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TRS: a method for determining transcript
termini from RNAtag-seq sequencing data

Amir Bar1, Liron Argaman1, Michal Eldar1 & Hanah Margalit 1

In bacteria, determination of the 3’ termini of transcripts plays an essential role
in regulation of gene expression, affecting the functionality and stability of the
transcript. Several experimental approaches were developed to identify the 3’
termini of transcripts, however, thesewere applied only to a limited number of
bacteria and growth conditions. Here we present a straightforward approach
to identify 3’ termini from widely available RNA-seq data without the need for
additional experiments. Our approach relies on the observation that the
RNAtag-seq sequencing protocol results in overabundance of reads mapped
to transcript 3’ termini. We present TRS (Termini by Read Starts), a compu-
tational pipeline exploiting this property to identify 3’ termini in RNAtag-seq
data, and show that the identified 3’ termini are highly reliable. Since RNAtag-
seq data are widely available for many bacteria and growth conditions, our
approach paves the way for studying bacterial transcription termination in an
unprecedented scope.

To adapt to environmental changes, bacteria strictly regulate their
gene expression by versatile regulatory mechanisms at both the tran-
scriptional and post-transcriptional levels. A fundamental step in gene
expression is the determination of the transcript 5’ and 3’ boundaries.
In addition to the extensively-studied transcription initiation regula-
tionby transcription factors and thedeterminationof the transcription
start site, there are several mechanisms shaping the 3’ termini of
transcripts, including transcription termination and cleavage by ribo-
nucleases, which affect the transcript stability and functionality.
Indeed, in parallel to development of transcriptome-wide methods to
determine transcription initiation sites (e.g., references1,2), experi-
mental RNA-seq-based approaches have been recently developed to
globally identify transcript 3’ ends in bacteria. These include term-seq3,
SEnd-seq4 andothers5,6. In term-seq, a 3’ adapter is ligated to theRNA3’
terminus prior to the RNA fragmentation, and thus, the sequences
adjacent to the adapter sequence in the library reads represent original
3’ termini that were present in the RNA sample3. SEnd-seq is based on
circularization of the RNA. The sequenced reads capture the 5’ and 3’
ends of the RNA simultaneously, thus allowing to map both the tran-
scription start and end sites4. Application of these methodologies to
several bacteria, including the model organism Escherichia coli K-12,
successfully identified the 3’ termini of transcripts at a global scale3,4,7,8.

These studies also discovered functional elements generated by pre-
mature transcription termination, including riboregulators (ribos-
witches or attenuators) that respond to multiple environmental
signals, such as antibiotics3,5,7. These global studies required some
manipulation of the conventional RNA-seq protocols to guarantee
capturing of the 3’ termini.

Recently, we and others9 observed a distinctive accumulation of
reads at transcript 3’ termini in sequencing data generated by the
RNAtag-seq protocol10 (Fig. 1a). This special read pattern stems from
the protocol steps, which involve random fragmentation of the RNA,
followed by the ligation of an adapter (corresponding to read 1) to the
3’ ends of the fragments (Fig. 1b). This results in a sequencing library in
which the start of read 1 corresponds to the 3’ end of a RNA fragment.
For each transcript, the random fragmentation is expected to generate
random fragments, but always one of them will carry the original 3’
terminus of the transcript (Fig. 1c; Jonathan Livny, personal commu-
nication). Therefore, it is expected to find more reads starting at the
genuine transcript 3’ terminus than at the ends of other fragments
produced by the random fragmentation, suggesting that recognition
of this characteristic read pattern in RNAtag-seq data can be exploited
for determining transcript termini, without the need for tailored
experimental manipulations. To this end, we developed TRS (Termini
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byReadStarts), a straightforward approach to identify this typical read
pattern inRNAtag-seqdata.Wedemonstrate the applicability of TRS to
accurately infer the RNA 3’ termini directly from sequencing data.
Since RNAtag-seq data are widely available for many bacteria grown
under various conditions (e.g., references9,11–13, TRS paves the way to
study transcription termination at an unprecedented scope.

Results
Coverage of RNAtag-seq reads peaks at transcript 3’ termini
To substantiate the conjecture that the read pattern observed at 3’
termini in RNAtag-seq data results from the steps of random frag-
mentation followed by the 3’ adapter ligation in the RNAtag-seq

protocol, we computationally simulated the RNAtag-seq library pre-
paration process for 10,000 transcript copies of a specific gene
(Methods). These transcripts were subjected to random fragmentation
and a read was assigned to each fragment. Finally, we examined the
read coverage along the gene, obtaining coverage per position. In
accord with real data, we find in the simulations an accumulation of
reads at the genuine 3’ terminus (Supplementary Fig. 1), supporting the
conjecture that in the RNAtag-seq actual data read peaks are expected
at 3’ termini. This suggests that identification of such peaks in RNAtag-
seq data can be used for identification of 3’ termini.

Identification of 3’ termini in RNAtag-seq data by TRS
Themajor steps of TRS areoutlined in Fig. 2 and the detailed algorithm
is described in the Methods section and in the Supplementary Infor-
mation. Briefly, in single-end sequencing, the region covered by each
read is determined by the position where the read start is mapped to
the genome (corresponding to the 3’ end of the RNA fragment), and by
the read length, which often corresponds to the size defined for the
sequencing machine. Therefore, the identification of read coverage
peaks is equivalent to the detection of read start peaks in the RNAtag-
seq data (Fig. 1c). For each library we map the reads to the genome,
record thenumber of read starts per genomicposition, andmodel it by
the negative binomial distribution. Since 3’ termini have high number
of read starts mapped to them compared to the rest of the genome,
the task of identifying these positions can be resolved by peak detec-
tion. However, due to variations between the libraries, applying a peak-
calling algorithm separately to each library may result in inconsistent
peak positions, which would need to be integrated. In TRS, prior to
peak calling, we first integrate the information of multiple replicates.
To this end, we developed a statistic Ri,j, that is based on the local
readthrough at position i in library j, and is defined such that positions
with low local readthrough (putative 3’ termini) get high values. This
statistic considers the number of read starts in a small window around
a position (Li,j) and the number of read starts in a window downstream
(Di,j). The statistic scales read start counts to values between 0 and 1
and its expected value can be utilized to set a threshold (T), above
which a position is considered a putative 3’ terminus (Methods). In
practice, we compute for eachposition i the average value ofRi,j across
the libraries and apply a peak-calling procedure to these average
values, keeping for further analysis positions of average �Ri peaks with
values ≥T. We then test for each individual library whether the read
start counts at the determined �Ri peak positions differ statistically
significantly from the read start counts downstream to them, and
record statistically significant positions that recur in multiple libraries.
Finally, we classify the 3’ termini by gene and transcript annotations
(Fig. 3, Methods).

