrating a higher predictive accuracy in these tasks.

Moreover, the current models do not consider environmental
factors, which is a critical limitation in simulating real experimental
conditions. To address this issue, we propose a two-layer framework,
EF-UniKP, which takes into account environmental factors. Based on
two newly constructed datasets with pH and temperature information,
respectively, EF-UniKP shows improved performance compared to the
initial UniKP. To our knowledge, this is an accurate, high-throughput,
organism-independent, and environment-dependent kcat prediction.
Additionally, this approach has the potential to be extended to include
other factors, such as cosubstrate and NaCl concentration39,40. How-
ever, existing models do not account for the interplay between these
factors due to the lack of combined data. As experimental techniques
advance, including biofoundry lab automation and continuous evolu-
tion methods41,42, we anticipate a surge in enzyme kinetic data. This
influx will not only enrich the field but also enhance the accuracy of
prediction models. Additionally, due to the high imbalance in the kcat
dataset, which results in a high error on high kcat value predictions, we
systematically explored four representative re-weighting methods to
mitigate this issue. The results showed that the hyperparameter set-
tings for each method were critical in improving high kcat value pre-
diction. Compared to the initial UniKP, all of the methods resulted in
lower errors, with CBWbeing the optimalmethod. CBW argues that as
the number of samples increases, the additional benefit of a newly
added data point will diminish, indicating information overlap among
the data33. Therefore, it further optimizes the weight by taking into
account this issue. In the kcat dataset, enzymes with high homology,
substrates with similar structures, and enzyme mutants contain over-
lapping information, which could explain why CBW is effective in this
particular case. Overall, these findings demonstrate that re-weighting
methods can assist biologists in improving specific value predictions
they focus on.

Furthermore, we confirmed the strong generalizability of the
current framework onMichaelis constant (Km) prediction and kcat / Km

prediction. UniKP achieved state-of-the-art performance in predicting
Km values and, even more impressively, outperformed the combined
results of current state-of-the-art models in predicting kcat / Km values.
Furthermore, we validated the UniKP framework based on experi-
mentallymeasured kcat /Km values and kcat /Kmvalues calculated using

Table 1 | UniKP and EF-UniKP assisted enzyme mining
and evolution

Entry Category TALs kcat (s−1) Km (mM) kcat / Km

(s−1⋅mM−1)

