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Opposing brain signatures of sleep in task-
based and resting-state conditions

Mohamed Abdelhack 1, Peter Zhukovsky2,3, Milos Milic1, Shreyas Harita1,4,
Michael Wainberg1,5,6,7, Shreejoy J. Tripathy1,2,4,5,6, John D. Griffiths1,2,4,6,
Sean L. Hill 1,2,4,5,6,8 & Daniel Felsky 1,4,6,9,10

Sleep and depression have a complex, bidirectional relationship, with sleep-
associated alterations in brain dynamics and structure impacting a range of
symptoms and cognitive abilities. Previous work describing these relation-
ships has provided an incomplete picture by investigating only one or two
types of sleep measures, depression, or neuroimaging modalities in parallel.
We analyze the correlations between brainwide neural signatures of sleep,
cognition, and depression in task and resting-state data from over 30,000
individuals from the UK Biobank and Human Connectome Project. Neural
signatures of insomnia and depression are negatively correlated with those of
sleep durationmeasured by accelerometer in the task condition but positively
correlated in the resting-state condition. Our results show that resting-state
neural signatures of insomnia and depression resemble that of rested wake-
fulness. This is further supported by our finding of hypoconnectivity in task
but hyperconnectivity in resting-state data in association with insomnia and
depression. These observations dispute conventional assumptions about the
neurofunctional manifestations of hyper- and hypo-somnia, and may explain
inconsistent findings in the literature.

The relationships between sleep, neurocognitive processes, and
depression are complex and fraughtwithparadoxes. Patientswithmajor
depressive disorder (MDD) present with both hypersomnia and
insomnia1, while acute sleep deprivation has been shown to act as an
effective antidepressant2. Making a cohesive model more elusive, sleep-
related data collected from self-report are notoriously unreliable3,4, and
depressive symptoms may both result from and lead to cognitive
deficits5,6. A better understanding of these phenomena rooted in neu-
rological mechanisms may facilitate novel targeted therapies.

Observational studies in humans have shown that sleep depriva-
tion is associated with the degradation of attention, working memory,

reward and dopamine processing, emotion discrimination and
expression, and hippocampal memory processing7. It has also been
associated with aberrant activity observed in the visual cortex8–10,
frontoparietal regions11, and ventral and dorsal attention networks12,
indicating a possible role of sleep in visual cortical processing via
top-down attentional circuits during cognitive task performance.
Beyond associations with brain function, sleep quantity and quality are
also linked to symptoms of mental illness13–15, and the biological
mechanisms of these links have been explored with neuroimaging.
While depression is typically associated with symptoms of insomnia16,
atypical depression is associated with hypersomnia17. Insomnia is
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hypothesized to be a result of hyperarousal states that cause cognitive
fatigue and anxiety that could lead to depressive symptoms18,19, while
the relationship between hypersomnia and depression is still unclear.
Some studies suggest that lower quality sleep is associated with
negative thoughts through decreased connectivity of the amygdala20.
Insomnia, daytime dozing, and low sleep quality have also been asso-
ciated with aberrant functional connectivity at rest, especially the
default mode network (DMN)21, with hyper- and hypo-activation in
task-based studies7,21. Most neuroimaging analyses, however, have
been underpowered and yielded heterogeneous results, leading to
inconclusive evidence.

Some initial attempts toward decoding these complex relation-
ships at the population level have beenmade. Cheng et al.22 found that
the association between self-reported poor sleep and depressive
symptoms was partly mediated by patterns of functional connectivity
at rest. Similarly, Fan et al. 23 found that resting-state brain connectivity
was associated with self-reported insomnia and narcolepsy. However,
questionnaire-based sleep assessments do not always align with
accelerometry-based sleep measures24,25, and objective sleep quality
measures may better capture aspects of the heterogeneity of sleep-
related phenotypes4. In addition, previous studies have not probed the
relationships between neural signatures of disturbed sleep and
depressive symptoms. Another study also investigated the associa-
tions of sleep phenotypes in association with obesity, cardiometabolic
conditions, brain structure, and cognition but did not account for
brain activity26.

Unfortunately, themajority of our current understanding of sleep
has come from acute sleep deprivation experiments and individuals
suffering from clinical sleep disorders, which cover only fringe con-
ditions in comparison with the general population7,16,21,27. This is
especially important given that data collected during acute sleep
deprivation does not necessarily have the same impact on brain

dynamics as chronic sleep loss or low sleep quality7. When considering
the lack of concordance of self-report and objective sleep measures,
only a few studies have analyzed brain signatures of both subjective
and objective measures of sleep simulatneously28–30. When considered
alone this may result in misleading neurobiological representations;
for example, in primary insomnia, objective sleep measures using
polysomnography do not align with the subjective report of
participants24,25. Together, these limitations of the extant literature
have left substantial gaps in our understanding of the role of sleep in
mental health, and how sleep affects brain function under different
conditions.

To address these gaps, we perform a multi-step analysis of two
independent cohorts, namely the UK Biobank and Human Con-
nectome Project (HCP). First, we map the associations of both objec-
tive and subjective sleep quality with task-based and resting-state
measures of brain function in the UK Biobank31,32. Aiming to better
understand the relationship between the neural correlates of sleep,
depressive symptoms, and cognitive function, we then test the cor-
relations of these neural maps in the UK Biobank and HCP. We find
seemingly contradictory relationships between change in neural
dynamics in resting-state and task-based conditions. Our observations
provide different insights into the counterintuitive relationships
between depressive symptoms and sleep in the general population.

