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scDREAMER for atlas-level integration of
single-cell datasets using deep generative
model paired with adversarial classifier

Ajita Shree 1,4, Musale Krushna Pavan 1,4 & Hamim Zafar 1,2,3

Integration of heterogeneous single-cell sequencing datasets generated across
multiple tissue locations, time, and conditions is essential for a comprehensive
understanding of the cellular states and expression programs underlying
complex biological systems. Here, we present scDREAMER (https://github.
com/Zafar-Lab/scDREAMER), a data-integration framework that employs deep
generative models and adversarial training for both unsupervised and super-
vised (scDREAMER-Sup) integration of multiple batches. Using six real
benchmarking datasets, we demonstrate that scDREAMER can overcome cri-
tical challenges including skewed cell type distribution among batches, nested
batch-effects, large number of batches and conservation of development
trajectory across batches. Our experiments also show that scDREAMER and
scDREAMER-Sup outperform state-of-the-art unsupervised and supervised
integration methods respectively in batch-correction and conservation of
biological variation. Using a 1 million cells dataset, we demonstrate that
scDREAMER is scalable and can perform atlas-level cross-species (e.g., human
and mouse) integration while being faster than other deep-learning-based
methods.

The exploration of cellular heterogeneity and developmental trajec-
tories in different tissue systems has been revolutionized by the rapid
advances of single-cell RNA-sequencing technologies1–3. This rapid
development coupled with large-scale collaborative initiatives such as
the Human Cell Atlas (HCA) and Human BioMolecular Atlas Program
(HuBMAP)4,5 have increased the complexity of single-cell datasets
which can include samples contributed by different laboratories6,
generated across tissue locations, time and conditions7,8. Since single-
cell datasets generated from similar biological contexts but different
experimental conditions can share cellular features9, integration of
information from heterogeneous data sources can facilitate the dis-
covery of major and rare cell types, improve the reconstruction of
developmental trajectories10 and lead tomore reliable investigation of
complex biological systems. However, the intrinsic differences in
measured gene expression among experimental settings contributed

by factors such as sequencing protocols, library preparation, sample
donors, tissue of origin, sampling time and condition inevitably create
complex, nested batch effects that can diminish the value of data
integration by confounding biological signals11. Thus the development
of computational data integration methods that can reliably eliminate
the complex batch effects without undermining biological variations is
a major challenge in scRNA-seq analysis12.

Existing methods for the integration of scRNA-seq datasets can be
broadly classified into two groups. The first group of methods employs
cell type annotations for supervised cross-batch learning13,14 while
removingbatcheffects. The requirement for cell type annotations limits
their applications asnovel cell types cannotbe captured. In comparison,
unsupervised data integrationmethods15–18 that do not require cell type
annotations are more widely used. Some of these methods identify
the batch-specific gene factors from the gene expression profiles19.
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Methods such as BBKNN, Scanorama and Seurat v3 employ global
mutual nearest neighbors (MNNs), i.e., paired cells between multiple
batches for batch correction of the neighborhood using reduced-
dimension cellular spaces. Harmony15 achieves better batch mixing by
applying a novel local correction. TheseMNN-basedmethods consume
a large memory and low-quality MNNs can make it difficult to simulta-
neously identify dataset-specific cell types and the cell types that are
shared by multiple datasets. Methods such as scVI20 and DESC21

that employ deep variational autoencoders for learning cellular
embeddings from scRNA-seq can also integrate data from multiple
batches. However, the traditional autoencoder models are challenged
due to lower fidelity in reproducing the batch-corrected expression
profiles22. Another method, iMAP22 combines generative adversarial
networks (GANs) with autoencoder for learning batch-ignorant cellular
representations, however its dependence on MNN pairs to train the
GAN can lead to sub-optimal integration due to low-quality MNN and
unstable training of GAN23. A recent benchmarking study24 showed that
methods such as Harmony and Seurat perform well for simple inte-
gration tasks but poorly for complex integration tasks and vice versa for
Scanorama and scVI and a consistent tradeoff exists between batch-
correction and preservation of biological variations.

To overcome the existing challenges, here we present a deep
learning-based data integration framework, called scDREAMER (single-
cell Deep geneRativE integrAtion Model with advErsarial classifieR)
that performs the integration of multiple batches in unsupervised (no
cell type annotations required), semi-supervised and supervised
(available cell type annotation are utilized) manner. The unsupervised
version of scDREAMERemploys an adversarial variational autoencoder
and a batch classifier (a multi-layer neural network) which are trained
adversarially for learning batch-invariant lower-dimensional cellular
embeddings. The supervised version, scDREAMER-Sup, employs an
additional variational autoencoder and a cell type classifier (another
feed-forward neural network) to utilize available cell type annotations
for a semi-supervised or supervised inference of cellular latent spaces.
Using multiple real datasets consisting of up to 1 million cells and 147
batches (Supplementary Table 1), we demonstrate that scDREAMER is
able to overcome a variety of integration challenges including the
presence of skewed cell types among batches (pancreas integration),
nested batch effects (lung integration), large number of batches (heart
atlas and macaque retina integration) and conservation of develop-
ment trajectory across different batches (human immune integration).
Using these integration tasks, we further show that scDREAMER
achieves better performance in batch-correction and conservation of
biological variation against that of the state-of-the-art unsupervised
methods. The supervised version of scDREAMER, scDREAMER-Sup
improves upon scDREAMER in terms of conservation of biological
variation while retaining superior performance in batch-correction
and outperforms other state-of-the-art supervised and unsupervised
integration methods. For a challenging heart atlas dataset, which sev-
eral methods failed to integrate due to a large number of batches
and complex nested batch effects, scDREAMER and scDREAMER-Sup
outperform the other methods by a large margin. Our experiments
also show that scDREAMER and scDREAMER-Sup can reliably identify
rare cell types. Using semi-supervised integration settings, we also
demonstrate scDREAMER-Sup’s superiority over other methods in
predicting the cell type labels for the cells missing annotations. Finally,
using a 1 million cells dataset, we demonstrate that scDREAMER
is highly scalable, can perform atlas-level data integration across dif-
ferent species, and achieves runtime advantage over someother deep-
learning-based integration methods.

Results
Overview of scDREAMER
Figure 1 shows the overview of both the unsupervised and supervised
models of scDREAMER. The unsupervisedmodel (wewill refer it to as

scDREAMER) employs an adversarial variational autoencoder for
learning the lower-dimensional representation of cells from the high-
dimensional scRNA-seq data and a neural network classifier (also
called a batch classifier) for the removal of batch effects. scDREAMER
models the scRNA-seq data as a nonlinear function of a lower-
dimensional cell-state embedding and the batch information that
encodes the variation in data generation. The adversarial variational
autoencoder of scDREAMER consists of three multi-layer neural
networks: an encoder E that maps the high-dimensional expression
data (xi) and batch information (si) of a cell i to a lower-dimensional
embedding zi, a decoderD, which reconstructs the expression profile
of the cell from zi and si, and a discriminator D that aims to distin-
guish the original expression profile xi and the expression profile
reconstructed ( �xi) by the decoder. The adversarial variational auto-
encoder network of scDREAMER is trained using two loss functions:
evidence lower bound (ELBO) is used for training the encoder and
decoder networks, whereas Bhattacharyya loss is used for adversarial
training of discriminator and autoencoder parameters. scDREAMER
further incorporates a batch classifier B (a multi-layer neural net-
work) that takes as input the lower-dimensional embedding zi
learned by the encoder and tries to predict the batch information for
cell i. The batch classifier and the encoder are adversarially trained
using a cross-entropy loss where the encoder tries to maximize it
with an aim to generate the embeddings such that the classifier is not
able to differentiate between batches and the batch classifier tries to
minimize it by distinguishing the embeddings of the cells coming
from different batches and hence achieving better mixing of the
batches (see “Methods” section for details).

We further extended the scDREAMER model to utilize available
cell type annotations (Fig. 1) for a guided inference of cellular latent
space zi. The extended model, scDREAMER-Sup assumes an informa-
tive prior on zi conditioned on cell type label ci and another Gaussian
latent variable yi that accounts for within cell type variability. For
learning the hierarchically structured zi, scDREAMER-Sup employs an
additional variational autoencoder consisting of an encoder Ey that
learns yi from zi and ci and a decoderDy that reconstructs zi from yi and
ci such that a more informative prior can be used for zi in the adver-
sarial variational autoencoder. The two variational autoencoders are
jointly trained using an updated ELBO function (see “Methods” for
details). scDREAMER-Sup further employs a feed-forward neural net-
work (also called cell type classifier), C, for learning ci from zi which is
trained using a cross-entropy loss using the available cell type anno-
tations. For cellswithout cell type annotations, scDREAMER-Sup learns
themissing cell type labels using C.B andD are trained in the sameway
as in scDREAMER.

scDREAMER integrates pancreatic islet data generated using
different sequencing protocols
We first tested scDREAMER’s ability to perform integration and batch
correction across different sequencing protocols using a human pan-
creas dataset consisting of 16,382 cells (Supplementary Fig. 1a). The
dataset consisted of nine sub-datasets generated using distinct
sequencing protocols including CEL-seq, CEL-seq2, Fluidigm C1,
SMART-seq2, and inDrop. The dataset harbored 14 pancreatic cell
types including acinar cells, activated and quiescent stellate cells,
alpha cells, beta cells, delta cells, ductal cells, endothelial cells, epsilon
cells, gamma cells, macrophages,mast cells, Schwann cells and T cells.
scDREAMER’s integration performance was compared against that of
nine other integration methods. scDREAMER was able to almost per-
fectly separate all the cell types and mix the shared cell types across
different protocols (Fig. 2a, b). In comparison, integration by scVI,
BBKNN, Scanorama, INSCT, and iMAP led to restricted mixing of the
different batches (Supplementary Fig. 1b–j). While Harmony, Seurat,
scDML and LIGERwere also able tomix the batches well, Harmonywas
not able to clearly distinguish activated and quiescent stellate cells,
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Fig. 1 | Overviewof scDREAMERand scDREAMER-Sup. scDREAMER consists of an
adversarial variational autoencoder and a batch classifier. The adversarial varia-
tional autoencoder comprises of three networks: an encoder, a decoder, and a
discriminator, and these networks are trained using ELBO and Bhattacharya loss
functions. The batch classifier is adversarially trained along with the encoder using
a cross-entropy loss. scDREAMER learns latent cellular embeddings such that the
cells from different batches are well-mixed and different cell types are separated

leading to the conservation of biological variations. scDREAMER-Sup consists of an
additional variational autoencoder and a cell-type classifier in addition to the
components in scDREAMER. The hierarchical variational autoencoder is trained
using an ELBO loss. The cell type classifier is trained using a cross-entropy loss.
scDREAMER-Sup learns latent cellular embeddings such that the cells from differ-
ent batches are well-mixed with improved conservation of biological variations.

