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Tuning parameters for polygenic risk score
methods using GWAS summary statistics
from training data

Wei Jiang 1, Ling Chen2, Matthew J. Girgenti 3 & Hongyu Zhao 1

Various polygenic risk scores (PRS) methods have been proposed to combine
the estimated effects of single nucleotide polymorphisms (SNPs) to predict
genetic risks for common diseases, using data collected from genome-wide
association studies (GWAS). Some methods require external individual-level
GWAS dataset for parameter tuning, posing privacy and security-related
concerns. Leaving out partial data for parameter tuning can also reducemodel
prediction accuracy. In this article, weproposePRStuning, amethod that tunes
parameters for different PRS methods using GWAS summary statistics from
the training data. PRStuning predicts the PRS performance with different
parameters, and then selects the best-performing parameters. Because
directly using training data effects tends to overestimate the performance in
the testing data, we adopt an empirical Bayes approach to shrinking the pre-
dicted performance in accordancewith the genetic architecture of the disease.
Extensive simulations and real data applications demonstrate PRStuning’s
accuracy across PRS methods and parameters.

The advent of genome-wide association studies (GWAS) has led to the
discovery of numerous loci associated with the most common
diseases1. These discoveries also provide the opportunity for predict-
ing risks from an individual’s genotypes2. Accurate genetic risk pre-
diction can enable us to identify high-risk individuals and facilitate
disease prevention and early treatment3.

Polygenic risk score (PRS) is commonly used in genetic risk pre-
diction due to its simplicity and resulting from the additive assump-
tion. Both empirical and theoretical studies have shown that the
additive component is expected to account for most of the genetic
variance of complex traits4. Based on this additive assumption, PRS
sums the allele dosages of single nucleotide polymorphisms (SNPs)
weighted by their estimated effect sizes5.

Various PRS methods have been proposed to estimate the effect
sizes of SNPs from a GWAS dataset. Compared to individual-level
genotype data, summary statistics are more accessible without
security and privacy concerns6,7. Many PRS methods proposed
recently estimate SNP effects with GWAS summary statistics. One of
the simplest is clumping and thresholding (C+T)8–14, in which linkage

disequilibrium (LD) clumping is applied to the SNPs that pass a p-value
threshold. Another related method is pruning and thresholding (P+T),
which only includes the SNPs whose p-values exceed a threshold after
LD pruning. Both LD clumping and LD pruning are step-wise heuristic
procedures that select a set of approximately independent SNPs.
Compared to LD pruning, LD clumping selects the independent SNPs
after p value thresholding. Therefore, SNPs showing stronger asso-
ciations with the disease are preserved, which is preferred in con-
structing PRS.We note that some literature referred to C+T as P+T, but
we treat them as distinct methods in our following discussion.

It is important to note that for bothC+T and P+T, only a portion of
independent SNPs are utilized in constructing the PRS model, while
other SNPs and LD information are ignored. To further improve the
prediction accuracy of genetic risks, many PRS methods have been
proposed to incorporate genome-wide SNPs and their LD information,
such as LDpred15, LDpred216, sBayesR17, PRS-CS18 and SDPR19. LDpred
imposes a point-normal prior for the SNP effect sizes and infers the
posterior mean effect sizes using a Markov Chain Monte-Carlo
(MCMC) procedure. LDpred2 was further proposed to increase
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computational efficiency and providemore stable results than LDpred
in dealing with long-range LD regions and traits of sparse genetic
architecture. To allow more general effect size distributions, sBayesR
performs Bayesian posterior inference based on a mixture prior of
point and three normal distributions that represent SNPs with small,
medium, and large effects respectively. SDPR performs Bayesian pos-
terior inferencebased on aDirichlet processmodeling effect sizeswith
a mixture of 1000 normal distributions. To reduce the computational
burden from the combination of different components in millions of
SNPs, PRS-CS places a continuous shrinkage prior to the SNP effect
sizes in a Bayesian framework. All these LD-based methods have
demonstrated their superior performance in some datasets of com-
plex diseases. However, none of them has a dominant performance
over other methods.

Among these PRS methods, P+T, C+T, LDpred, and LDpred2 rely
on parameters that need to be specified by users beforehand.
Although PRS-CS and sBayesR have options to estimate parameters
with anadditional layer of prior distributions, users can also specify the
parameters themselves. For all PRS methods that require tuning
parameters, an external individual-level genotype dataset is needed to
evaluate different parameter values and choose the best-performing
ones. However, as we mentioned before, individual-level genotype
data are less accessible than summary statistics. Besides, it is not effi-
cient to leave out a portion of data just for tuning parameters and to
estimate SNP effects with the remaining data, leading to information
loss and reduced performance for PRS methods. These concerns
motivated us to develop a method that can evaluate the performance
of a PRS model based on summary statistics used for model training.

For diseases with a binary phenotype, the area under the receiver
operating characteristic (ROC) curve (AUC) is the most commonly
used criterion in practice for evaluating PRS5,20,21. In 2018, Song et al.22

proposed an estimator of AUC using only summary statistics. This
method makes use of an equivalent definition of AUC, i.e. the prob-
ability of a PRS from a random case being larger than a PRS from a
randomcontrol. Based on this definition, AUC can be approximated by
a function of the GWAS summary statistics. This method can tune the
parameters of a PRS model with summary statistics from
another GWAS.

To maximize the power of identifying loci associated with com-
mon diseases, some large consortia have conducted meta-analyses of
all accessible studies and released summary statistics from thesemeta-
analyses. These summary statistics are usually used as training data to
optimize the prediction power of PRS models. In this situation, it is
difficult to gain access to summary statistics from another indepen-
dent GWAS. This problem can not be well addressed if we simply plug
the summary statistics from the training data into the derived AUC
function, because the variants with larger effects tend to have their
effect sizes overestimated and these variants have a larger influence on
the PRS than the variants exhibiting small effects. This phenomenon is
known as overfitting23. If we use the observed effects directly, the
overfitting would lead to an inflated predicted value of the AUC and
the incorrectly selected values of the parameters.

Built on Song’s method, we propose PRStuning, a method that
requires only summary statistics from the training data to predict the
conventional AUC that needs to be evaluated on another individual-
level genotype dataset. We incorporate empirical Bayes (EB) theory to
shrink the effect sizes of SNPs, which leads to the attenuation of the
predicted AUC so as to overcome the overfitting phenomenon24. In
PRStuning, we adopt a point-normal mixture model as the prior dis-
tribution of SNP effects and estimate the parameters in themodel with
GWAS summary statistics from the training data. There are two set-
tings depending on the dependency across the selected SNPs used for
training the PRSmodel.When the SNPs are independent, e.g., the SNPs
used in P+T, we utilize an expectation-maximization (EM) algorithm to
estimate the parameters in the prior distribution and calculate the

posterior distribution of the AUC based on a closed-form formula.
When SNPs are dependent due to LD, we use a Gibbs-sampling-based
State-Augmentation for Marginal Estimation (SAME) algorithm25 to
estimate the parameters in the model and obtain the Monte-Carlo
(MC) samples of the predicted AUC. Once this is accomplished, we can
select the parameter values for the PRS method with the best
predicted AUC.

We applied PRStuning to GWAS datasets of four common dis-
eases, including coronary artery disease (CAD), type 2 diabetes (T2D),
inflammatory bowel disease (IBD), and breast cancer (BC), with four
PRS methods, namely P+T, C+T, LDpred, and LDpred2. Results from
extensive simulations and real data applications demonstrate that
PRStuning can accurately predict the PRS performance across PRS
methods and parameters, and it can help with parameter selections.

