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Improved in situ characterization of protein
complex dynamics at scale with thermal
proximity co-aggregation

Siyuan Sun1,3, Zhenxiang Zheng1,3, Jun Wang1, Fengming Li1, An He1, Kunjia Lai1,
Shuang Zhang1,2, Jia-Hong Lu 2, Ruijun Tian 1 & Chris Soon Heng Tan 1

Cellular activities are carried out vastly by protein complexes but large
repertoire of protein complexes remains functionally uncharacterized which
necessitate new strategies to delineate their roles in various cellular processes
and diseases. Thermal proximity co-aggregation (TPCA) is readily deployable
to characterize protein complex dynamics in situ and at scale. We develop a
version termed Slim-TPCA that uses fewer temperatures increasing through-
puts by over 3X, with new scoringmetrics and statistical evaluation that result
inminimal compromise in coverage and detectmore relevant complexes. Less
samples are needed, batch effects are minimized while statistical evaluation
cost is reduced by two orders of magnitude. We applied Slim-TPCA to profile
K562 cells under different duration of glucose deprivation. More protein
complexes are found dissociated, in accordance with the expected down-
regulationofmost cellular activities, that include 55S ribosomeand respiratory
complexes in mitochondria revealing the utility of TPCA to study protein
complexes in organelles. Protein complexes in protein transport and degra-
dation are found increasingly assembled unveiling their involvement in
metabolic reprogramming during glucose deprivation. In summary, Slim-
TPCA is an efficient strategy for characterization of protein complexes at scale
across cellular conditions, and is available as Python package at https://pypi.
org/project/Slim-TPCA/.

Proteins are molecular workforces performing virtually all biological
processes in cells but they seldom act alone. Instead, many are part of
higher-order molecular machines commonly termed protein com-
plexes that are assembled when needed from protein–protein inter-
actions (PPIs)1. The interactions among proteins are often dynamic
and regulated by various mechanisms including temporal post-
translational modifications and spatial redistribution of proteins that
changes protein functionalities2. The study of PPIs can uncover the
underlying machinery of various cellular processes and reveal how
their dysregulation could lead to diseases, thus providing insight

for the development of new therapeutic treatments including the
identification of new drug targets3. As such, identifying and char-
acterizing the dynamics of PPIs and protein complexes are among the
endeavors of biologists with increasing attention and research efforts
in recent years4–6.

Experimental methods for studying PPIs can be broadly classified
into traditional hypothesis-driven methods (e.g., immunoprecipita-
tion, yeast two-hybrid) and high-throughput methods. Many of the
latter are coupled with protein mass spectrometry (MS) for protein
identification which includes co-fractionation/elution and crosslinking
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of protein complexes7,8. In addition, a variety of computationalmodels
have also been proposed for predicting PPIs9. While experimental
methods have their own limitations, they are often hailed as the gold
standard used in the validation of computational approaches. Tradi-
tional experimental methods such as Y2H10, LUMIER11 and AP-MS4 can
be scaled up to obtain large sets of PPI data but often suffer from
higher false-negative rate that necessitated a combination of com-
plementary experimental methods to furnish a more comprehensive
interactome. However, these methods require either protein engi-
neering (e.g., epitope tagging) or the use of antibodies specific to
target proteins, and are not applicable in situ12. Importantly, current
large-scale interactome profiling is carried out with specific cell lines
under basal conditions, thus the conservation and dynamics of iden-
tified PPIs and protein complexes across cell lines, cellular states and
physiological conditions are unclear.

In 2018, we conceived the thermal proximity co-aggregation
(TPCA) method, pioneering the use of thermal proteome profiling to
study the dynamics of PPIs13 and protein complexes in situ and at scale.
Theunderlying experimentalmethodofTPCAprofiling is similar to the
TPP/MS-CETSA method where proteins are subjected to a gradient of
denaturing temperature. The solubility of protein decreases with
increasing temperature which is quantified with MS14,15, resulting in a
“melting curve” that is often influenced by protein-ligand interactions.
TPP/MS-CETSA permits the measurement of protein-ligand binding
with endogenous proteins16,17, and is widely used in drug target
deconvolution18 and off-target studies19 in intact cells. Our previous
work revealed that signature of PPIs is embedded in thermal pro-
teomics data13 as similar thermal melting curves of co-aggregating or
co-precipitatingproteins in the sameprotein complex. Arguably, TPCA
profiling is one of the fewmethods that provide an approach to detect
PPIs en masse occurring in intact cellular environment8,20.

The TPCA method for analyzing protein–protein interactions has
been independently demonstrated and applied since its conception.
For example, the principle of TPCA was applied to study the modula-
tion of protein complexes across different phases of cell cycle21,22. The
complexes that are regulated in different phases of cell cycle were
shown to have high correlation with the corresponding biological
activities. Hashimoto et al. further applied TPCA to profile the
dynamics of host protein complexes in different stages of viral infec-
tion and demonstrated that the TPCA can be used to study PPIs
between proteins from different species23. Moreover, TPCA had been
demonstrated in thermal proteomic data obtained from tissue and
blood samples24 where subunits of protein complexes are grouped
hierarchically based on their median melting temperature (Tm) to
assess their assembly state across different tissues. In 2021, Kalxdorf
et al. used the TPCA method to analyze complex formation during
T-cell activation using changes in the distance between attachment
proteins and the core of complexes25. To facilitate the use of TPCA for
profiling PPIs, the computational workflow for TPCA analysis has been
integrated into rTPCA26 and ProSAP27 software analysis packages.

Current TPCA workflow provides statistical evidence for the
modulation of protein complexes using existing databases of protein
complexes as references28,29. In recent years, the repertoire of protein
complexes have expanded greatly with large scale interactome pro-
filing projects4–6 and the development of system-level complex pro-
filing techniques20 including co-fractionation-MS30–32 and protein
network-based clustering algorithms33,34. However, the conservation
and functions of these putative complexes across different cell types
and cellular states are unclear.

Conceptually, without the need for antibodies and epitope-
tagging of proteins, the TPCA method can be readily deployed to
rapidly profile the dynamics of multiple uncharacterized protein
complexes simultaneously under different cellular conditions and
perturbations. This could aid in the function annotation of these
complexes. Nonetheless, there are several aspects where the TPCA

method can be further optimized. In the original TPCA method,
10 samples are heated to different temperatures in gradient followed
by abundance quantification of soluble protein using protein MS. The
difference in thermal solubility between proteins is measured by
Euclidean distance, and the significance is estimated by a bootstrap
sampling algorithm13. Thus, a large number of samples and long
computational time is needed in conventional TPCA method. Fur-
thermore, one set of isobaric tandemmass tags (TMT) reagentswith 10
channels is used to label only one set of TPCA experiment for a con-
dition, thus the control and experimental samples had to be analyzed
byMS at different times with batch effect that contributes to deviation
in measurements35.

Here, we optimize the TPCA method and propose a streamlined
version called Slim-TPCA. Slim-TPCA was optimized in both algo-
rithmic and experimental aspects. First, in Slim-TPCA protocol, fewer
temperature points are used which provide more flexibility in experi-
mental design and help reduce batch effect (Fig. 1a). Similar ideas have
been shown to be used to improve the TPP/MS-CETSA method. For
example, the PISA36 and iTSA37 methods analyze different treatment
conditions within the same TMT set for target deconvolution19,38. Next,
through algorithm optimization, Slim-TPCA can better identify PPIs
and the dynamic changes in protein complexes with improved statis-
tical power. We applied the optimized Slim-TPCA method to analyze
the dynamic changes of protein complexes at five different time
points of glucose deprivation on MS concurrently. We successfully
identified many protein complexes known to associate with glucose
starvation and revealed connections with many other complexes,
of which identified modulated Emerin complex 1 and USP22-
SAGA complexes are experimentally validated by co-IP. Slim TPCA is
available as an independent python package to facilitate analysis of
protein complexes.