Article https://doi.org/10.1038/s41467-023-43590-8

Nature Communications |         (2023) 14:7781 3



Seurat improperly mixed some alpha cells with beta and ductal cells,
scDML fragmented alpha and beta cells into multiple clusters and
mixed some alpha cells with ductal and acinar cells, and LIGER mixed
some alpha, beta, and gamma cells.

Next, we quantitatively compared scDREAMER’s performance
against that of the other methods based on four composite accuracy
scores. Composite bio-conservation score measures the accuracy of a
method in preserving biological variance after integration and con-
siders global clustering accuracy (normalized mutual information
(NMI) and Adjusted Rand Index (ARI)) and relative distances between

clusters (cell type average silhouette width (ASW)). The accuracy of
batch effect removal was measured using a composite batch-
correction score which considers four different metrics including
the k-nearest-neighbor batch effect test (kBET), ASW across batches,
k-nearest-neighbor (kNN) graph connectivity and batch removal using
PCA regression. The combined composite score computes the average
of composite bio-conservation and composite batch-correction
scores. We also used a composite isolated label score that evaluates
the ability of a method to capture rare cell identities based on f1 score
and silhouette coefficient in identifying the rare cells.

a b

c d e

f g

h i

cell type
batch

Fig. 2 | Integration of pancreatic islet data. a Visualization of scDREAMER’s latent
space embeddings after integration of pancreatic islet dataset. Different colors
denote different pancreatic cell types. b Visualization of scDREAMER’s latent space
embeddings, cells are colored based on batch information. Comparison of
c composite bio-conservation score, d composite batch-correction score and
e combined composite score metrics between scVI, Harmony, Seurat, BBKNN,
Scanorama, INSCT, LIGER, iMAP, scDML and scDREAMER. f Comparison of com-
posite isolated label scores to assess how well rare cell types are identified.
g Comparison of iLISI and cLISI values. Each box-and-whisker plot summarizes LISI

values (n = 8208 cells, ~50% of the cells in the dataset as suggested in ref. 24), the
box denotes the interquartile range (IQR, the range between the 25th and 75th
percentile) with the median value, whiskers indicate the maximum and minimum
value within 1.5 times the IQR, outliers are denoted by black circles. h Qualitative
assessment of batch-mixing by visualization of scDREAMER’s latent space embed-
dings, cells are colored based on three categories—positive, negative and true
positive. i Quantitative assessment of batch-mixing of scDREAMER against LIGER
andHarmony basedon the percentage of positive vs truepositive cells. Source data
are provided as a Source Data file.
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scDREAMER consistently outperformed all other methods by
achieving the highest combined composite score (~12.9% improve-
mentover the second-bestmethod)whichwas drivenby scDREAMER’s
superior performance in both conservation of biological variance and
batch correction (Fig. 2c–e). While scVI and Harmony performed
similar to scDREAMER in terms of NMI and ARI metrics, scDREAMER,
scDML and Harmony performed better in terms of cell type ASW
(Supplementary Fig. 3a). scDREAMER achieved the best composite
batch-correction score because of its superior performance in termsof
multiple batch-correction metrics (Supplementary Fig. 3b). scDREA-
MER also performed well in capturing the rare cell identities as it
achieved the second-best isolated f1 score (Fig. 2f, Supplementary
Fig. 2c). While Harmony was the second-best method in terms of the
combined composite score, it performedpoorly in termsof composite
isolated label score indicating its inability to capture the rare cell
identities correctly. We also measured the local inverse Simpson’s
Index scores (iLISI for batch mixing and cLISI for cell-type separation)
at the single-cell level and based on these metrics, scDREAMER’s per-
formance was comparable to that of Harmony and Seurat and better
than all other methods (Fig. 2g). We further adopted another single-
cell level evaluation measure which computes the proportion of
“positive” (cells connected to other cells only from the same cell type)
and “true positive” (fraction of positive cells whose local and global
batch distributions are congruous) cells after integration and used
these summary metrics to compare scDREAMER’s performance
against that of Harmony (second-best method in terms of combined
composite score) and scDML (best method in terms of isolated label
score). Again, scDREAMER outperformed both Harmony and scDML
based on the proportion of positive and true positive cells (Fig. 2h, i).

To determine scDREAMER’s ability to capture novel cell types, we
performed two experiments where a specific cell type (alpha and delta
cells respectively) was held out during training and the trained net-
work was later used to obtain their embeddings. For both the held-out
cell types, scDREAMER captured them very well in a separate cluster
(also indicated by high values of composite bio-conservation and
batch correction score for the held-out cell type) (Supplementary
Fig. 3a–c) and as scDREAMER’s network weights got updated after
including the held-out cell type in training for certain epochs, their
representation further improved as indicated by an improvement in
the combined composite score (Supplementary Fig. 3c).

scDREAMER integrates lung cells obtained from different
human donors
Next, we applied scDREAMER for the integration of lung atlas data
consisting of 32,472 cells from lung transplant and biopsy samples
from 16 donors sequenced using 10X and drop-seq (Supplementary
Fig. 4a). The integration of this dataset poses several challenges
including inter-donor variability, protocol-specific batch effects (10X
samples A1-A6, 1-6; drop-seq samples B1-B4), and variability across
sampling type and tissue locations. Specifically, cell type composition
varied between the transplant samples (1-6, B1-B4) that are obtained
from lung parenchyma and the biopsy samples (A1-A6) obtained from
lung airways. Two basal cell types, ciliated and secretory cells were
majorly present in the biopsy samples but the transplant samples
harbored them only as minor populations or in some cases the cell
types were absent. The dataset also contained rare cell types present
across a few donors (ionocytes). Furthermore, the endothelial and
secretory cells should vary across biopsy and transplant samples due
to transcriptome being affected by tissue location.

scDREAMER was able to successfully integrate the batches across
sequencing protocols overcoming donor-level variation (Fig. 3a, b,
Supplementary Fig. 5a, b). Only scDREAMER, scVI, and iMAP were
clearly able to identify rare ionocytes as a separate cluster,whereas the
other methods mixed them with other cell types (Fig. 3a, Supple-
mentary Fig. 4b–j). scDREAMER was able to identify all biopsy-specific

cell types and also preserved basal cell subtypes. The secretory cells
from the biopsy and transplant samples were separated by scDREA-
MER (Fig. 3a). The lymphatic and endothelial cells were incorrectly
merged by Harmony, Seurat and INSCT whereas Scanorama, scVI,
LIGER and scDREAMER were able to identify them as separate clusters
(Supplementary Fig. 4b–j). The endothelial cells were separated into
three clusters by Scanorama, twoofwhich corresponded to transplant
samples indicating incomplete integration of these samples. Integra-
tion of iMAP was poor as it divided multiple cell types (e.g., macro-
phages, endothelial cells, etc.) into different batch-specific clusters.
Integration by scDML also led to the merging of some cell types
(macrophages, basal 1 and 2, dendritic cells) and fragmentation of
the same cell type (T/NK cells, Type 2 cells) into multiple clusters
(Supplementary Fig. 4j). scDREAMER was able to preserve the spatial
variation of endothelial cells at a higher resolution.

scDREAMER performed superior to all other methods in terms
of both bio-conservation and batch correction achieving the
highest combined composite score (Fig. 3c–e). scDREAMER out-
performed all the methods in terms of all three bio-conservation
metrics (Supplementary Fig. 6a) and also performed well in terms of
different batch correction metrics (Supplementary Fig. 6b). In cap-
turing rare cell identities, scDREAMER performed comparably with the
top-performingmethods (Fig. 3f, Supplementary Fig. 6c) achieving the
highest isolated f1 score. In terms of LISI metrics, scDREAMER per-
formed the best in terms of cLISI and comparably to scVI andHarmony
in terms of iLISI metrics outperforming all othermethods (Fig. 3g).We
further compared scDREAMER’s performance against that of scVI and
Harmony (second and third-best methods based on combined com-
posite score respectively) bymeasuring the proportion of positive and
true positive cells. Due to the close spacing of dendritic cells and
Neutrophil subtypes in the embedding, we observed the presence of a
large number of negative cells for these cell types (same observation
for the embedding of other methods). While scVI had the highest
proportion of positive cells, scDREAMER outperformed bothmethods
based on the proportion of true positive cells (Fig. 3h, i) without
sacrificing much in terms of positive proportion.

