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Autoencoder neural networks enable low
dimensional structure analyses of microbial
growth dynamics

Yasa Baig1,2, Helena R. Ma 3,4, Helen Xu 2 & Lingchong You 3,4,5

The ability to effectively representmicrobiome dynamics is a crucial challenge
in their quantitative analysis and engineering. By using autoencoder neural
networks, we show that microbial growth dynamics can be compressed into
low-dimensional representations and reconstructed with high fidelity. These
low-dimensional embeddings are just as effective, if not better, than raw data
for tasks such as identifying bacterial strains, predicting traits like antibiotic
resistance, and predicting community dynamics. Additionally, we demon-
strate that essential dynamical information of these systems can be captured
using far fewer variables than traditional mechanistic models. Our work sug-
gests thatmachine learning can enable the creation of concise representations
of high-dimensional microbiome dynamics to facilitate data analysis and gain
new biological insights.

Microbial populations and communities exhibit rich temporal
dynamics driven by both species-species and species-environment
interactions1–4. These community dynamics are critical for community
self-maintenance and achieving ecological functions. For example, soil
microbial communities surrounding plant roots can overhaul their
composition in response to changing symbiotic interactionswith plant
hosts1. In human health, microbial predator–prey interactions can
accelerate the acquisition of community-scale antibiotic resistance;
also, growth rates of various human gut microbial species are modu-
lated in response to diseases like Type II diabetes and IBS3,4.

Synthetic biology also relies on the predictable control of the
temporal dynamics of engineered microbial populations or
communities5. For instance, Liao et al. developed a three-member
microbial system where negative interactions between the three
populations can be used to enhance the genetic stability of the engi-
neered circuits6. We too have reported the usage of microbial popu-
lation dynamics for engineering applications, such as coupling
programmed bacterial death with environmental sensing to achieve
self-regulation of metabolite production or exploiting spatial parti-
tioning to control community biodiversity7–9.

A common theme of these studies is the need to predict and
control temporal dynamics of microbial communities. This task

depends on an effective representation of the temporal dynamics by a
properly formulatedmodel. Typically, such analysis has relied onusing
the formulation of mechanistic models based on prior knowledge. For
instance, a logistic model and the Monod model are often used to
describe growth of a single population; a generalized Lotka-Volterra
(gLV) model is often used to describe multi-species community
dynamics8,10,11. When properly constrained by experimental data, these
models can allow prediction of future growth patterns or inferring
biological insights12–15. Recently, these models have increasingly been
paired with black-box machine learning (ML) techniques, which trade
mechanistic interpretability to model more complex biological rela-
tionships learned directly from data16. For instance, we previously
utilized growth curves as training data to predict complex phenotypes
such as antibiotic resistance directly from growth dynamics17. Other
studies strike a compromise, using growth curves to derive pre-
selected dynamical features such as growth rate, steady-state cell
density, and lag time which are then fed to machine learningmodels18.

Each approach, however, presents limitations in how this infor-
mation is extracted. TrainingMLmodels or fittingmechanistic models
using whole growth curves with no preprocessing or dimensionality
reduction can lead to spurious fits: fluctuations in data can result from
biological regulation or from experimental variability. Ad hoc
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methods, such as moving-average-based smoothing, have been used
to minimize the impact of experimental variability, while maintaining
critical biological information13,17,19. Wavelet analysis has been used to
clean microbial growth data in a more principled manner; it also
requires an ad hoc choice of frequency components to preserve19.

In contrast, techniques where growth curves are reduced to a
small set of features are simpler to manipulate, interpret, and use for
model training, but potentially suffer from greater loss of biological
information than smoothing techniques. The choice of features also
reflects a bias of the experimenter on themost important components
of growth curves needed for downstream machine learning, which
may not have any association with phenotypes of interest. For exam-
ple, prediction of antibiotic resistance phenotype from common fea-
tures like growth rate and growth integral alone is less effective than
using entire growth curves17.

Certain ML tools can overcome these limitations. Autoencoder
neural networks enable the compression of high dimensional, noisy
data sets down to low dimensional representations (or embeddings).
These embeddings, while lacking biological interpretability, serve as a
low-dimension representation of the original data. These embeddings
are optimized by the network during training to retain as much signal
from the original data as possible; thus, they enable simplifying data
representation without a priori bias. The dimensionality of the
embedding can be varied during training to enable retainingmore and
less information of the original data.