Results
Overview of PRStuning
Define gi,m∈ {0, 1, 2} as the genotype score of SNPm for individual i. A
PRS for individual i is the sum of the genotypes gi = (gi,1,…, gi,M)
weighted by the corresponding effects ω = (ω1,…,ωM), i.e.,

PRSi =
XM
m= 1

ωmgi,m: ð1Þ

Here M is the total number of pre-selected SNPs used for con-
structing PRS. Please note that not all SNPs collected in the training
GWAS data are necessarily used in PRS calculation. Some PRS meth-
ods, such as P+T, select SNPs based on criteria unrelated to association
strengths. For those methods, we just need to consider the selected
SNPs in estimating AUC. However, some other PRS methods incorpo-
rate SNP selection steps based on the associations of the SNPs with the
disease, resulting in the inflation of their observed association
effects8,16,17. For those methods, we consider the SNPs used before
the selection step to address the effect size inflation issue with
the Empirical-Bayes-based method introduced later. Here we define
the pre-selected SNPs as the SNPs used in building the PRS model
before running any selection step related to association strengths. For
example, the pre-selected SNPs in C+T are actually genome-wide SNPs
collected in the training GWAS data and the LD clumping procedure
used in C+T is a selection step based on the observed association
strength. In this situation, we have ωm =0 for SNPs not selected for
building PRS in C+T. In contrast, LD pruning is a selection step unre-
lated to SNP associations with the disease. Therefore, the pre-selected
SNPs in P+T are the SNPs selected after an LD pruning step. Different
PRS methods have been proposed to estimate the weight vector ω
from a GWAS dataset or its summary statistics for the disease of
interest. Here and afterwe regardω as the inferred values from the PRS
method of interest.

Based on the definition of AUC and the distribution of PRS, Song22

formulated AUC as

AUC=ΦðΔÞ, ð2Þ

where

Δ :=
2
PM

m= 1ωmδmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 + τ

2
1

q and τ2j =
XM
m= 1

ω2
ms

2
j,m +2

X
m1<m2

ωm1
ωm2

Rm1 ,m2
sj,m1

sj,m2
,

ð3Þ

where j = 0 indicates controls and 1 indicates cases. Here for SNP m,
we use fj,m to denote the frequency of the reference allele,
s2j,m :=2f j,mð1� f j,mÞ to denote the variance of the genotype, and
δm≔ f1,m − f0,m records the difference between the allele frequencies
of the cases and controls, and Φ( ⋅ ) is the cumulative distribution
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function of a standard normal distribution. We use Rm1 ,m2
to denote

the LD coefficient between SNP m1 and SNP m2.
We can calculate τ2j (j =0, 1) by directly plugging in the observed

values of allele frequencies and LD coefficients since τ2j is not directly
related to the SNPs’ effects on the disease. The observed allele fre-
quencies can be obtained from summary statistics of the GWAS, and
LD informationcanbe extracted fromanother genotypedataset. Some
large projects such as the 1000 Genomes project (1KG)26 and the
HapMap3 project (HM3)27 have made their data publicly available and
we can use them as reference panels to calculate the LD coefficients.

For δm in Eq. (3), if we directly plug in the observed allele fre-
quencies f̂ 0,m and f̂ 1,m from GWAS, the SNPs exhibiting large allele
frequency differences tend to have their effect sizes overestimated,
and these SNPs have larger contributions to the PRS than the SNPs
showing smaller effects. The overfitting of the SNP effects would lead
to an inflated predicted value of the AUC and incorrectly selected
values of the parameters. Therefore, we adopt an Empirical Bayes
method in PRStuning to shrink the effects so as to reduce the influence
of overfitting. In the Supplementary Methods section, we provide a
theoretical demonstration of how overfitting happens and the ratio-
nale of alleviating overfitting with a Bayes estimator.

In GWAS, z-scores from the allele frequency difference test are
usually used to assess the association of each SNP with the disease.
Each z-score is calculated with the following formula:

zm =
f̂ 1,m � f̂ 0,mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21,m=4n1 + s
2
0,m=4n0

q , ð4Þ

where f̂ j,m is the observed allele frequency for each group, s2j,m is

the variance of the genotype in the controls or cases, and n0, n1
are the sample sizes of the two groups. To simplify this expression, we

define sm :=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21,m=4n1 + s

2
0,m=4n0

q
. Based on this definition, we have

zm∣δm ~N(δm/sm, 1) given the allele frequency difference δm.
Here we denote the allele frequencies among controls and cases

when SNPm is assumed to be independentwith other SNPs asp0,m and
p1,m, respectively. Note that fj,m is the allele frequency of SNP m mar-
ginalizing over other SNPs, which is different from pj,m (j =0, 1).We use
βm to denote the underlying effect of SNPm in termsof changing allele
frequencies between controls and cases, i.e., βm = p1,m − p0,m. If SNP m
has no risk on the disease, we have βm =0. Let β = (β1,…, βM). In
the Supplementary Methods section, we further demonstrate that the
marginalized allele frequency difference δ = (δ1,…, δM) is related to the
LD pattern among the pre-selected SNPs and β, i.e.,

δ = SRS�1β, ð5Þ

where S is a diagonal matrix with the m-th diagonal element equal to
sm, and R is the LD coefficient matrix. Given δ, the joint distribution of
the z-scores z = (z1,…, zM) is

zjδ ∼NðS�1δ, RÞ: ð6Þ

We further assume that the standardized effect βm/sm follows a
point-normal distribution, i.e.,

βm

sm
∼iid ð1� πÞδ0 +πNð0,σ2Þ: ð7Þ

Here δ0 is a point mass at zero, π represents the prior proportion
of SNPs that have an effect on the disease, and σ2 is the variance of βm/
sm in the risk SNPs. This point-normal distribution is also used in
LDpred as the prior distribution. The relationship between σ2 and the
heritability of the disease is presented in Section “Notations and

assumptions” and the Supplementary Methods section. With this
assumption, we derived an expectation-maximization (EM) algorithm
to estimate (π, σ2) and calculated the posterior distribution of the AUC
when pre-selected SNPs are independent. When SNPs are linked by LD,
we derived a Gibbs-sampling-based SAME algorithm to estimate (π, σ2)
and obtained the MC samples of the predicted AUC. Once this is
accomplished, we can select the parameter values for the PRSmethod
with the best predicted AUC. Details of PRStuning are presented in
Section “Methods”.

Simulation experiments
For our simulation experiments, we considered predicting the per-
formance and tuning the parameters for four commonly used PRS
methods, namely, P+T, C+T, LDpred, and LDpred2. In the experiments,
we varied the p-value thresholds for P+T and C+T from {1, 5e− 1, 5e−
2, 5e− 3, 5e− 4, 5e − 5, 5e− 6}. In P+T, p-value threshold=1 means that
no further filtering step based on p-values is utilized on pre-selected
approximately independent SNPs after LD pruning. In C+T, p-value
threshold=1 means we conduct LD clumping on genome-wide SNPs
without filtering based on p-values. While for LDpred, we chose the
proportion of the risk SNPs π from {1, 3e − 1, 1e − 1, 3e − 2, 1e − 2, 3e−
3, 1e − 3, 3e− 4, 1e − 4, 3e − 5, 1e − 5}. This is the default setting of
LDpred. Because LDpred2 had convergence issues when the risk SNP
proportion was set to an extremely small value for simulations based
on simulated genotype data, we varied π from {1, 6e − 1, 3e − 1, 1e − 1,
6e − 2, 3e − 2, 1e − 2} which had a smaller range but finer resolution
than the set used in LDpred. For simulations based on real genotype
data, we used the same parameters as LDpred.

There are two purposes of ourmethod: to predict the AUC and to
select tuning parameters. In our experiments, we used another inde-
pendent dataset with individual-level genotype data as testing data.
The AUC of the PRS assessed on the testing data and the parameters
showing the best prediction performances on the testing data were
treated as benchmarks. To evaluate the performance of PRStuning, we
evaluated the performance of PRStuning with two measures: the cor-
relation of the AUC estimates (ρAUC) and the relative difference of the
highest AUC estimates (rdAUC).Wedefine ρAUC as the correlation of the
PRStuning-predicted AUC values and those estimated on the testing
data. A high value of ρAUC indicates that the predicted AUC using our
method is highly correlated with the AUC on the testing data. We
define rdAUC as the relative difference between the predicted AUCwith
the best-performing parameter tuned by PRStuning and the AUC with
the best-performing parameters on the testing data. Here best-
performing parameters are defined as those achieving the highest
AUC values. A small value of rdAUC indicates that the tuning parameter
selected by PRStuning and the actual best-performing parameter have
comparable performances. These two metrics are complementary to
each other in the sense that, ρAUC measures how much the AUC pat-
terns acrossparameter values forPRStuning and testingdata alignwith
each other, while rdAUC measures the point difference between the
highest AUC values for the two methods. Therefore, we would like to
evaluate the results with both metrics.