Results
Fewer temperature points in Slim-TPCA
The fundamental basis of TPCA profiling for characterizing
protein–protein interactions and their dynamics is the similarity in
their melting curves quantified as solubility similarity of interacting
proteins across multiple denaturing temperatures. In the first version
of TPCA method, samples are subjected to 10 gradient temperatures,
followed by TMT labeling and MS analysis to infer the so-called
“melting” curve of proteins. Such a workflow requires a large number
of samples, entailingmultiple sets of TMTreagents to label and analyze
samples from different conditions (e.g., drug group and control group
with replicates), which can lead to batch variation inMSmeasurement.
As such, we seek to modify the original TPCA approach. Here, we
assess whether fewer temperatures can be used to analyze PPIs with
minimal loss in information. We first assess the feasibility of doing so
using thermal solubility data of K562 generated from cell lysate and
intact cell that were published in the proof-of-concept paper13 (Sup-
plementary Data 1–2). The data is used to evaluate the TPCA signature
between proteins for differentiating known PPIs from random protein
pairs, and the predictive power is quantifiedwithAreaUnder theCurve
(AUC) of the Receiver Operating Characteristic (ROC) curve. In a nut-
shell, high AUC value indicates higher predictive (differentiating)
power. Here, TPCA signature is used qualitatively to refer clustering of
data points that possibly arise from thermally-induced proximity co-
aggregation of proteins.

First, we analyzed the predictive power of different number of
temperature points by testing all combination of temperatures with
Euclidean distance measure used in the original work (Fig. 1b). As
expected, the AUC of ROC decreases with fewer temperature points
but the decrease is surprisingly gradual. For example, themedian AUC
of two, three and four temperature points (includingmandatory 37 °C)
is 0.65, 0.68 and 0.69 compared to AUC of 0.71 with 10 temperature
points. Thus, we conclude that TPCA analysis can be performed using
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fewer temperature points with slight loss in predictive power. Never-
theless, we note that while the decrease in AUC is marginal with fewer
temperature points, the difference can still be substantial in the pre-
diction of protein–protein interactions when considering large num-
ber of proteins and possible protein pairs. Here, we had used PPI
prediction to evaluate information content embedded in the full
temperature set and its subsets. For the identification of modulated
protein complexes, which we advocate the use of TPCA for, using less
temperatures permit samples from multiple experimental conditions
and replicates to be analyzed concurrently on MS instrument using
isobaric labeling reagents e.g., TMT. This is important to eliminate
batch variation in machine measurement and ensure the same pep-
tides are quantified across samples to reduce false positives and
facilitate downstream analysis.

Next, we analyzed which distance/similarity measures are most
suitable for use with fewer temperature points. We analyzed 6 addi-
tional distance/similarity measures namely: Manhattan distance,
Chebyshev distance, Cosine distance, Pearson’s correlation coeffi-
cient, PISA (area under melting curves), and ΔTm (melting tempera-
tures). We observed the AUC values using 10 temperature point data
with Manhattan distance and Pearson’s correlation coefficient are
higher than that using Euclideandistance for both cell lysate and intact
cell data (Fig. 1c and Supplementary Fig. 1). However, the performance

of Pearson’s correlation coefficient deteriorates rapidly with fewer
temperature points (Fig. 1d and Supplementary Fig. 2) compared to
using Manhattan distance and Euclidean distance. Overall, Manhattan
distance consistently gives best performance with few temperature
points (Fig. 1c, d) and is used in our subsequent analysis.

Temperature points selection in Slim-TPCA
Next, we identified the combination of 2 and 3 temperature points
(excluding 37 °C) that produce the highest correlation with 10 tem-
perature points for random protein pairs using Manhattan distance.
Here, we assume that better correlation indicates higher coherency in
the TPCA signature embedded in the data. Our analysis revealed that
37 °C, 49 °C and 58 °C are the most suitable for 3 temperature points
combination (Fig. 2a and Supplementary Fig. 3), while 37 °C, 46 °C,
55 °C and 61 °C are most suitable for 4 temperature points combina-
tion (Fig. 2b). We then used the identified combination of temperature
points to analyze another set of TPCA data obtained from K562 cells
which were treated with methotrexate (MTX). Previously, we per-
formed bootstrapping to estimate the statistical significance of TPCA
signature (non-random similarity among melting curves of proteins)
observed in CORUM complexes. Here, we performed similar analysis
using Manhattan distance comparing the TPCA signatures derived
with 3 and 4 temperature points versus 10 temperature points.
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Fig. 1 | Distancemeasurements evaluated in Slim-TPCA. a Principle of Slim-TPCA
for monitoring protein–protein interactions based on similarity between protein
melting curves. In Slim-TPCA, lesser evenly spaced temperature points are used
instead of the 10 gradient temperature points in the conventional method. b Box
plot of predictive power of TPCA signature quantified by Euclidean distance with
different number of temperature points for differentiating between interacting and
non-interacting protein pairs. AUC: Area Under Curve; ROC: Receiver Operating
Characteristic curve. The box extends from the lower quartile to the upper quartile
values of the data, with a line at the median. When n out of 10 temperature points
are selected, there are 10!= 10� nð Þ!n! unique temperature point combinations. All

combinations of temperature points are tested and predictive power generally
decreases with less temperature points. c Predictive power of TPCA signature
quantified by different measures across 10 temperature points for differentiating
between interacting and non-interacting protein pairs. Tm Melting Temperature,
PISA Proteome Integral Solubility Alteration. d Box plot of the ability of different
measures in predicting PPI when used with fewer temperature points in the intact
cell data. Each box plot represents the distribution of AUC obtained for all unique
combination sets for n out of 10 temperature points using different distance
measurements. Pearsondistances andCosine distances cannot be computedwith 2
temperature points. Source data are provided as a Source Data file.
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Encouragingly, the statistical significance of TPCA signatures of the
complexes in theCORUMdatabase calculated using our selected 3 and
4 temperature points are highly similar to those calculated using 10
temperature points with Spearman’s r greater than 0.93 and 0.96 for 3
and 4 temperature points respectively (Fig. 2c). Next, we assessed the
ability of the identified combination of temperature points to identify
protein complexes dynamically modulated byMTX treatment. Similar
to previous work, the statistical significance of the difference in TPCA
signature (termed TPCA Modulation Signature) across two conditions
was estimated with bootstrapping analysis. We also observed high
correlation in statistical significance estimated with 10 temperature
points to that estimated with 3 and 4 temperature points with Spear-
man’s r greater than 0.90 and 0.93 respectively (Fig. 2d and Supple-
mentary Fig. 4). Thus, statistical significance estimated using our
identified combinations of 3 or 4 temperature points are in good
agreement with those calculated using 10 temperature points.

To further investigate the coherence of the identified combina-
tions of temperature points across different experimental data, we
used the data published by ref. 23 to validate the selection of tem-
perature points (Supplementary Data 3). In the work, the authors
applied TPCA profiling to study the dynamics of protein complexes
and identified a subset that is modulated during human cytomegalo-
virus infection. Using Manhattan distance and similar sets of tem-
perature points, the dynamics of identified modulated complexes
across 4 days of infection obtained by 10 temperature points (Fig. 2e,
left panel) are generally consistent with the results calculated using 3
temperature points of 36.9 °C, 48.6 °C, 58.5 °C (Fig. 2e, middle panel)
and 4 temperature points of 36.9 °C, 46.6 °C, 55.3 °C, and 61.2 °C
(Fig. 2e, right panel and scatter plot in Supplementary Fig. 5). This

demonstrates that the identified combinations of temperature points
are generally applicable across samples from different experiments.