In this work, we demonstrate the use of autoencoders for analysis
of microbial community dynamics. Specifically, we use autoencoders
to compress simulated and experimental growth curves into low-
dimensional embeddings. We show that these embeddings can be
used to reconstruct the growth curvewith high fidelity. Despite drastic
dimension reduction, these embeddings contain sufficient informa-
tion to differentiate between complex phenotypes such as strain
identity and antibiotic resistance, predict microbial dynamics from
initial conditions and experimental system variables, and can be
mapped directly to interpretable mechanistic growth parameters.
They can even outperform whole growth curves on these tasks, sug-
gesting a successful elimination of extraneous noise from the original
growth curve without loss of biological information. Moreover, we
show that the autoencoders can enable the compression of the com-
munity dynamics to fewer variables than needed to parameterize a
typical mechanistic model.

Results
Autoencoder compression of simulated growth curves
An autoencoder consists of two component networks: an encoder that
compresses an initial data vector of dimensionD to a latent embedding
vector of dimension E ( <D), and a decoder that maps the embedding
back to the data vector (Fig. 1a, Table 1). During training, the network
improves agreement between the initial vector x and the recon-
structed vector x0 by updating its internal weights to minimize the
mean square reconstruction error between all N samplesPN

i jjxi�x0
ijj22. By imposing E <D, the network optimizes the lower-

dimensional embedding to encode themost critical information about
x necessary for reliable reconstruction (to pre-specified fidelity), while
eliminating spurious features in the input data. After training, each
embedding vector serves as a compressed representation of the cor-
responding input data series.Here, we use an asymmetric autoencoder
architecture designed to analyze time series (Methods, Supplemen-
tary Fig. 1).

As an illustration, we first applied this method to simulated,
single-population growth curves, using the logistic model:

dp
dt

=μ 1� pð Þp ð1Þ

where p is the relative abundance of the species and μ is its specific
growth rate.

Using random μ values, we generated 1000 growth curves as the
training data. Each curve consists of 100 points (i.e., D= 100). We used
these data to train an autoencoder model with E =2 (to facilitate
visualization of the embedding). The embeddings fall along a single
line (approximately y = x) (Fig. 1b), indicating that the autoencoder
model “learned” the one-dimensional structure of the raw data.

Next, we considered dynamics of microbial communities simu-
lated using a variant of the gLV model8. We generated 9500 growth
curves by simulating five-member communities using random para-
meter values. Each growth course consisted of 100 data points
(D = 100). For this system, embeddings with E =2 are distributed in
multiple directions in the latent space, instead of a single line (Fig. 1c).
This increase in latent space dimension usage is expected for the
increasing complexity and dimensionality of the underlying system.
Additionally, the quality of the final reconstructions drops. This is
unsurprising given the high amount information bottlenecking
required to embed an underlying high dimensional system into a small
latent dimension. Indeed, increasing the embedding dimension to
E = 10 improves the reconstruction quality (15% vs 5% mean absolute
error) (Fig. 1d). These results demonstrate even for higher dimen-
sional, complex microbial communities, the autoencoder could
develop low-dimensional representations of the growth dynamics.

Experimental growth curve compression and reconstruction
We next applied the analysis to experimental growth curves. We con-
sider four separate groups of Enterobacteriaceae growth curves (Sup-
plementary Table 1). Each time series consists of one growth curve or
growth curves of the strain in multiple conditions concatenated toge-
ther. For each growth curve, we computed their derivative instead of
using the growth curve directly. Using the derivative allows the auto-
encoder to focuson learning representations for the transient dynamics
and deprioritizes preserving information about the steady state of each
population (Fig. 2a). Since transient dynamics aremore information rich
andmore variable across different bacterial strains, they better capture
phenotypical information17. The initial dimension (D) of each growth
curve varied between 98 and 432 (Supplementary Table 1).

For each group, we repeated our encoding and decoding proce-
dure for increasing E while fixing the hyperparameters of the auto-
encoder. Like the simulated curves, the experimental growth curves
could be compressed to and reconstructed from low-dimensional
representations with high fidelity (Fig. 2b). Due to the increasing
complexity and variability of experimental curves, the autoencoder
used the latent spacemore fully, as indicated by the increased number
of non-zero-variance principal components.

Even at low dimensions, the autoencoder reconstructed the
principal topological features of each curve such as the positions of
peaks and valleys. With increasing E, the reconstructions better
retained higher-order features such as peak heights and curvature of
the raw data (Fig. 2c). Overall, the total square error

PN
i jjxi�x0

i jj22
between the raw and reconstructed curves decreased as E increased
from 2 to 30 (Fig. 2d).