scDREAMER integrates human immune cells from peripheral
blood and bone marrow of different donors
We next evaluated scDREAMER’s integration and batch correction
performance for integrating 33,506 human immune cells obtained in
ten batches corresponding to different donors and the cells were
sampled from bone marrow and peripheral blood (PBMCs) and the
sequencing was performed using two protocols (10X and smart-seq2)
(Supplementary Fig. 7a). Out of 33,506 cells, 9581 cells were sampled
from bone marrow and comprised of three batches (Oetjen et al.25),
and the rest 23,985 bone marrow cells comprised of seven batches
(10X Genomics26, Freytag27, Sun et al.28 batches and Villani et al.29).
While the cells in ref. 29 were sequenced using smart-seq2, all other
batches were sequenced using 10X Genomics protocol. This integra-
tion task poses several challenges including donor-level variability,
sequencing protocol-specific batch effects, and cell types spanning
multiple tissues. In addition, the dataset also contained cell subtypes
that are difficult to distinguish because of transcriptional similarity
(e.g., CD8+ and CD4+ T cells; CD14+ and CD16+ monocytes) and some
tissue-specific cell types (e.g., monocyte progenitors, erythroid pro-
genitors, erythrocytes and CD10+ B cells were only present in bone
marrow) that need to be identified as separate clusters. Finally, the
dataset also harbored the developmental trajectory of erythrocytes
from hematopoietic stem and progenitor cells (HSPCs) via mega-
karyocyte and erythroid progenitors and the conservation of this tra-
jectory across batches is an important aspect of this integration task.

scDREAMERwas able to resolve the inter-sample and inter-platform
batch effects while integrating the human immune dataset as indicated
by disjoint well-mixed cell type clusters (Fig. 4a, b). scDREAMER was
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successful in clustering together the same cell types across tissues while
identifying cell subtypes, such as CD8+ and CD4+ T cells, CD20+ and
CD10+ B cells, CD14+ and CD16+ monocytes, as distinct closely located
clusters. In comparison, CD20+ and CD10+ B cells were distantly placed
in BBKNN and Scanorama embeddings (Supplementary Fig. 7e, f) and
CD20+ B cells were fragmented into two clusters in scDML embeddings
(Supplementary Fig. 7j). While scDREAMERwas able to placemonocyte-
derived dendritic cells and plasmacytoid dendritic cells in separate
clusters in close vicinity (Fig. 4a, b), other methods such as Harmony,

Seurat, scDML and INSCT (Supplementary Fig. 7c, d, g) placed these cell
subtypes far apart in the embedding. Furthermore, scVI separated
monocyte-derived dendritic cells into multiple clusters, one of
which was mixed with other distinct cell types (e.g., megakaryocyte
progenitors, plasma cells, CD4+ T cells, etc.) indicating poor clustering
(Supplementary Fig. 7b). Finally, scDREAMER clearly separated tissue-
specific cell types and exhibited a perfect continuum of bone marrow
cell types after integration, preserving the trajectory from HSPCs to
erythrocytes (Fig. 4a, b, Supplementary Fig. 8a, b). In contrast, methods

a b

c d e

f g

h i

cell type

batch

Fig. 3 | Integrationof lung atlas data. a Visualization of scDREAMER’s latent space
embeddings after integration of lung atlas dataset. Different colors denote differ-
ent lung cell types. b Visualization of scDREAMER’s latent space embeddings, cells
are colored based on the batch information. Comparison of c composite bio-
conservation score, d composite batch-correction score and e combined compo-
site score metrics between scVI, Harmony, Seurat, BBKNN, Scanorama, INSCT,
LIGER, iMAP, scDML and scDREAMER for the integration of lung atlas data.
f Comparison of composite isolated label scores to assess how well rare cell types
are identified. g Comparison of iLISI and cLISI values. Each box-and-whisker plot

summarizes LISI values (n = 16,274 cells, ~50% of the cells in the dataset as sug-
gested in ref. 24), the box denotes the interquartile range (IQR, the range between
the 25th and 75th percentile) with the median value, whiskers indicate the max-
imum and minimum value within 1.5 times the IQR, outliers are denoted by black
circles. h Qualitative assessment of batch-mixing by visualization of scDREAMER’s
latent space embeddings, cells are colored based on three categories—positive,
negative and true positive. i Quantitative assessment of batch-mixing of scDREA-
MER against scVI andHarmony based on the percentage of positive vs true positive
cells. Source data are provided as a Source Data file.
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such as Seurat, INSCT, LIGER and scDML (Supplementary Fig. 7d, g, h, j)
failed to conserve the trajectory of erythrocyte development, whereas,
iMAP divided the erythroid trajectory into three batch-specific trajec-
tories (Supplementary Fig. 7i).

Our quantitative comparison showed that scDREAMER con-
sistently outperformed all other methods by achieving the highest
combined composite score (15.5% improvement over the second-best
method) which was driven by scDREAMER’s superior performance
in both biological conservation and batch correction (Fig. 4c–e).
scDREAMER was the best-performing method in terms of kBET, and

two bio-conservation metrics (Supplementary Fig. 9a, b). In capturing
the rare cell identities, scDREAMERalso performed atparwith scVI and
Scanorama, the top-performing methods in terms of composite iso-
lated label scores (Fig. 4f, Supplementary Fig. 9c). However, for batch
correction, scVI and Scanorama performed poorly. In terms of LISI
metrics, scDREAMER along with scVI and Harmony consistently per-
formed better than other methods (Fig. 4g). We further compared
scDREAMER’s performance against that of Harmony and scVI (second
and third-best methods based on combined composite score respec-
tively) by measuring the proportion of positive and true positive cells.

a b

c d e

f g

h i

cell type batch

Fig. 4 | Integrationofhuman immunedata. aVisualization of scDREAMER’s latent
space embeddings after integration of human immune dataset. Different colors
denote different cell types present in the human immune dataset.bVisualizationof
scDREAMER’s latent space embeddings, cells are colored based on the batch
information. Comparison of c composite bio-conservation score, d composite
batch-correction score and e combined composite score metrics between scVI,
Harmony, Seurat, BBKNN, Scanorama, INSCT, LIGER, iMAP, scDML and scDREA-
MER for the integration of human immune data. f Comparison of composite iso-
lated label scores to assess how well rare cell types are identified. g Comparison of
iLISI and cLISI values. Each box-and-whisker plot summarizes LISI values (n = 16,754

cells, ~50% of the cells in the dataset as suggested in ref. 24), the box denotes the
interquartile range (IQR, the range between the 25th and 75th percentile) with the
median value, whiskers indicate the maximum andminimum value within 1.5 times
the IQR, outliers are denoted by black circles. h Qualitative assessment of batch-
mixing by visualization of scDREAMER’s latent space embeddings, cells are colored
based on three categories—positive, negative and true positive. i Quantitative
assessment of batch-mixing of scDREAMERagainst scVI andHarmony based on the
percentage of positive vs true positive cells. Source data are provided as a Source
Data file.
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While both scDREAMER and scVI had a comparable proportion of
positive cells better than Harmony, scDREAMER outperformed both
methods by a large margin based on the proportion of true positive
cells (Fig. 4h, i).

Finally, to evaluate scDREAMER’s ability in uncovering unique
biological insights, we focused on a more in-depth analysis of the
dendritic cell populations after integration. Based on scRNA-seq and
functional studies, Villani et al.29 characterized six different subtypes
of dendritic cells—DC1 (CLEC9A+), DC2 (non-inflammatory CD1C+),
DC3 (inflammatory CD1C+), DC4 (CD141−CD1C−), DC5 (AXL+), and DC6
(pDCs). Through subclustering and marker gene expression analysis,
we wanted to find out if an integration method was able to separate
these DC subtypes after the integration of multiple batches. scVI per-
formed poorly in identifying the DCs as a separate cluster, the optimal
clustering of scVI embeddings (considering all cells) revealed that
DC1 cellswere clusteredwithCD20+ B cells andDC2andDC3cells were
clustered with CD14+ monocytes (Supplementary Fig. 10a). Given its
inability to identify the dendritic cells as a separate cluster, we did not
perform any subclustering. In comparison, scDREAMER and Harmony
were able to identify the dendritic cells as separate clusters. Sub-
clustering of scDREAMER-inferred dendritic cell embeddings resulted
in seven clusters each of which corresponded to distinct DC subtypes
(Supplementary Fig. 10b). Clusters 0 and 1 contained DC2 and DC3
cells, clusters 2 and 3 contained pDCs whereas clusters 4, 5, and 6
containedDC1, DC4, andDC5 respectively. Thus, scDREAMERwas able
to identify 4 (out of 6)DC subtypes as separate clusters. In comparison,
optimal subclustering of Harmony embeddings of DCs revealed 4
clusters (Supplementary Fig. 10c), out of which only two clusters
corresponded to DC4 and pDCs. Harmony failed to properly distin-
guish other DC subtypes—DC2 and DC3 cells were mixed with DC4
cells, whereas,DC1 andDC5 cells were present acrossmultiple clusters.

scDREAMER-Sup utilizes available cell type labels for improved
conservation of biological knowledge
Next, we evaluated scDREAMER-Sup’s ability to leverage the available
cell type labels for improved integration on lung atlas and human
immune datasets as these integration tasks were themost challenging.
We compared scDREAMER-Sup’s performance against that of scANVI30

and scGEN31, state-of-the-art supervisedmethods (also top performers
in recent benchmarking24) that utilize cell type labels. scDREAMER-Sup
was able to capture all the cell types in distinct clusters for both inte-
gration tasks improving upon the performance of scDREAMER. Parti-
cularly, for lung atlas integration, scDREAMER-Sup was able to
separate two neutrophil subtypes which were merged by all unsu-
pervisedmethods (Fig. 5a, b). In comparison, integration by scANVI led
to restricted separation of Macrophage and dendritic cells, and mer-
ging of neutrophil subtypes while scGENmixed some B cells and T/NK
cells as well as some ciliated and secretory cells (Supplementary
Fig. 11a–d). In addition, B cells and secretory cells were fragmented in
multiple closely located clusters by scANVI. When integrating human
immune data, scGEN and scANVI could not properly separate CD14+

andCD16+monocytes aswell asNK cells andNKTcells (Supplementary
Fig. 11e–h). scDREAMER-Sup was able to identify these cell subtypes as
disjoint clusters (Fig. 5i, j).