Results
Self-reported and accelerometer-based measures of sleep are
weakly correlated
Figure 1 summarizes the analyses performed in our study. We first
quantified the pairwise phenotypic partial correlations between our
five behavioral measures: sleep quality measured by an accelerometer
(duration of longest sleep bout), self-reported sleeplessness/insomnia
frequency, self-reported daytime dozing frequency, cognitive ability
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Fig. 1 | Study Summary. A shows the partial correlation map between the tested
phenotypes of sleep (duration of longest sleep bout, self-reported insomnia, and
self-reported daytime dozing), depressive symptoms (PHQ-2 score), and cognition
(bolded numbers are correlations significantly different from zero; p <0.05/5).
Source data are provided as a Source Data file. B shows a summary of the task fMRI
experiment, multivariate pattern analysis, and subsequent linear modeling of
classification accuracy with selected phenotypes to build cortical maps of

associations (stimulus images obtained with permission from Prof. Deanna Barch).
C shows a summary of the resting-state fMRI data collection protocol, the calcu-
lation of functional connectivity, and the linearmodeling to produce a connectivity
association map. D shows the process for obtaining cortical thickness from struc-
tural MRI and linear modeling with phenotypes to generate brain maps similar to
those shown in (B). Leftmost three figures created with Biorender.com.
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measured by a symbol-digit substitution task33, and subclinical
depressive symptoms measured by the PHQ-234 with age, sex, study
site, ethnicity, socioeconomic status, the difference between the time
of accelerometer measurement and assessment center visit, and edu-
cation as covariates.

Accelerometer-measured sleepqualitywasweakly correlatedwith
cognitive performance (r =0.036; p = 5.39 × 10−3) while depressive
symptoms were correlated with self-reported insomnia (r = 0.15;
p = 5.64 × 10−63), both in positive directions (Fig. 1A). Self-reported
insomnia and daytime dozing frequencies were also positively corre-
lated, though the magnitude of this correlation was similarly very
small, with only 0.7% of variance explained (r = 0.081; p = 2.25 × 10−20).
As expected, the accelerometer-measured duration of longest sleep
bout had negative correlations with both self-reported insomnia
(r = −0.072; p = 2.21 × 10−15) and self-reported daytimedozing (r = −0.11;
p = 1.29 × 10−35), again with very small effect sizes. Self-reported sleep
duration had a moderate but significant correlation with the
accelerometer-measured duration of longest sleep bout (Table S5).

Multimodal neural associations with sleep, depression, and
cognition
Having established phenotypic correlations between ourmeasures,we
first built a brain map of each phenotype using task-based fMRI
(Fig. 1B). We fit multivariate classification models35,36 using support
vector machines (SVM) to classify face and shape trials regardless of
task performance. Models from all regions were able to significantly
perform above the 50% chance level, however, classifiers using voxels
from visual areas were the most accurate (Fig. S2; more details in
supplementary results). We carried forward classification accuracies
fromeach region as a proxy for its cortical activation in response to the
visual stimuli. We then measured the association of this activation
proxy with our phenotypes of interest using ordinary least squares
(OLS) regression.

Our measure of task-based brain activation showed significant
associations with accelerometer-measured sleep duration, depressive
symptoms, and cognitive scores in predominantly visual regions as
well as higher multimodal regions in the parietal cortex (Fig. 2A).
Cognition also showed significant associations across frontal regions
while depressive symptom associations were more global and diffuse
(Fig. 2B). Longer sleep bouts were associated with a higher decoding
accuracy (stronger multivariate cortical signal), primarily in lateral
occipital regions (Highest association region: LO2, βnormalized = 0.041,
p = 6.91 × 10−6, pFDR = 6.13 × 10−4; Fig. 2B, S4). These are intermediate
processing areas that feed into the ventral stream of vision. Higher
regions along the ventral stream showed no significant associations
with accelerometer-measured sleep. Depressive symptoms showed
significant associations across regions spanning the whole cortex,
where higher symptom scores were associated with lower decoding
accuracies (Highest association region: PH, βnormalized = −0.035,
p = 1.29 × 10−6, pFDR = 4.63 × 10−5; Fig. 2B). The strongest associations
were observed in the visual areas, particularly the high-level face-
selective and intermediate visual areas (Fig. S4). Higher cognitive
scores corresponded to higher decoding accuracy which overlapped
with depressive symptoms score effects in visual cortex and prefrontal
cortex (Highest cognition association region: PH, βnormalized = 0.007,
p = 3.12 × 10−4, pFDR = 2.35 × 10−3; Fig. 2B, C). The latter three pheno-
types all had overlapping significant associations in multimodal
superior parietal regions (Fig. 2C). These areas are responsible for
higher level visual processing of orientation and location as well as
motor planning which is reasonable given the nature of the task
involving visual recognition and motor action (button pressing). Self-
reported insomnia frequency showed no significant effect on the
neural coding of visual tasks except in one region in the prefrontal
cortex (i6-8, βnormalized = −0.003, p = 2.21 × 10−5, pFDR = 3.98 × 10−3). Self-
reporteddaytimedozing frequency showedno significant associations

in any region. We also tested the associations using univariate analysis
of faces vs. shapes contrasts but associations were non-significant for
all phenotypes except for cognition (Fig. S5) indicating the distributed
nature of signals across regions.