Importantly, the identified optimal combination of temperature
points is in line with our expectation that picking the intermediate,
widely separated temperature points that are evenly distributed
around average melting temperature (Tm) will maximally encapsulate
TPCA signal embedded across the temperature range tested. To test
this theory, we chose TPP/MS-CETSA data fromArabidopsis thaliana39,
whose plant proteome has a lower melting temperature than the
mammalian proteome. Similarly, the combination of temperatures
producing data that correlatemostwith that from 10 temperature data
(Supplementary Fig. 6) is also intermediate, widely, and equally dis-
tributed around the average melting temperature of the proteome of
Arabidopsis thaliana (~46.6 °C). Furthermore, we also analyzed data-
sets from 15 species housed in the Meltome database40 that include B.
subtilis and C. elegans etc. The data for these species similarly
demonstrate that the right combination of temperature points in the
Slim-TPCA method correlates well with data derived from full tem-
perature set (Supplementary Fig. 6). These results suggest the frame-
work proposed in this work could also be adopted for other species.
For other species, we recommend to first perform conventional TPCA
experiments to determine the melting temperature and to verify the
feasibility of the Slim-TPCA method in that species.

Using Slim-TPCA with 3 or 4 temperature points, we can now
analyze samples under different conditions or multiple sets of
experimental conditions, such as different treatment duration using a
set of TMT reagents. As such, Slim-TPCA has the advantage of being
able to reduce sample consumption, reduce batch effects, and provide
more flexibility in experimental design.
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Fig. 2 | Selection of optimal combinations of temperature points for TPCA
profiling. a Correlation of Manhattan distances for 100,000 random protein pairs
calculated using 3 temperature points and 10 temperature points. The combina-
tions of 3 temperature points ∊ {37 °C, Ta °C, Tb °C}, where Ta, Tb ∊ {40 °C, 43 °C,
46 °C, 49 °C, 52 °C, 55 °C, 58 °C, 61 °C, 64 °C}. b Correlation of Manhattan distances
for 100,000 randomproteinpairs calculated using4 temperaturepointswith those
calculated using 10 temperature points. The combinations of 4 temperature points
∊ {37 °C, Ta °C, Tb °C, Tc °C}, where Ta, Tb, Tc ∊ {40 °C, 43 °C, 46 °C, 49 °C, 52 °C,
55 °C, 58 °C, 61 °C, 64 °C}. c Statistical significance of TPCA signature for CORUM
complexes (p-value) quantified with 3 and 4 temperature points as compared to 10
temperature points (n = 960 complexes). d Statistical significance of dynamic

(modulated)TPCA signatures for CORUMcomplexes (TPCAModulation Signature)
quantified with 3 and 4 temperature points as compared to 10 temperature points
(n = 821 complexes). e Variation in TPCA signatures for identified modulated pro-
tein complexes during virus infection. The statistical significance obtained with 10
temperature points (left23) can basically be recapitulated using 3 temperature
points (middle, 36.9 °C, 48.6 °C, and 58.5 °C) and 4 temperature points (right,
36.9 °C, 46.6 °C, 55.3 °C, and 61.2 °C). The figure for 10 temperature points is as
obtained from the original publication23 where the color scheme for the 3 and 4
temperature points arematched as close as possible. Source data are provided as a
Source Data file.
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Relative distance algorithm optimization to detect dynamic
complexes
The TPCA method has the capacity to identify protein complexes
modulated across conditions based on changes in TPCA signature.
Specifically, to detect dynamically modulated protein complexes, the
average difference in solubilities between subunits in a protein com-
plex is compared across conditions and benchmarked against 10,000
randomly generated protein sets of the same size. Protein complexes
that experience more extreme variations than artificially generated
protein sets are considered as dynamically modulated protein com-
plexes, based on computed TPCA Modulation Signature which
essentially is estimated p-value of observed difference. In the original
TPCA method, the variation is obtained by direct subtraction of their
average distances under different conditions, which we termed as the
absolute distance algorithm. This absolute distance algorithm has
been demonstrated to detect known activated complexes, such as the
CAF-1 complex formed at the replication fork under MTX treatment
which trapped K562 cells in S-phase of cell cycle. Nevertheless, the
absolute distance algorithm can miss modulated complexes that
already has strong TPCA signature in a reference condition but are
further strengthened in another condition. For example, wewill expect
a population of cells to be in different phases of cell cycle with asso-
ciated protein complexes exhibiting certain degree of TPCA signature.

While the stoichiometry of such complexes could further peak, chan-
ges in the absolute distance are limited given the relatively strong
TPCA signature of these complexes at basal conditions. In addition,
proteins couldalso have similar thermal solubility independent of each
other that are enhanced by interaction.

To detect protein complexes in above-mentioned situations, we
introduce a new scoring algorithm based on relative distance to
identify such complexes (see Methods). Specifically, changes in TPCA
signature are quantified as a ratio of basal TPCA signature.We evaluate
this relative distance algorithm using the sets of data from previous
work where K562 cells enriched in S-phase of cell cycle using MTX are
compared to non-synchronized cells. First, using the same method of
sampling to generate randomprotein sets, we analyzed the correlation
between the TPCA Modulation Signature obtained by the relative
distance algorithm and the absolute distance algorithm. The TPCA
Modulation Signature of CORUM complexes calculated using the
relative distance algorithm maintains good consistency with those
calculated using the absolute distance algorithm for both 10-
temperature TPCA and 4-temperature Slim-TPCA method (Fig. 3a, b).
Importantly, insignificant (high) p-values are highly consistency across
absolute and relative distance algorithms but the latter results in
enhanced p-value for a subset of complexes that already have low
p-value from absolute distance scoring. In other words, the relative

f g

ba

c d e

Fig. 3 | Relative distance algorithm identifiesmoredynamic complexes in TPCA
and Slim-TPCA. a, b Correlation of the TPCA Modulation Signature of CORUM
complexesobtainedusing the relativedistancealgorithmand the absolutedistance
algorithm for 10 and 4 temperature points, respectively (n = 821 complexes).
c, d Comparison of the dynamic complexes identified by the relative distance
algorithm with the absolute distance algorithm at 10 and 4 temperatures,

respectively. e Number and functional class of convergent protein complexes
identified with different algorithms. Compared to the absolute distance algorithm,
the relative distance algorithm identifies more dynamic complexes associated with
cell cycle, according to the annotation in the CORUM database. f, g Curves of
subunits inComplex 2792 underDMSOandMTX,with 10 temperaturepoints and4
temperature points, respectively. Source data are provided as a Source Data file.
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distance algorithm neither lead to depreciation of p-value estimated
nor enhancement for those with very insignificant p-value but identi-
fied a subset of complexes with enhanced p-value indicating increased
sensitivity.

As expected, the relative distance algorithm identified more
modulatedprotein complexes than absolute distance algorithmacross
10, 4 and 3 temperatures tested. In particular, the modulated protein
complexes identified by relative distance scoring algorithm encom-
passed all complexes identified by absolute distance scoring algorithm
with 10 temperature points (Fig. 3c), and all but one complexes when
using 4 temperature points (Fig. 3d). Importantly, the relative distance
algorithm also identified a higher percentage of protein complexes
associated with cell cycle and DNA processing (according to the
annotation provided by the CORUM database) which is more in
accordance with the experimental condition in which samples are
collected where cells are trapped in the S-phase of cell cycle (Fig. 3e).
For example, the RFC complex, which is involved in DNA replication, is
identified to be dynamically modulated with the relative distance
algorithmbut ismissed by absolute distance algorithm (Fig. 3f, g). This
suggests that the relative distance algorithm has improved sensitivity
in identifying modulated protein complexes.