We first consider the case where the pre-selected SNPs are inde-
pendent. In our simulations, we set the prevalence of the disease to
κ = 1%. For each SNP, we simulated its allele frequency in the general
population based on a uniform distribution U(0.05, 0.95). Then we
generated its risk effects on the disease based on the two-component
mixture model Eq. (7), in which we set the proportion of the risk SNPs
to π =0.05 and the variance of the risk effects to σ2 = 0.001n. Here n is
the total sample size of the GWAS used in the training data.We assume
the GWAS is balanced with an equal number of cases and controls.
According to the central limit theorem, we have sm / 1=

ffiffiffi
n
p

. Hence it is
reasonable to assume σ2∝ n.

In total, we simulated M = 10, 000 independent SNPs and varied
the sample size from4, 000 to 10, 000 in the trainingGWAS to explore
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the performance trend across different sample sizes. Each sample size
setting was replicated 50 times. And for each replication, we simulated
additional 1000 cases and 1000 controls as testing data. We used the
AUC evaluated on the testing data as the benchmark, and compared
the AUC predicted by PRStuning and the unadjusted AUC obtained by
directly plugging in the training summary statistics with the bench-
mark. Since all SNPs are independent, we only considered P+T as the
PRS method.

Figure 1 shows the boxplots of AUC values corresponding to dif-
ferentp-value thresholds and sample sizes of training data for P+T. The
grey, yellow, and red panels represent AUC predicted from PRStuning,

AUCcalculated from testingdata, and the unadjustedAUCobtainedby
directly plugging in the training summary statistics, respectively. As
expected, the unadjusted AUC estimates were inflated compared to
the benchmark due to the overfitting problem. In contrast, with the
same summary statistics from the training data, PRStuning was able to
shrink the estimates of allele frequency differences and produce AUC
estimates comparable to those from the testing data.

In order to further demonstrate the accuracy of PRStuning, we
summarize the average correlation of the AUC estimates ρAUC and the
average relative difference of the best-performing AUC estimates
rdAUC in Table 1. Thosemetrics are complementary to each other since
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Fig. 1 | AUC boxplots for P+T in the simulation experiments with
independent SNPs. Each box represents 50 replications and is presented as
median values and the first and third quartiles. The upper/lower whisker extends
from the hinge to the largest/smallest value at most 1.5 IQR from the hinge. We
changed the p-value threshold from {1, 5e− 1, 5e− 2, 5e− 3, 5e − 4, 5e− 5, 5e− 6} and
the sample sizes of training data from 4000 to 10,000. The grey, yellow, and red

panels represent AUC predicted from PRStuning, AUC evaluated on testing data,
and the unadjusted AUC directly estimated by plugging in the training summary
statistics, respectively. The AUC evaluated on the testing data is the benchmark.
PRStuning is able to yield AUC estimates comparable to the benchmark
results. Source data are provided as a Source Data file.
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two vectors can be perfectly correlated but differ a lot. The values of
ρAUC were at least 0.976, which indicates that PRStuning is capable of
accurately predicting the AUC pattern on testing data. Moreover, the
average values of rdAUC were at most 1.3%, indicating that PRStuning
can effectively select parameter values that achieve performance
comparable to the best-performing parameter in the testing data.Note
that ρAUC increased and rdAUC decreased as the sample size of training
GWAS increased. This is expected because a larger sample size in the
training data can lead to higher accuracy in estimating allele frequency
differences.

We also evaluated PRStuning when the training and testing data
are heterogeneous. To be more specific, we considered two different
scenarios. In the first scenario, we assumed that the allele frequencies
from the training and testing data were different and the difference
between allele frequencieswasgenerated fromN(0, 0.012). In the other
scenario, we assumed that the effect sizes between training and testing
data were different and the difference between effects of risk SNPs
followed N(0, 0.0005n). The results of these experiments for P+T are
provided in the Supplementary Figures 3-4. The figures demonstrate
that PRStuning can still estimate the AUC well when the pooled allele
frequencies are different between the training and testing data. How-
ever, if the effects of risk SNPs are different between training and
testing data, the AUC from PRStuning was overestimated, leading to
inaccurate performance to tune parameters.

We then considered the case where the pre-selected SNPs are not
filtered by any independence criterion for SNPs. In this case, the pre-
selected SNPs are linked as reflected in their LD. We first performed
simulations with SNPs with an AR(1) auto-regressive LD structure. We
fixed the auto-regressive coefficient ρ to 0.2, which is the correlation
coefficient between two adjacent SNPs. Similar to the simulation sce-
nario with independent SNPs, we simulated the reference allele fre-
quencies in the population from U(0.05, 0.95), and the risk effects
from a point normal distribution Eq. (7), in which π =0.05 and
σ2 = 0.0005n. The variance of risk effects is proportional to the sample
size of the GWAS since sm / 1=

ffiffiffi
n
p

according to the central limit
theorem.

We varied the sample size from 4, 000 to 10, 000 in the training
GWAS and generated 50 replications for each sample size. We used
CorBin28, an R package for generating high dimensional binary data
with a specific correlation structure, to generate individual-level gen-
otype data. Specifically, we generated 1,000 cases and 1,000 controls
as testing data for each replication. We additionally simulated 1,000
samples as a reference panel for calculating LD coefficients. We used
both C+T and LDpred as the PRS methods in this experiment. In
LDpred,weneed to specify another parameter namedLD radius,which
is the number of SNPs on each side of a given SNP for computing
pairwise LD. The LD radius was set to 5, indicating that the SNPs used
for computing LD have pairwise correlations above 0. 25 ≈ 3 × 10−4

based on the AR(1) LD structure.
To demonstrate the predictive accuracy of PRStuning, we again

regarded the AUC evaluated on the testing data as the benchmark and
compared the AUC predicted by PRStuning and the unadjusted AUC
with the benchmark. Figures 2, 3 and Supplementary 1 demonstrate
the AUC boxplots for C+T, LDpred, and LDpred2 with different para-
meter values, respectively. For both PRSmethods, the unadjustedAUC

estimateswere largely overestimated compared to the benchmark due
to overfitting. On the contrary, the AUC estimates predicted by
PRStuning were very close to the benchmark results, especially when
the sample size became large.

We summarize the average values of ρAUC and rdAUC for C+T and
LDpred in Table 2. For both C+T and LDpred, the average values of
ρAUC were at least 0.754 in all sample size settings, indicating
PRStuning can accurately predict the AUCon testing data. The average
values of rdAUC were below 3.1%, meaning PRStuning can effectively
select a parameter that achieves performance comparable to the
actual best-performing parameter on the testing data. Again, we can
observe an increasing tendency in ρAUC and a decreasing tendency in
rdAUC as we increase the sample size of the training GWAS as the result
of the increase in estimation accuracy of the allele frequency
differences.

We evaluated PRStuning when the training and testing data were
heterogeneous, where we considered three different scenarios. In the
first scenario, we assumed the allele frequencies from training and
testing data were different and the differences between allele fre-
quencies were generated from N(0, 0.012). In the second scenario, we
assumed that the effect sizes between training and testing data were
different and the difference between effects of risk SNPs followed
N(0, 0.0002n). In the third scenario, the LD structure of the testing
data was AR(1) with an auto-regressive coefficient ρ =0.15, which is
different from the auto-regressive coefficient of the training data. The
results of these experiments for C+T, LDpred, and LDpred2 are pro-
vided in Supplementary Figures 5-13. Generally speaking, the figures
demonstrate that PRStuning can still estimate the AUC well when the
pooled allele frequency and LD matrix are different between training
and testing data. However, if the effects of risk SNPs are different
between training and testing data, the AUC from PRStuning was
overestimated, leading to inaccurate performance to tune parameters.

To investigate whether including more individuals in the refer-
ence panel can improve the performance of PRStuning, we conducted
simulation experiments to compare its performance with the perfor-
mance based on the ground truth LD matrix. The comparison results
using C+T, LDpred, and LDpred2 to construct PRS can be found in
Supplementary Figures 14-16, respectively. From the figures, we
observe that the performance of PRStuning based on the LD matrix
estimated from 1,000 individuals was almost the same as the perfor-
mance based on the ground truth LD matrix. Thus, with a sufficient
number of individuals in the reference panel, there may be little
improvement in performance by including more individuals in the LD
matrix calculation.