We further quantitatively evaluated the performance of
scDREAMER-Sup for both supervised (cell type labels available for all
cells) as well as semi-supervised settings (cell type labels available for a
fraction of cells). To evaluate the integration methods in semi-
supervised settings, we uniformly randomly removed cell type labels
for a percentage of cells from all the cell types while we varied the
percentage of missing labels (10, 20, and 50%). For both datasets
across all experimental settings, scDREAMER-Sup outperformed other
methods based on combined composite (25–40% improvement over
next bestmethod), composite bio-conservation (14–33% improvement
over next best method), and composite batch-correction scores

(21–49% improvement over next best method) (Fig. 5c–e, k–m). It is
important to note that for both datasets, scDREAMER-Sup also out-
performed all the unsupervised methods (scDREAMER was the best
unsupervised method for both datasets) in terms of both bio-
conservation (84.61–113.33% improvement over best unsupervised
method) and batch-correction (16.05–19.72% improvement over
best unsupervised method). With an increase in the percentage of
missing labels, we observed a sharp drop in scGEN’s composite bio-
conservation score which is indicative of the fact that scGEN requires
labels for all cells and cannot account for missing cell type labels. In
comparison, the performance of scDREAMER-Sup and scANVI were
more robust to missing cell type labels with scDREAMER-Sup out-
performing scANVI by a large margin in terms of all composite scores.

scDREAMER-Sup’s superior performancewasdriven by top scores
inmultiple bio-conservation (NMI, ARI, ASW) (Supplementary Figs. 12a
and 13a) and batch-correction metrics (kBET, graph connectivity, and
ASW label/batch) (Supplementary Figs. 12b and 13b) across the inte-
gration tasks and experimental settings. scDREAMER-Sup was further
able to capture rare cell identities very well as indicated by its top
performance in terms of isolated f1 score (Supplementary Figs. 12c and
13c). scDREAMER-Sup further outperformed the other methods in
terms of LISI metrics (Fig. 5f, n) across the experimental settings.
Furthermore, we compared themethods bymeasuring the proportion
of positive and true positive cells for each experimental setting. For
both supervised and semi-supervised settings, scDREAMER-Sup out-
performed the other twomethods by achieving a higher proportion of
positive and true positive cells (Fig. 5g, o). Since both scDREAMER-Sup
and scANVI can predict the labels of the cells for which cell type
annotations are missing, we also compared the accuracy of the cell
label prediction for these two methods. For all the semi-supervised
settings with 10, 20 and 50% cells missing labels for both the datasets,
scDREAMER-Sup achieved high accuracy (Macro F1-score 0.86–0.9) in
predicting the cell type labels and outperformed scANVI (10–14% and
23–33% improvement over scANVI for lung atlas and human immune
dataset, respectively) (Fig. 5h, p).

scDREAMER outperforms other methods in integrating a large
number of batches with complex batch effects
We next evaluated scDREAMER’s (both unsupervised and semi-
supervised) integration and batch correction on large number of bat-
ches (also large number of cells) using a human heart atlas dataset
consisting of 486,134 cells spanning six heart regions namely apex, left
atrium, left ventricle, right atrium, right ventricle, and septum (https://
www.heartcellatlas.org/,32). All tissues were from transplant donors
without a history of cardiac disease or arrhythmia. The cells were
obtained in 147 batches corresponding to different donors, sequential
protocols, race, gender, age range, and death-type conditions. In the
original study32, a total of 452,136 cells were assigned to 12 major
cardiac cell types using state-of-the-artmachine learningmethods, and
the remaining 33,998 cells were not assigned any cell type label
(Supplementary Fig. 14a). In our analyses, we used all the cells for
integration but the cellswith available cell type labelswere used for the
evaluation. Only the available cell type labels were used for training
supervised methods making it a semi-supervised integration task for
them.Apart froma largenumber of batches, the integration taskposed
several challenges including variability across human donors with
different genders (~55% and ~45% from male and female donors,
respectively), race (93% and 6% cells from donors of Caucasian and
Asian descent, respectively), and age group (spanning the age range of
40–75 years), sequencing protocol-specific batch effects, and cell
types spanning different death-type conditions (265,554 cells (~40
batches) were sampled from the heart in case of circulatory death, and
the rest 220,580 cells (~100 batches) were sampled from the heart in
case of brain death). Furthermore, the dataset contained skewed cell
type distribution, i.e., ~50 batches did not have any cell corresponding
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to Ventricular Cardiomyocyte and Fibroblast resulting in a multi-
faceted challenging integration problem.

Among the unsupervised methods, Seurat, LIGER, scDML and
iMAP failed to integrate this dataset given their huge memory
requirement (tested on 512 GB memory) or inability to handle such a
large number of batches. Most of the other methods that could inte-
grate this dataset led to the mixing of atrial and ventricular cardio-
myocytes given their similarity. BBKNN and Scanorama fragmented

many cell types intomultiple clusters (Supplementary Fig. 14d, e). scVI,
Harmony, and scDREAMER were able to capture most cell types into
distinct clusters (Fig. 6a, b, Supplementary Fig. 14b, c). However, scVI
andHarmony also led to the fragmentationof smoothmuscle cells and
poor batch correction for Lymphoid cells. In comparison, supervised
methods were able to better capture the different cell types in distinct
clusters by leveraging the available cell type labels (Fig. 6c, d, Sup-
plementary Fig. 14g, h). However, scANVI still failed to separate atrial

a b
cell type batch

Lung

c d

g

Human Immune

k l

n

cell type

i j

f

o

m

e

batch

h

p

Article https://doi.org/10.1038/s41467-023-43590-8

Nature Communications |         (2023) 14:7781 9



and ventricular cardiomyocytes (Supplementary Fig. 14h). In addition,
scANVI also fragmented smoothmuscle cells intomultiple clusters. On
the other hand, scGEN poorly handled the unassigned cells given its
inability to handle missing cell type labels (Supplementary Fig. 14g).
scDREAMER-Sup was able to resolve the complex batch effects while
integrating heart cells as indicated by disjoint well-mixed cell type
clusters (Fig. 6c, d). Both scDREAMER and scDREAMER-Sup were able
to mix the cells well across tissues, protocols, donors, genders, age
groups, and death-type conditions (Supplementary Fig. 15).

Quantitative analyses showed that scDREAMER performed the
best among the unsupervised methods based on the combined com-
posite score (25% improvement over the second-best method) which
was driven by scDREAMER’s superior performance in batch correction
(~50% improvement over the second-best method) as well as good
performance in bio-conservation (Fig. 6e–g, Supplementary Fig. 16).
We could not include BBKNN in the comparison of the composite
scores due to the unavailability of the majority of the metrics. How-
ever, scDREAMER outperformed BBKNN on both bio-conservation
metrics (Supplementary Fig. 17a). Moreover, we could run scDML on
this dataset after the removal of 7 batches as suggested in ref. 33 and in
integrating the remaining 140 batches, scDREAMER outperformed
scDML in terms of most of the metrics (Supplementary Fig. 17b).
Among the supervised methods, scDREAMER-Sup achieved the best
combined composite score (11.5% improvement over the second-best
supervised method and 26% improvement over the best unsupervised
method (Fig. 6e–g)). We further evaluated scDREAMER-Sup’s perfor-
mance in semi-supervised settings with 20 and 50% missing labels. In
both settings, scDREAMER-Sup significantly outperformed scANVI and
scGEN in both bio-conservation and batch correction (32–57%
improvements, Fig. 6h–j, Supplementary Fig. 18a, b). scGEN’s perfor-
mance dropped sharply with an increase in the percentage of missing
labels. scDREAMER-Sup and scANVI were robust to missing cell type
labels with scDREAMER-Sup outperforming scANVI by a large margin
in terms of all composite scores. Isolated label scores could not be
computed for this dataset due to the sheer imbalance of batch sizes.
We also compared the accuracy of the cell label prediction for
scDREAMER-Sup and scANVI. For both the semi-supervised settings
with 20 and 50% cells missing labels, scDREAMER-Sup achieved very
high accuracy (macro F1-score 0.97) in predicting the cell type labels
andoutperformed scANVI (11.49% improvementover scANVI) (Fig. 6k).
We further compared scDREAMER’s performance against that of Har-
mony and scVI (second and third-best unsupervisedmethods basedon
combined composite scores respectively) by measuring the propor-
tion of positive and true positive cells. While all three methods had a
comparable proportion of positive cells, scDREAMER outperformed
both methods by a large margin based on the proportion of true
positive cells (Fig. 6l,m). Finally, we compared the supervisedmethods
bymeasuring theproportion of positive and true positive cells for each
experimental setting. For all experimental settings, scDREAMER-Sup

outperformed the other two methods by achieving a higher propor-
tion of positive and true positive cells (Fig. 6n, o).

We further analyzed a macaque retina bipolar cells dataset con-
sisting of 30,302 cells that originated from the fovea or periphery of
the retina and consisted of 30 batches across macaques and regions.
The original study showed that several integration methods failed to
remove batch effects from this dataset34. Both scDREAMER and
scDREAMER-Sup successfully integrated all 30 batches while separat-
ing the distinct cell types (Supplementary Fig. 19). In contrast, many
othermethodsmixed some distinct cell types or fragmented same cell
type into multiple clusters (Supplementary Fig. 20). Based on quanti-
tative analyses also, scDREAMER-Sup was the best performer among
all unsupervised and supervised methods in terms of multiple bio-
conservation and batch correction metrics (Supplementary Fig. 21).
Among the unsupervised methods, scDREAMER was the best perfor-
mer based on NMI, ARI and kBET and performed comparably on all
other metrics except ASW label. scDREAMER-Sup was also superior in
identifying the rare cell types (Supplementary Fig. 21).

scDREAMER robustly integratesmillions of cells across different
species
We finally evaluated scDREAMER’s ability to perform atlas-level inte-
gration across species using a dataset consisting of ~1millioncells from
human and mouse profiled by the Human Cell Landscape (HCL)35 and
Mouse Cell Atlas (MCA)36 projects respectively. The two batches in the
dataset correspond to HCL and MCA respectively. The dataset har-
bored 97 different cell types which had minimal overlap across the
atlases (Supplementary Fig. 22a). The HCL batch comprised 599,926
cells from 63 different cell types whereas the mouse cell atlas com-
prised 333,778 cells from 52 different cell types. A total of 18 cell types
(among the97 cell types)were commonbetween these two atlases.We
have demonstrated scDREAMER’s scalability over a million cells and
versatility in integration with this atlas-level integration task.