Optimization of P-value algorithm using fitted Beta distribution
To quantify the significance of TPCA signature observed as well as its
changes across conditions, we had adopted a bootstrapping approach
to estimate p-value which is the probability of observing random
complexes with similar or more extreme values (either absolute TPCA
signature or changes). Specifically, the bootstrapping (sampling)
algorithm compares the average distance or change in average dis-
tance of the complex with 10,000 randomly sampled protein sets of
the same size. This method obtains discrete p-values and takes up
considerable computing time. Here, we optimized this part of TPCA
workflowfitting a specificdata distributionwith smaller sample size for
estimating p-value.

We validated this approach with the intact cell data of K562
published in the proof-of-concept paper with 4 temperature points of
37 °C, 46 °C, 55 °C, and61 °C recommended earlier. First, using theChi-
square statistics, we observed that Beta distribution generally fitted
well to the distributions of Manhattan distance derived from boot-
strapping algorithm across different number of temperatures for both
absolute and relative distance scoring (Supplementary Fig. 7). Next, we
verified that Beta distribution fitted with 100, 200, 500, and 1000
random complexes are similar to actual distribution of Manhattan
distance, Δ absolute distance, and Δ relative distance computed from
10,000 random complexes, indicating that a small number of samples
fitted to Beta distribution can be used in place of excessive sampling
(Fig. 4a–c). Thus, we tested the Beta distribution fitting algorithmwith
thedataset of K562 cells trapped inS-phaseof cell cycle usingMTX.We
observed more dynamically modulated protein complexes being
identified with this approach, which is generally accompanied with a
slight increase in the proportion of protein complexes related to cell
cycle and DNA processing across 10, 4 and 3 temperature points
(Fig. 4d, e).

Subsequently, we cross-validated the new algorithm on the viral
infection dataset with 4 temperature points of 36.9 °C, 46.6 °C, 55.3 °C,
and 61.2 °C. We identified the complexes with significant TPCA sig-
natures or differentially modulated during viral infection and com-
pared them with the complexes identified with the original sampling
method. The new algorithm of fitting Beta distributions essentially
recovered all the protein complexes identified by the traditional
sampling algorithm (Fig. 4f–h) regardless of whether Manhattan dis-
tance, difference in absolute Manhattan distance or difference in
relativeManhattan distance is used. In addition, we also identified new
modulated protein complexes reportedly involved in viral infections
such the exocyst complex regulating vesicular trafficking41, the RNase

MRP complex and mRNA decay complex involved in viral RNA
degradation42,43. Importantly, this algorithm requires less than 1% of
the time needed in the original sampling processing with 10,000
random complexes.

Slim-TPCA identifies dynamically modulated complexes in
response to glucose deprivation
Cancerous cells are often found to have altered energy metabolism
where ATP is preferably generated from less efficient glycolysis in
cytoplasm over oxidative phosphorylation pathway in mitochondria.
Glucose, a key energy source that is supplied abundantly in most
culturemedia, is consumedexcessively, and found to induce cell death
in many cancerous cells when withdrawn (glucose addiction)44. How-
ever, not all cancerous cells exhibit dependency onglucose for survival
and proliferation. Glutamine, another key nutrient consumed exces-
sively by cancerous cells, could be a source for ATP production
through its α-ketoglutarate intermediate that feeds into the tri-
carboxylic acid (TCA) cycle45. Here, we incorporate all the modifica-
tions and enhancements made in Slim-TPCA to investigate the
dynamics of CORUM-annotated protein complexes under glucose
deprivation which we applied on K562 suspension cells to minimize
perturbation to cell morphology and cellular physiology during cell
harvesting (Fig. 5a Supplementary Figs. 8–15).

First, we observed minimal apoptosis in K562 cells at different
duration of glucose deprivation tested based on FACS analysis
(See Supplementary Methods & Supplementary Figs. 16–17). Never-
theless, replication of cells was stalled in the first 24 h with resumption
observed after 48 h of glucose deprivation, indicating successful
adaptation of K562 cells to glucose-deficient condition. Accordingly,
K562 cells were harvested at 0th, 4th, 8th, 24th and 48th h of glucose
deprivation. At each time point, vials of cells were subjected to the
optimal set of 37 °C, 46 °C and 55 °C identified previously, and pro-
cessed with TMT16 reagents for concurrent analysis onMS. Three sets
of biological replicates are performed where 6476, 6627 and 6411
proteins were identified respectively with 8311 unique proteins iden-
tified altogether (Supplementary Data 4). We observed high data
reproducibility with average Pearson’s correlation of 0.76 and 0.82 in
protein solubility at each time point for 46 °C and 55 °C respectively
and lowCVvalue across the three biological replicates (Supplementary
Figs. 18–20). Average values across replicates are computed for a total
of 5813 proteins that appear in at least 2 replicates and survived fil-
tering criteria (see Materials & Method) which are used for down-
stream analysis.

TPCA signature permits the identification of both increasingly
associated (convergent) and increasingly dissociated (divergent) pro-
tein complexes in situ compared to a baseline. Here, glucose-deprived
K562 cells are compared to cells at on start of glucose deprivation
(0th h). A total of 783 complexes from the CORUM database were
investigated. On average, we observed about twice more divergent
than convergent protein complexes across all the time points profiled
(Fig. 5b), arguably in accordant with the downregulation expected for
most basal cellular processes. Indeed, we observed proteins in diver-
gent protein complexes over-represented in translation and ribosome
biogenesis from samples at 4th, 8th, 24th but not at 48th h of glucose
deprivation (Fig. 5c and Supplementary Fig. 21).

Thus, we inspected the previous observation more closely with
the TPCA profile of 40S and 60S ribosomes at different time points of
glucose deprivation. The thermal solubilities of both 40S and 60S
ribosomal proteins are most dissimilar to each other (indicating dis-
sociation of complexes based on TPCA theory) at 4th, 8th, 24th h of
glucose deprivation. However, the TPCA profile of ribosomal proteins
at 48th h of glucose deprivation is highly similar to data collected from
samples without glucose deprivation suggesting resumption of
translational activities. Previous studies had revealed system-wide
attenuation in protein translation under glucose deprivation46,47 that
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occurred independent ofmRNAabundance48. Thus, thedisassemblyof
ribosomes could possibly contribute or arise from decreased protein
translation, an energy-intensive process49,50 which prerequisite in
many cells is the availability of glucose47. Interestingly, we also
observed similar pattern of divergent and convergent TPCA signatures
for the 28S and 39S ribosomal subcomplexes localized in mitochon-
dria (Fig. 6a) suggesting cell-wide attenuation of protein translation.
This demonstrated the utility of the streamlined TPCA protocol for
identifying modulated protein complexes including those localized in
membrane-bound organelles.

Intuitively, the deprivation of glucose could potentially alter
mitochondrial protein complexes involved in cellular respiration.
Thus, we focus on validating our streamlined TPCA protocol on such
protein complexes annotated in the CORUM database. On average,
less than 20% of a core set of CORUM-curated protein complexes are
found modulated at any time point profiled. Encouragingly, most
mitochondrial protein complexes involved in respiration (consisting
of respiratory chain complex V, the various subcomplexes and inter-
mediates of respiratory chain complex I) exhibit differential TPCA
signature under glucose deprivation.

In particular, the respiratory chain complex V (annotated as F1F0
ATPase complex in CORUM database) exhibits very consistent diver-
gent TPCA signature that is strongest in the first 8 h but weaken
thereafter. Based on TPCA profile, there seem to be a recovery of the

complex sometime after 24 h of glucose deprivation (Fig. 5d). On the
other hand, the various intermediates and subcomplexes of respira-
tory chain complex I exhibit more diverse andmuted but nevertheless
statistically significant changes in TPCA signatures. Interestingly, while
most of these intermediates and subcomplexes manifest divergent
TPCA signatures that peaked at 24th h, the TPCA signature was
reversed (convergent) at 48th h. Similarly, divergent TPCA signature
was observed for the MIB (mitochondrial intermembrane space brid-
ging) complex (Fig. 6a) formed between the MICOS (mitochondrial
contact site) complex and the SAM (sorting and assembly machinery)
complex located in the inner and outer membrane respectively51,52.
These complexes are involved in the formationof cristae and junctions
that optimize themicroenvironment for assembly of respiratory chain
complexes and ATP production. Like the various intermediates and
subcomplexes of respiratory chain complex I, the TPCA signature of
the MIB complex also diverged in the first 24 h of glucose deprivation
but subsequently converged based on samples collected at 48th hour
of glucose deprivation.