Following task-based analyses, we investigated the associations of
resting-state data with our target phenotypes. We first analyzed asso-
ciations of functional connectivity of independent components across
the brain (Fig. 1C), observing many significant associations with
accelerometer-measured duration of longest sleep bout that spanned
many circuits (Fig. 3A). Daytime dozing showed a similar association
pattern with opposite directions of effect due to the inverted scale of
the two measures. Insomnia, depressive symptoms, and cognition
were associated with only a few circuits and showed little overlap
(Figs. S6 and S7; more details in supplementary results). From these
associations, we selected one to probe inmore detail using seed-based
connectivity analysis. Specifically, we investigated the connection
between IC5 and IC18 as it showed the strongest association for both
duration of longest sleep bout and daytime dozing (duration of long-
est sleep bout: β =0.197, p = 2.70 × 10−16; self-report daytime dozing:
β = −0.724, p = 4.99 × 10−47). The functional connectivity pattern
between these two independent componentswaspositively correlated
with duration of longest sleep bout and negatively correlated with
daytime dozing. We investigated the regions belonging to these two
components by selecting the regions that mark higher than the 98th
percentile of the component activation. Seed-based results showed a
positive association with duration of longest sleep bout and negative
association with daytime dozing at the connection level between
the posterior side of the inferior frontal junction (IFJp) and almost all
the occipital regions in IC18 (Highest association with V3 region,
β = 0.006, p = 5.24 × 10−5). This points to a positive association of sleep
bout lengthwith the connectivity between the frontal attentional areas
and the intermediate visual regions.

Finally, we investigated the association of each phenotype with
cortical thickness (Fig. 1D). Measured duration of longest sleep bout,
depressive symptoms, and cognition all showed significant and diffuse
associations butwith strongest overlap along the auditory, insular, and
temporal regions (Fig. S8A; more details in supplementary results).
Frequency of daytime dozing showed a sparse pattern that spanned
many of the same regions. The results showed that higher cortical
thickness was associated with longest continuous sleep (accel-
erometer-measured), less frequent depressive symptoms, higher
cognitive score, and lower frequency of daytime dozing in almost all
brain regions This pattern did not hold for the primary visual cortex
(V1) and early visual cortex (V2 and V4). Self-reported insomnia did not
show any significant association with cortical thickness values.

Correlations of neural signatures of sleep, depression, and
cognition show conflicting relationships under task-activated
vs. resting conditions
To quantify the similarity in brain-wide patterns of task-based asso-
ciation between phenotypes, we performed pairwise Pearson correla-
tions between each set of association statistics in the task and resting
state conditions. Correlations between neural signatures provide a
compact way of visualizing distributed patterns of change in brain
dynamics fromone phenotype in relation to another. In that context, a
positive correlation between two phenotypes means that brain
dynamics change similarly in association with each one of them and
vice versa. For the task-based condition, in directional agreement with
our observed phenotypic correlations (Fig. 1A), the neural signature
of accelerometer-measured duration of longest sleep bout was
negatively correlated with those for depressive symptoms (r = −0.62;
pbeta = 5.07 × 10−21; pspin = 1.00 × 10−3), frequency of insomnia
(r = −0.18; pbeta = 0.04; pspin = 0.06), and frequency of daytime dozing
(r = −0.60; pbeta = 1.00 × 10−21; pspin = 5.00 × 10−4). The neural signature
for depressive symptoms showed positive correlations with those for
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both frequency of insomnia (r =0.19; pbeta = 0.03; pspin = 0.074)
and daytime dozing (r =0.64; pbeta = 2.36 × 10−22; pspin = 5.00 × 10−4),
indicating similar effects across the cortex despite the latter two
phenotypes showing almost no significant independent associa-
tions (Fig. 4A).

Shifting to neural signatures in the resting state condition, a
notable difference emerged. In contrast to the results from the task
condition and from phenotypic correlations, there were nontrivial
positive correlations between the neural signature for duration of

longest sleep bout and those for both self-reported insomnia (r =0.59;
p = 2.71 × 10−21) and depressive symptoms (r =0.48; p = 1.87 × 10−13;
Fig. 4B). This indicated a similarity between the functional connectivity
changes associated with longer continuous sleep, higher frequency
of insomnia, and more depressive symptoms - which is counter-
intuitive. Daytime dozing functional connectivity showed negative
correlations with duration of longest sleep bout, self-reported
insomnia and depression. To confirm the validity of these results, we
retrieved independently modeled associations from Fan et al.23
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between self-reported insomnia, daytime dozing, and sleep duration
(data retrieved at http://www.ig4sleep.org/) and performed the
same correlational analyses. Reassuringly, we found nearly identical
patterns of correlations between effects (Table S4); self-reported fre-
quency of insomnia and daytime dozing had a correlation coefficient
of −0.66 (similar to −0.66 in our analysis). While they did not
test accelerometer-measured duration of longest sleep bout, the
results from self-reported sleep duration were consistent (correlation
with self-reported insomnia = 0.59, with daytime dozing = −0.86). To
further confirm these findings, we performed a similar analysis on
the independent HCP dataset, which included self-reported
sleep measurements using PSQI37, sadness (proxy for depression)
measured using the NIH toolbox38, and cognition measured by the
Mini-Mental State Examination (MMSE)39. Results for both task-based
and resting-state data were largely in agreement, with the exception of
neural signatures for cognition measures (Fig. 4C, D). Correlations
between the associations of anatomicalmodelswere largely consistent
with those from the task fMRI experiment (Fig. S8C). Additionally,
we tested the correlation of self-reported sleep duration for task,
resting-state, and anatomical measures and it was highly correlated
with duration of longest sleep but only for the resting-state data with
non-significant correlation for task-based and anatomical data
(Table S5).