Strain identity classification
Our analysis shows that, despite their variability, the growth curves
share a core temporal structure that can be captured by the auto-
encoder usingmuch lower dimensional representations.Wewondered
if the reduced embeddings maintained sufficient information to dis-
tinguish between the strain identities of different bacteria, as we have
demonstrated in a previous study using full time courses17,19.

For eachof the four growth curve groups (SupplementaryTable 1),
we generated embeddings corresponding to E =2, 3, 5, 10, 20, 25, and
30. We partitioned each dataset into training and testing sets in a 3:1
ratio. We used the training set to train a binary support vectormachine
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Fig. 1 | Autoencoder compression of simulated growth curves. a Autoencoder
architecture. An autoencoder consists of two separate neural networks. First the
encoder network, ϕ xð Þ, maps a time series vector x to a low dimensional, com-
pressed representation in the form of the embedding vector z: The decoder net-
work, ψ zð Þ, then attempts to reconstruct x from only the information in z. The
encoder maps the initial vector through a series of dimension reducing transfor-
mations until it reaches the latent layer; the decoder then maps the latent dimen-
sion through a series of dimension boosting transformations. This is represented
by the size of the encoding narrowing with each layer and the decoder widening
with each layer. b Embedding of the growth dynamics of a single population, using

E = 2. 10 of these curves are shown on the left. The autoencoder embeds all the
curves along a single line. The reconstructions of the initial curves are shown on the
right. c Embedding of the growth dynamics from a five-member community, using
E = 2. Six curves are shown on the left and compression of these five curves to two
dimensions is shown in the center. The reconstructions of the initial curves are
shown on the right. d Embedding of the growth dynamics from a five-member
community, using E = 10. The center shows amount of variance explained by each
of the first five principal components of the latent space. The original curves are on
the left; the corresponding reconstructions are on the right.
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(SVM) classifier to differentiate between strains (Methods). To achieve
multiclass classification, we used a one-vs-all approach where for each
strain one SVM classifier was trained to discriminate that strain from all
others. Thus, n SVMs were trained for a dataset with n strains (Fig. 3a).
To classify a curve in the test set, we fed it into each trained SVM and
selected the strain label that corresponded to the SVMwith the highest
confidence prediction (Methods).

In both training and testing sets and across all four groups, the
classification accuracy increased with embedding dimension (Fig. 3b,
c, Supplementary Fig. 2). Furthermore, the embeddings matched or
surpassed the classification accuracy of using the raw data with E as
low as 10. When considering datasets such as Group 2 where each
curve contains >300data points (D > 300), using E = 5 yielded a testing
accuracy of >95% (Supplementary Fig. 2).

Low-dimensional embeddings outperform raw data in predict-
ing antibiotic resistance
We further tested if these low dimensional compressions could be
used to predict phenotypic traits, such as antibiotic resistance. We
considered a library of 244 bacterial clinical isolates with known
resistance (or lack thereof) to four antibiotics: sulbactam (SAM),
trimethoprim–sulfamethoxazole (SXT), gentamicin (GM), and cipro-
floxacin (CIP). This library was generated using same clinical samples
used in Group 1 (D=98), except now the labels for prediction corre-
sponded to a binary indicator (1 or 0) whether an isolate was resistant
to a particular antibiotic.

We generated several embedding datasets from our full-time
courses corresponding to embedding dimensions of
E =2, 3, 5, 10, 20, 25, and 30 which were then partitioned 3:1 in training
and testing sets. The training sets were used to train four separate
SVMs, each distinguishing between resistant vs non-resistant to a
particular antibiotic (Fig. 3d). The performance of these classifiers was
evaluated on the testing partition.

Like strain classification, the prediction accuracy on both training
and testing partitions increased with the embedding dimension. At
E = 10, representing ~10-fold data compression (from the original
dimension of D =98 to E = 10), we achieved testing classification
accuracies within 5% of using the raw data. For all four antibiotics, the
low-dimensional classification accuracy achieves parity with using the
uncompressed growth curves, at E <30. For GM and SXT antibiotics,
embeddings at E = 10 already exceeded the performance of the full
data and the accuracy continued to increase until leveling off at
E =30 (Fig. 3e).