1 UniKP: Enzyme
mining

RgTAL 117.8 0.36 327.2

HiTAL NA NA NA

PcTAL 66.57 0.17 391.6

SsTAL 58.87 0.17 346.3

AsTAL 448.8 0.54 831.1

IsTAL 119.7 0.57 210.0

2 UniKP: Enzyme
evolution

RgTAL 117.8 0.36 327.2

MT-613P NA NA NA

MT-603P 52.57 1.15 45.71

MT-366H 40.31 0.48 83.98

MT-366W 31.02 0.85 36.49

MT-587V 162.9 0.33 493.6

MT-10Y 884.4 0.82 1079

MT-337C 96.81 6.48 14.94

MT-668S 53.60 3.85 13.92

MT-489T 816.8 0.71 1150

MT-337D 34.77 0.85 40.91

3 EF-UniKP TALclu 16.54 0.05 330.80

TrTAL 34.54 0.04 863.50

HiTAL 76.00 0.21 361.90

LeTAL 33.85 0.07 483.57

PpTAL 28.09 0.04 702.25

AaTAL 25.24 0.03 841.33

Entry 1) The kinetic characteristics of wild-type Tyrosine ammonia lyase (RgTAL) from Rhodo-
torula glutinis and newly discovered TALs mined from non-redundant protein database by per-
forming BLASTp. The top 5 sequences with the highest predicted kcat values by UniKP were
selected for experimental validation, including HiTAL from Heterobasidion irregulare TC 32-1
(XP_009553370.1), PcTAL from Puccinia coronata f. sp. avenae (PLW06342.1), SsTAL from
Sporidiobolus salmonicolor (CEQ38810.1), AsTAL from Armillaria solidipes (BK74450.1), IsTAL
from Ilyonectria sp. MPI-CAGE-AT-0026 (KAH6995648.1). NA denotes the enzyme that was not
soluble and showed no catalytic activity. Entry 2) The kinetic characteristics of RgTAL and
mutants generated by UniKP. All variants of single-point mutations were generated for RgTAL,
where each variant involved mutating an amino acid at a specific position to one of the other 19
canonical aminoacids,which resulted in a total number of variants equal to theproductof 19and
the length of the sequence (19*693 = 13,167). Through an in-silico screening of all 13,167 single-
point mutations of RgTAL using UniKP, the top 5 mutants ranked by their predicted kcat or
kcat / Km values were chosen from each screening (kcat or kcat / Km) for experimental validation.
NA denotes the enzyme that was not soluble and showed no catalytic activity. And MT denotes
the mutated form of RgTAL. Entry 3) The kinetic characteristics of wild-type Tyrosine ammonia
lyase from Chryseobacterium luteum sp. nov (TALclu) and newly discovered TALs mined from
non-redundant protein database by performing BLASTp. The top 5 sequences with the highest
predicted kcat values by UniKP were selected for experimental validation, including TrTAL from
Tephrocybe rancida (KAG6920185.1), HiTAL from Heterobasidion irregulare TC 32-1
(XP_009553370.1), LeTAL from Lentinula edodes (KAF8828722.1), PpTAL from Pleurotus pul-
monarius (KAF4563271.1), AaTAL from Aspergillus arachidicola (KAE8337485.1). All the experi-
ments were conducted under a pH of 9.5.
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kcat and Kmpredictionmodels on kcat / Kmdataset. It is to be noted that
the correlation observed between the values derived from UniKP kcat /
UniKP Km and the experimental kcat / Km is relatively low (PCC= −0.01).
This discrepancy is likely attributable to the disparate datasets
employed in constructing the respective models, necessitating the
development of a distinct model for predicting kcat / Km values. In the
future, with the availability of a unified dataset encompassing both kcat
andKmvalues, it is anticipated that the calculated outputs from the kcat
and Km models would closely align with those generated by a dedi-
cated model for kcat / Km.

The application of UniKP to Tyrosine ammonia lyase (TAL)
enzyme mining and directed evolution demonstrated its potential to
revolutionize synthetic biology and biochemistry research. This study
showed that UniKP effectively identified high-activity TALs and rapidly
improved catalytic efficiency of an existing TAL, with RgTAL-489T
exhibiting a kcat / Km value 3.5 times higher than the wild-type enzyme.
Additionally, the derived framework EF-UniKP, when considering
environmental factors, consistently identifies highly active TAL
enzymes with remarkable precision, with TrTAL from Tephrocybe
rancida exhibiting a kcat / Km value 2.6 times higher than the wild-type
enzyme. The result showed that the kcat and kcat / Km values of all
5 sequences exceeded those of the wild-type enzyme. By expediting
enzymediscovery andoptimizationprocesses,UniKPholds promiseas
a powerful tool for advancing biocatalysis, drug discovery, metabolic
engineering, and other fields that rely on enzyme-catalyzed processes.

However, there are still some limitations to the current version of
UniKP. For instance, while UniKP is capable of differentiating kcat
values of experimentally measured enzymes and their variants, the
predicted kcat values are not sufficiently accurate. This may be due to
an insufficient dataset compared to the number of known protein
sequences and substrate structures. Although re-weighting methods
can somewhat relieve the prediction bias caused by the imbalanced
kcat dataset (~6.5% improvement), more significant improvement may
be achieved through the synthetic minority oversampling technique
and other sample synthesis methods43,44. A central objective in syn-
thetic biology is the development of a digital cell, poised to revolu-
tionize ourmethods of studying biology. A critical prerequisite for this
endeavour is the meticulous determination of enzymatic parameters
for all enzymes within the pathway. Tools assisted by artificial intelli-
gence illuminate this challenge, offering a high-throughput approach
to predicting enzymatic kinetics. However, despite the reduced errors
in UniKP predictors compared to earliermodels, inaccuracies remain a
significant hurdle in crafting a precise metabolic model. The inclusion
of a growing number of experimentally determined kcat and Km values,
sourced from cutting-edge high-throughput experimental techniques
like those employed in modern biofoundries, can enhance model
accuracy. Furthermore, we intend to incorporate state-of-the-art
algorithms, such as transfer learning, reinforcement learning, and
other small sample learning algorithms to effectively process imbal-
anced datasets45,46. Moreover, we aim to explore more applications,
including enzyme evolution and global analysis of organisms.

Methods
Dataset source and preprocessing
To evaluate the UniKP framework, we selected several representative
datasets and constructed several datasets to verify its accuracy.