To further demonstrate the effectiveness of PRStuning, we cal-
culate the sensitivity of the PRS model tuned by PRStuning, which is
the proportion of true cases among predicted ones from the PRS
model. The cutoff value for PRS is selected by Youden’s J statistic,
which is defined as the sumof sensitivity and specificityminus one and
is the most commonly used criterion to select the cutoff value for a
binary classifier29. The true case proportions of simulation experi-
ments for the four PRS methods are summarized in Supplementary
Figure 2.

We also evaluated PRStuning with simulations based on real
genotype data. The experiments were conducted based on genotype
data collected from the UK Biobank (UKBB)30, which collected genetic
and health records from around 500, 000 participants in the UK. The
quality control procedure is summarized in the Supplementary
Methods section. We only selected independent individuals with Eur-
opean ancestry in the experiments. Since only SNPs presented in the
HapMap 3 project (HM3 SNPs) were used in the reference panel for
reliable LD estimation and computation efficiency, we focused on the
SNPs in HM3 in the UKBB dataset. This resulted in a total of 1, 027, 699
HM3 SNPs and 272, 751 individuals passing the quality control criteria.

Table 1 | Summary of the average values of ρAUC and rdAUC in
the simulation experiments with independent SNPs

Metric n = 4000 n = 6000 n = 8000 n = 10,000

ρAUC 0.976 0.988 0.993 0.996

rdAUC 1.3% 1.0% 0.9% 0.7%

We considered P+T as the PRSmethod. For each sample size, 50 replications were generated in
the experiment.
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We used the two-component mixture model Eq. (7) to simulate
risk effects for SNPs with π = 0.1% and σ2 = 0.04. The phenotypes of
the individuals were simulated based on the additive assumption.
Among all individuals, we randomly selected 80% of them for GWAS
analysis to calculate the summary statistics as training data and the
rest as testing data. We used the data collected from the 1000 Gen-
omes Project (1KG)26 as the reference panel for calculating LD. In the
experiments, we used both C+T and LDpred as the PRS methods and
compared the AUC estimates predicted by PRStuning with the values
calculated on the testing data. The LD radius to be specified in
LDpred was set to M/3000 ≈ 343, which is the default practice

suggested by LDpred and corresponds to a 2Mb LD window on
average in the human genome15.

In Table 3, we summarize the AUC results of C+T, LDpred, and
LDpred2 with different parameter values for both PRStuning and
testing genotype data. The AUC estimates from PRStuning were very
close to the actual AUC values obtained from the testing data. For C+T,
the correlation ρAUC reached 0.994, the relative difference rdAUC was
3.8%, and the sensitivity of the tuned PRS model based on PRStuning
was 80.6%. For LDpred, ρAUC reached 0.998, rdAUC was just 1.3%, and
the sensitivity was 74.8%. It is worth noting that PRStuning was able to
detect the dramatic decrease in the testing performance of LDpred
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Fig. 2 | AUC boxplots for C+T in the simulation experiments with
correlated SNPs. Each box represents 50 replications and is presented as median
values and the first and third quartiles. The upper/lower whisker extends from the
hinge to the largest/smallest value at most 1.5 IQR from the hinge. We changed the
p-value threshold from {1, 5e− 1, 5e− 2, 5e − 3, 5e− 4, 5e− 5, 5e−6} and the sample
sizes of training data from 4000 to 10,000. The grey, yellow, and red panels

represent AUC predicted from PRStuning, AUC evaluated on testing data, and the
unadjusted AUC directly estimated by plugging in the training summary statistics,
respectively. The AUC evaluated on the testing data is the benchmark. PRStuning is
able to yield AUC estimates comparable to the benchmark results. Source data are
provided as a Source Data file.
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when π was dropped from 1e − 1 to 3e − 2. For LDpred2, ρAUC reached
0.989, rdAUC was 7.0%, and the sensitivity was 85.3%. These results
further suggest the accuracy in AUC estimation and effectiveness in
parameter tuning using PRStuning on SNPs linked by LD.

Real data applications
We applied PRStuning to GWAS summary statistics from four diseases,
including coronary artery disease (CAD), type 2 diabetes (T2D), and
inflammatory bowel disease (IBD). Table 4 summarizes the sources of
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Fig. 3 | AUC boxplots for LDpred in simulation experiments with correlated
SNPs. Each box represents 50 replications and is presented as median values and
the first and third quartiles. The upper/lower whisker extends from the hinge to the
largest/smallest value atmost 1.5 IQR from thehinge.Wechanged theproportionof
risk SNPs from {1, 3e − 1, 1e − 1, 3e − 2, 1e− 2, 3e − 3, 1e − 3, 3e − 4, 1e − 4, 3e − 5, 1e − 5}

and the sample sizes of training data from 4000 to 10,000. The grey, yellow, and
red panels represent AUC predicted from PRStuning, AUC calculated from testing
data, and the unadjusted AUC, respectively. Source data are provided as a Source
Data file.
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the publicly available GWAS summary statistics and their corre-
sponding sample sizes. Note that the summary statistics from all three
datasets are results of meta-analyses and the reported sample sizes
represent the total numbers of individuals among all aggregated stu-
dies. The actual sample size used to calculate the summary statistics of
each SNP was less than the reported sample size, since some of the
studies may not have genotypes on this SNP.

We used these summary statistics to train the PRS models based
on P+T, C+T, LDpred, and LDpred2. Then we used the data collected
from the UKBB as the testing data for evaluating the actual prediction
performance of the built PRS models. Only the SNPs with minor allele
frequencies greater than 5%were included in building the PRSmodels.
Details of the quality control procedure and phenotype extraction
method for the UKBB data are provided in the Supplementary Meth-
ods section. In line with the simulation experiments based on UKBB
genotype data, we only incorporated independent European-ancestry
individuals and HM3 SNPs in the UKBB dataset, resulting in 272,751
individuals and 1,027,699 HM3 SNPs. Regardless of which PRSmethod
is considered, only the SNPs overlapped between GWAS summary
statistics and the testing data were considered in our analyses. The
numbers of the overlapping SNPs for these diseases are summarized in
Table 4.

In PRStuning, we adopted the EM algorithm 4.2 for PRS models
built by P+T since the pre-selected SNPs were approximately inde-
pendent, and the Gibbs sampling-based SAME algorithm 4.3 for C+T
and LDpred due to the presence of LD among the pre-selected SNPs.
The LD radius in LDpred was set to M/3000, which is the default
practice suggested by LDpred. Figure 4 shows the predicted AUC by
PRStuning and the actual AUC on testing data for four diseases with
different PRS models. The dotted and solid horizontal lines respec-
tively refer to the highest AUC for PRStuning and testing data. It is
evident in the figure that the AUC predicted by PRStuning and the
AUC calculated from testing data had similar patterns across differ-
ent parameter values, particularly for LDpred. For CAD, the AUC of
LDpred increasedwhen the risk SNPproportionπwas reduced from 1
to 1e − 2. It peaked at 1e − 2 and then started to decrease when we
kept reducing the value of π. This pattern was exactly predicted by
PRStuning.More complex patterns of AUCwere observed for LDpred
in T2D and CAD. The AUC values in both diseases had double modes
across parameter values. For T2D, theAUCof LDpredpeaked at 3e − 2
and 3e − 4. For IBD, the AUC of LDpred peaked at 3e − 2 and 1e − 5.
Still, PRStuning predicted the exact same patterns of AUC for both
diseases. This demonstrates the high predictive accuracy of
PRStuning. More detailed information for the predicted AUC by
PRStuning and the actual AUC on testing data is summarized in
Supplementary Table 2.

To further explain why there were double modes for AUC with
different parameter values, we refer back to the calculation of Δ in Eq.
(3) since AUC is monotonically increasing with respect to Δ. The
numerator of Δ is a linear combination of the weightsω= ðω1, . . . ,ωM ÞT
used in PRS, whereas the denominator is the square root of a quadratic
function of ω, which can be further expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 + τ

2
1

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωT ðS0RS0 + S1RS1Þω

q
, ð8Þ

Table 2 | Summary of the average values of ρAUC and rdAUC in
the simulation experiments with correlated SNPs for C+T and
LDpred

PRS Metric n = 4000 n = 6000 n = 8000 n = 10,000

C+T ρAUC 0.622 0.832 0.904 0.951

rdAUC 2.7% 2.5% 1.6% 1.6%

LDpred ρAUC 0.876 0.955 0.970 0.977

rdAUC 2.9% 2.3% 1.7% 1.6%

For each sample size, 50 replications were generated in the experiment.