3’ termini detected by TRS applied to RNAtag-seq data are
highly reliable
Initially, we applied TRS to three sequencing libraries of published
RNAtag-seq data generated in our lab for RNA extracted from E. coli
K-12MG1655 cells grown on LB to exponential phase14. In these data we
identified a total of 1486 3’ termini (Supplementary Data 1-2). For
assessment, we compared our results with data of 3’ termini detected
experimentally by methods dedicated to this aim: two studies that
used term-seq7,8 and one study that used SEnd-seq4 (Fig. 4). Our set of
3’ termini had a statistically significant overlap with each of the three
datasets of 3’ termini (p ≤ 1E-467 by hypergeometric test; Methods),
and the levels of overlap were comparable to those obtained when
comparing the results for each pair of these datasets (Supplementary
Fig. 2). Of note, while there are statistically significant overlaps
between the different datasets, each dataset has a large set of uniquely
identified 3’ termini (Fig. 4). This might be due to differences in the
library preparation procedures (term-seq, SEnd-seq, or RNAtag-seq)
and in the computational pipelines, as well as to variations in the
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Fig. 1 | A typical read coverage at 3’ termini in RNAtag-seq data. a Shown is the
read coverage along the gene talB for three RNAtag-seq libraries (orange, red and
cyan lines) mapped to E. coli K-12 MG1655 reference genome (NC_000913.3). The
transcription start and termination sites (determined by SEnd-seq4) are marked by
an arrowor a diamond arrow, respectively. The gene coding sequence ismarked by
awide arrow containing the gene name.b Schematic representationof the RNAtag-
seq protocol10. Briefly, the protocol involves the following steps: Random frag-
mentation of the RNA (black lines), RNA 3’ end adapter ligation, reverse tran-
scription (gray lines), cDNA adapter ligation, PCR and sequencing. c For multiple
transcripts of the same RNA (black lines), break positions created by the random
fragmentation (blue slashes) result in randomly distributed3’ termini except for the
genuine 3’ terminus, which is always present. Consequently, the number of read
starts (blue bars) at the genuine 3’ terminus is higher than at other 3’ termini,
underlying the observed pattern of reads (black arrows).
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bacterial strains or in the RNA samples due to possible differences in
the growth conditions or RNA extraction methods.

A most adequate assessment of the 3’ termini detected by the
application of TRS to RNAtag-seq data can be achieved by comparing
them to 3’ termini obtained by an independent methodology applied
to the same RNA samples, analyzed by the same computational
method. While TRS was originally developed to determine 3’ termini
using RNAtag-seq data, we realized that this approach is general
enough to analyze other datasets with 3’ termini enriched signals.
Indeed, when we applied TRS to the Dar and Sorek term-seq data8, we
found a statistically significant overlap between the 3’ termini identi-
fied by TRS and those reported in the original paper (Supplementary
Information). Thus,we can applyTRS to term-seq andRNAtag-seq data
generated for the same RNA samples, in order to obtain a most accu-
rate assessment of the reliability of 3’ termini based on RNAtag-
seq data.

To this end, we have extracted total RNA from E. coli K-12 MG1655
grown to exponential phase (OD600 of ~0.4) in either rich (LB) or

minimal (EG) medium (three replicates each), and used the extracted
RNA for construction of RNAtag-seq and term-seq libraries (Methods).
Reads were then mapped to the reference genome and 3’ termini
positions were determined by applying TRS to the data generated by
each methodology (Methods, Supplementary Table 1, Supplementary
Data 3), resulting in fourdatasets of 3’ termini: (i) LBRNAtag-seq, (ii) EG
RNAtag-seq, (iii) LB term-seq, and (iv) EG term-seq. We describe in the
text the comparison of the 3’ termini determined in the LB datasets (i
and iii), and in the Supplementary Information the comparison of the
results for the EGdatasets (ii and iv).We identified 1814 3’ termini in the
LBRNAtag-seq data and 1984 3’ termini in the LB term-seq data. 1316 of
these 3’ termini were co-discovered in the data generated by both
methods, a highly statistically significant overlap (p ≤ 1E−1387 by
hypergeometric test; Fig. 5a; Methods). The 3’ termini determined by
both methods in the EG datasets were also highly consistent (Supple-
mentary Information; Supplementary Fig. 3).

There were 498 3’ termini unique to the LB RNAtag-seq dataset,
which were not identified in the LB term-seq dataset (Fig. 5a).
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Fig. 2 | Schematic presentation of the TRS algorithm. a Read coverage pattern
corresponds to the number of read starts in each library (reflecting the 3’ termini of
RNA fragments). The number of read starts per position is the input of the algo-
rithm. Step 1: We compute the statistic Ri,j , which measures the local readthrough
per genomic position and scales the libraries to the same range of values. Step 2:
The averages of Ri,j across libraries ( �Ri) are computed. Step 3: We apply a peak-
calling procedure to �Ri values and determine putative 3’ termini (purple dots)
above a preset threshold (red dashed line). Step 4: For each library, using the
original read start counts, we apply a statistical test to the peak positions identified
in Step 3 (Methods). The p-values are corrected for multiple hypothesis testing.
Positions with p-value≤0.01 (red dashed line) in multiple libraries are determined

as 3’ termini. Corrected p-values are presented by -log10(p). Corrected p-values of
statistically significant 3’ termini in each library are shown as circles, colored by the
library color, and otherwise in black. b Ri,j corresponds to the local readthrough,
computed for each library. It is defined as the ratio between the number of reads
that pass the position (i.e., reads that start downstream to the position and counted
by Di,j) and the total number of reads covering it (i.e., reads that start downstream
or reads that start at the position counted by Di,j + Li,j). Presented is the number of
read starts in a region around the statistically significant peak shown in a. The
number of read starts at the local region is high compared to the downstream
region (i.e., Li,j≫Di,j) and hence Ri,j approaches 1.
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To further assess the validity of these 3’ termini, we extracted their
flanking sequences, aligned them at the 3’ terminus positions and
analyzed the positional nucleotide distributions. Indeed, we
observed nucleotide enrichment matching a GC-rich terminator
hairpin structure followed by a poly uridine tail, similar to the motif
identified for common 3’ termini detected in both RNAtag-seq and
term-seq datasets (Supplementary Fig. 4a). In addition, the predicted
free energy values of the regions upstream the 3’ termini are com-
parable to the predicted free energy values of shared 3’ termini,
identified in both RNAtag-seq and term-seq data (Supplementary
Fig. 4b, Supplementary Information). These results suggest thatmost
of the 3’ termini unique to the RNAtag-seq dataset are true termini
that were not detected by term-seq. Further analysis has revealed
that 68% of the RNAtag-seq unique termini were not identified in the