Discrepant task-activated and resting fMRI signatures of sleep
are partly reconciled by varying sleep duration
In order to investigate the counterintuitive yet durable positive cor-
relation of insomnia and depression with longer sleep in resting state,

we developed two hypotheses to explain it: (1) a subset of individuals
reporting higher levels of depressive symptoms drive the discrepancy
due to the fact that both oversleeping and insomnia are possible
symptoms of depression, and (2) individuals with insomnia and
depressive symptoms possess resting-state neural patterns that
resemble those with long sleep resulting in a hyperattentive state,
preventing them from sleeping.

To test the first hypothesis, we split the participants by their
depressive symptoms into those who have a score of 3 or more as the
depressed group and those who have a score less than 3 as the not-
depressed group34. We fitted the models for each group again and the
same correlation patterns between phenotypes persisted in the not-
depressed group. In the depressed group, the insomnia and duration
of longest sleep bout correlation disappeared (Fig. 5A). This could be a
factor resulting from the fact that the depressed groupwas small, with
only 944 participants vs. the remaining 29,918.

We then split the participants into approximately equal groups
split by thedurationof longest sleepboutmedian value (greater or less
than6.8 h). Individualswith an average of less than6.8measuredhours
of continuous sleep were labeled “short sleepers”, and those with an
averageof greater thanor equal to 6.8 hwere labeled as “long sleepers”
(Fig. 5C). The positive correlation between sleep duration and both
self-reported insomnia anddepressive symptomspersistedonlywithin
the long sleepers (insomnia: r = −0.73; p = 4.41 × 10−36; PHQ-2: r = −0.59;
p = 3.34 × 10−21). In the short sleeper group, we observed no significant
correlation between neural signatures of sleep duration and that for
PHQ-2 (r = −0.079; p =0.26), and we found a significant negative cor-
relation of sleep duration with self-reported insomnia (r = −0.20;
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p =0.003). The positive correlation between signatures of depressive
symptoms and self-reported insomnia persisted in both short and long
sleepers. This result implies that sleep, when measured in “long slee-
pers”, relates to functional connectivity values that change in a pattern
similar to increasing symptoms of depression and frequency of
insomnia. However, significant negative correlations with the daytime
dozing measure persisted in both groups but the negative correlation
between duration of longest sleep bout and daytime dozing did not
reach statistical significance.

Brain regions are hyperconnected under the resting condition
with depression and insomnia but hypoconnected during the
task condition
In the previous section, we showed similar resting state patterns
between depression and insomnia and duration of longest sleep bout.
This was in contrast to the results from the task-based data. In order to
investigate the directionality of associations of the neural connectivity
patterns giving rise to this discrepancy, we compared global con-
nectivity patterns across resting and task conditions.We calculated the
representation connectivity patterns for the task condition and used
seed-based connectivity from the previous analysis. We then modeled
associations with our five sleep, depression, and cognition phenotypes
across all pairs of brain regions as well as an aggregate brain-wide
average connectivity measure (Fig. 6A, C). We also modeled the
association of the network-specific average connectivity (Fig. 6B) in

order to investigate intra- and inter-network connectivity changes.
Results show that, for the task condition, there is a predominantly
negative association between representational connectivity and
depressive symptoms and self-reported insomnia (Fig. 6A) suggesting
hypoconnectivity association with these phenotypes. However, in the
resting condition, the associations were mostly positive, suggesting
hyperconnectivity. Self-reported daytime dozing showed a strongly
negative association suggesting a strong hypoactivation in the resting
condition. Duration of longest sleep bout had positive associations for
both task and resting conditions, especially in the frontoparietal and
attention networks but the average effect was not significant (Fig. 6C).
While the spatial connectivity association patterns in task and resting
state were not directly correlated, the substantial effect was observed
on the global mean level (Fig. S10). These results are also consistent
with the correlation results (Fig. 4). Results from the network-wise
connectivities show a significant positive association between
accelerometer-measured duration of longest sleep bout and the DMN
inter-connectivity (Fig. 6B). This significant association was also
observed in self-reported insomnia but was accompanied by another
significant association between the DMN and frontoparietal network
(FPN). Similarly, depressive symptoms showed a significant positive
association with the DMN-FPN connectivity but not within the DMN.
We confirmed our results through running a connectivity-based pre-
dictive modeling (CPM) analysis40 on each phenotype which yielded
consistent results (Fig. S9).
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Fig. 4 | Task and resting conditions show a discrepancy in neural association
correlations of sleep, cognition, and depression across two datasets. A shows
the pairwise correlation valuesbetweencoefficients fromeachphenotypemodel of
task-based activations across all brain regions in the UK Biobank. B shows the
pairwise correlation values between coefficients from each phenotype model of
resting-state activations across all brain regions of the UK Biobank. C shows the

task-based pairwise correlations similar to A but for the HCP dataset. D shows the
resting state pairwise correlations similar to B but for the HCP dataset. Bolded
values are statistically significant (p <0.05/5; Bonferroni’s correction for five phe-
notypes). Statistical testing is based on an adaptation of a two-sided student t-test
for Pearson’s correlation values using beta distributions. Source data are provided
as a Source Data file.
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Discussion
We observed a striking and consistent contrast between the neural
representations of objectively-measured and self-reported sleep.
Specifically, brain-wide resting state fMRI signatures of long
accelerometer-measured sleep were the same as those of higher self-
reported frequency of insomnia and depressive symptoms. This see-
mingly paradoxical resultwas replicatedusing summary statistics from
a previously published study and in independent analyses of the HCP
dataset. Under task conditions, these correlations were inverted. This
discrepancy was partially reconciled by showing that the positive
correlations in resting state data persisted only for individuals with
sleep durations measured on average longer than 6.8 h. Additionally,
brain-widemean connectivity increased with insomnia and depression
at resting state but decreased under the task condition. Our findings
may explain heterogeneity in existing literature on the neural sig-
natures of sleep and depression, and shed light on the specific circuits
responsible for the connections between sleep, depression, and
cognition.