Overall, TPCA profiling suggests that cellular respiration is muted
in the first 24 h with sign of recovery thereafter based on samples
collected at 48th h of glucose deprivation. To investigate this further,
we quantified the amount of ATP inK562 cells at different timepoint of
glucose deprivation. Somewhat unexpected initially, we observe small
but gradual increase in total ATP and average ATP abundance (per cell)

h
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Fig. 4 | Optimization of P-value estimation algorithm using fitted Beta dis-
tribution. The algorithm with small number of samples combined with the fitted
Beta distribution can simulate the distribution of large number of samples verywell
as observed for Manhattan distance (a), Δ absolute distance (b) and Δ relative
distance (c). d, e Number and functional class of convergent protein complexes
identified based on new P-value estimation algorithm. Beta distribution fitting
algorithm identifies more dynamically modulated complexes with higher

percentage associated with cell cycle and DNA processing generally. The result of
virus replication-related complexes with TPCA signatures and TPCA Modulation
Signature obtained by the new algorithm maintain a good agreement with those
obtained by the traditional algorithm with massive sampling based on Manhattan
distance (f), Δ absolute distance (g) and Δ relative distance (h). Source data are
provided as a Source Data file.
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in the first 24 h of glucose deprivation with a sharp decrease in ATP in
cells collected at 48th h of glucose deprivation (Fig. 6b). Thus, ATP
abundance seems to correlate inversely with TPCA signatures of the
various respiratory complexes. We reasoned this could arise from the
huge ATP demand of cells in many basal cellular activities after

successful adaptation to glucose-deficient condition. Indeed, this
seems to be supported by the observed convergent of 40S and 60S
ribosomal protein complexes at 48th h of glucose deprivation sug-
gesting increased protein translation which arguably consumes a large
majority, if not most, of cellular ATP49,53. Overall, we observed that
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when ribosomal assembly is presumably down-regulated (based on
TPCA signature), higher cellular ATP abundance was observed.

As most of the identified modulated protein complexes dis-
sociated and are involved in basal cellular processes that we will
reasonably expect in cells deprived of a source of energy, we focus on
analyzing convergent protein complexes to identify those potentially
implicated in metabolic reprogramming of cells in the absence of

glucose. While the various mitochondrial respiratory complexes
mostly exhibit divergent TPCA signatures, other differentially
modulated mitochondrial protein complexes manifest a strong
convergent TPCA signature instead. They are the TOM complex
involved in mitochondrial protein import, the Prohibitin 2 complex
that inhibits caspase-dependent apoptosis54, and the ECSIT (evolu-
tionarily conserved signaling intermediate in Toll pathways) complex

Glu
Time

+ -
8 h

+ -
24 h

+ -
48 h

+ -
52 h

GAPDH

β-Tublin

β-Tublin

P-Rb S780

P-H3 S10

P-CDK
Substrate

4h 8h 24h 48h
40S ribosomal subunit, cytosolic
60S ribosomal subunit, cytosolic
Ribosome, cytosolic
28S ribosomal subunit, mitochondrial
39S ribosomal subunit, mitochondrial
55S ribosome, mitocondrial
Respiratory chain complex V, mitochondrial

holoenzyme
early intermediate NDUFAF1 assembly
intermediate (ND1, ND2, ND3, CIA30)
intermediate V/380kD and VI/480kD
intermediate
beta subunit
gamma subunit
lambda subunit
incomplete intermediate

TOM complex, mitochondrial
Prohibitin 2 complex, mitochondrial
Ecsit complex, mitochondrial
MIB complex, mitochondrial
Mitotic checkpoint complex
Astrin-kinastrin complex
Ku-origin recognition complex

R
e

sp
ir
a

to
ry

 c
h

a
in

 c
o

m
p

le
x 

I

Gamma-tubulin complex
KNTC1-ZW10-ZWILCH complex
VCP, UFD1L, SEC61B complex
COG5-COG6-COG7 subcomplex
TRAPP complex
Coat protein complex II 
SNARE complex
Retromer complex 

BLOC1-BLOC2 complex
BORC complex

GARP complex

Erlin1/2-RNF170 complex
BRCC complex
RAD6A-KCMF1-UBR4 complex
USP22-SAGA complex
AMFR-ERLIN2-TMUB1 complex
SNX complex
20S proteasome
Ubiquitin E3 ligase (CDC34, CUL1, RBX1)
Emerin complex 1
LAS1L-PELP1-TEX10-WDR18-NOL9-SENP3
CCC complex

ID Protein Complex

Tr
an

sl
at

io
n

R
es

p
ir

at
io

n
 &

 M
it

o
ch

o
n

d
ri

al
C

el
l C

yc
le

P
ro

te
in

 T
ra

n
sp

o
rt

P
ro

te
in

 D
eg

ra
d

at
io

n
O

th
er

s

Dissociation Association
0 1 2 ≥ 3 12≥ 3 

− log10 P-value

Glucose

Glucose-free

130
95

26

17
72
55

72
55

43
34

72
55

130

95

43
34
26

(kDa)

ba

�

d
Glu - +

IP-Emerin
- +
input

IgG
240
150

31
25

50
31

GAPDH

Emerin

MYH9

Glu -+
IP-TAF9B input

IgG
70
50

35
25
35
25

GAPDH

TAF9B

TADA3L

-+

e

0H 8H 24H 48H 0H 8H 24H 48H
0

500

1000

1500

2000

Lu
m

in
es

ce
nc

e
(R

LU
/p

er
ce

ll)

0H 8H 24H 48H 0H 8H 24H 48H
0

1×107

2×107

3×107

4×107

5×107

Lu
m

in
es

ce
nc

e
(R

LU
)

Article https://doi.org/10.1038/s41467-023-43526-2

Nature Communications |         (2023) 14:7697 9



implicated in the regulation of mitochondrial respiration and
mitophagy55 (Fig. 6a).

In addition, we observed increased association of many protein
complexes involved in protein transport and vesicle formation with
peaked convergent TPCA signatures observed at 8th and 24th h time
points sampled that included BLOC and BORC protein complexes
associated with lysosome. At the same time, we observed convergent
protein complexes implicated in degradation of various proteins
throughout the time points profiled. These complexes include the
Erlin1/2-RNF170 complex and the SNX complex implicated in degra-
dation of IP3 (Inositol 1, 4, 5-trisphosphate) receptors and EGFR (epi-
dermal growth factor receptor) respectively, as well as various protein
complexes that possess E3 ligases (e.g., the BRCC complex and the
AMFR-ERLIN2-TMUB1 complex). Correspondingly, we observed con-
vergence of 20S proteasome and an E3 ligase complex (consisting of
CDC34, CUL1 and RBX1) that peaked at 24th h of glucose deprivation.
Hence, there seems to be an increase in protein degradation activities
perhaps to free amino acids for energy metabolism.