term-seq data because they had low read coverage in at least two
term-seq libraries (below ourminimal threshold). The other 32% of 3’
termini not detected by term-seq had sufficient coverage but they
did not pass the statistical test (Fig. 5a). Notably, 60% (297/498) of
the 3’ termini identified in the LB RNAtag-seq data but not in LB term-
seq data were discovered in the EG term-seq data or in the previous
studies mentioned above4,7,8. Taken together, compiling the 3’ ter-
mini discovered in the LB RNAtag-seq data that are supported by
at least one of the above datasets, we can estimate the precision of
the 3’ termini identified in the RNAtag-seq data to be at least 89%.
Classifying the 3’ termini by gene and transcript annotations (Fig. 5b,
c), we observe that for primary 3’ termini (at the end of fully-
transcribed genes or operons), the RNAtag-seq precision rises to 96%
(Table 1).
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Fig. 3 | Classification of 3’ termini according to gene and transcript annota-
tions. In all panels, blue rectangles represent the protein coding sequence (CDS) of
a gene, pink rectangles represent non-codingRNA (ncRNA)genes, andblack arrows
represent the transcription orientation. Genes that reside in the same transcription
unit are surrounded by yellow shading. 3’ termini are divided into three groups and
subgroups: (1) Primary – 3’ termini located downstream the stop codon of protein
coding genes or at the end of ncRNA genes. This group includes: (i) Primary 3’
termini, positioned up to 100 nucleotides downstream the stop codon of a protein
coding gene or at the end of a ncRNA gene. (ii) Distant Primary (DP) termini,

positioned up to 200 nucleotides downstream the stop codon of a protein coding
gene, when there is no 3’ terminus in the first 100 nucleotides. (iii) Alternative
Primary (AP) termini, same as distant primary termini but there is a 3’ terminus in
the first 100 nucleotides. (iv) Alternative Primary termini in Transcription Unit (AP
in TU), assigned to genes that are not last in their operon (either CDS or ncRNA
gene). In this case the region downstream is extended up to 250 nucleotides. (2)
Premature – 3’ termini located within the 5’ UTR of genes or in their CDS or in a
ncRNAgene. (3) Orphan– 3’ termini located antisense to genes (AS) or in intergenic
regions distant from genes (IGR).
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Fig. 4 | Overlap of 3’ termini detected by TRS applied to RNAtag-seq data with
previously published 3’ termini datasets. Comparison of the set of 3’ termini
detected by applying TRS to published RNAtag-seq data14 and previously published
3’ termini datasets obtained by term-seq7,8 and SEnd-seq4. Each row represents a

dataset, and each column represents the intersection of the 3’ termini in corre-
sponding datasets (dark blue circles). The number of 3’ termini in each dataset or
intersection is presented by horizontal and vertical bars, respectively.
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In parallel, 66% of all 3’ termini identified in the term-seq data are
identified in the RNAtag-seq data. This percentage rises to 82% when
focusing on primary 3’ termini, implying also high sensitivity for these
sites. Other classes of 3’ termini showed lower overlap, especially
internal 3’ termini residing within coding sequences, or 3’ termini
residing in intergenic regions of operons. While for some of the
internal 3’ termini the read start signals completely vanished in the
RNAtag-seq data, for others (85%) a signal was observed but it was too
weak to pass our statistical test (Fig. 6). The algorithmperformance on
RNAtag-seq data is summarized in Table 1, showing that read start
peaks in RNAtag-seq data can be exploited for the determination of
genuine 3’ RNA termini with high precision and high sensitivity.

There are potential biases in the reported results, associated
with various steps of the RNAtag-seq protocol. One potential bias may
arise from the ligation step in case the ligase has a preference for
distinct nucleotides. To assess possible ligase preferences, we aligned
the sequences at the positions of mapped read starts within CDSs,
and looked at the nucleotide enrichment in the flanking regions

(Supplementary Fig. 4c). There was no nucleotide bias at the ligation
point. Interestingly, we identified a slight enrichment of A at the sec-
ond read position, as well as a slight enrichment of U at the genomic
position downstream the mapped read start, possibly associated with
some fragmentation bias. Overall, the difference between this motif
and the identified terminator motif (Supplementary Fig. 4a) suggests
that the 3’ termini identified by TRS are not affected by this slight bias
or by any ligase preference. Another potential bias may originate
from the PCR step amplifying the same cDNA fragment multiple
times (known as PCR duplicates). In duplication events, the number of
reads starting at the duplicated fragment position might be over-
represented compared to other positions and it could be falsely
identified as a 3’ terminus. To assess the effect of possible PCR dupli-
cates we analyzed paired-end RNAtag-seq libraries15,16, fromwhich PCR
duplicates can be removed. To this end, we removed all but one read
of identical sequences and applied TRS to the filtered read data.
Excluding 3’ termini known fromprevious studies4,7,8, we compared the
detected 3’ termini in the filtered data to those detected in the original
data (see Supplementary Information). The results of this analysis
indicated that the fractions of 3’ termini in the original data thatmight
have been falsely detected due to PCR duplicates (Supplementary
Fig. 5) change among the 3’ termini associated with various genomic
annotations, from ~15% (premature 3’ termini) to ~2% (primary 3’ ter-
mini). In paired-end data, where duplicates can be removed, this
artefact can be addressed.

Finally, we verified that TRS identifies 3’ termini in RNAtag-seq
datasets published by other research groups for E. coli7,15,17,18.
Comparative analysis of E. coli primary 3’ termini identified in other
RNAtag-seq datasets have shown high consistency with the previously
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3’ termini annotations are divided into eight classes following Fig. 3 (outer circle),
which can be categorized by the super classes: primary, premature, and orphan 3’
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RNAtag-seq (blue) or term-seq (red) datasets. Shown is the relative frequency of
each 3’ terminus category within its group.

Table 1 | TRS performance

All 3’ termini Primary 3’ termini

Precision Sensitivity Precision Sensitivity

Based on LB term-
seq alone

1316/1814
(73%)

1316/1984
(66%)

651/862
(76%)

651/728
(89%)

Based on LB term-
seq and additional
datasets4,7,8

1613/
1814 (89%)

– 841/
876 (96%)

–
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identified ones (Supplementary Information and Supplementary
Fig. 6). Furthermore, for two bacterial species we had access to both
RNAtag-seq and term-seq datasets from other labs: E. coli K-127 and
Listeria monocytogenes3,11. For each of the bacterial species there was
high consistency between the determined 3’ termini in the two cor-
responding datasets (Supplementary Information and Supplementary
Fig. 7a–c). Finally, we analyzed RNAtag-seq data of three other bac-
teria,Klebsiella pneumoniae, Salmonella enterica and Shigella flexneri11,
and demonstrate the repertoires of identified 3’ termini along with the
3’ terminus repertoires of E. coli K-12 and L. monocytogenes (Supple-
mentary Information and Supplementary Fig. 7d).