Our task-based analyses relied on a measure of signal-based
decoding of task trials using machine learning. Superior parietal
regions showed significant associations with the duration of longest
sleep bout, depressive symptoms, and cognition. Insomnia and dozing
showed few significant associations, in line with previous univariate
analyses on the same data23. Conversely, objective sleep measure
revealed associations with neural data sensitivity to neural activity
changes in comparison to self-reporting. Duration of longest sleep
bout had additional associations with intermediate visual areas at the

lateral occipital junction, with better sleep being associated with
higher multivariate activation; these areas are responsible for shape
detection41.

In addition, resting state results revealed widespread associations
similar to Fan et al. 23, especially for daytime dozing. We found
that functional connectivity between the FPN and in particular the
IFJp and lateral occipital regions was positively associated with dura-
tion of longest sleep bout. IFJp is known to be responsible for top-
down attention42,43. This suggests an effect of sleep on the top-down
visual attention connections leading to degraded visual processing.
It is known that top-down attention can modulate visual cortex acti-
vation patterns44 and thus any impairment in this connection
could impair visual function. This effect was reported previously in
patients with primary insomnia45,46. Previous experiments of sleep
deprivation have shown a decreased connectivity between frontal and
parietal regions with the visual cortex47–49 and a decrease in activation
of the visual cortex8–10 that was reversible using trans magnetic
stimulation50,51. It challenges the results from previous sleep depriva-
tion studies that report a decrease in attention signal at the source
at the dorsolateral prefrontal cortex47–49,52–55 suggesting instead a
connectivity impairment. These studies relied mostly on acute
sleep deprivation that could lead to transient impairment in
cognition as opposed to sustained low sleep quality where con-
nectivity becomes impaired as a result of sustained low attentional
signal from the source.

Our central finding was that functional connectivity
signatures were positively correlated between longer bouts of
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accelerometer-measured sleep and both frequency of self-reported
insomnia and greater depressive symptoms. This correlation remained
in both strata of high and lowdepressive symptoms, but only persisted
in long sleeperswhen the populationwas stratifiedby longest duration
of sleep bout. The positive correlation between long sleep and
depressive symptoms could in part explain an atypical presentation of
depression symptoms: hypersomnia17. The positive correlation of long
sleep with insomnia could have two explanations: one is that the
resting-state signal of a person with a higher frequency of insomnia
resembles that of a rested wakefulness state thus preventing them
from falling asleep and keeping them in a hyperarousal state14,16,18,19.
Results from sleep EEG suggest that during sleep, signals resemble a
hyperarousal state decreasing the quality of sleep in insomnia56.
Another possibility is that the objective measure of sleep by accel-
erometry is not capturing the objective sensation of sleep quality
which is reported by primary insomnia patients and polysomnography
measurements24,25. However, we believe that the first explanation is
more likely given the phenomenon of contradictory subjective and
objective sleepmeasure results was observed in polysomnography but
not accelerometry measures28–30,57–59 and that our results were repro-
duced in the HCP dataset where sleep duration was self-reported60.
This pattern was also reproducible through analyzing publicly avail-
able coefficients from an independent analysis of UK Biobank23.

In our population, the groups of short sleepers (duration of
longest sleep bout <6.8 h) showed an inverted association with
insomnia which is reasonable but it signals that insomnia neural sig-
nature is multimodal resembling both short and long sleep. There was

no significant association between duration of longest sleep bout and
PHQ-2 in that group. The positive associations between duration of
longest sleep bout remained consistent between depressed and not-
depressed groups while insomnia association was insignificant for the
depressed group. The non-depressed group showed identical asso-
ciations with the whole cohort which could be explained by the fact
that the non-depressed group represented the majority of the cohort.
These results are consistent with previous studies that show a non-
linear relationship between sleep duration and depression with sleep
close to seven hours being considered optimal61–63. Brain-wide mean
connectivity results revealed that insomnia and depression are asso-
ciated with hypoconnectivity in the task condition and hyperconnec-
tivity during the resting condition. Previous studies have found similar
results of hypoactivation in primary insomnia for task-based fMRI64,65

while resting state connectivity results in the literatureweremixed46,66.
For depression, hyperconnectivity was observed in various networks
for resting conditions67,68. In addition, the sleep state is associatedwith
a breakdown of cortical effective connectivity69,70 so insomnia being
associated with hyperconnectivity in the resting state could signal a
reverse effect. In contrast, duration of longest sleep bout showed a
sub-threshold increase in average connectivity in both task and resting
conditions. This could signify the usual rested wakefulness state
with resting-state connectivity being only slightly higher in selected
networks related to attention. At the same time, task connectivity is
also slightly higher, signifying a better recruitment of neural resources
under cognitive load. This explanation is further supported by
the Synaptic Homeostasis Hypothesis (SHY)71, which suggests that a
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net increase in synaptic strength and excitability occurs during
wakefulness.