Table3 | ThepredictedAUCvalues forC+T, LDpred, andLDpred2withdifferent parameters in the simulationexperimentbased
on the UKBB data

C+T

Threshold 1 5e − 1 5e − 2 5e − 3 5e − 4 5e − 5 5e −6 5e − 7 5e −8

PRStuning 0.789 0.790 0.816 0.830 0.834 0.835 0.835 0.835 0.835

Testing 0.793 0.795 0.830 0.852 0.860 0.865 0.867 0.868 0.868

LDpred

π 1 3e − 1 1e − 1 3e − 2 1e − 2 3e − 3 1e − 3 3e −4 1e −4 3e − 5 1e − 5

PRStuning 0.747 0.784 0.732 0.593 0.550 0.532 0.519 0.513 0.509 0.504 0.502

Testing 0.790 0.813 0.749 0.588 0.548 0.527 0.518 0.509 0.506 0.500 0.506

LDpred2

π 1 3e − 1 1e − 1 3e − 2 1e − 2 3e − 3 1e − 3 3e −4 1e −4 3e − 5 1e − 5

PRStuning 0.768 0.777 0.767 0.781 0.767 0.837 0.890 0.919 0.875 0.915 0.926

Testing 0.780 0.787 0.793 0.785 0.771 0.818 0.846 0.859 0.838 0.856 0.861

We randomly selected 80% of individuals as training data and the rest as the testing data. The data from the 1KG were used as the reference panel. For C+T, LDpred, and LDpred2, respectively, the
correlation values ρAUC reached 0.994,0.998, 0.989, the relative difference values rdAUC were 3.8%, 1.3%, 7.0%, and the sensitivity values of the tuned PRS model based on PRStuning were
80.6%, 74.8%, 85.3%. Sensitivity is calculated using the cutoff value selected by Youden’s J statistic.

Table 4 | Summary of the publicly available GWAS summary statistics used in real data applications

Disease Source Sample Size #SNPs #Overlapping SNPs (UKBB, 1KG, HM3)

Type 2 Diabetes (T2D) DIAGRAM51 n0 = 56,962n1= 12,171 1,938,21 718,340

Coronary Artery Disease (CAD) CARDIoGRAM52 n0 = 64,762n1= 22,233 2,121,277 861,825

Inflammatory Bowel Disease (IBD) IIBDGC53 n0 = 38,155n1= 48,485 4,911,413 952,376

Breast Cancer (BC) BCAC54 n0 = 17,588n1 = 14,910 11,050,495 1,016,333

The sources of GWAS summary statistics, their sample sizes, and the SNP numbers are presented in the table. We also report the number of overlapping SNPs among UKBB, 1KG, and HM3. These
SNPs were used in PRStuning.
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whereS0 and S1 arediagonalmatriceswithdiagonal elements encoding
(s0,1,…, s0,M) and (s1,1,…, s1,M), respectively. The weights in the PRS
model were calculated based on different values of parameters. In
Supplementary Figure 17, we demonstrate the denominators and
numerators ofΔwith different parameter values in LDpred for the four
diseases. From the figure, we can observe that both the denominator
and numerator were actually unimodal functions with respect to the
parameter values that peak at different parameter values. Their ratio
led the Δ to become bimodal functions with respect to the parameter
values.

In Figure 4, we do observe some underestimation of AUC for C
+T, LDpred, and LDpred2 on CAD and IBD. This is because the sum-
mary statistics collected are results of meta-analyses. The actual

sample size used for calculating the summary statistics of each SNP is
less than the reported sample size, because some of the studies may
not have genotypes at this SNP. Some consortia, such as GLGC31,
provide the sample size used for calculating summary statistics of
each SNP, butmost consortia do not provide this information. Even if
we have the sample size for each SNP, we can not infer the number of
non-overlapping individuals for calculating summary statistics of two
SNPs. The non-overlapping individuals will change the correlations
between z-values. In our analysis, we simply plugged the total sample
sizes reported by the summary statistics into PRStuning. According
to Eq. (16), the inflation of the sample size would lead to the sys-
tematic underestimation of sm. Based on Eq. (2), we know that AUC is
monotonically increasing with respect to Δ, and we have Δ /
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Fig. 4 | The predicted AUCby PRStuning and the actual AUCon testing data for
fourdiseaseswith PRSmodels built fromP+T, C+T, LDpred, and LDpred2using
differentparameters.The four panels present the results of P+T, C+T, LDpred, and
LDpred2, respectively. The dotted and solid horizontal lines refer to the highest
AUC for PRStuning and testing data. The overall patterns of AUC predicted by

PRStuning and calculated from testing data across different parameter values were
similar. Detailed AUC values for different methods and tuning parameters are
summarized in Supplementary Table 2. Source data are provided as a Source
Data file.
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PM
m= 1 ωmδm and δ = SRS−1β. We estimate S−1β directly from z-scores,

which are not influencedby the underestimation of sm. Therefore, the
underestimation of sm would further lead to the underestimation
of AUC.

To further illustrate the predictive accuracy of PRStuning, we
calculated ρAUC and rdAUC with different PRS methods for the four
diseases. The results of ρAUC and rdAUC are summarized in Table 5. The
low values of rdAUC indicate that the prediction performanceunder the
PRStuning-selected parameter approximated the best performance on
the testing data accurately, especially for C+T and P+T. Even though
LDpred had higher rdAUC compared to the other two PRS methods, it
yielded values of ρAUC all above 0.95. The high values of ρAUC indicate
that PRStuning can accurately predict the pattern of AUC with respect
to the parameters on the testing data. This can be clearly observed
fromFigure4. These results show that PRStuning can help us select the
best-performing parameters in PRS methods with only summary sta-
tistics from the training data.

We note that the correlation between AUC predicted by PRStun-
ing and calculated from the testing data was negative with C+T for
CAD. However, also note that the standard deviations among the AUC
values with different parameters for bothmethods were less than 0.01
in this scenario. The extremely small standard deviations of AUC
contribute to the large variation of the correlation. Therefore, the
correlation is relatively uninformative in characterizing the relation-
ship between the predicted and the actual AUC values. On the other
hand, the small value of rdAUC (0.4%) suggests the effectiveness of
PRStuning. The sensitivity values of the tuned PRS model based on
PRStuning and Youden’s J statistic are summarized in Supplementary
Table 3.

We also compared PRStuningwith PUMAS32, amethod to estimate
predictive R2 for PRS models using summary statistics from GWAS by
sampling pseudo-summary-statistics. To compare predictive R2 with
AUC, we first converted Pearson’s correlation to Spearman’s rank
correlation and then linearly mapped the latter to AUC33. In Supple-
mentary Table 4, we summarize ρAUC and rdAUC based on PUMAS. We
observe that PRStuning outperformed PUMAS across all real data and
PRSmethods, and that PUMAS is especially incapable of predicting the
AUC well for LDpred and LDpred2.

Discussion
PRS methods have been proven useful for the prediction of common
disease risks, which can help improve disease prevention and early
treatment. Some PRS methods require users to specify the values for
parameters. However, to tune the parameters, an external individual-
level genotype dataset is often needed to evaluate the prediction
performance of different parameter values. However, individual-level
genotype data are much less accessible compared to GWAS summary
statistics due to privacy and security concerns. Additionally, leaving
out partial data for parameter tuning can also reduce the predictive
accuracy of the PRS model.

These concerns motivated us to propose PRStuning, an empiri-
cal Bayes method that only requires summary statistics from the

training GWAS to evaluate PRS and tune the parameters. PRStuning is
based on an AUC estimator proposed in22, which is a function of the
GWAS summary statistics. However, plugging the training summary
data directly into this estimator would cause overfitting, leading to
an inflation of the predicted AUC. To tackle this problem,we adopted
the empirical Bayes approach to shrinking the predicted AUC based
on the estimated genetic architecture. Extensive simulation experi-
ments and real data applications on four diseases with four PRS
methods demonstrated that PRStuning is capable of accurately pre-
dicting the AUC on the testing data and selecting the best-
performing parameters.