Insights gained from the 3’ termini identified in RNAtag-seq
data by TRS
Having vast data of RNAtag-seq of different bacteria grown under
various conditions (e.g., references11,19), along with the ability to iden-
tify 3’ termini by solely exploiting these data, opens the door to study
questions of posttranscriptional regulation at a transcriptome-wide
scale. The mere data of RNAtag-seq of a bacterium grown under a
specific condition should enable the discovery of regulatory elements
embedded in the RNA by identification of internal 3’ termini. Having
RNAtag-seq data of a bacterium grown under different conditions
enables comparison of the 3’ termini of genes between conditions and
detection of possible switches betweenprimary and internal 3’ termini,
which might indicate on premature transcription termination or pro-
cessing under a certain condition, acting as regulatory mechanisms.
Having RNAtag-seq data of various bacteria should enable a com-
parative study looking at the conservation of suchmechanisms, as well
as at the degree of conservation of primary 3’ termini. Herewe provide
examples for each of these types of insight, which can be gained by
applying TRS to RNAtag-seq data:

1. 3’ UTR-derived small RNAs - Using the 3’ termini map we
obtained for E. coliK-12MG1655,we can accurately define the 3’UTRof
transcripts and measure their expression by computing the average
number of read starts along the 3’ UTR per library. Likewise, we can
assess the expression within the coding sequence (CDS) by computing
the average number of read starts along these regions. Examining
these values in mRNAs of protein coding genes that are transcribed
alone or last in their operon, we observed that the average numbers of
read starts within the CDS and 3’ UTR of genes are highly correlated
(r =0.84–0.85 for the different libraries, p ≤ 1.91E−238, Fig. 7a, Sup-
plementary Fig. 8). Yet, we identified 38 outlier transcripts (Fig. 7a,
Supplementary Data 4, Methods). Out of these, five genes had a higher
average number of read starts in the CDS compared to the 3’ UTR. For
two of these genes (pmrR and mgtT), SEnd-seq showed transcription
termination of the upstream genes inside the CDSs, while two other
genes (yoeH and bax) may have undergone premature termination or
processing within their own sequences. 34 genes had a higher number

of read starts in the 3’ UTR compared to the CDS, hinting at putative
RNAs derived from the 3’ UTR. These include the 3’ UTR of malM
(Fig. 7b), shown previously to be stabilized by binding to ProQ and
involved in many interactions with other RNAs15, the 3’ UTR of tdcG
(Fig. 7c), which was found in a previous study to interact with 20
different transcripts when bound to Hfq19,20, and several other tran-
scripts presenting extremely low expression levels in the coding
sequence, yet relatively high expression levels at their 3’UTRs. Among
these candidates is a short RNA embedded in chiQ 3’ UTR. Interest-
ingly, in exponential phase, chiQ is known to be completely down-
regulated through premature transcription termination enhanced by
the interaction of the sRNA ChiX with the 5’ UTR of chiP, preceding
chiQ in an operon21. Yet, we do observe high coverage in chiQ 3’ UTR
(Fig. 7d), suggesting a short RNA may be produced from an internal
transcription start site, putatively providing an additional layer in the
regulation of chitosugar metabolism. Alternatively, since chiQ shares
a terminator with fur, which is encoded on the complementary
strand, the putative transcript derived from chiQ 3’ UTR might serve
as an antisense to fur 3’UTR. Overall, our results show that putative 3’
UTR-derived sRNAs may be inferred by integrating expression levels
and 3’ termini determined by TRS, both based on the same RNAtag-
seq data. Furthermore, this analysis emphasizes the advantage in
integrating different layers of information from the same data,
leading to insights that could not be obtained by analyzing each
information layer alone.

2. Identification of condition-specific termini - Comparative ana-
lysis of 3’ termini between growth conditions may unravel termination
and processing events that are more abundant under one condition
compared to another condition. This mainly regards a primary 3’ ter-
minus identified under one condition and a premature 3’ terminus
identified under the other condition. It is possible that both termini are
identified under both conditions, but they may differ in their magni-
tude, possibly indicating that the premature 3’ terminus serves for
regulation, for example, formaintaining the desired amount of the full-
length mRNA and encoded protein. To assess the magnitude of a
premature 3’ terminus we used themeasure based on the readthrough
at those positions, defined above as �Ri. Based on the properties of �Ri

(Methods), it approaches 0 for full readthrough and is expected to be
relatively high in cases of 3’ termini, including premature termination
or processing. Comparative analysis of the transcription readthrough
measures obtained for various growth conditions may reveal putative
condition-dependent premature transcription termination or proces-
sing (Fig. 8a). A similar logic was previously used with term-seq data to
successfully determine condition-specific regulators3, with the limita-
tion that RNA-seq data had to be generated for genes within operons
with alternative promoters. In our case, RNAtag-seq directly provides
these two layers of information, the 3’ termini data and full gene
coverage data that enable us to estimate the local readthrough.

ba

frradk

Fig. 6 | Examples of 3’ termini identified in the term-seq dataset but not in the
RNAtag-seqdataset. Shown are read start patterns of RNAtag-seq (blue) and term-
seq (red). a 3’ terminus of adk, identified within the CDS of the gene. Read starts
accumulate in term-seq data but not in RNAtag-seq data. b 3’ terminus identified

within frr 5’ UTR. Read starts do accumulate in the RNAtag-seq data but not to the
same extent as in the term-seq data. The y-axes of a and b are not scaled. The gene
coding sequences are marked by blue rectangles below the read coverage
plots. Arrows are as in Fig. 1a.
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To assess the ability of TRS to discover condition-specific termi-
nation, we applied it to previously published RNAtag-seq data of
enteropathogenic E. coli (EPEC), generated in our lab19. In those
experiments, EPEC was grown to two growth phases, either to sta-
tionary phase (on LB medium) or to exponential phase (on DMEM,
which mimics infection conditions). Hence, we could use these RNA-
seq data to search for condition-specific termini (Supplementary
Data 5). In this analysis we considered 3’ termini with sufficient read
coverage (at least 20 reads per position in at least two replicates per
condition). We further narrowed down this list by excluding rRNA
genes and including only termini identified as premature, resulting in a
list of 133 candidates. We expect higher abundance of short RNA
fragments due to premature termination or processing in the growth
phase/conditionwhere themeasure �Ri is higher compared to the other
growth phase/condition. We computed the difference in �Ri measures
between the conditions, ranked the genes by the absolute values of
these differences, and selected genes above the median for experi-
mental testing following manual visualization of their read profiles in
the two conditions.We experimentally tested by northernblot analysis
three genes inwhichwe identified growth phase/condition-dependent
premature 3’ termini (uspA, rpsL, and rpsA), and verified shorter tran-
scripts for two of them in stationary phase/LB (Fig. 8b, c). For uspAwe
did not identify in the northern blot analysis a shorter RNA fragment

despite its strong indication by the readthroughmeasure obtained for
the stationary phase/LB RNAtag-seq data (Fig. 8b). Our experimental
results support premature termination or processing at stationary
growth phase/LB for the two other genes, rpsA and rpsL, which encode
for ribosomal proteins S1 and S12, respectively (Fig. 8b, c). It is well
established that there is a decrease in the translation of proteins during
stationary phase. Reduction in the level of ribosomal proteins, which
are usually highly expressed22, is one way to achieve this. Indeed, it is
known that the translation of the ribosomal protein S1, encoded by
rpsA, is auto-regulated post-transcriptionally by S1 binding to its own
mRNA23. The premature transcription termination or processing that
we discovered at stationary phase may add another layer to the reg-
ulation of this gene. Of note, the RNA size implied by the northern blot
analysis is shorter than the size suggested by the premature termina-
tion, hinting at possible further upstream processing. A similar logic
may apply to rpsL, which is regulated post-transcriptionally by the
ribosomal protein S724, sharing an operon with S12. The premature
termination or processing might join this regulation to reduce S12
levels at stationary phase.