Our study has several limitations. First, we studied a general
population sample with only a small minority of participants diag-
nosed with depression, insomnia, dementia, or narcolepsy. Therefore,
our findings may not extend to clinical populations with severe
impairments and symptoms. Second, while the results of our analyses
in UK Biobank and HCP were largely consistent, task signatures of
cognition with those for other phenotypes were not entirely con-
sistent. Thismay have been due to differences in cognitivemeasures in
these two cohorts. The measure of cognition used in the UK Biobank
analysis was a word-symbol matching task where changes in perfor-
mance could indicate cognitive decline. In HCP analyses, we utilized
the available test for cognitive decline, the MMSE, but these two
measures might not capture the heterogeneity of brain functions
that show dysfunction with cognitive decline. This is especially
evident in our UK Biobank analysis where the cognitive measure was
derived from a single task. Similarly, the results we obtained from our
task-based fMRI study might not necessarily generalize to tasks other
than face-shape matching which could limit the conclusions of this
analysis.

Our results show that longer uninterrupted sleep is related to the
strength of sensory and cognitive processing in vision areas, possibly
due to the increased top-down attention recruitment. Additionally, we
counterintuitively found similarities in resting state activity among
people with insomnia, long sleep, and depressive symptoms which
could signal hyperarousal in resting state activity. One possible inter-
pretation of the process involved is that hyperarousal increases the
possibility of cognitive fatigue that may end up causing a reduction in
task-based activation. Additionally, hyperconnectivity during wake-
fulness sets the stage for the phenomenon of ‘local sleep’72,73 which
refers to episodes where specific neuronal groups enter a sleep-like
state during wakefulness. These episodes, often triggered by heigh-
tened excitability, result in temporary reductions in both neural
activity and connectivity. It could elucidate the diminished con-
nectivity we noted during task performance in insomnia sufferers.
Importantly, Nir et al.73 have demonstrated that these local sleep epi-
sodes are associated with lapses in cognitive performance, providing a
plausible link to the cognitive impairments observed in individuals
with insomnia. This hyperarousal, along with failure to allocate neural
resources when exposed to cognitive load, could give rise to depres-
sive symptoms. It also highlights the heterogeneity of sleep quality
factors where previous studies showed depression to be associated
with poor sleep (measured by the overall PSQI sleep score) with
functional connectivity in the dorsolateral prefrontal cortex, cuneus,
and orbitofrontal cortex mediating the relationship with depression22.
We showed here that within the same HCP cohort, different compo-
nents of the PSQI score have different neural signatures.

In summary, the functional hyperconnectivity in resting states
observed among insomnia sufferers can be conceptualized as a
manifestation of increased synaptic excitability, as outlined by the
SHY, potentially exacerbated by sleep deprivation. The concurrent
decrease in effective task-related connectivity might be attributed to
episodes of ‘local sleep’, causing temporary disruptions in neural
activity and leading to cognitive lapses. This integrated perspective
not only aligns with existing scientific literature but also offers a
nuanced understanding of the intricate interplay between sleep
duration, neural connectivity, and cognitive function in insomnia.

Our study highlights the importance of investigating the multi-
modal signature of phenotypes to understand their diverse manifes-
tations that could give rise to similar symptoms. Our results are
supported by a large sample size of over 30,000 participants from the
UK Biobank and over 800 participants from the HCP. The sheer size of
these datasets also allows for studying more brain-wide associations
with reproducible quality and relatively accurate effect sizes74. We

uncover a phenomenon of brain-wide similarities between sleep
quality, insomnia, and depressive symptoms that could guide advan-
cing clinical practice to investigate more fine-grained details of sleep
habits to guide the optimal care plans all while concurrently tracking
the cognitive load of patients.

Methods
This research complies with all ethical regulations relevant to this
work. The use of UK Biobank data is governed under the under
Approved Research Project #61530. UK Biobank has approval as a
Research Tissue Bank from the North West Multi-center Research
EthicsCommittee. TheHCP use is governed by the RestrictedData Use
Agreement terms. This work was conducted with approval from the
CAMH Research Ethics Board.

Software
We utilized FreeSurfer 6.0.0 and FSL 6.0.5.1 tools for brain region
parcellation and label transformation as well as for cortical thickness
measurements and seed-based correlation analysis and higher-level
modeling of its results. We used python 3.6.8 for subsequent analyses
with Brain Decoder Toolbox 2 v0.19 for brain region data extraction,
scikit-learn v0.24.1 for SVM classifier construction, statsmodels v0.10.1
for OLS model creation. For plotting and visualization, we used the
libraries seaborn75 v0.9.0, visbrain v0.4.5, matplotlib 3.3.4, and mne-
connectivity v0.2. We also used the following general utility libraries:
pandas 0.25.1, numpy 1.19.5, and scipy 1.5.3.

Dataset
Data was obtained from UK Biobank31,32 application #61530. We col-
lected data for the functional magnetic resonance imaging for the
resting state and task-based paradigms as well as the anatomical data.
We also utilized the task data from E-Prime software (software data) to
characterize the task-based runs. For sleepdata,weobtainedbothdata
from the self-report sleep quality measures collected at the same
imaging instance and from wrist-based accelerometers, which were
worn over a 7-day period and used for extracting quantitative mea-
surements of sleep quality15. Other psychiatric (PHQ-2) and cognitive
measures (symbol digit substitution task) were collected from the self-
reported mental health questionnaires and cognitive test results33

conducted at the same imaging instance. Table S1 the number of valid
subjects extracted for each data modality. Covariates were extracted
from the demographics data in UK Biobank (sex, age, socioeconomic
status, ethnicity, and education level) and the measurement-specific
factors (difference in time between accelerometry measurement and
brain image acquisition, head motion, face-shape task performance,
and measurement site). To maximize the number of participants and
strengthen statistical power in each association analysis, we included
all participants with an available measurement for each phenotype
independently rather than investigating only the participants with all
valid measures (Fig. S1). This led to different numbers of participants
for each phenotype measurement (Table S2). Table S3 shows the
variable codes extracted from the UK Biobank dataset.