We also observed a few protein complexes that converge only at
48th h and are implicated in chromosome segregation and mitosis.
These complexes include both the mitotic checkpoint complex, and
the astrin-kinastrin complex that is involved in correct alignment of
chromosomeduringmitosis, the gamma-tubulin complex (CORUM ID:
6893) that associates with centrosome involved chromosome segre-
gation, and the KNTC1-ZW10-ZWILCH complex that is associated with
kinetochores on chromatids. Collectively, the convergent of these
complexes suggests possible onset ofmitosis around48th hof glucose
deprivation. As such, we performed immunoblotting for specific
mitotic protein markers namely phosphorylation of histone H3 and
retinoblastoma protein at S10 and S780 respectively. We observed
decrease of thesemarkers at 24th and 48th h but an increase at 52nd h
of glucose deprivation, suggesting the protein complexes implicated
in chromosome alignment and segregation converge before activation
of mitosis-associated signaling. We also compared the phosphoryla-
tion levels of CDK substrates, another mitotic protein marker, by
immunoblotting. Similar to what was observed for phosphorylation of
histone H3 and retinoblastoma protein, we observed reduced CDK
substrate phosphorylation before 48th h of glucose deprivation that
increased at the 52nd h indicating possible onset of mitosis (Fig. 6c).

Finally, we performed Co-IP to experimentally validate two con-
vergently modulated protein complexes identified (marked red in
Fig. 6a). One is Emerin complex 1 which function to organize the
nuclear membrane during cytokinesis56, and the other is USP22-SAGA
complexwhich function is a regulatory center for signaling, chromatin
modification, DNA damage repair, and gene control57. The extent of
TPCA signals of these two complexes at 24h and 48 h of glucose
deprivation was relatively consistent (Supplementary Fig. 22). Slim-
TPCA analysis revealed increased association between subunits for
both Emerin complex 1 and USP22-SAGA complex during glucose
deprivation which was recapitulated in our Co-IP experiments
(Fig. 6d). After 48 h of glucose deprivation, the TPCA signals of the
proteins used for experimental validation converged gradually.

Discussion
Protein complexes are the key effectors in most cellular activity that
need to be dynamically assembled and dissolved according to cellular

needs. Unlike most proteome-wide experimental methods, the intra-
cellular assembly state of protein complexes can be profiled in situ
with TPCA rapidly. The method had been verified in primary cell and
tissues and had been deployed to identify protein complexes modu-
lated during cell cycle, viral infection and T-cell infection. Con-
ceptually, the method could be readily deployed across various
cellular conditions to profile the assembly state of uncharacterized
protein complexes identified from large scale projects to aid in their
functional annotation.

Here, we introduce Slim-TPCA, an improved TPCA method using
fewer temperature points and improved data deconvolution algo-
rithms offering a series of improvements in terms of experimental
design and data analysis over previous method. We showed that less
temperaturepoints canbeusedwithminimalor negligible lost in TPCA
signal. This permits more flexibility in the experimental design,
allowing more time points or experimental conditions per analysis
while reducing sample needed, experimental cost and batch effect in
MS analysis. At the same time, the new data processing algorithms
offer over 100X reduction in time required for statistical calculations
while identifying modulated protein complexes with improved
sensitivity.

In this work, we had identified the optimal smaller sets of tem-
peratures for TPCA profiling of mammalian cells. The temperature
points identified fitted well with the expectation that reasonably
spaced temperatures maximally captured TPCA signature. For the
application of TPCA profiling in other species, similar principle could
be applied to the selection of optimal set of temperatures.We had also
adopted Manhattan distance for encapsulating TPCA signal instead of
Euclidean distance used in the original TPCA work as Manhattan dis-
tance gave the best overall performance across all the number of
temperatures tested. Although Pearson’s correlation performs as well
as Manhattan distance, its ability to encapsulate TPCA signature
dimmish more drastically with less data points compared to Man-
hattan distance and other metrics. We speculate frequency or occur-
rence rate of protein–protein interactions likely scale linearly with
TPCA signal, hence is modeled better with Manhattan distance com-
pared with Euclidean distance measurements that amplify difference
non-linearly. Another major deviation from the previous TPCA format
is the use of relative change inTPCA signature over absolute difference
to better characterize the dynamics of protein complexes, especially
those with already strong inherent or basal TPCA signatures.

Conceptually, the use of relative distance to quantify changes in
TPCA signature across conditions can reduce false negative to identify
more modulated protein complexes but the approach can also lead to
a higher false positive rate. The latter is particularly more pronounced
if quality of the data is noisier, particularly when authentic biological
difference is smaller than intrinsic instrumental noise. In this case, the
use of error bars or standard deviation could guide interpreting
authenticity of difference observed. With Slim-TPCA, multiple repli-
cates can be analyzed simultaneously by MS instrument to at least
minimize variance in batchmeasurement.We previously reported that
precision or reproducibility in thermal solubility quantified depends in
part on the number of peptide-spectral match (PSM) and ion intensity
of proteins13. To reduce the false positive rate, proteinswill less precise
values can be filtered based on these criteria. Alternatively, data from
multiple technical and biological replicates can be integrated to obtain

Fig. 6 | Glucose deprivation induces protein complexes changes in K562 cells.
aDynamics of CORUM-annotated protein complexes under glucose deprivation as
profiled by Slim-TPCA. Complexes are grouped based on their functions. The
complexes marked in red were selected to do Co-IP experiment. b K562 cells were
incubated in presence and absence of glucose followed by quantification of ATP
based on luminescence intensity (n = 3 independent biological experiments). Data
are presented as mean values ± s.d. (error bars). c K562 cells were incubated in
presence and absence of glucose, harvested at different time points and analyzed

by immunoblotting using Phospho-Rb (Ser780) antibody, Phospho-Histone
H3(Ser10) antibody, and Phospho-CDK Substrate antibody. GAPDHantibodyand β-
Tubulin antibody were used as loading control (n = 3 independent biological
experiments). d, e K562 cells were incubated in presence and absence of glucose
for 48h, and analyzed by Immunoprecipitation and immunoblotting using MYH9
antibody, Emerin antibody, TAF9B antibody and TADA3L antibody. GAPDH anti-
body was used as loading control (n = 3 independent biological experiments).
Source data are provided as a Source Data file.
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averages that are nearer to the true values. We prefer the latter
approach as the former approach of filtering based on PSM and ion
intensity can remove many proteins. Using data integrated from three
biological replicates reported in previous work, we found the relative
distance identified more modulated protein complexes that correlate
with expected biological activities.

Another improvement made is over 100X reduction in time nee-
ded to compute the statistical significance of TPCA signature and its
changes across conditions. Here, we adopted the strategy of using
lesser sampling (500 rather than 10,000 sets of randomly selected
protein) fitted to Beta distribution with computed p-value that corre-
late well with empirical p-value. This improvement is provided as an
option in our provided Python package.

Finally, we combined all the improvements and changes made by
applying Slim-TPCA to profile K562 cells at five time points of glucose
deprivation using three temperature points which are performed in a
set of TMT experiment for each replicate. Encouragingly, we identified
modulatedprotein complexes involved inbiological processes that are
either reportedly or expectedly associated with glucose starvation.
Our profiling identified increased dissociation of both cytoplasmic and
mitochondrial ribosomes that is coherentwith reported attenuationof
protein translation during glucose starvation. Many mitochondrial
protein complexes involved in or associated with respiration and
complexes implicated in vesicle-based protein transport are found to
be modulated revealing that TPCA is applicable to protein complexes
localizedwithinmembrane-boundorganelle and those associatedwith
membrane.