3. Conservation of RNA regulatory elements in bacteria - The vast
amounts of RNAtag-seq data available for diverse bacteria provide an
opportunity to studywhether termination sites of genes are conserved
among different bacteria. Computing the distance between the stop

a b

dc

malM

QihcGcdt

Fig. 7 | 3’UTR-derived transcripts identified in the LBRNAtag-seq dataset. a For
each gene with a primary or a distant primary 3’ terminus in the LB RNAtag-seq
dataset, the log10 transformed average number of read starts within the CDS and 3’
UTR were computed. Presented is the scatterplot of these values for one of the
libraries and the regression line fitted (dashed black line). The correlation coeffi-
cient is r = 0.85 (p ≤ 3.58E−252 by two-sided Student’s t test). Results for the other

two libraries are presented in Supplementary Fig. 8. Genes that were identified as
outliers (Methods) are colored red. b–d Presented is the coverage along the genes
malM (b), tdcG (c), and chiQ (d) that were identified as outliers in a. Transcription
start sites identified by Thomason et al.43 are indicated by arrows and the 3’ termini
by diamond arrows. The gene coding sequences are marked by wide arrows con-
taining the gene names.
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codon and a 3’ terminus assigned to a gene can provide a comparable
measure of a 3’ terminus position between different bacteria. Positive
values indicate 3’ terminus positions that are downstream the stop
codon, usually determining the length of 3’ UTR. Negative values
indicate 3’ terminus positions that are upstream the stop codon, which
may imply premature termination or processing. By this measure,
similar distances indicate conservation and dissimilar distances indi-
cate a change in the termination site25. For example, conservation of 3’
termini located within 5’ UTRs, may hint at the conservation of

regulatory elements generated by premature termination or proces-
sing in various bacteria.

Applying this computation to 3’ termini determined by TRS
applied to RNAtag-seq data of Enterotoxigenic E. coli (ETEC), Salmo-
nella enterica Typhimurium, Klebsiella pneumoniae, and Shigella
flexneri11, we found examples of regulatory elements that are con-
served across these bacterial pathogens. For example, the expression
of the Mg2+ transporter mgtA is regulated by MgtL, a leader peptide
that is encoded upstream to mgtA in the operon. Under conditions
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where Mg2+ is abundant, the translation of mgtL is increased and
enables the formation of a stem-loop structure that results in pre-
mature termination ofmgtA26–28. Interestingly, in all the bacteria listed
abovewe identified a 3’ terminus at similar positions in all orthologous
genes, indicating that premature termination of mgtA is conserved
(Fig. 9a). Another example is the small RNA FtsO generated from the
ftsI gene transcript, which was identified in E. coli K-127. While it was

shown that its sequence is conserved in other bacteria, it was not
demonstrated that the short RNA FtsO has been generated in the other
species. Here we show that an internal 3’ terminus in ftsI is found in
multiple bacteria at the exact same position of orthologous genes
(Fig. 9b). Another example of a sRNAderived from the CDS is AceK-int,
a ~85-nt long sRNA derived from the aceK gene7,16 (Fig. 9c). We were
able to verify there is a 3’ terminus at the same relative position in all
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aceKorthologous genes, however, not in all bacteria the sRNAAceK-int
is apparent. In EPEC paired-end RNAtag-seq data we do see read cov-
erage matching the AceK-int sRNA of E. coli K-1219. Yet, in K. pneumo-
niae and S. enterica paired-end RNAtag-seq data there is a longer
transcript that does not seem to match AceK-int and could be the 3’
UTR of the upstream gene aceA. As to ETEC and S. flexneri single-end
RNAtag-seq data, although it looks as if there is an independent tran-
script, in fact the reads extend to a length greater than 85 nt, hinting
that also in these bacteria the sRNA is absent. In addition, sequence
alignment by Clustal Omega29 from the start codon of aceK up to the
internal termini in K-12, ETEC, and EPEC indicates that the K-12 and
ETEC are identical and the EPEC sequence is of ~95% identity. This
suggests that sequence identity does not guarantee the generation of
the sRNA and other factors may be involved as well. In addition, it is
possible that the read patterns observed in the various bacteria pro-
vide hints to the evolution of AceK-int.

Discussion
We present a novel approach to analyze RNA-seq data, using the read
patterns rather than read counts. Similar analyses of peaks in read
patterns were applied before to data generated by tailored applica-
tions of RNA-seq, such as term-seq7 and 3pMap5. However, RNA-seq
data per se were mainly analyzed for detection of differentially
expressed genes by comparing read counts. Here we demonstrate that
RNA-seq data may hold additional layers of information that represent
molecular mechanisms involving the RNA, which by innovative ana-
lyses may expand our understanding of basic mechanisms, as we
exemplified here for transcription termination. Previous studies in
other contexts also demonstrated that non-conventional analysis of
RNA-seq data may reveal novel molecular mechanisms and regulatory
molecules, such as the discovery of circular RNA30,31.

By applying TRS to RNAtag-seq data of E. coli grown to expo-
nential phase, we showed that 3’ termini obtained by this analysis are
highly compatible with 3’ termini obtained by other approaches. Fur-
thermore, strict analysis of 3’ termini obtained by TRS applied to
RNAtag-seq and term-seqdata of the sameRNAsamples showed that 3’
termini identified by term-seq are rediscovered in the RNAtag-seq
data, and for primary 3’ termini our results are with high precision and
sensitivity. Yet, our method is less sensitive for internal termini, many
of which are determined in term-seq data but not in RNAtag-seq data
(Fig. 5c). In essence, the RNAtag-seq protocol could be considered as a
noisy versionof term-seq for identifying 3’ termini. This stems from the
random fragmentationpreceding the 3’ adapter ligation in theRNAtag-
seq protocol, which generates additional fragments with 3’ termini,
compared to term-seq. Accordingly, many internal term-seq peaks
appear as less substantial using the RNAtag-seq data. Nonetheless, the
significant advantage of our approach is in the availability of vast
amounts of RNAtag-seq data for many bacterial species, providing an
opportunity to study transcription termination in wide scope.

The access to ample sequencing data enabled us to compare 3’
termini between growth conditions and betweenbacteria. Utilizing the
data in different conditions, we identified 3’ termini residing at the 5’
UTR or CDS in which the readthrough measure changed between
conditions, hinting at regulatory mechanisms manifested by pre-
mature transcription termination or processing. Comparative analysis

of the corresponding 3’ termini identified in different bacteria revealed
high conservation between bacteria (Fig. 9). This can supplement
sequence conservation analysis by providing experimental evidenceof
a consistent 3’ terminus in different bacteria. A repeatedly identified
premature 3’ terminus in different bacteria can potentially serve as an
indicator for an important regulatory event. Nonetheless, results based
on such analyses should be further thoroughly investigated, as corre-
sponding 3’ termini may have different roles in different bacteria, as is
hinted by the AceK-int example (Fig. 9c).