The phenotypes included in the study were validated as proxies
for sleep, cognition, anddepression. Sleepquestionnaire data from the
UK-Biobank are equivalent to those in the Pittsburgh Sleep Quality
Index questionnaire37 which is a common sleep quality index76 thatwas
shown to have good internal reliability and validity77. The depression
symptom questions represent those used to score depression on the
PHQ-2 scale78 which is used to measure depressed mood and anhe-
donia and was shown to be an effective first-step screening for
depression79. The measure for cognition used is the digit-symbol
substitution test score which is a standard test score in clinical neu-
ropsychology. It was validated in previous studies to be sensitive to
changes in cognitive function impacted by many factors including
those that are associated with MDD33.
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Phenotypic correlation analysis
We measured the pairwise phenotypic partial correlations between
five output parameters: sleep quality measured by an accelerometer
(duration of longest sleep bout), self-reported sleeplessness/insomnia
frequency, self-reported daytime dozing frequency, cognitive ability
measured by number of correctmatches in a symbol-digit substitution
task33, and subclinical depression scoremeasured by the PHQ-2 scale34

with age, sex, study site, ethnicity, socioeconomic status, difference
between time of accelerometer measurement and assessment center
visit (only for the accelerometer output parameter), and education
level as covariates. We calculated confidence intervals and significance
by the 99% confidence intervals to correct for multiple comparisons
(0.05 significance level over five outputs).

ROI-based analysis
Regions of interest for the multivariate pattern analyses were con-
structed using the predefined cortical parcellations from the HCP80.
We combined the bilateral regions of interest resulting in 180 parcel-
lations. The labels from the HCP parcellation were transformed using
FreeSurfer software81 from the fsaverage subject cortical surface to
each subject’s surface in the dataset. Labels were then transformed
into the volume spaceof the fMRI data for each of the resting state and
task-based paradigms.

Task fMRI analysis
The task fMRI experiment in UK Biobank data comprised a modified
versionof the face-shapematching task82,83. In this task subjects viewed
a central cue stimulus accompanied by two stimuli on the right and the
left with one of themmatching the central cue. Subjects were tasked to
press a button identifying which of the two stimuli is the onematching
the central cue. The trials contained either human faces or 2D shapes
(circle, horizontal ellipse, and vertical ellipse). In order to perform
brain-wide association analysis with the task-based fMRI data, we built
multivariate classificationmodels35,36 using SVMto classify the face and
shape trials regardless of subject’s performance. Multivariatemethods
have an advantage over the readily available univariate analyses in that
they select voxels relevant to the task and aggregate their effect
leading to more sensitivity to the classification target in cases of dis-
tributed coding84–87. Models were created for each region of interest
where regionswere delineated according to theHCPparcellation83.We
carried forward the classification accuracies from each region as a
proxy for its cortical activation in response to the visual stimuli. We
then measured the association of classification accuracy with our
phenotypes of interest using OLS regression models. We created OLS
models relating the classification accuracy of each region and sleep
efficiency. We also added the relevant covariates to the model (sex,
age, imaging site, headmotion, socioeconomic status, education level,
ethnicity, task performance accuracy mean, task response time mean,
task response time standard deviation, sex and age interaction, and
accelerometry time relative to brain acquisition). To correct for mul-
tiple comparisons, we adjusted the p-values for the false discovery rate
using the Benjamini/Hochberg method. We then divided the resulting
model coefficients by the classification error to up-weight regions with
voxels most responsive to the stimuli.

Multivariate pattern analysis
We utilized the readily preprocessed task-based fMRI data from UK
Biobank to create classifiers between faces and shapes for each brain
region. Time series from each region was extracted using Brain
Decoder Toolbox 2 for Python (https://github.com/KamitaniLab/
bdpy). We then applied further preprocessing to the data where the
data volumes were shifted by 5 volumes (3.675 s) to compensate for
the hemodynamic delay. Data was then filtered to remove the slow
signal shift along the run, and then samples were normalized by the
mean value to extract the percent signal change.We then averaged the

samples belonging to the same classification category within each
block to improve the signal-to-noise ratio. Finally, the data points
without stimulus were removed and the samples were then rando-
mized. We ended up with 60 data points for the classifier which were
then randomized and divided into training and test datasets in a 6-fold
cross-validation scheme to ensure themodel is not overfitted. For each
fold, we trained a binary SVM classifier with a linear kernel to classify
the faces and shapes. The mean classification accuracy (Fig. S3) from
each regionwas then calculated andutilized as a proxy for the strength
of encoding of stimuli in this brain region.

Representational connectivity analysis
We extracted and preprocessed the task fMRI data in a similar fashion
as in the MVPA analysis. We then divided the stimuli into seven dif-
ferent categories based on the content of stimuli with three categories
representing shapes (circle, horizontal ellipse, and vertical ellipse) and
four representing faces (male, female, angry, and fearful faces). The
voxel data for each of these conditions were then averaged creating a
vector of voxel data for each region. We then computed the repre-
sentational dissimilarity matrix (RDM)88 for each region. To calculate
representational connectivity, we conducted a second-order similarity
analysis between region pairs by calculating the Pearson correlation
coefficient between the lower triangles of their RDMs.