In summary, we have incorporated multiple improvements for
TPCAanalysis of protein complexdynamics that include new statistical
model and using a subset of temperatures. The latter permits multiple
conditions and replicates to be analyzed concurrently on MS instru-
ment using multiplexing reagents. This eliminates batch variation
across multiple MS runs in the traditional TPCA analysis and reduces
false positives. Nevertheless, the optimization using reduced number
of temperatures could also involve trade-offs, for example, protein
interactions that can be identifiedby traditional TPCAmethodsmay be
missed in Slim-TPCA, or vice versa, Slim-TPCA may identify false-
positive protein interactions. Importantly, while we had quantitatively
assessed the loss of information using subset of optimal temperatures
to be marginal, the analysis is performed in the perspective of ana-
lyzing dynamics of protein complexes with TPCA. Thus, the findings
and conclusions presented are not necessarily transferrable to other
uses of protein thermal solubility data. In addition, it should be noted
that detected changes in protein solubility, which presumably arise
from changes in protein thermal stability, could result from other
factors, including ligand/metabolite binding, post-translation mod-
ification and protein relocalization. TPCA specifically uses the hypo-
thesized co-aggregation and co-precipitation of protein complexes to
analyze only a subset of these changes.With usersmindful of these, we
envision Slim-TPCA and associated software package to expediate
functional characterization of existing and newly identified protein
complexes.

Methods
Cell culture
The K562 cell line was purchased from American Type Culture Col-
lection (ATCC). K562 cells were cultured either in RPMI 1640 medium
(Gibco) or glucose-free RPMI 1640 medium (Gibco) for 0 h, 4 h, 8 h,
24 h, and 48 h supplemented with 10% FBS (PAN) and 1% penicillin
−streptomycin (Gibco) at 37 °C, and 5% CO2 in a humidified environ-
ment. Cells were washed twice with ice-cold PBS prior resuspended at
150 µl PBS (Gibco). Each condition sample was distributed in parallel
into three aliquots and subsequently heated in parallel in a PCR (VWR,
Doppio Gradient) block for 3min to the three temperatures (37 °C,
46 °C, 58 °C). Then, cell subjected to (2X) lysis buffer containing

concentration of 100mM HEPES pH 7.5, 20mM MgCl2, 10mM β-
Glycerophosphate (sodium salt hydrate), 2mM Tris(2-carboxyethyl)
phosphine hydrochloride (TCEP), 0.2mMSodiumorthovanadate,0.2%
(w/v) n-dodecyl β-D-maltoside (DDM), and EDTA-free protease inhi-
bitor (Sigma-Aldrich, USA). Cell suspensionwas subjected to five times
flash-freezing in liquid nitrogen and rapid thawing inwater to facilitate
cell lysis. After centrifugation at 21,000 g for 20min at 4 °C, the
supernatant was transferred to a new tube and the protein con-
centration was measured by the BCA assay kit (Thermo Fisher Scien-
tific, USA). Then, samples heated to 37 °C were taken 10 µg of protein,
and the same volume of protein was taken at other temperature points
to prepare the MS samples.

Preparation of MS samples
Samples were prepared by SISPROT58,59, a spin tip-based device, as
previously described. Briefly, SISPROT device was fabricated by
packing several plugs of C18 disk (3M Empore, USA) into a standard
200μL pipette tip and then introducing certain amounts of mixed
beads. The mixed beads are composed of POROS SCX beads and
POROS SAX beads (Applied Biosystems, USA) in a ratio of 1:1. Sub-
sequent steps of sample loading, protein reduction, alkylation, diges-
tion, TMT pro plexs (Thermo Fisher Scientific, USA) -labeling and
desalting were all done on the SISPROT tip. The TMT mixed sample
was dried using a vacuum centrifugal evaporator and redissolved with
1% (v/v) formic acid followed by fractionating into six fractions with a
stepwise increasing gradient of ACN. Finally, eluted peptide samples
were lyophilized to dryness and redissolved in 0.1% (v/v) formic acid in
water for nano-LC-MS/MS analysis.

MS analysis and data Analysis
Each sample was diluted with 0.1% FA prior to separation on
20 cm× 100 µm EASY-Spray C18 LC column with a 135min gradient
on an UltiMate 3000 HPLC system (Thermo Fisher Scientific). The
mobile phase was solvent A (0.5% acetic acid in water) and solvent B
(80% ACN, 0.5% acetic acid in water). Data were acquired by Orbitrap
Exploris 480mass spectrometer (Thermo Fisher Scientific): MS1 scan
resolution was 60,000 and MS/MS scan resolution was 30,000 using
turbo TMT. Raw files were searched using Proteome Discoverer (PD)
software (Version 2.4, Thermo Fisher Scientific) against the human
proteome fasta database (Uniprot,20376 entries, downloaded on
May 03, 2022). The maximum missed cleavage for trypsin digestion
was set to 2. The mass tolerance for peptide precursors was 10 ppm
and the mass tolerance for fragment ions was 0.02 Da. Carbamido-
methyl of cysteine residues, TMT pro modification of lysine residues
and TMT pro modification of peptide N-terminal were selected as
fixed modifications while oxidation (M) and deamidation (NQ) were
selected as variable modifications. FDR control for protein and
peptide is 1% at strict level and 5% at relaxed level. All MS analysis
were performed with three independent experiments.

Detection of ATP levels
ATP measurement was determined by CellTiter-Glo Luminescent Cell
Viability Assay (Promega, USA). K562 cells under glucose or glucose-
free conditions for 0 h, 8 h, 24 h, and 48 h were seeded in a 96-well
plate at 10 thousand cells per well. Cells were lysed using Cell Titer-
Glo® reagent and mixed for 2min on an orbital shaker. The plate was
incubated for 10min and analyzed by microplate reader (EnSpire),
while cells number were measured by blood counting plates. All ATP
measurement were performed with three independent experiments.

Preparation of WB samples
K562 cells under glucose or glucose-free conditions for 8 h, 24 h, 48 h,
and 52h were harvested. Cells were lysed using RIPA buffer containing
a final concentration of 50mM Tris-HCL pH 8.0, 150mM NaCl, 1%
Triton x-100, protease cocktail, and 1mM PMSF facilitated by freeze-
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thawing five times using liquid nitrogen. After centrifugation at
21,000 g for 20min at 4 °C, the supernatant was transferred to a new
tube and the protein concentration was measured by the BCA assay.
Cell lysates were analyzed by western blotting.

Preparation of Co-immunoprecipitation (Co-IP) samples
K562 cells under glucose or glucose-free conditions for 48h were
harvested. Cells were lysed using RIPA buffer as above, sonicated, and
then centrifuged at 21,000g for 20min at 4 °C. The supernatant was
transferred to a new tube and the protein concentrationwasmeasured
by the BCA assay. Total 1.5mg cell lysates were then incubated with
4μg of primary antibody diluted in 700μl of PBST Rabbit pAb Control
IgG (AC005, Abclonal, 1:100), TAF9B antibody (Proteintech, 28713-1-
AP,1:3000) and Emerin antibody (Proteintech, 10351-1-AP,1:5000) in a
rotation wheel overnight at 4 °C. Next, samples were incubated with
Protein A/G Magnetic Beads (HY-K0202, MCE) for 6 h at 4 °C. To
remove the unbound antibody, beads were washed fifth times with
1ml of PBS. 50μl of protein loading buffer was added to the beads
after which they were boiled at 95 °C for 10min. Samples were then
loaded on an SDS–PAGE gel and further processed for western
blotting.