For this atlas-level integration task, the performance of scDREA-
MER and scDREAMER-Sup was compared with that of eight other
unsupervised methods (scVI, Scanorama, Harmony, INSCT, BBKNN,
LIGER, iMAP and scDML) and two supervised methods (scGEN and
scANVI). Due to the size of the dataset, Seurat ran intomemory issues.
Qualitatively, we can observe that clusters by scDREAMER were better
separated compared to other methods (Fig. 7a, b, Supplementary
Fig. 22b–i). scDREAMER was able to clearly distinguish some of the
major cell types such as neutrophil cells, erythroid cells, fetal stromal
cells and oligodendrocyte cells (Fig. 7a). While scVI could cluster some
of these cell types such as neutrophil, erythroid and fetal stromal cells
well, harmony could only cluster erythroid cells. In Harmony embed-
dings, similar cell types were disjointly present inmultiple clusters. On
the other hand, BBKNN and LIGER led to the complete mixing of
multiple cell types. While Scanorama was able to better classify than
BBKNN and Harmony, it was not able to properly mix the batches

Fig. 5 | scDREAMER-Sup utilizes cell type labels to improve bio-conservation.
a Visualization of scDREAMER-Sup’s latent space embeddings after integration of
lung atlas dataset. Different colors denote different lung cell types. b Visualization
of scDREAMER-Sup’s latent space embeddings, cells are colored basedon the batch
information. Comparison of c composite bio-conservation score, d composite
batch-correction score, e combined composite score metrics, f iLISI and cLISI
values between scGEN, scANVI, and scDREAMER-Sup for different percentages of
missing cell type labels for lung atlas dataset. g Quantitative assessment of batch-
mixing of scDREAMER-Sup against scANVI and scGEN based on the percentage of
positive vs true positive cells for lung atlas dataset. h Comparison of cell label
prediction accuracy between scDREAMER-Sup and scANVI for different percen-
tages of missing cell type labels for the lung atlas dataset. i Visualization of
scDREAMER-Sup’s latent space embeddings after integration of human immune
dataset. Different colors denote different lung cell types. j Visualization of
scDREAMER-Sup’s latent space embeddings, cells are colored based on the batch

information. Comparison of k composite bio-conservation score, l composite
batch-correction score, m combined composite score metrics, n iLISI and cLISI
values between scGEN, scANVI, and scDREAMER-Sup for different percentages of
missing cell type labels for the human immune dataset. o Quantitative assessment
of batch-mixing of scDREAMER-Sup against scANVI and scGEN based on the per-
centage of positive vs true positive cells for the human immune dataset.
p Comparison of cell label prediction accuracy between scDREAMER-Sup and
scANVI for different percentages of missing cell type labels for the human immune
dataset. For (f) and (n), each box-and-whisker plot summarizes LISI values for 50%
of the cells in the datasets as suggested in ref. 24 ((f) n = 16,260 cells, (n) n = 16,770
cells), the box denotes the interquartile range (IQR, the range between the 25th and
75th percentile) with the median value, whiskers indicate the maximum and mini-
mum value within 1.5 times the IQR, outliers are denoted by black circles. Source
data are provided as a Source Data file.
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(Supplementary Fig. 22e). iMAP was also not able to mix the batches
properly (Supplementary Fig. 22h). scDML mixed multiple cell types
and fragmented some of the cell types into multiple clusters (Sup-
plementary Fig. 22i). Among the supervised methods, scDREAMER-
Sup and scANVI led to better-separated clusters, whereas scGEN was
not able to cluster the cell types properly (Fig. 7c, d, Supplementary
Fig. 22j, k).

In quantitative comparison, scDREAMER achieved the best com-
bined composite score among all the unsupervised methods (26.9%
better than the second-best unsupervised method) and was even
better than the supervised methods scANVI and scGEN, whereas
overall, scDREAMER-Sup had the best combined composite score
(8.75% better than that of scDREAMER) (Fig. 7e–g). While scDREAMER
was the best batch correction method, scDREAMER-Sup achieved the
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best bio-conservation (best in terms of all bio-conservation metrics)
(Supplementary Fig. 23). We further compared scDREAMER’s perfor-
mance against that of scVI (second-best unsupervised method), Sca-
norama and LIGER (third-best unsupervisedmethod) and scDREAMER-
Sup’s performance against that of scGEN and scANVI bymeasuring the
proportion of positive and true positive cells (Fig. 7h–k). scDREAMER
outperformed Scanorama and LIGER based on the proportion of
positive cells and all the unsupervised methods based on the propor-
tion of true positive cells (Fig. 7h). On the other hand, based on both
the proportion of positive and true positive cells, scDREAMER-Sup
outperformed scGEN and scANVI by a large margin. (Fig. 7i).

To assess scDREAMER’s scalability with the number of cells, we
measured the runtimeof scDREAMERondifferent datasets subsampled
from the atlas-integration dataset and compared the runtime against
that of scVI and INSCT—two other neural network-based methods. For
most of the subsampled datasets, scDREAMER outperformed the other
twomethods basedon runtime and exhibited higher scalabilitywith the
number of cells (Fig. 7l). For the complete dataset consisting of ~1 mil-
lion cells, training scDREAMER took only ~130 s per epoch as compared
to ~154 s per epoch for scVI and ~172 s per epoch for INSCT (on a server
with oneNvidiaQuadroRTX5000GPU).We further compared the total
runtime of different methods across different datasets (Supplementary
Fig. 24). scDREAMER was one of the fastest among all the neural
network-basedmethods across all datasets and was faster compared to
some other methods (e.g., Seurat, LIGER). scDREAMER-Sup was also
faster than scANVI for multiple datasets and faster than other neural
network-based unsupervised methods.

Ablation study
Weperformed ablation studies to examine the contribution of the two
adversarial components of scDREAMER—adversarial discriminator and
batch classifier. Supplementary Table 2 compares the performance of
scDREAMER in comparison to scDREAMER without the discriminator
(scDREAMER-woDis) and scDREAMER without the batch classifier
(scDREAMER-woBC) for different integration tasks. As can be seen,
scDREAMER-woBC performs better than scDREAMER-woDis in terms
of composite bio-conservation score and composite isolated label
score indicating the contribution of the discriminator toward
improved bio-conservation and identification of rare cell types. In
contrast, the version that uses batch classifier (scDREAMER-woDis)
performs better in terms of batch correction as compared to
scDREAMER-woBC indicating the contributionof the batch classifier in
removing batch effects. Thus, both the components play a significant
role and by combining them, scDREAMER achieves the best perfor-
mance in terms of combined composite score as well as composite
isolated label score for different datasets.

Discussion
Here, we introduced scDREAMER, a deep generative model for the
efficient and robust integration of scRNA-seq datasets across multiple

batches. The unsupervised model of scDREAMER employs an adver-
sarial variational autoencoder for inferring the latent cellular embed-
dings from the high-dimensional gene expression matrices from
different batches. This adversarial autoencoder also outputs the cor-
rected expression profiles. The other component of scDREAMER, a
batch classifier helps remove batch effects from the latent cellular
embeddings for better mixing of cell types shared across multiple
batches. Thus, scDREAMER employs a combination of two levels of
adversarial training for training the adversarial VAE and the batch
classifier respectively and differs from existing adversarially trained
deep generative models for dimensionality reduction37 and batch
integration of scRNA-seq data14,22 (see Supplementary Note 1 for
details). Our ablation study further demonstrated that the two adver-
sarially trained components play important roles in improving bio-
conservation and removal of batch effects respectively. We further
extended scDREAMER to scDREAMER-Sup, which employs an addi-
tional variational autoencoder and a cell type classifier to utilize
available cell type labels for improved bio-conservation.

Our comprehensive benchmarking of scDREAMER and
scDREAMER-Sup on multiple complex data integration tasks demon-
strates scDREAMER’s superiority over the state-of-the-art unsu-
pervised and supervised integration methods respectively in terms of
both conservation of biological variations and removal of batch
effects. In contrast, the other methods were only able to perform well
in one aspect of data integration: batch-mixing or conservation of
biological variation, that too varied across datasets. scDREAMER was
also a consistent performer in capturing rare cell identities. Moreover,
a comparison of the fraction of true positive and positive cells further
demonstrated scDREAMER’s superiority over other methods in batch-
mixing. scDREAMER-Sup was found to improve upon scDREAMER and
it consistently outperformed all the supervised (that utilize the cell
type annotations) as well as unsupervised integration methods across
various benchmarking datasets and experimental settings.

scDREAMER also demonstrated high accuracy for the integration
of a large number of batches and atlases from different species despite
the small number of shared cell types. Both scDREAMER and
scDREAMER-Sup significantly outperformed the other methods for the
integration of heart atlas across 147 batches, which many other meth-
ods failed to integrate. scDREAMER-Sup also performed superior to all
other methods in predicting the cell type labels for the cells missing
annotations. Moreover, the unsupervised deep learning approach of
scDREAMER does not require any cell type information and can be
applied when prior knowledge regarding homologous cell types is not
available or the cell type annotations aremissing. In case cell type labels
are available (completely or partially), the supervised version of
scDREAMER, scDREAMER-Sup can achieve improved performance in
bio-conservation while maintaining batch-effect removal performance.
As more cell atlases are generated from different species, we believe
that scDREAMER will be suitable for robust integration of cross-species
datasets for the discovery of shared and private cell types.