DLKcat dataset. The DLKcat dataset was prepared as in the ori-
ginal publication12. Specifically, we began by utilizing the DLKcat
dataset, which is the most comprehensive and representative dataset
based on enzyme sequences and substrate structures from BRENDA
and SABIO-RK databases. Initially, the dataset contained 17,010 unique
samples, butwe excluded sampleswith substrate simplifiedmolecular-
input line-entry system (SMILES) containing “.” or kcat values less than
or equal to 0, as per the DLKcat instruction. This resulted in
16,838 samples, which encompassed 7822 unique protein sequences

from 851 organisms and 2672 unique substrates. All kcat values were
converted to a logarithmic scale. The dataset was divided into training
and test sets, with a ratio of 90% and 10%, respectively, which was
repeated five times to obtain 5 randomized datasets for downstream
model training and test, keeping the same as in the previous
publication.

pH and temperature datasets. To predict the influence of envir-
onmental factors to kcat, we constructed two datasets that contain
enzyme sequences, substrate structures, and their corresponding pH
or temperature values. We obtained the enzyme sequences, substrate
names, and pH or temperature values from the Uniprot database6. To
obtain the corresponding substrate structure, we downloaded it from
the PubChem database based on the substrate name and generated a
SMILES representation via a python script31. The pHdataset comprised
636 samples, consisting of 261 unique enzyme sequences and 331
unique substrates, which resulted in 520 unique enzyme-substrate
pairs. The pH values ranged from 3 to 10.5. The temperature dataset
contained 572 samples, consisting of 243 unique enzyme sequences
and 302 unique substrates, which resulted in 461 unique enzyme-
substrate pairs. The temperature values ranged from 4 to 85 degrees.
To evaluate the performance of UniKP on these datasets, we divided
each dataset into an 80% training set and a 20% test set.

Michaelis constant (Km) dataset. To assess the generalizability of
UniKP on related tasks, we utilized a representative dataset obtained
from a previous publication with SOTA results10, which contains data
retrieved from BRENDA. This dataset consists of 11,722 samples,
comprising of enzyme sequences, substrate molecular fingerprints,
and corresponding Km values. We converted the substrate structures
into SMILES representations and log10-transformed all Km values. To
evaluate the performance of UniKP on this dataset, we randomly
divided the entire dataset into 80% training data and 20% test data,
keeping the same as in the previous publication.

kcat / Km dataset. We constructed an additional dataset using
information sourced from the BRENDA, UniProt, and PubChem
databases6,7,31. This dataset comprises 910 samples consisting of
enzyme sequences, substrate structures, and their corresponding
kcat / Km values. We first obtained the UniProt ID of the enzyme and the
name of the substrate along with their kcat / Km values from the
BRENDA database. Then, the corresponding enzyme sequences and
substrate structures were obtained from the UniProt and PubChem
databasesusing the UniProt ID and the name of the substrate,
repsectively. We divided the entire dataset into five parts randomly to
evaluate the performance of UniKP.

Construction of UniKP
We implemented the UniKP framework using torch v. 1.10.1+cu113 and
sklearn v. 0.24.2. UniKP consists of a representation module and a
machine learning module. The representation module is responsible
for generating effective representations of the enzyme sequences and
substrate structures. We used the ProtT5-XL-UniRef50 protein lan-
guage model, which has been shown to be effective in predicting
peptide and protein function, to generate an embedded vector for the
enzyme sequence18. Every amino acid was converted into a 1024-
dimensional vector on the last hidden layer, and the resulting vectors
were summed and averaged. The final enzyme representation was a
1024-dimensional vector. For the substrate structure, we generated a
SMILES and used a pretrained SMILES transformer to create a 1024-
dimensional vector by concatenating themean andmax pooling of the
last layer and the first outputs of the last and penultimate layers20. The
representation module converted the enzyme sequence or substrate
structure into a numerical representation using an unsupervised
learning process, making it easier for machine learning models to
learn. The second module was an Extra Trees model, a machine
learning method that can effectively capture the relationship between
the concatenated representation vectors of the enzyme sequence and
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substrate structure and the kcat value. All experiments were conducted
in a Linux environment running Ubuntu 20.04.5 on a server with 64
cores and 4 NVIDIA GeForce RTX 3080 GPUs. We used a single core
and GPU for training.