Western blotting
Twenty micrograms of total protein fromWB sample while 15 µl of Co-
IP samples were resolved on SDS-polyacrylamide gels and transferred
to polyvinylidene fluoride (PVDF) membranes. After blocking in
phosphate-buffered saline containing 2.5‰ Tween 20 (PBST) and 5%
BSA or skim milk powder for 1.5 h, the membranes were incubated
with the indicated primary antibodies overnight at 4 °C. The primary
antibodies used in this study were Phospho-Rb (Ser780) (CST,
8180S,1:1000), Phospho-Histone H3(Ser10) (CST, 3377S,1:1000),
Phospho-CDK Substrate (CST, 14371S,1:1000), β-Tubulin (CST,
2128S,1:1000), GAPDH (Proteintech, 10494-1-AP,1:5000), MYH9 (Pro-
teintech, 11128-1-AP,1:10,000), Emerin antibody (Proteintech, 10351-1-
AP,1:5000), TAF9Bantibody (Proteintech, 28713-1-AP,1:3000), TADA3L
antibody (Proteintech, 10839-1-AP,1:4500). Then, themembraneswere
washed 3 × 10min in TBST. Next, membranes were incubated with
secondary antibody for 1 h at room temperature. The following sec-
ondary antibody were used: HRP-labeled Goat Anti-Rabbit IgG(H + L)
(Beyotime, A0208,1:2000), IPKine HRP, Mouse anti-Rabbit IgG LCS
(Abbkine Scientific, A25022,1:2000), IPKine HRP, Goat Anti-Rabbit IgG
HCS (Abbkine Scientific, A25222,1:2000). The relative density of each
band was analyzed on an Odyssey infrared scanner (LICOR Bioscience,
Lincoln, NE, USA). GAPDH and β-Tubulin were used as loading control.
All WBs were performed with at least three independent experiments,
and quantified with ImageJ software (version ij153-winjava8). Uncrop-
ped gel images and replicates were included in the Source Data file.

MS data normalization
The thermal solubility of protein was obtained by dividing its abun-
dance at different temperatures by its abundance at 37 °C. These
readings of every protein from each MS run is derived from the aver-
age reading of their isoforms (e.g., PXXXXX-1, PXXXXX-2) weighted
according to the number of quantifying PSM (i.e., The number of PSMs
used for quantification). In Slim-TPCA, because the data points were
not sufficient to fit the logistic curve, we use median normalization to
align data. For samples at the same temperature in different treat-
ments/conditions, we assumed that the overall thermal stability of the
proteome would not change. LetMx,t = (mx,1,t,…mx,n,t) be the subset of
soluble fraction for n proteins under treatment x at the temperature
point t. For subsets Mx,t with the same temperature point t and dif-
ferent treatments x, the median x of medians of n proteins of each
subset is computed. Subsequently, thermal solubility of all proteins in
each subset Mx,t are added/subtracted with a fixed value so that all
subset have the same median x. When using 3 temperatures, we

recommendheating the samples at 37 °C, 49 °Cand 58 °C inK562 cells.
When using 4 temperatures, we recommend heating the samples at
37 °C, 46 °C, 55 °C and 61 °C in K562 cells.

MS data filtering
The MS data from the three replicate glucose deprivation experiments
was then filtered after normalization. To obtainmore robust results, we
selected proteins detected in at least 2 replicates and with 3 or more
PSMs in total for subsequent analysis. Soluble fractions were obtained
bydividing the abundanceofproteins at different temperaturesby their
abundance at 37 °C. Since most proteins would theoretically have a
lower soluble fraction after heating than they do at 37 °C, we screened
out proteins with solubility fractions higher than 1.2 at 49 °C and 58 °C.

Empirical statistical assessment of TPCA signature
In the conventional TPCA method, an empirical statistical assessment
is used to identify complexes with non-random TPCA signatures. In
Slim-TPCA, in order to identify which pairs or complexes exhibit non-
random TPCA behavior, we continue the approach adopted in the
original TPCA work with a few refinements. For each protein complex,
we compute the averageManhattan distance (denote asDavg) between
melting curves among all pairs of subunits of a protein complex.

Specifically, let PA = {p1, p2,… pn} be the set of n unique subunits of
protein complex A with solubility data. The average Manhattan dis-
tance among all unique subunit pairs (Mavg) from PA is computed as

Davg PA

� �
=

X
1 ≤ x <n

x < y ≤ n

d px , py

� �
0

BB@

1

CCA=m ð1Þ

in which m, the number of unique subunit pairs from PA, is equal to
n2 � n
� �

=2, and d(px, py), the Manhattan distance between melting
curves of protein px and py, is computed as

d px , py

� �
=
Xt

i= 1
xi � yi
�� �� ð2Þ

where (x1, x2, x3) and (y1, y2, y3) denote the normalized solubility of
protein px and py at t temperature points.

To assess the statistical significance of observed Manhattan dis-
tance, we compare d(px, py) with Manhattan distance of 10,000 ran-
domly selected protein pairs or protein sets of size n. The TPCA
Signature (P-value) of observed Manhattan distance is then estimated
as frequency of 10,000 distance <d(px, py). The protein pairs or com-
plexes with TPCA Signature P-value < 0.05 are defined with pairs or
complexes with TPCA signature, meaning that the thermal melting
curves of their subunits are close together, in accordance with the
TPCA theory.

Empirical statistical assessment of TPCA Modulation Signature
Here, we have optimized the algorithm for identifying the dynamic
modulation by calculating the changes in distance. If PA = {p1, p2,…, pn}
is the entire set of subunits from complex A with solubility data from
both Control and Treatment samples, the absolute and relative dif-
ference in distance are computed as

Δabs Ctrl�Treatð Þ =Mavg PAðCtrlÞ
� �

�Mavg PAðTreatÞ
� �

ð3Þ

Δrel Ctrl�Treatð Þ =
Mavg PAðCtrlÞ

� �
�Mavg PAðTreatÞ

� �

Mavg PAðCtrlÞ
� � ð4Þ

where Mavg ðPAðCtrlÞÞ and Mavg ðPAðTreatÞÞ is computed from solubility
data derived from Control and Treatment samples, respectively.
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To assess the statistical significance of observed Δ Ctrl�Treatð Þ, we
compute Δ for 10,000 randomly selected protein set of size n. The
TPCA Modulation Signature (P-value) of observed Δ Ctrl�Treatð Þ is then
estimated as frequency of random protein set that result in
Δ<Δ Ctrl�Treatð Þ. The complexes with TPCA Modulation Signature P-
values less than 0.05 are identified as convergent complexes, and
those with TPCA Modulation Signature P-values greater than 0.95 as
divergent complexes.

Empirical statistical assessment of TPCA Modulation Z-score
In addition to using the TPCA modulation signature to identify com-
plexes with significant dynamic changes, we also borrow the TPCA
modulation z-score from previous paper to detect complex dynamics
after virus infection. We usedMxc,i, whereMxc,i =

1
1 +Mc,i

andMc,i is the
average Manhattan distance of proteins in complex (c) at specific
infection timepoint (i; 24, 48, 72, and 96 hpi ormock), calculated from
10, 4, or 3 temperature points. Z-scores are then calculated based on
the null-distribution of Mxc,i generated from random protein com-
plexes with same size of proteins as in complex (c) with 10,000
iterations.

Beta distribution fitting algorithm
In empirical statistical assessment of TPCA signature and TPCA mod-
ulation signature, 10,000 randomcomplexes of sizen are sampled and
their average distances or changes in average distances are calculated.
To save computational time for high throughput data, here we use a
smaller sampling size in conjunction with Beta distribution fitting
instead of an excessive sampling. We choose to sample 500 random
complexes, calculate their average distance or change in average dis-
tance, and then fit them with the Beta distribution as

f x,a,bð Þ= Γ a+bð Þxa�1 1� xð Þb�1

Γ að ÞΓ bð Þ
ð5Þ

where Γ is thegammafunction. TheTPCA signature (p-value) andTPCA
modulation signature are defined as the probability of having a more
extreme value in the probability density function of the fitted Beta
distribution than the value of the putative complex.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the raw MS data have been deposited to the ProteomeXchange
Consortium via the iProX partner repository60,61 with the dataset
identifier PXD040078. Source data are provided with this paper.

Code availability
The installation package of Slim-TPCA can be downloaded directly
from PyPI (https://pypi.org/project/Slim-TPCA/). Package doc-
umentation can be acquired online via https://slim-tpca.readthedocs.
io/en/latest/index.html. Testing data can be downloaded fromGitHub
(https://github.com/wangjun258/Slim_TPCA_examples)62.
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