Low dimensional embeddings enable efficient parameter
estimation
In addition to classifying strain identity and antimicrobial resis-
tance, we wondered if latent embeddings could be used for

predicting quantitative properties. To this end, we constructed a
parametrized ODE model of our bacterial isolates in our Group 2
dataset. For each one of these 311 bacterial isolates, we measured
their growth dynamics in Lysogeny Broth (LB), LB with amoxicillin,
and LB with amoxicillin and a β-lactamase inhibitor, clavulanic acid.
Our ODE model thus incorporated kinetic parameters associated
with both intrinsic growth dynamics and antibiotic responses
(Methods).

We then constructed a machine learning pipeline to estimate
the parameters associated with the ODE model, from experimental
data (Fig. 4a). First, using the ODE model, we simulated system
dynamics using 10,000 different parameter sets; in each combina-
tion, each parameter is drawn from a uniform distribution con-
strained to a biologically plausible range. For each parameter set,
we simulated the growth dynamics with no antibiotic, with anti-
biotic, and with antibiotic and inhibitor concentrations corre-
sponding to those used in experiments. We then concatenated the
growth curves associated to these three conditions into a single
data series. These simulated data were split into a 2:1 train/test split
and the training set was used to train an autoencoder. To estimate
parameters, we trained a multilayer perceptron (MLP) network to
map the latent space to the ODE parameters used to generate the
initial curves in the training set. Only the weights of the MLP were
updated during training while the weights of the decoder were
fixed. This practice ensured the combined NN made predictions
only using the information encoded in the latent space learned
during autoencoding.

After training, the performance of parameter estimation tech-
nique was assessed by applying our joint AE-MLP network on the
test set, for which the ground truth was known. We observed that
across training and test set, certain parameters could be estimated
with high accuracy while others were much more challenging to
estimate from raw training curves (Fig. 4b). Despite this, however,
we found that using the predicted parameters to simulate ODE
models yielded final predicted curves which captured the system
final dynamics which high accuracy. This result is consistent with
“sloppiness” of parameters associated with many dynamical models
—large variation in their values yields little appreciable impact on
the final dynamics20,21. Thus, the latent embeddings could be map-
ped to the ‘stiff’ parameters of the ODE model. We applied the
trained AE-MLP model to the Group 2 dataset to estimate para-
meters that would allow the prediction of these data using the ODE
model. Since the ground truth for the experimental system para-
meters is unknown, we assessed their quality by the quality of
simulations generated by the estimated parameters from the AE-
MLP model. We found that our ML pipeline with E = 10 generated
parameters that enabled high quality growth curve predic-
tions (Fig. 4c).

Table 1 | Summary of key terminology and notations

Term Symbol Definition Example

Input Dimension D Thenumber of time points sampled in a bacterial growth curve
used as input to an autoencoder, experimental or simulated.

For experimental growth curve in group 1, the number of fea-
tures D=98 (Supplementary Table 1). For community simula-
tions, D ranges between 20 and 40.

Embedding Dimension E The dimension of the latent space to which individual popu-
lation growth curves or a set of population growth curves
corresponding to an entire communities’ dynamics are com-
pressed in an autoencoder.

For Fig. 1a, E = 2. For Fig. 2b, E =30: For data in Figs. 3 and 5, E is
varied as a control parameter. For Fig. 3, E varies between 2
and 30.

Community or Phase
Space Dimension

N The number of individual species in a microbial community.
Since each species corresponds to an independent variable in
the communitygrowthdynamicsODEmodel,N is alsoequal to
the dimension of the ODE system phase space.

For Fig. 4, N= 2: For Fig. 6, N varies between 3 and 6.

Parametric Space
Dimension

O N2
� �

The number of parameters used to parameterize a growth
dynamics ODE model. This varies between choice of under-
lying ODE model, but generally scales O N2

� �
:

For Fig. 6, the dimensionality of the parametric space is exactly
N2 + 1, with N2 � N non-zero pairwise interaction terms γij, N
growth rates μi, and 1 fixed background stress term σ.
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Predicting growth dynamics from initial conditions using
embeddings
At its core, the analysis above demonstrates the ability of the auto-
encoder to dramatically compress high dimensional microbial
dynamics while retaining sufficient dynamical information to enable
phenotypical inference. Another common challenge is to predict the
dynamics of a community starting from different initial
conditions16,22–24. The ability todo so canguidepredictive assembly of a
microbial community to achieve desirable compositions and
functions5,15,16,23–27. To this end, we wondered whether and to what
extent a low-dimensional embedding can enable such predictions.