Model setting
The 16 machine learning models includes Linear Regression, Ridge
Regression, Lasso Regression, Bayesian Ridge Regression, Elastic Net
Regression, Decision Tree, Support Vector Regression, K Neighbors
Regressor, Random Forest, Gradient Boosting, Extra Trees, AdaBoost,
Bagging, XGBoost (XGB), LightGBM (LGBM), MultiLayer Perceptron
(MLP) Regressor. Here, the MLP Regressor was regarded as a tradi-
tional machine learning due to its shallow network design. We imple-
mented all machine models using sklearn v. 1.1.1, utilizing default
parameters, without additional optimization. The Convolutional
Neural Network (CNN) architecture employed in this study comprises
a 1D convolutional layer (conv1) with 16 output channels and a kernel
size of 3 for feature extraction, followed by a max-pooling layer (pool)
with a kernel size of 2 for downsampling. Then the model further
includes two fully connected layers (fc1 and fc2), with fc1 having 16 *
1023 input features and 64 output features, and fc2 having 64 input
features and 1 output feature. The architecture of Recurrent Neural
Network (RNN) utilized in this study involves an RNN layer (rnn) with
2048 input features, 128 hidden units, and 1 layer. Following the RNN
layer, there are two fully connected layers (fc1 and fc2). The first layer
(fc1) has 128 input features and 64 output features, while the second
layer (fc2) has 64 input features and 1 output feature. During the
training process, deep learningmodels were optimized using an Adam
optimizerwith a learning rate of 0.0001, employingMean Square Error
as the loss function. The batch size was configured to be 8192. All deep
learning models were implemented using Python 3.6.9 with pytorch
1.10.1+cu113.

Construction of EF-UniKP
We developed a framework, called EF-UniKP, which takes into account
environmental factors such as pH and temperature. This two-layer
framework comprises a base layer with two individual models: UniKP
and Revised UniKP. The UniKP takes as input a concatenated repre-
sentation vector of the protein and substrate, while the Revised UniKP
uses a concatenated representation vector of the protein and sub-
strate, combined with the pH or temperature value. Both models were
trained using the Extra Trees algorithm. The meta layer of the frame-
work consists of a linear regression model that utilizes the predicted
kcat values from both the UniKP and Revised UniKP as inputs. The pH
and temperature datasets were divided into training and test sets, with
the former being 80% of the dataset. The training set was further split
into two subsets: the first training set was 80% of the training set (or
64% of the entire dataset) and the second training set was 20% of the
training set (or 16%of the entiredataset). The trainingprocess involved
two steps. In the first step, UniKP was trained using the DLKcat dataset
without environmental factors, while Revised UniKP was trained using
the first training set of pHor temperature dataset. In the second step, a
linear regressionmodelwas trainedusing the second training set of pH
or temperature dataset, and the outputs from both models in the first
layer. The evaluation was performed using the test data of the pH or
temperature dataset. As the model’s performance may be influenced
by different training and test set division, which were generated ran-
domly, wehave taken the precaution to average the results three times
to mitigate this risk.

Evaluation metrics
To evaluate the performance of our framework, we utilized various
metrics to compare the predicted kcat value and experimentally mea-
sured kcat. Our selected metrics included the coefficient of determi-
nation (R2) in Eq. 1, the pearson correlation coefficient (PCC) in Eq. (2),

the root mean square error (RMSE) in Eq. (3), and the mean absolute
error (MAE) in Eq. (4). These equations utilize variables such as yie for
the experimentallymeasured kcat value, yip for the predicted kcat value,
�ye for the average of the experimentallymeasured kcat values, �yp for the
average of the predicted kcat values, and n for the number of samples
(which depends on the size of the selected dataset). In thismanuscript,
we have presented various metrics in different sections for the com-
parison with existing models.
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Feature importance analysis by SHAP
We utilized SHapley Additive exPlanations (SHAP), a unified frame-
work for analyzing model interpretability, to compute the importance
value of each feature29. The assigned SHAP value represents the sig-
nificance of the feature, with higher values indicating greater impor-
tance. Moreover, SHAP can also indicate the positive or negative
effects of features. This framework has been widely used to interpret
the importance of various biological problems, including Type IV
Secreted Effectors prediction and anticancer peptide prediction47,48.
We applied SHAP on the kcat test set, which comprises 1684 samples,
based on the trained UniKP. The SHAP summary produced by
TreeExplainer displayed the magnitude, distribution, and direction of
every feature effect. Each dot on the graph represents a dataset sam-
ple, and the x-axis position denotes the SHAP value, while the change
in color represents different feature values. The implementation of
SHAP was achieved through a freely available Python package.