The core of PRStuning is to estimate the allele frequency differ-
ences among SNPs. To do so, we need to input the sample sizes of the
cases and controls in the training data. Usually, they are provided in
the sources of GWAS summary statistics. However, if the summary
statistics were derived from a meta-analysis, not all SNPs were geno-
typed in all studies included in themeta-analysis. In this case, the actual
sample sizes used for calculating the summary statistics are less than
the reported total sample sizes in the meta-analysis for some SNPs.
This may lead to underestimation in AUC according to Eq. (2). This
phenomenon was observed when we applied PRStuning to C+T and
LDpred on CAD and IBD, where the AUC estimates from PRStuning
were lower than the actual values in the testing data. Nevertheless,
according to our experimental results, the underestimation phenom-
enon will not influence the performance of parameter selection since
the overall pattern of the AUC values with different parameter values
can still be well-predicted by PRStuning.

Currently, we only considered tuning parameters for PRS meth-
ods on diseases or other binary phenotypes. For quantitative pheno-
types, instead of AUC, predictive r2 is commonly used as an evaluation
criterion of the PRS model. Extending PRStuning to evaluating pre-
dictive r2 and selecting parameters on quantitative phenotypes is left
as future work.

In PRStuning, we select the best-performing parameter by pre-
dicting the AUC of the PRS built under each candidate parameter
value. Although AUC is themost commonly used evaluationmetric for
PRS on binary disease outcomes22, it may be helpful to incorporate
additional covariates such as age, sex, etc. into the AUC since theymay
also have an impact on disease risks34. Two notable variants of AUC to
incorporate covariate information include covariate-specific AUC
(AUCx)

35 and covariate-adjustedAUC (AAUC)36. Similar to the definition
of theordinary AUC,AUCx is defined as theprobability that the PRSof a
random individual from the case group is larger than the PRS from a
random individual from the control group conditioning on both indi-
viduals share the common covariate value x. AAUC is the weighted
average of AUCx where the weight is the probability density of cov-
ariate value x. If the genetic risk of a disease is independent of other
covariates, both AUCx and AAUC will have the same value as the
ordinary AUC34. To estimate AUCx and AAUC, we need to estimate the
conditional distribution of PRS given a covariate value, which can only
be inferred with the help of individual-level data. Since we focus on
using GWAS summary statistics to predict the AUC and tune para-
meters of PRS, we left the prediction of covariate-incorporated AUCx

and AAUC based on individual-level training data as future work.
The basic assumption of PRStuning is that the training and testing

datasets are homogeneous, indicating that both datasets come from
the same population and therefore share the same LD matrix and
expected allele frequencies among controls and cases. The same
assumption is also needed for traditional PRS analyses based on an
independent validation dataset to tune parameters. If the validation
and testing datasets are heterogeneous, the AUC estimated from the
validation dataset and the parameter selected based on the estimated
results are not accurate. Without additional information about the
heterogeneity between the two datasets, it will be challenging to esti-
mate AUC and tune parameters based on training or validation

Table5 | SummaryofρAUC and rdAUCwhenusingPRStuning to
predict AUCs for four PRS methods on four diseases

Disease P+T C+T LDpred LDpred2

T2D 0.731 (0.2%) 0.514 (3.5%) 0.982 (2.2%) 0.856 (1.5%)

CAD 0.817 (0.8%) −0.102 (0.4%) 0.969 (7.1%) 0.784 (4.6%)

IBD 0.491 (1.6%) 0.858 (2.1%) 0.987 (5.6%) 0.926 (5.0%)

BC 0.936 (1.2%) 0.956 (0.9%) 0.950 (0.2%) 0.922 (0.1%)

The rdAUC values are summarized in parenthesis. Note that the standard deviations among the
AUC values with different parameters were less than 0.01 for both methods when using C+T on
CAD. The extremely small standard deviations of AUC contribute to the large variation of the
correlation, leading to a negative ρAUC.
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datasets. We note that some recent PRS methods have been proposed
to consider multiple populations from different ancestries together,
which can transfer the knowledge from the European population to
other demographics with limited sample size37–40. In PRStuning, we
currently focus on dealing with the overfitting issue when the homo-
geneous assumption is valid. The adjustment to the selected parameter
value based on additional information of the heterogeneity will be
considered in our future work. Supplementary Figures 3-13 present the
performance of PRStuning when the pooled allele frequency, effect
size, and LDmatrix are different between training and testing datasets.
The figures demonstrate that PRStuning can estimate the AUC well
when heterogeneity exists in the pooled allele frequency and LDmatrix.
However, if the heterogeneity between training and testing data exists
in the effects of changing allele frequencies between controls and
cases, the AUC from PRStuning will be overestimated and unreliable.

Recent research suggests that combining all PRSs under a tuning
grid using ensemble methods can improve the prediction
performance8,41–43. In the ensemblemethods, an independent validation
dataset is needed to estimate the weights used for combining PRSs. In
PRStuning, we estimate the AUC and select the best-performing para-
meters for a PRS method based on the SNP weights derived from the
PRSmethod. If the PRSweights used in ensemblemethods have already
been estimated in an individual-level validation dataset, we can com-
bine the SNP weights in each PRS and the PRS weights together to
derive the ensembled SNP weights. In this situation, PRStuning can be
used to predict the AUC of the PRS from the ensembled weights
without another individual-level dataset. However, without an
individual-level validation dataset to estimate the PRS weights used in
the ensemble methods, PRStuning can not estimate the PRS weights
simply based on GWAS summary statistics from the training data.

Methods
Notations and assumptions
Based on the additive assumption, the PRS for individual i is the sumof
the genotypes gi = (gi,1,…, gi,M) weighted by the corresponding effects
ω = (ω1,…,ωM):

PRSi =
XM
m= 1

ωmgi,m, ð9Þ

where M is the total number of the pre-selected SNPs used for
constructing PRS. Depending on the specific PRSmethod, not all SNPs
collected in the training GWAS data are necessarily used in PRS
calculation. Please note that some PRS methods incorporate steps for
selecting SNPs based on their associations with the disease. Here we
define the pre-selected SNPs as the SNPs used in building the PRS
model before running a selection step related to association strengths.
LD clumping is an example of the selection step based on the observed
association strength. Hence, we refer to the pre-selected SNPs in C+T
as genome-wide SNPs collected in the training GWAS data. On the
contrary, LDpruning is a selection step unrelated to the associations of
SNPs with the disease. Therefore, the pre-selected SNPs in P+T are the
SNPs selected after an LD pruning step. Different PRS methods have
been proposed to estimate the weight vector ω = (ω1,…,ωM) from a
GWASdataset or its summary statistics for the disease of interest. Here
and after we simply useω to denote the effects already estimated from
a PRS method.

Based on disease status, we divide individuals into the case and
control groups. In the following, we use subscripts j =0 and j = 1 to
denote those from the control and case groups, respectively. For
example, the frequencies of the reference allele for SNP m among
controls and cases are denoted as f0,m and f1,m, respectively. The
genotype gi,m of SNPm for an individual in the control group follows a
binomial distribution Bino(2, f0,m) with mean E½g0,m�= 2f 0,m and

variance s20,m :=Varðg0,mÞ=2f 0,mð1� f 0,mÞ. Similarly, we have
gi,m ~ Bino(2, f1,m) if the individual i is from the case group.

By the central limit theorem, PRS approximately follows a normal
distribution in each groupwhen the SNPnumberM is adequately large.
For PRS methods involving SNP selection steps unrelated to the SNPs’
associations with the disease, such as P+T, M varies from ~10 to ~10K
depending on the selection threshold. For PRSmethods with genome-
wide pre-selected SNPs, M ranges from ~100K to ~1M determined by
the number of SNPs genotyped or imputed in the training data. Based
on the central limit theorem, the PRS variables from the two groups
follow normal distributions:

PRSi ∼
Nðη0, τ

2
0Þ if i 2 control group

Nðη1, τ
2
1 Þ if i 2 casegroup

(
, ð10Þ

where

ηj =
XM
m= 1

2ωmf j,m, ð11Þ

and

τ2j =
XM
m= 1

ω2
ms

2
j,m +2

X
m1<m2

ωm1
ωm2

Rm1 ,m2
sj,m1

sj,m2
, ð12Þ

for j = 0 or 1. Here Rm1 ,m2
corresponds to the correlation between SNP

m1 and SNP m2, which is known as the LD coefficient.
For a binary phenotype, we usually use AUC as the criterion for

evaluating the prediction performance of PRS. AUC is defined as the
area under the ROC curve, which can also be calculated as the prob-
ability that a random PRS from the case group is larger than a random
PRS from the control group44. Based on this fact and the distributions
of PRS, Song, etc.22 formulated AUC as

AUC=ΦðΔÞ, ð13Þ

where

Δ :=
η1 � η0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 + τ

2
1

q =
2
PM

m= 1ωmδmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 + τ

2
1

q : ð14Þ

Here δm≔ f1,m − f0,m records the difference between the allele
frequencies of the two groups for SNP m, and Φ( ⋅ ) is the cumulative
density function of a standard normal distribution.