Along with transcription termination, processing of RNAs by
ribonucleases is a major mechanism for generating 3’ termini in the
cell. Despite that, while we can associate many 3’ termini to tran-
scription termination sites of genes, we could attribute only a small
number of 3’ termini to endoribonuclease cleavage sites. In our data
(RNAtag-seq and term-seq), only a minor portion of the identified 3’
termini overlappedwith known endoribonuclease cleavage sites (~5%
for RNase III32 and 2% for RNase E33, see Supplementary Information).
This may suggest that most cleavage products with newly generated
3’ termini are further degraded, possibly by 3’ to 5’ exonucleases,
which either result in shorter stabilized transcripts or are completely
degraded.

Similar to other large-scale analyses, TRS is susceptible to tech-
nical biases associated with the experimental procedure. First, since
the RNAtag-seq protocol involves a ligation step, there may be a bias
towards specific sequences. While other protocols for the identifica-
tion of 3’ termini of transcripts also involve a ligation step (i.e., term-
seq and 3pMap), RNAtag-seq is more prone to this artifact since RNA
fragments are sheared prior to the ligation step, generating a larger
repertoire of fragments. However, our analysis of nucleotide enrich-
ments around mapped read start positions did not reveal such a bias
(Supplementary Fig. 4c). Second, another potential bias may arise due
to PCR duplicates. In our assessments, we provided estimations of the
fractions of 3’ termini thatmight have been falsely detecteddue to PCR
duplicates (overall, 8–9%). These are actually upper bounds for the
putative fractions of false detections, as some of the reads might
represent true biological RNA copies. While we showed this putative
false detection is minor for primary 3’ termini, we recommend that
when conducting single-end sequencing one should aim atminimizing
the number of PCR cycles and take more caution when observing a
premature 3’ terminus. Recall that paired-end data can be exploited to
identify and remove the PCR duplicates.

As mentioned above, determination of the 3’ termini in RNAtag-
seq data relies on the ligation of the adapter corresponding to read 1
to the 3’ end of the RNA fragments. Conceivably, ligation of the
adapter corresponding to read 1 to the 5’ end of the RNA fragments is
expected to result in read start peaks at 5’ termini. This suggests that
RNA-seq data of libraries that involve adapter ligation at 5’ ends can
be exploited to determine the transcription start sites of RNAs,
without the need in special experiments designed to this aim, like
dRNA-seq2. Paired-end sequencing data can provide information on
both the 5’ and 3’ termini of transcripts, directly from the sequencing
data, by analyzing the read starts of the two reads separately (Sup-
plementary Fig. 9).

The ability to annotate the transcript termini directly from
sequencing data is highly beneficial. First, it would be very useful for

Fig. 9 | Conserved 3’ termini of regulatory elements and sRNAs in bacteria.
Presented is the read coverage around conserved 3’ termini of a regulatory element
and sRNAs in E. coli K-12 and four other bacteria: K. pneumoniae, S. enterica, ETEC,
and S. flexneri. The 3’ terminus (marked by a diamond arrow) was determined by
applying TRS to previously published RNAtag-seq data for the different bacteria11.
a A premature 3’ terminus identified upstream to mgtA CDS. b The 3’ terminus
matching the sRNA FtsO in E. coli K-127. c The 3’ terminusmatching the sRNAAceK-
int in E. coliK-12, encodedwithin the CDS of aceK7,16. Presented 3’ termini are based
on data of growth conditions that showed the highest read coverage and exhibited

themost consistent results across the different bacteria. The growth conditions per
gene and bacterium are as follows:mgtA – S. enterica,K. pneumoniae, and S. flexneri
(acidic stress), ETEC (nutritional downshift). FtsO – S. enterica, S. flexneri, and ETEC
(control), K. pneumoniae (heat shock). aceK – S. enterica, K. pneumoniae, and ETEC
(nutritional downshift), S. flexneri (acidic stress), EPEC (stationary phase), E. coli
K-12 (exponential phase). The read coverages of K. pneumoniae, S. enterica and
EPEC are based on paired-end sequencing, and for ETEC, S. flexneri, and E. coli K-12
on single-end sequencing.
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precise counting of reads that are mapped to genes in the RNA
sequencing experiment. Currently, in the absence of precise transcript
boundaries, the gene read counts are determined based on the coding
sequence boundaries, missing the untranslated parts of the transcript
that might contain important information, as we show (Fig. 7). Fur-
thermore, as mentioned above, many studies used the RNAtag-seq
protocol for RNA sequencing, and ample sequencing data generated
by this protocol are available. The ability to determine the termini
based on this vast amount of data opens the door to wide-range stu-
dies of the conservation of the termini between conditions and
between orthologous genes in different bacterial species. Such ana-
lyses can provide insights into molecular mechanisms that control the
positions of the termini, as well as condition- or species-dependent
regulation of transcription termination.

Methods
RNAtag-seq and term-seq experiments
Cultures of E. coli MG1655 were grown while shaken at 37 °C in either
rich LB medium or minimal E medium pH 7.034 supplied with 0.4%
glucose (EG medium). At OD600 of ~0.4 the cells were collected, and
total RNAwas extracted using TRI-reagent (Sigma T9424). RNAtag-seq
libraries were constructed as described35. Term-seq libraries were
constructed according to Dar et al.3, with slight changes. 1 µg of
TURBODNase (InvitrogenAM1907) treated total RNAwas ligated to a
3’ barcoded adapter (150 pmole) using 54 units of T4 RNA ligase 1
(New England Biolabs M0204), in a 20 µl reaction at 22 °C. Ligation
reaction was arrested after two hours by addition of 60 µl RLT buffer
(Qiagen 79216). The adapter ligated RNA samples were pooled
together and cleaned-up using the Zymo Clean and ConcentratorTM-5
kit. The RNA was then fragmented using Ambion Fragmentation
Reagent (Ambion AM8740) and cleaned-up using 2.5 volumes of
RNAClean XP beads (Beckman-Coulter) and 1.5 volumes of iso-
propanol, according to manufacturer instructions. The RNA was
depleted of ribosomal RNA using Ribo-Zero (Illumina), cleaned-up
using 2.5 volumes of RNAClean XP beads (Beckman-Coulter) and 1.5
volumes of isopropanol and then used for cDNA synthesis using
Invitrogen SuperScript™ III First-Strand Synthesis System. The cDNA
was cleaned-up twice with 1.5 volumes of Ampure XP (Beckman-
Coulter) and amplified by 9 cycles of PCR. RNAtag-seq and term-seq
libraries were sequenced by 85 cycles of single-end sequencing using
NextSeq500 instrument. The sequences of oligonucleotides used are
listed in Supplementary Table 2.