t-SNE visualization
To better understand the distribution of embedded enzyme and sub-
strate representations and explore the necessity of using machine
learning, we utilized t-distributed stochastic neighbor embedding
(t-SNE) to visualize the embedded enzyme and substrate vectors26. This
widely usedmethodhasbeenemployed to analyze featuredistributions
in biological tasks, such as antimicrobial peptide recognition and pro-
tein subcellular location49–51. We calculated embedded vectors for all
16,838 samples, which were concatenated and inputed into the t-SNE
algorithm, which transformed them into two-dimensional vectors. We
used the default parameters for the algorithm and normalized the
resulting numerical values of the two-dimensional vector for each
sample to display, as shown in Eq. 5, where yit denotes the value of the
ith projected vector and yt denotes all values of the projected vector.

yit =
yit�minð yt Þ

max ytð Þ�minð yt Þ ð5Þ

Sample weight redistribution methods
We explored four different methods to adjust the weight of the sam-
ples for accurate high kcat prediction. These representative weight
redistribution methods included Directly Modified Sample Weight
(DMW), Cost-Sensitive re-Weighting methods (CSW), Class-Balanced
re-Weighting methods (CBW), and Label Distribution Smoothing
(LDS)24,32,33. To enable fair comparison of the methods, we employed
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5-fold cross-validation on the entire dataset to ensure that all samples
could be predicted independently. We then divided the predicted kcat
values into different intervals and calculatedRMSE andMAE separately
for kcat values higher than 4 (logarithm value) and kcat values higher
than 5 (logarithm value).

DMWmethod. The DMWmethod is a weight redistribution approach
where the weight of samples with kcat values higher than 4 (logarithm
value) is directly enhanced.We explored several parameters, including
weight multipliers (2, 5, 10, 20, 50, 100) and whether to normalize the
weights. Through this process, we analyzed twelve optimized model
combinations, which revealed that a weight coefficient of 10 without
normalization was optimal. Increasing or decreasing the coefficient
resulted in higher RMSE and MAE in predicting high kcat values.

CSWmethod. The CSWmethod assigns different weights to different
classes to guide the model to pay more attention to minority cate-
gories. Three CSW variants, including CSW, root CSW, and square
CSW, were applied to all samples. All the samples were divided into 131
bins, each covering an equal numeric interval. For CSW, the weight of
each sample was set to the reciprocal of the sample size in each bin.
The root CSW and square CSW methods reset the weight of each
sample by its square root and its square, respectively. We found that
the root CSW was the most effective method.

CBW method. The CBW method posits that the value of adding new
data points will decrease as the size of the dataset increases. To reflect
this, the effective number of samples can be calculated using Eq. (6),
where n is the number of samples and β is a hyperparameter that
ranges between 0 and 1. The weighting of each sample is then set to 1
divided by the effective number of samples. We evaluated the CBW
method using different beta values (0.7, 0.75, 0.8, 0.85, 0.9, 0.99,
0.999, 0.9999) and found that the optimal value was 0.9, which
resulted in the lowest prediction RMSE and MAE compared to other
settings.

En = ð1� βnÞð1� βÞ ð6Þ
LDS methods. LDS is a simple, effective, and interpretable algorithm
for tackling the problem of unbalanced datasets that exploits the
similarity of the nearby label space. It had been verified to be very
effective in sections where only a few samples exist, and the predicted
error would be reduced dramatically. LDS convolves a symmetric
kernel with the empirical density distribution to generate a kernel-
smoothed effective density distribution in Eq. 7, where pðyÞ denotes
the number of appearances of label y in the training data, �pð y0Þ denotes
the effective density of label y0, and kðy, y0Þ denotes the symmetric
kernel. Similarly, we selected a Gaussian kernel and set various kernel
sizes (3, 5, 7) and sigma values (1, 2). The optimal kernel size and sigma
were 5 and 1, respectively.

�pð y0Þ= R
kð y, y0Þpð yÞdy ð7Þ

Experimental validation of UniKP
We attempted to utilize UniKP to boost the enzyme mining process.
Specifically, we selected a crucial enzyme in the naringenin synthetic
pathway, tyrosine ammonia lyase (TAL).