Fig. 6 | scDREAMER integrates heart atlas cells from a large number (147) of
batches. a Visualization of scDREAMER’s latent space embeddings after the inte-
gration of 147 batches. Different colors denote different cell types in this large
dataset consisting of ~0.5 million cells. ‘NotAssigned’ represents the cells without
any cell type assignment.bVisualization of scDREAMER’s latent space embeddings,
cells are colored based on the batch information. c Visualization of scDREAMER-
Sup’s latent space embeddings, cells are colored basedon cell types.dVisualization
of scDREAMER-Sup’s latent space embeddings, cells are colored basedon the batch
information. Comparison of e composite bio-conservation score, f composite
batch-correction score, and g combined composite score metrics between unsu-
pervised (scVI, Harmony, Seurat, Scanorama, INSCT, scDREAMER) and supervised
(scGEN, scANVI, and scDREAMER-Sup) methods. Comparison of h composite bio-
conservation score, i composite batch-correction score, and j combined composite
score metrics between scGEN, scANVI and scDREAMER-Sup for different

percentages of missing cell type labels for the heart atlas dataset. k Comparison of
cell label prediction accuracy between scDREAMER-Sup and scANVI for different
percentages of missing cell type labels for the heart atlas dataset. l Qualitative
assessment of batch-mixing by visualization of scDREAMER’s latent space embed-
dings, cells are colored based on three categories—positive, negative and true
positive.mQuantitative assessment of batch-mixing of scDREAMER against that of
scVI and Harmony based on the percentage of positive vs. true positive cells.
n Qualitative assessment of batch-mixing by visualization of scDREAMER-Sup’s
latent space embeddings, cells are colored based on three categories—positive,
negative and true positive. o Quantitative assessment of batch-mixing of
scDREAMER-Sup against that of scANVI and scGEN based on the percentage of
positive vs. true positive cells for the heart atlas dataset. Source data are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43590-8

Nature Communications |         (2023) 14:7781 12



The application of scDREAMER on the heart atlas and cross-
species dataset also highlights its scalability to a large number of
batches and millions of cells. In fact, our runtime experiments using
different down-sampled versions of the cross-species dataset
showed that scDREAMER outperformed some other deep learning-
based methods based on runtime. Thus scDREAMER provides a sui-
table deep learning-based integration model for cross-species atlas

integration as the other deep learners scVI, INSCT, iMAP and scDML
achieved much less accuracy for the cross-species integration task.
This is particularly important as the deep learning-based methods
enable the inference of latent cellular embeddings as well as cor-
rected expression profiles which are required for several down-
stream applications such as trajectory inference10 or differential
expression analysis20.
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scDREAMER being a deep learning-based method may require
fine-tuning of some parameters for extracting the best performance.
However, in our analyses, the same parameter values performed well
across multiple datasets (Supplementary Table 3). Our current model
assumes prior knowledge of the number of batches. An important
future direction would be to explore the unsupervised treatment of
batch information and whether the hierarchical structure between
different batch information can be utilized when it exists (e.g., when
cells from a single donor but multiple organs are present in the atlas).
While we restricted our analysis to the integration of scRNA-seq
datasets, our deep generative model encompasses a general frame-
work that can accommodate other omics datasets and we plan to
extend the framework of scDREAMER to multiomic datasets. Finally,
given the rapid generation of atlas-level single-cell datasets38–40 across
multiple organs and species, we anticipate supervised and unsu-
pervised models of scDREAMER to become invaluable methods for
performing scalable and accurate integration of single-cell atlases for
the exploration of different biological systems.

Methods
The scDREAMER model
The unsupervised model of scDREAMER consists of an unsupervised
deep learning-based framework specifically designed to address the
complex and multi-level batch effects and perform atlas-level inte-
gration ensuring effective integration as well as batch mixing. Any
integration method is faced with the critical challenge of balancing a
tradeoff between capturing the distinct identity of the batch-specific
cell types and adequatemixing of the cell types shared acrossmultiple
batches. This challenge is even more profound for the integration of
atlas-level datasets. To overcome these challenges, we formalize our
scDREAMER integration model into two major components, the
adversarial variational autoencoder and the batch classifier that is
adversarially trained with the encoder.

scDREAMER employs an adversarial variational autoencoder for
learning a lower-dimensional representation of cells from the high-
dimensional scRNA-seq data. In addition, there is a neural network
classifier (also called a batch classifier) for the removal of batch effects.
The adversarial variational autoencoder of scDREAMER consists of
three multi-layer neural networks: an encoder E that maps the high-
dimensional expressiondata (xi) andbatch information (si) of a cell i to a
lower-dimensional embedding zi, a decoder D, which reconstructs the
expression profile of the cell from zi and si, and a discriminator D that
aims to distinguish the original expression profile xi and the expression
profile reconstructed (�xi) by the decoder. The use of a discriminator to
adversarially train the autoencoder is inspired by ref. 37.

The adversarial variational autoencoder network of scDREAMER is
trained using two loss functions: evidence lower bound (ELBO) is used
for training the encoder and decoder networks, whereas Bhattacharyya
loss is used for adversarial training of discriminator and autoencoder
parameters. The ELBO loss accounts for the KL divergence between the
posterior distribution q(zi∣si, xi) and the true distribution p(zi), and the
expected likelihood of xi given zi over posterior probability distribution

q(zi∣si, xi). The Bhattacharyya loss compares the probability distribu-
tions q(zi∣xi, si) and p(zi) where q(zi∣xi, si) is the posterior probability
distribution and p(zi) is 0-mean Gaussian distribution, i.e., N ð0,IÞ.

scDREAMER further incorporates a batch classifier, B (a multi-
layer neural network) that takes as input the lower-dimensional
embedding zi learned by the encoder and tries to predict the batch
information si for each cell i. The batch classifier and the encoder are
adversarially trainedusing a cross-entropy losswhere the encoder tries
to maximize it with an aim to generate the embeddings such that the
classifier is not able to differentiate between batches and the batch
classifier tries to minimize it by distinguishing the embeddings of the
cells that are part of different batches and hence achieving better
mixing of the batches.

Adversarial variational autoencoder for representation learning
of cells
E denotes the Encoder network that takes as input X (gene expression
matrix) and S (set of batch information) and generates themeanμZ and
variance σZ of the multivariate normal distribution (prior for z). In
addition, it also learns themeanand varianceof the cell-specific scaling
factor li as used in ref. 20.

The Encoder E learns the functional form: zi ~Normal(0, I),
fE: {x, s}→ {μz, σz, μl, σl}. The decoder networkD takes as input the latent
space embeddings z and batch information and reconstructs the gene
expression matrix, �X . It also outputs the mean and dispersion of the
reconstructed gene expression vector. The scRNA-seq data can be
modeled as zero-inflated negative binomial (ZINB) or negative bino-
mial (NB) distribution.

scDREAMER aims to learn the posterior distribution of the latent
variable z, p(z∣X, S, l).Weuse a variational inference approachwherewe
try to learn the networkparameters of E andD as denoted byϕ = {fE, fD}
by maximizing the Evidence Lower Bound Loss (ELBO) function:

ELBO= � KLðqϕðzjx,sÞjjpðzÞÞ � KLðqϕðljx,sÞjjpðlÞÞ+ Eqϕðz,ljx,sÞ logðpðxjz,s,lÞÞ
ð1Þ

where, the first two terms denote the KL divergence between the
posterior distribution and true distribution for z and l respectively and
the third term denotes the expected likelihood of x given z and l over
the posterior probability distribution, qϕ(z, l∣x, s). In this work, we have
modeled scRNA-seq data using ZINB distribution which is defined in
terms of mean (μ) and dispersion (θ) parameters as:

8x 2 N;pðy;μ,θÞ = Γðx + θÞ
Γðx + 1ÞΓðθÞ

θ
θ+μ

� �θ μ
μ+ θ

� �x

ð2Þ

Training of discriminator. Inspired by ref. 37, scDREAMER auto-
encoder also incorporates an adversarial discriminator D that tries to
distinguish between the reconstructed gene expression profile �x and
the original gene expression profile x of a cell. This ensures that the
distribution of the reconstructed gene expression profiles faithfully

Fig. 7 | scDREAMER enables robust integration of millions of cells across spe-
cies. a Visualization of scDREAMER’s latent space embeddings after the integration
of human (HCL) andmouse cells (MCA). Different colors denote different cell types
in this large dataset consisting of ~1 million cells. b Visualization of scDREAMER’s
latent space embeddings, cells are colored based on the batch information.
c Visualization of scDREAMER-Sup’s latent space embeddings after the integration
of human (HCL) andmouse cells (MCA).Different colorsdenote different cell types.
d Visualization of scDREAMER-Sup’s latent space embeddings, cells are colored
based on the batch information. Comparison of e composite bio-conservation
score, f composite batch-correction score and g combined composite score
metrics between scVI, Harmony, Seurat, BBKNN, Scanorama, INSCT, LIGER, iMAP,
scDML, scDREAMER, scGEN, scANVI and scDREAMER-Sup for the integration of

HCL and MCA cells. h Quantitative assessment of batch-mixing of scDREAMER
against that of scVI, Scanorama and LIGER based on the percentage of positive vs
true positive cells. i Quantitative assessment of batch-mixing of scDREAMER-Sup
against that of scGEN and scANVI based on the percentage of positive vs true
positive cells. j Qualitative assessment of batch-mixing by visualization of
scDREAMER’s latent space embeddings, cells are colored basedon three categories
—positive, negative and true positive. k Qualitative assessment of batch-mixing by
visualization of scDREAMER-Sup’s latent space embeddings, cells are colored based
on three categories—positive, negative and true positive. l Comparison of
scDREAMER runtime against that of scVI and INSCT across four different scRNA
datasets consisting of 10k, 100k, 500k, and 1M cells subsampled from the cross-
species integration dataset. Source data are provided as a Source Data file.
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follows the distribution of the underlying original scRNA-seq profiles.
D is adversarially trained along with the autoencoder,AE = fE,Dg using
Bhattacharyya loss, LB given by:

LB = � log
XN
i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðxiÞ×Pð �xiÞ

p !
ð3Þ

D tries to maximize LB whereas the autoencoderAE tries to minimize
LB giving rise to the minimax objective function:

minAE
maxD LBðEx ∼Px

DðxÞ,Ez ∼pðzÞDðAE ðzÞÞÞ ð4Þ
Adversarial training using a batch classifier for batch-effect
removal. The batch-classifier network B learns its parameters by
minimizing the cross-entropy loss thereby ensuring correct classifi-
cation of embeddings into different batcheswhile Encoder tries to fool
the batch-classifier by maximizing the cross-entropy loss. B takes z
(latent space embeddings) as input and s (batch information) as labels.
The cross-entropy loss is given by:

�
XjSj
j = 1

sj × logðrjÞ ð5Þ

where sj is the true label and rj is the softmax probability of the
jth batch.