Northern blots
Cultures of enteropathogenic E. coli (EPEC) E2348/69 were grown
statically (without shaking) at 37 °C over-night. The next day, the cul-
tureswerediluted 1:50 inDMEM(Biological industries, Cat#01-053-1A)
and grown statically at 37 °C toOD600 of ~0.3. Total RNAwas extracted
from both the over-night cultures (denoted ‘LB’ samples) and from the
DMEM cultures, using TRI-reagent (Sigma T9424). 15 ug of total RNA
were separated on an acrylamide-urea gel [6% acrylamide/bisacryla-
mide 19:1 (Biolabs 000-135233500), 7M urea (Supelco 1.08487.1000)]
in TBE buffer, and transferred onto a Zeta-Probe blotting membrane
(Bio-Rad 1620159). The membranes were hybridized with specific 5’-
end radiolabeled probes in ULTRAhyb-Oligo Hybridization Buffer
(InvitrogenAM8663) and visualized by Phosphorimager (TyphoonFLA
7000, GE Life Sciences). Probe sequences are listed in Supplementary
Table 2.

Mapping of sequenced reads
Sequencing adapterswere removedusing cutadapt36 version 3.4 (-m25
–q 15 –a AGATCGGAAGAGC –n 5 –e 0.15 –j 0), and processed reads
were mapped to E. coli K-12 MG1655 reference genome (NC_000913.3)
using bwa37 version 0.7.17-r1188 (bwa aln –n 2 –t 8 –R 200 followed by
bwa samse).

Simulation of the RNAtag-seq protocol
In the RNAtag-seq protocol, RNA is extracted, randomly fragmented
(by hydrolysis after heating the RNA) and a barcode is ligated at its 3’
end. To simulate the read pattern generated by the RNAtag-seq pro-
tocol, we simulated the transcript fragmentation process, assigned
sequencing reads to the 3’ regions of the fragments, and analyzed the
read coverage pattern. The random fragmentation was simulated by
sampling N positions from a uniform distribution (the selection of N is
as described38). Next, we trimmed the RNA fragments from the 3’ ends
to the maximal sequencing read length (70 nucleotides), and treated
these fragments as reads that are then mapped to the genome. Since
our computational pipeline formapping reads to the genome requires
a minimal read length of 25 nucleotides, we filtered fragments shorter
than 25nucleotides. Finally, for eachposition,we recorded thenumber
of reads mapped to it.

Algorithm for detecting 3’ termini in RNAtag-seq data
Model description. We denote by Xi,j the number of reads of library j
that start at the ith position. Commonly, count data, such as Xi,j, is
modeled by a Poisson distribution that is characterized by a single
parameter for its mean and variance. This approach was used, for
example, in the 3pMap algorithm for determining 3’ termini5. Alter-
natively, due to the over-dispersion of such data, in some applications
(e.g., DESeq239 and edgeR40) it was modeled by the negative binomial
distribution, in which the mean and the variance differ. Since our data
is over-dispersed (Supplementary Fig. 10), we use the negative bino-
mial distribution to model it.

Previous studies already showed that 3’ termini generated by
either transcription termination or processing do not necessarily
occur at an exact single position and can span a few nucleotides
upstream or downstream the major site8,32. To capture this property,
we define a random variable, Li,j , which is the count of read starts in
library j spanning a window of 2W positions around the ith position,
Li,j =

Pi+W
k = i�WXk,j . Under the assumption that Xi�W ,j , . . . ,Xi+W ,j are

independent and identically distributed, the distribution of Li,j is also
negative binomial and its parameters are governed by W and Xi,j ’s
distribution parameters. Intuitively, we would expect the region
downstream 3’ termini to have substantially fewer read starts, as in the
case of processing, and almost none at strong transcription termina-
tion sites. Thus, to capture this property, we define a variable, which is
the number of read starts in a region starting at position i +W+ 1 and
spanning D positions downstream, Di,j =

Pi +W +D
k = i +W + 1Xk,j, which has also

a negative binomial distribution.

Narrowing down putative 3’ termini. To integrate the information of
multiple replicates, read start counts per position should be normal-
ized. Here, we introduce the statistic Ri,j =

Li,j
Li,j +Di,j

= 1� Di,j

Li,j +Di,j
, which

scales the data and essentially measures the level of transcription
readthrough (or, actually, 1-“readthrough”). The statistic has the fol-
lowing properties:
(i) It is in the range 0,1½ � and hence, on the same scale for all

replicates.
(ii) When there is no readthrough (as expected at transcription ter-

mination sites), i.e., when Di,j =0, then Ri,j = 1.
(iii) When there are relatively many read starts downstream the con-

sidered position (i.e., Di,j≫Li,j), Ri,j approaches zero.
(iv) When there is no difference in the distributions of Li,j and Di,j (for

example, within an unprocessed coding region), the mean of the
statistic is independent of the region coverage and depends only
on the sizes of the local region and the region downstream (see
Supplementary Information and Supplementary Fig. 11).

Properties (i) and (iv) imply that taking the statistic average value
�Ri =

1
M

PM
j = 1Ri,j acrossM replicates ismeaningful. For positions that are

not genuine 3’ termini, it is expected to result in values around the
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expected mean of �Ri , while positions of genuine 3’ termini would
deviate from it. Furthermore, property (iv) enables us to set a thresh-
old for the minimal value required for a position to be considered a
peak. In practice, we found that the procedure of transforming read
start counts to the statistic, averaging across replicates, and deter-
mining positions above the expected mean is useful in reducing the
number of tested positions while maintaining positions of known 3’
termini.

Selection of positions with statistically significant peaks. The
number of read starts in the positions determined by the above
analysis are next subjected to statistical testing. For the statistical
tests, we return to consider read start counts and look at each library
separately (Supplementary Information). Our null hypothesis is that
the tested peak does not represent a 3’ terminus and hence there is
no difference between the distribution of read start counts per
position around the tested position and in the region downstream
(the positions considered for computing Li,j and Di,j , respectively). It
follows that we can estimate the distribution parameters of Li,j from
the region downstream (Supplementary Information). Now, we can
compute the probability to get a number of read starts around
the position (L) that is greater than or equal to the value we observed
(Li,j), and test whether it is lower than or equal to some significance
threshold (α) under the null hypothesis. In other words, we can test
whether PðL≥ Li,jÞ≤α where L follows the negative binomial dis-
tribution with the estimated parameters. Finally, since we assess
many positions, we apply Bonferroni correction for multiple
hypothesis testing.

Final set of 3’ termini. After applying all the steps above, we obtain a
table with N rows (the number of putative positions) and M columns
(the number of replicates) containing the p-value per position for each
replicate. Positions that passed the statistical test for all M replicates
are considered as 3’ termini. However, as this requirement may be too
strict, the pipeline enables to relax this requirement by selecting a
minimal number of statistically significant replicates in addition to
setting a minimal threshold for the statistic �Ri. Since a ribosomal RNA
depletion step [Ribo-Zero (Illumina)] was applied in the library con-
struction, which may affect read distribution at rRNAs, these were not
included in the final dataset. In addition, following previous studies for
determining 3’ termini4,7,8 we excluded tRNAs aswell (after verifyingwe
identified all tRNAs).