BLASTp. Basic Local Alignment Search Tool protein (BLASTp) is a
widely used bioinformatics tool for sequence similarity search52. It is a
protein-protein BLAST algorithm that compares the query protein
sequence against a non-redundant protein database and retrieves
similar sequences based on their E-value, which estimates the prob-
ability of observing the alignment by chance. In this study, we utilized
the BLASTp algorithm with RgTAL from Rhodotorula glutinis

(AGZ04575) as the template to identify sequences with high similarity
to TAL, and subsequently selected the top 1000 sequences based on E
value for kcat prediction using the UniKP. The parameters used were
default, employing a BLOSUM62 scoring matrix, a word size of 5, and
an expectation threshold of 0.05 for the setting.

Experimental materials. The plasmids and strains used in the
experiment are detailed in Supplementary Tables 1–2. For strain
maintenance, Luria-Bertani (LB) medium, which contains 10 g/L tryp-
tone, 10 g/L NaCl, and 5 g/L yeast extract, was utilized. In order to
produce naringenin in diverse strains, MOPS (3-(N-morpholino)pro-
panesulfonic acid) medium was used. All of the chemicals used in the
experimentwere reagent grade andpurchased fromSigma-Aldrich (St.
Louis, MO, USA). NEBuilder® HiFi DNA Assembly Kit (E2621S) was
purchased from NEB (Beverly, MA, USA) for the purpose of plasmid
constructions.

Determination of enzymatic kinetic parameters. The predicted TALs
were codon-optimized for expression in BL21(DE3)36. These TALs were
respectively synthesized and cloned into the pET32a plasmid by Gen-
ewiz (Suzhou, China). The enzyme kinetic parameters of the different
TAL enzymes were also evaluated as the following processes. Specifi-
cally, the candidate enzymes were tested in a 200μL reaction volume
with purified protein (1μg), different concentrations of L-tyrosine, and
Tris-HCl buffer (90μL 50mMpH 8.5). The mixture was incubated at
40 °C for 30min andmonitored for the appearanceof coumaric acid at
315 nm36. One unit of enzyme activity was defined as 1μM p-coumaric
acid production in one minute. The kinetic curves of experimental
results were included in Supplementary Fig. 13–16. The chemicals in
this study were analytical reagent grade and purchased from Sigma-
Aldrich (Steinheim, Germany).

HPLC methods for naringenin detection. HPLC methods for detect-
ing naringenin involved the use of an Agilent 1260 HPLC system
(Waldbronn, Germany) equipped with a diode array detector (DAD)
1260model VL + (G7115A) and a C18 column (3 × 100mm2.7 μm). The
detection was performed at 290 nm and 30 °C. A gradient elution
condition was employed with the following steps: 10% to 40% acet-
onitrile/water (vol/vol) for 5min, 40% acetonitrile (vol/vol) for 7min,
40% to 95% acetonitrile (vol/vol) for 3min, and 95% to 10% acetonitrile
(vol/vol) for 3min. The elution rate was 0.3mL/min. Additionally, 0.3%
acetic acid (vol/vol) was added to the mobile phases to facilitate the
separation of naringenin.

Statistics and reproducibility
The source of the dataset and the division criteria presented in this
paper are detailed in each results section. Statistical analyses were
performed using the packages in Python 3 (https://www.python.org/).
No statistical method was used to predetermine sample size. We
excluded samples with substrate simplified molecular-input line-entry
system (SMILES) containing “.” or kcat values less than or equal to 0, as
per the DLKcat instruction12. All datasets were randomly split into
training and test sets to ensure a fair comparison. And based on the
goal of enzyme evolution, samples with the highest enzyme kinetic
parameters predicted by UniKP were selected for experimental vali-
dation. We were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. All the data
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analysed in this study is publicly available fromeither publicdatabases,
including BRENDA (https://www.brenda-enzymes.org/search_result.
php?a=305), UniProt (https://www.uniprot.org/), PubChem (https://
www.uniprot.org/) databases or supplementary datasets of referenced
articles (https://github.com/SysBioChalmers/DLKcat, https://github.
com/AlexanderKroll/KM_prediction). The data described in this
manuscript are available for download at https://github.com/Luo-
SynBioLab/UniKP. The data is also available on Zenodo: https://doi.
org/10.5281/zenodo.1011549853. Source data are provided with
this paper.

Code availability
In order to facilitate additionalutilization,wehavemade available all of
the codes and thorough instructions in our GitHub repository located
at https://github.com/Luo-SynBioLab/UniKP. Furthermore, a user-
friendly example for predicting enzyme kinetic parameters has also
been included in the repository. The code is also available on Zenodo:
https://doi.org/10.5281/zenodo.1011549853.
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