To calculate τ20 and τ21 in Eq. (13), we can directly plug in the
observed values of the allele frequencies and LD coefficients into Eq.
(12) since they are not directly related with the SNP effects on the
disease. We can extract allele frequencies from summary statistics of
the GWAS and use a genotyping dataset as the reference panel for
extracting the LD information. Some large projects, such as the 1000
Genomes project26 and the HapMap3 project27, can be used to calcu-
late the LD coefficients. We will provide the details of calculations in
Section “Calculating LD from a reference pane”.

In Eq. (13), the allele frequency differences δm (m = 1,…,M) are
critical. One may think of directly plugging in the observed allele fre-
quencies f̂ 0,m and f̂ 1,m from GWAS for building the PRS model to
obtain δm. However, the allele frequency differences of SNPs that
exhibit large effects tend to be overestimated, and these SNPs have
larger contributions to PRS than the SNPs showing small effects, a
phenomenon known as overfitting in the machine learning
community23. Overestimating the SNP effects would lead to an inflated
value of the predicted AUC and the incorrectly selected values of the
parameters. Here we adopt an empirical Bayes method to reduce the
influence of overfitting by shrinking the observed allele frequency
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differences obtained from the summary statistics of the
training GWAS.

In GWAS, we usually use the z-score calculated from the allele
frequencydifference test to assess the associationof eachSNPwith the
disease. Since z-scores are standardized values following a standard
normal distribution N(0, 1) under the null hypothesis, we will use z-
scores as surrogates to derive the posterior distribution of δm. The z-
score is calculated with the following formula:

zm =
f̂ 1,m � f̂ 0,mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21,m=4n1 + s
2
0,m=4n0

q , ð15Þ

where f̂ j,m is the observed allele frequencies among controls or cases,
and s2j,m is the variance of genotypes in each group.We usen0 and n1 to
respectively denote the sample sizes of controls and cases in the
GWAS. To simplify the expression, we use sm to denote the denomi-
nator of the z-score, i.e.,

sm :=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21,m=4n1 + s

2
0,m=4n0

q
, ð16Þ

anddenote s = (s1,…, sM).We use z to encode the z-scores of all the pre-
selected SNPs. Based on this definition, we have zm∣δm ~N(δm/sm, 1)
given the allele frequency difference δm.

Under an assumed condition that SNP m is independent of other
SNPs, its potential allele frequencies among controls and casesmay be
different. We denote the potential allele frequencies under this con-
dition as p0,m and p1,m, respectively. Note that they should be dis-
tinguished from the marginalized allele frequencies f0,m and f1,m. We
denote the effect of SNP m as βm = p1,m − p0,m. If the SNP has no effect
on the disease, then βm = 0. For the risk ones, βm ≠0. In the Supple-
mentary Methods section, we further prove that δ = (δ1,…, δM) is
actually related to the LD among the pre-selected SNPs and the
underlying SNP effects β = (β1,…, βM) in terms of changing allele fre-
quencies between two groups, i.e.,

delta= SRS�1β: ð17Þ

We further assume that the standardized effect βm/sm follows a
point-normal distribution, i.e.,

βm

sm
∼iid ð1� πÞδ0 +πNð0,σ2Þ: ð18Þ

Here δ0 is a point mass at zero and π represents the prior pro-
portion of the SNPs having effects on the disease. We use σ2 to denote
the variance of βm/sm in the risk SNPs. In the Supplementary Methods
section, we derived the following relationship between σ2 and the
heritability (h2

l ) of the disease in the liability-scale:

σ2 =
Neh

2
l

4Mπ
ϕðΦ�1ðκÞÞ2

κ2ð1� κÞ2
, ð19Þ

where Ne =
4n0n1
n0 +n1

is the effective sample size of the GWAS, κ is the
prevalence of the disease, and ϕ and Φ are the probability density
function and cumulative density function of the standard normal dis-
tribution N(0, 1), respectively.

In the following two subsections, we will demonstrate how to
estimate allele frequency differences in two different scenarios by
reducing the effect of overfitting based on the empirical Bayes theory.

Estimating AUC on independent SNPs
First, we consider the situation inwhich the pre-selected SNPs used for
constructing PRS are independent. For example, the pre-selected SNPs

in P+T are approximately independent because they are selected after
an LD pruning step.

In this scenario, we have δ = β based on Eq. (17) and the joint
distribution of z-scores follows a multivariate normal distribution with
the covariance matrix equaling to the identity matrix IM, i.e.,

zjβ∼NM ðS�1β,IMÞ, ð20Þ

where S = diag(s) is a diagonalmatrix with diagonal elements encoding
the standard errors of the observed allele frequency differences.

With the point-normal prior (18) on each entry of β, the log-
likelihood of the z-scores is the summation of the log-likelihood for
each individual z-score, i.e.

logPðzjπ,σ2Þ=
XM
m= 1

log Pðzmjπ,σ2Þ: ð21Þ

With this property, we can use anEMalgorithm toget estimates of
π and σ2 by maximizing the likelihood P(z∣π, σ2).

After getting estimates of parameters π and σ2, we can derive a
closed-form solution for the posterior distribution of δm:

δmjzm ∼ ð1� hmÞδ0 +hmNðλzmsm,λs2mÞ, ð22Þ

where

hm =
πffiffiffiffiffiffiffiffiffi
1 + σ2
p ϕðzm=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2
p

Þ
ð1� πÞϕðzmÞ+ πffiffiffiffiffiffiffiffiffi

1 + σ2
p ϕðzm=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2
p

Þ
and λ=

1
1 + 1=σ2 : ð23Þ

Hereϕ( ⋅ ) is the probability density function of a standard normal
distributionN(0, 1). Derivation details of this posterior distribution can
be found in the SupplementaryMethods section. With Eq. (22), we get
MC samples of δm∣zm and plug them as the allele frequency difference
in Eq. (13) for calculating the posterior distribution of AUC. The shrink
estimator of δm in (22) reduces the effect of overfitting. Details of the
EM algorithm for estimating π, σ2, δm, and AUC are summarized in
Algorithm 4.2.

Algorithm 1. Estimate AUC on independent SNPs
Input: z-scores z = (z1,…, zM)
Output: Estimated π, σ2, δ and AUC
1: Initialize π and σ2;
2: repeat
3: for m = 1, 2, . . . ,M do
4: E step:
5: hm  πϕðzm=

ffiffiffiffiffiffiffiffiffi
1 + σ2
p

Þ=
ffiffiffiffiffiffiffiffiffi
1 + σ2
p

ð1�πÞϕðzmÞ+πϕðzm=
ffiffiffiffiffiffiffiffiffi
1 + σ2
p

Þ=
ffiffiffiffiffiffiffiffiffi
1 + σ2
p

6: M step:

7: π 
PM

m= 1
hm

M

8: σ2  
PM

m= 1
hmz

2
mPM

m= 1
hm

� 1

9: end for
10: untill π and σ2 converge
11 for m = 1, 2,…,M do
12: δm ∼ ð1� hmÞδ0 +hmNð zmsm1 + 1=σ2 ,

s2m
1 + 1=σ2Þ

13: end for

14: Δ 2
PM

m= 1
ωmδmffiffiffiffiffiffiffiffiffiffi

τ20 + τ21
p and AUC←Φ(Δ)

Estimating AUC on SNPs linked by LD
When the pre-selected SNPs are not filtered by the independence cri-
terion, their genotypes may be correlated due to LD. We can estimate
the LD matrix R from a publicly available genotyping reference panel.