Parameter values used for TRS analysis
3’ termini were determined by running our algorithm using a local
window of size 3 nucleotides (W= 3 nucleotides), downstream region
of 67 nucleotides (D = 67 nucleotides), and a stringent statistical sig-
nificance threshold of 0.01. We included in our final dataset 3’ termini
that were either statistically significant in all three libraries or statisti-
cally significant in two libraries with �Ri ≥0:5. The parameters W and D
were determined as described in the Supplementary Information, and
the threshold for �Ri was determined based on its distribution (Sup-
plementary Fig. 12). In addition, we have set a minimal threshold of 10
reads per position, otherwise, Ri,j was set to 0. For the peak-calling
procedure, we required a minimal distance of 10 nucleotides between
two neighboring peaks. Although the computational pipeline com-
putes the minimal threshold of �Ri of the peak calling procedure to be
0.095, for the above parameters we manually rounded it to 0.1. This
value was still below the mean of the statistic plus one standard
deviation (Supplementary Fig. 11).

TRS was applied with the above parameters to all datasets in this
study. It is of note that some datasets included only two libraries, and
for those, the 3’ termini had to be identified in all replicates. Naturally,
in such cases of only two replicates, the sequencing depth may
strongly affect the number of identified 3’ termini (Supplementary

Fig. 13a). Hence, although using two libraries is also possible, we
recommend using three libraries. Larger number of libraries were not
tested in this study and parameter adjustments may be required.

Annotation of 3’ termini
Each 3’ terminus was assigned one of eight different classes according
to its genomic position relative to genes, transcription units, termi-
nators, and promoters reported in the EcoCyc 25.5 database41 (Fig. 3).
These classes of 3’ termini include: (A) Primary 3’ termini, divided to
four categories: (i) Primary – assigned only to 3’ termini related to
genes that are transcribed independently orwhen thegene is the last in
all transcription units it is part of. A 3’ terminus was set as primary if it
was within the 3’UTR of a gene with a known terminator, or if it was at
most 100 nucleotides downstream the stop codon of a protein coding
gene. For non-protein-coding RNAs, the documented 3’ terminus was
used as Primary. (ii) Alternative Primary (AP) – assigned to 3’ termini
located at most 100 nucleotides downstream primary transcript
regions of CDS, when there was a primary terminus identified. (iii)
Distant Primary (DP) – same as alternative primary, however, applies
when there was no primary 3’ terminus identified. (iv) Alternative Pri-
mary inTranscriptionUnit (AP inTU) – assigned to 3’ termini related to
genes that are not last in any transcription unit up to 250 nucleotides
downstream the stop codon of a protein coding gene, but not
exceeding the last position in the operon. (B) Premature 3’ termini,
divided to two categories: (v) Internal – assigned to 3’ termini that
occur within the CDS of protein coding genes or prematurely in non-
coding RNAs. (vi) Premature in 5’ UTR – assigned to 3’ termini located
within the 5’ UTR of protein coding genes. When the 5’ UTR is
unknown, it is estimated to at most 100 nucleotides upstream the
initiation codon. (C) Orphan 3’ termini, divided to two categories: (vii)
Orphan in antisense (AS) – assigned to 3’ termini in antisense to a non-
coding RNA or to the CDS of a protein coding gene. (viii) Orphan in
intergenic regions (IGR) – assigned to 3’ termini within intergenic
regions thatwere not assigned any of the above. In caseof ambiguity in
classification, the order of classes is as follows: (iv), (i), (v), (vi), (ii), (iii),
(vii) and (viii). For each putative terminus, awindowof five nucleotides
is considered when assessing it in view of the annotation.

Sequencing data collection
All sequencing libraries were either downloadedmanually or using the
SRA-toolkit program fasterq-dump version 2.9.3 (https://trace.ncbi.
nlm.nih.gov/Traces/sra/sra.cgi?view=software) as fastq or bam files.
See Supplementary Data 1 for the accession numbers of the various
datasets.

Compilation of 3’ termini from previous studies
In this study, we compared the set of 3’ termini identified by TRS
applied to RNAtag-seq data and 3’ termini identified by term-seq7,8,
andSEnd-seq4.While all these studies provide a table specifying the 3’
termini identified, there are some differences that require pre-
processing before applying a direct comparison. First, in Dar and
Sorek8 the E. coli BW25113 strain was used while E. coli K-12
MG1655 strain was used in the rest. Second, all datasets filtered
tRNA and rRNA from further analysis, but the methodology used to
remove these was not reported. Here, to ensure that 3’ termini that
may be related to rRNA and tRNA are completely removed, we fil-
tered all 3’ termini located within 100 nucleotides upstream or
downstream the seven rRNA operons (as defined in EcoCyc 25.541)
and tRNA genes.

To transform the 3’ termini coordinates from the BW25113 strain
(CP009273) genome to the E. coli K-12 MG1655 (NC_000913.3) strain
genome, we first aligned the two genomes using Mugsy42 (version
1r2.3) to map overlapping regions. Then, BW25113 3’ termini that are
found within overlapping regions were transformed to their corre-
sponding positions in the E. coli K-12 MG1655 genome.
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Computation of overlapping 3’ termini between datasets and
statistical significance
For our analyses, we considered a pair of 3’ termini overlapping if
they were located at most 10 nucleotides apart. To compute whether
the number of overlapping termini was statistically significant, we
used a hypergeometric test with N – total number of positions in the
genome, K – number of 3’ terminus positions in the reference
dataset along with flanking 10 nucleotides upstream and down-
stream, n – number of identified 3’ termini, k – number of over-
lapping 3’ termini.

Identification of outliers in 3’ UTR – CDS regression model of
read start counts
In the analysis we modeled the dependency between the average
counts of read starts across the positions in the CDS and the 3’ UTR of
protein-coding genes by an ordinary least squares regression. Subse-
quently, we computed the Cook’s distance for each gene and the
average Cook’s distance across all genes. Genes that had a (distance/
average distance) >3 in at least two libraries were considered outliers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNAtag-seq and term-seq sequencing libraries generated in this
study have been deposited in the ArrayExpress database under
accession code E-MTAB-12429. All referenced sequencing libraries
accession codes and their respective reference genome used in this
study are listed in Supplementary Data 1. Figures in this study contain
information on transcription start sites from previously published
datasets (Thomason et al.43 and Ju et al.4). This study used in some of
the analyses previously published data of 3’ termini (term-seq7,8 and
SEnd-seq4) and cleavage sites (RNase III32 and RNase E33). The data
supporting the findings of this study are available from the corre-
sponding authors upon request. Source data for the figures and sup-
plementary figures are provided as a Source Data file. Source data are
provided with this paper.

Code availability
The implementation of the TRS algorithm is available as a python
package in the Python Package Index and GitHub (https://github.com/
amirbarHUJI/TRS).
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