The batch-classifier intends to minimize the cross-entropy loss,
hence classifying the latent cellular embeddings to its correct batch
whereas the encoder tries tomaximize the cross-entropy loss ensuring
that the classifier is not able to differentiate between batches so that
better mixing of data from different batches can be achieved. This
gives rise to another minimax objective:

maxE minB �
XjSj
j = 1

sj × logðrjÞ ð6Þ

Implementation details

• scDREAMERhas 4 neural network units correspnding to Encoder,
Decoder, Discriminator and Batch-Classifier, all with multi-layer
dense neural network architecture with linear relu activation at
the end of each layer. For training our model, we have adopted
ADAM optimizer41. We have used β as a scaling factor (multiplied
to the KL-divergence term) to balance between the reconstruc-
tion loss and KL-divergence termwhile optimizing the ELBO loss.
The batch size of 128 is used while training the model.

• To facilitate and stabilize the training process and make
scDREAMER robust to small perturbations, we added a penalty
term in the main objective function following ref. 42. Specifi-
cally, for each gene expression vector xi, we down-sample xi by
keeping 80% of its UMIs to produce xi. The latent representa-
tions for xi and x̂i are zi and ẑi respectively. The penalty term is
defined as�Pjzi j

j = 1 ðzij � ẑijÞ2 as wewant zi and ẑi to be as close as
possible. The down-sampling ratio used in our case is 80%.

• In our evaluations across different integration tasks and
experimental settings, we have used the same values for hyper-
parameters and the same architecture for our neural networks.
We further performed a robustness study for two learning rate
parameters for Pancreas data integration (Supplementary
Table 4), which showed that themetricswere comparable across
different values of learning rate parameters.

Extension of scDREAMER model for utilizing cell type labels
The scDREAMER model was further extended to scDREAMER-
Supervised (scDREAMER-Sup), which can leverage existing cell type

annotations to further improve biological conservation while integrat-
ing scRNA-seq datasets (Fig. 1). Inspired by the deep generative semi-
supervised learner43 and scANVI30, scDREAMER-Sup employs a hier-
archical structure for the inference of an informative latent embedding
zguidedby the available cell type annotations c. Essentially, the prior on
zi becomes more informative as it becomes conditioned on cell type
label ci and another latent variable yi that accounts for within cell type
variability. scDREAMER-Sup employs an additional variational auto-
encoder, AY = fEy,Dyg for learning yi from zi and ci, and another feed-
forward neural network (also called cell type classifier), C, for learning ci
from zi. When cell type annotations are available, those are fed to the
autoencoder AY along with the latent embeddings zi from the adver-
sarial variational autoencoder, AE . In case cell type annotations are
partially available, scDREAMER-Sup learns themissing cell type labelsby
training the cell type classifier network using a cross-entropy loss on the
set of cells for which cell type annotations are available.

Training cell type classifier. The cell type classifier network, C learns
its parameters by minimizing the cross-entropy loss thereby ensuring
correct classification of latent embeddings z into different cell type
annotations. C takes as input zi fromAE and ci (cell type annotation) as
label and intends tominimize cross-entropy loss, hence classifying the
latent cellular embeddings to its correct cell type. The cross-entropy
loss is given by:

�
XjCj
i= 1

ci × logðriÞ ð7Þ

where ci is the true cell type label, ri is the softmax probability of the ith

cell type annotation and ∣C∣ is the number of cell types.
Under semi-supervised setting, C is trained using the labeled data,

i.e., the cross-entropy loss is computed using the available cell type
annotations. The trained network is then used to predict the cell type
annotations for the unlabeled cells.

Variational autoencoder for learning informed prior on cellular
latent space. The variational autoencoderAY consists of an encoder Ey
that takes as input zi and ci and generates themean μy and variance σy of
the multivariate normal distribution (prior for y). The decoder network
Dy takes as input yi and ci and reconstructs latent cellular embedding �zi.
We assume the following distributions for yi and zi

yi ∼Normalð0,IÞ,zi ∼Normalðf 0μz ðyi,ciÞ,f 0σz ðyi,ciÞÞ ð8Þ

where f 0μz and f 0σz are two functions approximated by the variational
autoencoder AY .

We use ϕ = {fE, fD}, and ϕ0 = ff Ey
,f Dy

g to denote the network para-
metersof the two variational autoencoders (AE andAY respectively) of
scDREAMER-Sup which we learn using variational inference by max-
imizing an ELBO function given by:

ELBO = Eqϕðz,ljx,sÞ log pðxjz,l,sÞ� �� KLðqϕðzjx,sÞ jj Eqϕ0 ðyjz,cÞpðzjy,cÞÞ
�Eqϕðzjx,sÞ KLðqϕ0 ðyjz,cÞ jjpðyÞÞ � KLðqϕðljx,sÞ jjpðlÞÞ

ð9Þ

equation (9) denotes the ELBO function for only one cell (this is
without loss of generality as the cells are independent and identically
distributed) and assumes the following factorization of the variational
distribution

qðz,y,ljx,sÞ=qðzjx,sÞqðyjz,cÞqðljx,sÞ ð10Þ

The ELBO is derived following semi-supervised variational autoenco-
der literature43. Our variational distribution does not approximate the
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posterior for cell type annotation c, instead for the cases, where c is
unavailable, we use the cell type classifier to generate the cell type
annotations.

Implementation details of scDREAMER-Sup. scDREAMER-Sup has
three additional neural networks corresponding to the Encoder Ey,
Decoder Dy and the cell type classifier C, all with multi-layer dense
neural network architecture with linear relu activation at the end of
each layer. For training our model, we have adopted ADAM optimizer.
The batch size of 128 was used while training the model.

Preprocessing of scRNA-seq datasets. The scRNA-seq datasets were
preprocessed using the standard pipeline of Scanpy44. Raw count
expression matrices were imported as Scanpy AnnData object fol-
lowed by the removal of low-quality cells based on the mitochondrial
gene counts. The expression matrices were then normalized (using
“scanpy.pp.normalize_total” function) and log-transformed. Finally, we
selected the top 2000 highly variable genes using the function
“scanpy.pp.highly_variable_genes” (with flavor parameter as “seurat”)
as input to scDREAMER and other methods. The genes that were
present across all the batches were considered. For the healthy heart
atlas dataset, cells annotated as doublets were removed.

Metrics for the evaluation of integration performance
The data integration performance of all methods was primarily eval-
uated based on twobroad categories ofmetrics: (1) biological variance
conservation metrics and (2) batch effect correction metrics. Follow-
ing a recent study24, we considered NMI, ARI, and ASW (cell type) as
biological conservation metrics. For the evaluation of batch effect
removal, we considered four metrics: ASW (batch), principal compo-
nent regression (batch), graph connectivity, and kBET. For a holistic
comparison of the performance across all the metrics in both of these
categories, we introduced two composite scores and a combined
composite score as described below. In addition, we computed iso-
lated label F1 and isolated label silhouette scores for evaluating a
method’s ability to capture rare cell identities. We also computed
single-cell level metrics: graph iLISI (for batch correction), graph cLISI
(for bio-conservation), andproportion of true positive vs positive cells.

Biological conservation metrics. The computation of the biological
conservation metrics requires clustering of the integrated data. We
have used the Louvain clustering algorithm to compute the clusters
with a resolution that maximizes the NMI value. The same clustering
assignment is used for computing other metrics24.

• Normalized mutual information (NMI): NMI compares the
overlap between any two clustering assignments where the
overlap is measured in terms of mutual information. The NMI
value is scaled in the range of 0 to 1 based on the mean entropy
for cluster assignments and cell-type labels.

• Adjusted Rand Index (ARI): Rand index compares two clus-
tering assignments considering all pairs of points and finding
agreement and disagreement between the clustering
assignments45. The adjusted rand index (ARI) accounts for the
randomly correct labels and it ranges from 0 to 1 with 0 corre-
sponding to random clustering, and 1 representing a perfect
match between the clusterings46. For ARI calculation, we com-
pared the cell labels with the optimized NMI Louvain clusters.

• Cell type average silhouettewidth (ASW): Silhouette width for
cell i is given by:

swðiÞ= bðiÞ�aðiÞ
maxfaðiÞ,bðiÞg ð11Þ

where a(i) is the average of distances of cell i to the other cells in
the same cluster and b(i) is the average distance of cell i from the
cells in the other nearest cluster. Average silhouettewidth (ASW)

is calculated by averaging over all cells and it ranges between −1
to 1, where −1 or 0 indicates that clusters are overlapping and 1
corresponds to well-separated and dense clusters. As a bio-
conservationmetric, we computed cell type ASWby considering
the cell types as the clusters and scaled between 0 to 1 by the
transformation ASW = (ASW + 1)/2. The PCA reduced space is
used for the calculation of distances for the corrected space
output method. Thismetric is not applicable to the graph-based
method BBKNN.