Article https://doi.org/10.1038/s41467-023-44009-0

Nature Communications |           (2024) 15:24 12



In this scenario, we have δ = SRS−1β based on Eq.(17) and the con-
ditional joint distribution of the z-scores given β is

zjβ∼NðRS�1β,RÞ, ð24Þ

where S = diag(s) is a diagonal matrix encoding the standard errors of
observed allele frequency differences.

We used the same point-normal prior (18) on each entry of β aswe
used in the independent SNP scenario. There are two unknown para-
meters π and σ2 in the prior distribution. We intend to use maximum
likelihood estimation (MLE) for estimating them based on the
observed z-scores. However, due to the extremely high number of
component combinations (i.e., 2M), the joint likelihood of z-scores
P(z∣π, σ2) is intractable. Here we use a Gibbs-sampling-based State-
Augmentation for Marginal Estimation (SAME) algorithm to get the
maximizer of the likelihood in a stochastic approach25.

Let γm∈ {0, 1} (m = 1,…,M) denotewhether SNPmhas aneffect on
the disease or not and γ = (γ1,…, γM). In the SAME algorithm, instead of
evaluating the original likelihood, we assess the likelihood of the
augmented data P(z, β, γ∣π, σ2). With flat priors on π and σ2, we derive a
Gibbs sampler for sampling the full parameters β, γ, π and σ2 with the
joint probability proportional to the augmented data likelihood. We
leave the derivation details in the Supplementary Methods section.

Bymaking some simple changes to the originally derived sampler,
we can get another Gibbs sampler for simultaneously sampling π, σ2

and D artificial replicates of the nuisance parameters fβðdÞ, γðdÞgDd = 1,
for whom the joint probability is proportional to

qD π,σ2, fβðdÞ, γðdÞgDd = 1jz
� �

/
YD
d = 1

P z,βðdÞ, γðdÞjπ,σ2� �
: ð25Þ

Based on this probability, the generated replicates of {β, γ} in the
sampler are conditionally independent. With this new sampler, the
marginal probability of (π, σ2) can be calculated by integrating/sum-
ming over all replicates of {β, γ}:

qD π,σ2jz� �
=
Z

βðDÞ

X
γðDÞ

. . .

Z
βð1Þ

X
γð1Þ

qD π, σ2, fβðdÞ, γðdÞgDd = 1jz
� �

dβð1Þ . . .dβðDÞ

/
Z

βðDÞ

X
γðDÞ

. . .

Z
βð1Þ

X
γð1Þ

YD
d = 1

P z,βðdÞ, γðdÞjπ, σ2� �
dβð1Þ . . .dβðDÞ

=
YD
d = 1

Z
βðdÞ

X
γðdÞ

P z, βðdÞ, γðdÞjπ, σ2� �
dβðdÞ

0
@

1
A

= Pðzjπ, σ2ÞD:

In other words, (π,σ2) is actually sampled from qD π,σ2jz� � /
Pðzjπ,σ2ÞD in the sampler. We further denote ðπ̂, σ̂2Þ=
argmax

ðπ,σ2Þ
Pðzjπ, σ2Þ and ð~π, ~σ2Þ as another set of parameters. If we let D

increase to infinity, the relative probability of sampling ð~π, ~σ2Þ compared

to sampling ðπ̂,σ̂2Þ will become

qD ~π, ~σ2jz
� �

qD π̂, σ̂2jz
� � =

Pðzj~π, ~σ2Þ
Pðzjπ̂, σ̂2Þ

 !D

D!10: ð26Þ

Therefore, the sampled (π, σ2) will converge to their maximum like-
lihood estimates ðπ̂,σ̂2Þ in the end.

Given their estimates, the Gibbs sampler in the SAME algorithm
can provideMC samples of nuisance parameters {β, γ} with probability
Pðβ,γjz,π̂,σ̂2Þ. With them, we can also get the MC samples of δ = SRS−1β
and the corresponding AUC based on Eq. (13). The complete Gibbs-
sampling-based SAME algorithm for estimating π, σ2, δm and AUC is
summarized in Algorithm 4.3.

Algorithm 2. Estimate AUC on SNPs linked by LD
Input: z-scores z = (z1,…, zM)
Output: Estimated π, σ2, δ and AUC
Initialize π, σ2, γm ~ Bernoulli(π) and βm ~ (1 − γm)δ0 + γmN(0, σ2) for
m = 1…M
D← 1
λ 1

1 + 1=σ�2

repeat
for d← 1 to D do
for m← 1 to M do
If γm =0, βm←0
μm  λðzm �

P
m0≠m

Rmm0βm0
sm0
Þ

If γm = 1, sample βm ∼Nðsmμm,λs
2
mÞ

rm  π
ffiffiffiffi
λ
σ2

q
expðμ2

2λÞ
hm  rm

ð1�πÞ+ rm
Sample γm ~ Bernoulli(hm)
end for
β(d)← β and γ(d)← γ
end for
Sample π ∼Beta

PD
d = 1

PM
m= 1

γmðdÞ+D,MD� PD
d = 1

PM
m= 1 γmðdÞ+D

 !

Sample σ�2 ∼Gamma 1
2

PD
d = 1

PM
m= 1

γmðdÞ+D, 12
PD
d = 1

Pd
m= 1

βmðdÞ2γmðdÞ
 !

D←D + 1
until (π, σ2) converge.

δ← SRS−1β, Δ 2
PM

m= 1
ωmδmffiffiffiffiffiffiffiffiffiffi

τ20 + τ21
p and AUC←Φ(Δ)

Calculating LD from a reference panel
Algorithm 4.3 needs users to input the LD matrix among the pre-
selected SNPs. Someprojects, such as the 1000Genomes Project26 and
the HapMap 3 project27 have released individual-level genotype data.
We can use them as reference panels to extract the LD matrix. In our
method, we chose the 1000 Genomes Project as our default reference
panel since it has a larger sample size. Note that most PRS methods
calculate weights on the SNPs genotyped in the HapMap 3 project
(HM3 SNPs) because it constitutes a set of commonly used tag SNPs
that are usually well-imputed in different GWAS. To extract reliable
results of the LD matrix and to reduce the computational cost of
Algorithm 4.3, we only included HM3 SNPs in the reference panel in
our experiments.

We note that the LD coefficient between SNPs tends to decay with
increasing distance between SNPs45. The genotypes of SNPswith a long
distance are approximately independent. We use LDetect to divide the
whole genome into approximately independent blocks46. For human
genomeswith European ancestry, a total of 1703 blocks are partitioned
by LDetect.

Within each partitioned block, the correlation matrix among the
genotypes of SNPs needs to be estimated as an input. Many methods
have been proposed to estimate SNP covariance matrix47–49, but most
of them are sensitive to the structure of the covariance matrix or the
distributionof the sampledata.Wenote that the Ledoit-Wolf estimator
does not dependon the assumptions of the covariance structureor the
sample data distribution49. In our method, we first standardized gen-
otypes in the reference panel, and then we adopted the Ledoit-Wolf
estimator on the standardized genotypes to obtain the correlation
matrix.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 1000genomes data can be downloaded via https://www.
internationalgenome.org/, and the HapMap3 data can be downloaded

Article https://doi.org/10.1038/s41467-023-44009-0

Nature Communications |           (2024) 15:24 13

https://www.internationalgenome.org/
https://www.internationalgenome.org/


via https://www.sanger.ac.uk/resources/downloads/human/hapmap3.
html. The UK Biobank data are available under restricted access.
Researchers can apply for access at https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access. The Type 2 Diabetes GWAS
summary level data available from the DIAGRAM consortium [https://
diagram-consortium.org/downloads.html]. The Coronary Artery Dis-
ease GWA meta-analysis data are available from the CARDIoGRAM
Consortium [http://www.cardiogramplusc4d.org/]. The Inflammatory
Bowel Disease Disease GWAS summary level data are available from the
IIBDGC consortia [https://www.ibdgenetics.org/]. The Breast cancer
data are available from the BCA Consortium [https://bcac.ccge.
medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-
summary-result/gwas-summary-results-breast-cancer-risk-2017]. We
provide example data for demonstrating the usage of our method at
https://github.com/lscientific/PRStuning, where the reference panel
and corresponding LD matrix based on the 1000 Genomes Project can
also be found. Source data are provided with this paper.

Code availability
The codes for PRStuning are available at https://github.com/lscientific/
PRStuning. Permanent repositories are available at https://doi.org/10.
5281/zenodo.1011978350.
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