Cortical thickness measurement
Cortical thicknesswasmeasured for eachbrain region using Freesurfer
software anatomical statisticsmeasurement tools using the FreeSurfer
reconstructed brain anatomy images provided by UK Biobank. We
then created OLSs models relating cortical thickness data to sleep
efficiency and relevant covariates (sex, age, socioeconomic status,
education level, ethnicity, imaging site, sex and age interaction,
accelerometry time relative to brain acquisition). To correct for mul-
tiple comparison, we adjusted the p-values for false discovery rate
using the Benjamini/Hochberg method.

Functional connectivity analysis
Weextracted the readily-processed functional connectivity data based
on full correlation from the UK Biobank repository (variable code:
25750) and created OLS models relating functional connectivity
between each node (independent component) and sleep efficiency.
We also added the relevant covariates to the model (sex, age, imaging
site, head motion, socioeconomic status, education level, ethnicity,
sex and age interaction, and accelerometry time relative to brain
acquisition). To correct for multiple comparisons, we adjusted the p-
values for multiple comparisons using Bonferroni’s correction for five
phenotypes and 21 independent components.

Seed-based correlation analysis
In order to create more fine-grained connectivity patterns that also
map to the same regions as the task-based fMRI, we ran a seed-based
correlation analysis on each region using FSL dual regression tool89.
We then divided the resulting correlation map into the HCP region
space computing the mean over each region resulting in a 180 × 180
matrix of connectivity. We then normalized the rows of the matrix by
the auto-correlation values (diagonal of the matrix). Results were used
to construct a higher-level model with sleep efficiency as the inde-
pendent variable and the resting state covariates similar to the OLS
models previously described in the functional connectivity analysis.

Brain-wide mean connectivity analysis
We calculated brain-wide mean connectivity by averaging the seed-
based connectivity across all node pairs from the HCP regions for
the resting state data. For the task-based data we averaged the
representational connectivity measures across all the regions. We
then built OLS models for each mean connectivity value for each
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phenotype and calculated the model coefficients and confidence
intervals based on a p-value of 0.01 based on Bonferroni correction for
five phenotypes.

Second order correlations testing similarity of neural signatures
We correlated the beta coefficients of the models for duration of
longest sleep bout, PHQ-2, cognition, self-reported dozing, and
insomnia with resting state connectivity and task-based activation
maps and cortical thickness in the HCP space (Glasser 2016) with
each other. p-values were calculated on the probability that the beta
distribution is drawn from a distribution with zero correlation. To
correct for multiple comparisons we used Bonferroni correction
(pbeta < 0.05/5). Additionally, to correct for auto-correlations for
region-based maps in task and anatomical association correlations,
we conducted a spin test90. Since our results are bilateral, we con-
ducted 1000 permutations of the results with each of the hemi-
spheres and calculated the p-values as the percentage of
permutations yielding correlation values with a norm higher than the
correlation value. We also corrected for multiple comparisons using
Bonferroni correction (pspin < 0.05/5). We report the correlation
value as significant if it is significant for both statistical tests.

Connectivity-based predictive modeling
To conduct CPM40, we first regressed out the covariates from the
connectivity measures of both the task-based and seed-based con-
nectivity results. We built OLSmodels for each connectivity value with
the covariates and extracted the residuals. These residuals were then
used for the CPM analysis, where the correlation between each con-
nectivity value and the phenotypewere calculated andonly valueswith
p-value < 0.01 were selected. The selected values were then averaged
and data were divided into training and test sets using 10-fold cross-
validation. Model performance was evaluated using Pearson’s corre-
lation between predicted and true phenotype in the test set.

Human connectome project data analysis
We extracted the HCP data from the young adult project60,91. We
extracted the data for the emotion task and the resting-state. For the
emotion task, there were two runs for each subject with an identical
task as that of the UKBiobank.We concatenated the data for these two
runs and constructed the SVMmodels similar to the protocol used for
UK Biobank. For the resting-state data, we utilized the already pro-
cessed functional connectivity based on the full correlation between
nodes defined by the group-ICA analysis.

For the phenotypes equivalent to those we analysed in the UK
Biobank, we used the sleep parameters based on the PSQI sleep score37

as there was no objective sleepmeasures.We utilized the self-reported
sleep duration as a proxy for the accelerometer-measured duration of
longest sleepbout, the PSQI secondcomponent that relies ondifficulty
of falling asleep as a proxy for insomnia, and the answer to the ques-
tion on trouble staying awake during daytime activities as a proxy for
daytime dozing. For depression measure, we used the reported sad-
ness score from the assessment of self-reported negative affect mea-
sure from the NIH toolbox38. For cognition, despite the HCP data
containing cognitive test, the test scorewe utilized for the UK Biobank
was not done for the HCP cohort. We utilized the MMSE results as
generic test for cognition39. The complete set of subjects with all
imaging and behavioral phenotypes available was 807.

Data availability
This study used the UK Biobank data that was accessed under
Approved Research Project #61530 (PI D. Felsky). Access to data is
available through an application process. More information about
access toUKBiobank data is available here: https://www.ukbiobank.ac.
uk/enable-your-research/apply-for-access. The HCP Young Adult
dataset is freely available online: https://www.humanconnectome.org/

study/hcp-young-adult/data-releases. Source data for all figures in
main text are provided as a Source Data file. Source data are provided
with this paper.

Code availability
Codes to analyze this data are available on Github: https://github.com/
FelskyLab/sleep_depression_2023 and deposited to Zenodo92.
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