Batch correction metrics.
• ASW batch: ASW is calculated between the batches of each

subset based on the cell type. Here the 0 value indicates that the
batches are well-mixed. So we scaled the ASW = 1 − abs(ASW).
Now the scaled value 0 indicates that the batches are not well-
mixed, 1 indicates that batches are well-mixed.

• Principal component regression (PCR) batch: In principal
component regression (PCR) batch47, for each principal com-
ponent (PCk) (calculated using PCA), the variance contributed by
each batch b is computed as:

VarðMjbÞ= PN
k = 1

VarðMjPCiÞ*R2ðPCijbÞ ð12Þ

Where Var(M∣PCi) indicates the variance explained by PCi on the
data matrix M, and R2 denotes the coefficient of determination
calculated using a linear regression with PCi as the dependent
and b as the independent variable.

• Graph connectivityGraph connectivity measures whether cells
from the same cell type are well connected in the kNN graph.
First, we compute the kNN graph with all the cells. Then we
create a subset kNN graph with the cells from a particular cell
type and check the number of cells in its largest connected
component.

GC =
1

jCT j
X
c2CT

jLCCðGðNc,EcÞj
jNcj ð13Þ

Where CT is the set of cell types, ∣LCC()∣ is the number of cells in
the largest connected component. G(Nc, Ec) is the kNN subgraph
for cell type c with Nc as the number of cells in cell type c and Ec
denoting the edges in the kNN graph containing only the cells of
type c.

• k-nearest neighbor batch effect test (kBET): k-nearest neigh-
bor batch effect test (kBET)47 evaluates how well the label
configuration of the k-nearest neighborhoods of cells matches
the global label configuration. kBET test is performed iteratively
over a random subset of cells, and the value is calculated as the
total rejection rates over all the iterations. As kBETworks on the
kNN graph, for the embedding-based output and corrected
feature output methods, we have used k = 50 for calculating the
kNN graph. kBET is applied to each batch separately to account
for technical effects and changes in the cell type distribution
across batches. For the kNN graphs containing disconnected
components, kBET is calculated on each of the connected
components. The number of nearest neighbors would differ for
each cell in the graph-based method like BBKNN. So diffusion-
based correction is used for graph-based output to get the same
number of nearest neighbors for all the cells. kBET value is scaled
between 0 to 1 so that the 0 value indicates poor batch mixing
and 1 indicates perfectmixing of cells. It is important to note that
for the healthy heart atlas dataset, kBET could not be computed
for some of the methods due to computational limitations in
handling large number of cells and batches (runs getting killed
even after running for 72 h on Intel XeonGold 6246CPUwith 512
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GB memory). This behavior of kBET has also been reported in
ref. 24. For such cases, kBET has been excludedwhen computing
the composite batch correction score.

Isolated label metrics. We adopted two isolated label scores from
ref. 24 to evaluate how well a method can capture rare cell identities.
Isolated labels denote the cell types that are present in the least
number of batches. For each of the isolated labels, isolated F1 and
isolated ASW are calculated. These two metrics reveal how well the
isolated cell types are separated from the rest of the cell types after
integration.

For the calculation of the isolated F1 score, first, we need to
determine the clusters containing the particular isolated label.
Lovain clustering is used for the clustering, and the resolution of the
clustering algorithm is set such that the cluster has the largest
number of isolated labels. The F1 score of isolated labels is then
measured against the other cells in the cluster. F1 score ranges from0
to 1with0 indicating that all the cells in the cluster are fromcell types
other than the isolated label and 1 indicating that all the cells are from
isolated labels.

Isolated label ASW is calculated considering the isolated cell type
as one cluster and all other cell types in another cluster and separately
computing their ASW.

Other metrics.
• Graph inverse Simpson’s index LISI: The inverse Simpson’s

index is a diversity score that calculates the number of neighbors
needed to be visited before appearing in the same batch again.
The value of this metric ranges from 1 to B (number of batches).
This LISI score is used for the evaluation of both batch correc-
tion (iLISI) and bio-conservation (cLISI)15. To extend the LISI to
the graph-based methods graph LISI24 is used. In graph LISI, the
distance over joint embeddings is replacedwith the graph-based
distance between the cells to get a large number of neighbors.
Dijkstra’s shortest path algorithm is used to calculate the
shortest distance between the cells. In cLISI, inverse Simpson’s
index is calculated over the cell types, i.e., the number of
neighbors one needs to visit before getting the same cell type
again in the neighborhood, whereas iLISI is calculated over the
batches.

• Proportion of positive and true positive cells: We further
adopted another single-cell level summarymetric from ref. 22 to
evaluate the integration performance. For this, first, the cells are
classified into positive and negative cells. Cells surrounded by
the same cell type are classified as positive; otherwise, they are
classified as negative. Considering the subset of positive cells
only, a positive cell is classified as true positive if the distribution
of batches around it is the same as the global batch distribution.
Theproportion of positive cells indicates the extent of biological
conservation. In contrast, the true positive percentage indicates
how well the batches are well-mixed. These two proportions
together serve as quantitative metrics for evaluating the batch
effect removal performance.

Composite scores. We have introduced two composite score metrics
for a holistic comparison of the performance across all the metrics for
biological conservation and batch correction respectively. Moreover,
we computed a combined composite score that measures the average
performance of a method in biological conservation and batch cor-
rection. Each composite score is computed by averaging the scaled
values of all themetrics in that category. For a dataset, the scaled value
for each individual metric is obtained throughmin-max normalization
across all the competing methods.

The composite scores are calculated as follows:
1. Composite bio-conservation score = NMI 0 +ASW 0 +ARI 0

3

� �

2. Composite batch correction score =
ASW ðbatchÞ0 +PCR batch0 + graph connectivity0 + kBET 0

4

	 

3. Composite isolated label score = isolated f 1 score0 + isolated ASW 0

2

	 

4. Combined composite score = 1

2(Composite bio-conservation
score + Composite batch correction score)For any metric Me,M

0
e

denotes the min-max scaled value across all the competing
methods.

Metric for evaluating the accuracy of cell label prediction. We have
adoptedmacro F1-score to evaluate howwell amethod canpredict the
cell type labels for the datasets with missing cell type labels. The F1-
score metric measures the classification accuracy as the harmonic
mean of precision and recall. In the context of cell label prediction,
multiple classes are involved and F1-score is computed for every cell
type annotation (class). Macro F1-score computes the overall accuracy
of a multi-class classifier by aggregation of F1-scores for all the indi-
vidual classes. For the prediction of cell type labels, it is computed by
taking the arithmetic mean of the F1-scores for all the cell type
annotations.

Competing integration methods
We have compared our method against eleven state-of-the-art inte-
gration methods: scVI20, Scanaroma16, Harmony15, Seurat17, BBKNN18,
INSCT48, LIGER19, iMAP22, scANVI30, scGEN31 and scDML33. The details
about the run configuration for these methods are provided in Sup-
plementary Table 5.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments involved
running computational methods on previously published, publicly
available datasets and did not require randomization. The investiga-
tors were not blinded to allocation during experiments and assess-
ment of outcome.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. The human
pancreas data used in this study are available in the GEO database
under accession codes “GSE81076 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE81076]”, “GSE85241 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE85241]”, “GSE86469 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86469]”, “GSE84133
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133]”,
“GSE81608 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE81608]”, and the ArrayExpress database under the accession
code “E-MTAB-5061 [https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-5061]”24. The lung atlas data is available in the GEO
database under accession code “GSE130148 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE130148]”. The human immune
data used in this study are available in the GEO database under
accession codes “GSE120221 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE120221]”, “GSE107727 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE107727]”, “GSE115189 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115189]”,
“GSE128066 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE128066]” and “GSE94820 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE94820]” and in the website of 10X Genomics
(PBMC10k: https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3)24. The processed human
pancreas, human immune, and lung atlas datasets are available at
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https://figshare.com/articles/dataset/Benchmarking_atlas-level_data_
integration_in_single-cell_genomics_-_integration_task_datasets_
Immune_and_pancreas_/1242096824. The Macaque Retina dataset is
available at https://singlecell.broadinstitute.org/single_cell/study/
SCP212/molecular-specification-of-retinal-cell-types-underlying-
central-and-peripheral-vision-in-primates#study-download. The Heal-
thy Heart data used in this study is available at https://www.
heartcellatlas.org/32. The processed Healthy Heart data used in this
study can be downloaded from https://figshare.com/articles/dataset/
Batch_Alignment_of_single-cell_transcriptomics_data_using_Deep_
Metric_Learning/20499630/233. The Human and Mouse cell Atlas
datasets used in the study are available at https://figshare.com/
articles/dataset/MCA_DGE_Data/5435866 and https://figshare.com/
articles/dataset/HCL_DGE_Data/7235471, respectively. The processed
Human-Mouse cell atlas data can be downloaded from https://github.
com/lkmklsmn/insct/tree/master/reproducibilty48. All the processed
datasets for the missing label experiments (for lung atlas, human
immune and heart atlas tasks) are openly available at https://doi.org/
10.6084/m9.figshare.24354295. The details of the experimental bio-
logical datasets used in this study are further provided in Supple-
mentaryTable 1. All other data supporting the findings of this study are
available within the article and its supplementary files. Any additional
requests for information can be directed to, andwill be fulfilled by, the
corresponding author. Source data are provided with this paper.

Code availability
The source code and usage tutorial for scDREAMER are freely available
at https://github.com/Zafar-Lab/scDREAMER, the code has also been
deposited via Zenodo (https://doi.org/10.5281/zenodo.10021620)49.
All analysis and results presented in the manuscript are available at
https://github.com/Zafar-Lab/scDREAMER-reproducibility, which
have also been deposited via Zenodo (10.5281/zenodo.10021936)50.
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