For this analysis, we used a specialized autoencoder, variational
autoencoder (VAE), which embeds the learned representations into an
E dimensional, isotropic Gaussian distribution (Methods, Supple-
mentary Fig. 3). This embedding ensures that the learned latent space
is compact and continuous. This latter property ensures that inter-
polated new points in the latent space within the Gaussian distribution

will approximate realistic trajectories in the phase space when deco-
ded. This feature is critical for using the latent space to predict com-
munity dynamics starting from arbitrary initial conditions.

We simulated the growth dynamics of a two-member microbial
community 6400 times, eachwithfixedparametersbut starting froma
different initial condition (Methods). Using a VAE, the growth curves
can be visualized as trajectories in a two-dimensional phase space
(Supplementary Fig. 4). Here, we compressed the growth curves of
both species simultaneously into a single latent representation. Thus,
each point in the latent space corresponds to a representation of an
entire community’s dynamics. We also used the full growth curves
instead of their derivatives to prioritize representations that would
directly correspond to trajectories in the system’s phase space.

We used 4800 (out of 6400) growth-curve pairs as the training
set. Even with E =2, the trained autoencoder learned the dynamic flow
of our system with high accuracy, as evidenced by the matching
topologies of the reconstructed curves to our initial phase space

Fig. 2 | Autoencoder compression of experimental bacterial growth curves.
a Pre-processing growth curves for training. Each training example consisted of the
finite difference of three separate growth curves corresponding to colonies of the
bacterial strain grown in three different culture conditions (Supplementary Fig. 2).
For a given training example, we took a time course for each growth curve condi-
tioned and computed its time derivative. The three growth curve derivatives were
concatenated into a single vector, which was then used to train the autoencoder.
bTraining anautoencoderusing experimental data.Anautoencoderwas trainedon
3732 time series generated from 311 clinical isolates with 12 examples per isolate
and E = 30. Samples of original curves are shown on the left; the corresponding
reconstructions are shown on the right. The center shows amount of variance

explained by the first ten principal component of the latent space. The increased
complexity of the growth curves is consistent with the use of multiple latent
dimensions needed to generate high quality embeddings. c Reconstruction quality
increases with E. The reconstructed curves (orange) better match the corre-
sponding original curves (blue) as E increases. With even small dimensionality the
principal peaks and valleys of the curves are already captured in the reconstruction
and with increasing embedding dimension, the reconstructions more closely fit to
the smaller contours of the initial growth curve. d Reconstruction error decreases
with E. The mean square error (MSE) between the initial growth curves and the
reconstructed curves initially declines rapidly with increasing E before leveling off
as E approaches 30.
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(Supplementary Fig. 4b). The autoencoder seemed to represent the
structure of the phase space in a form of local polar coordinates based
around the fixed points of the dynamics. As the distance of a point in
the latent space from the center of the Gaussian distribution increases,
so does the arclength distance of the corresponding interpolated
trajectory from the fixed point. For a fixed radius, the angular position
of a point in the latent space relative to themean of the Gaussianmaps
to the angular position of the initial condition of the matching
reconstructed curve with respect to the fixed point (Supplemen-
tary Fig. 4c).

To predict growth dynamics from arbitrary initial conditions, we
combined amultilayer perceptron (MLP)with the decoder component
of the VAE. TheMLPmaps each initial condition into the learned latent
space of the trained variational autoencoder. The decoder then maps
the latent variables to growth curves, which would represent the pre-
diction originating from the initial condition (Fig. 5a). During training,
the combined neural network aims to optimize the parameters of the
MLP encoder to minimize the mean square error between the neural
network prediction and ground truth generated from numerical
simulation.

We trained the VAE-MLP model using the same training set con-
sisting of 4800 pairs of growth curves. We evaluated the performance
of the trained model using the testing set consisting of 1600 pairs of

growth curves. The predicted test set phase closely matched with the
ground truth (Fig. 5b), evident in the strong agreement between pre-
dictions and ground truth (R2 =0:998).We repeated this same analysis
using datasets generated from different two-member communities
and from three-member and five-member communities. Across all
these simulations, the hybrid VAE-MLP model performed consistently
well (R2 =0:990) across test partitions (Fig. 5b). Comparing the entire
phase spaces and individual microbial community growth dynamics
examples confirms this result (Fig. 5b, c).

To further analyze the ability of the latent space to predict
other complex dynamics, we considered two closely related tasks.
One is to predict the dynamics from initial conditions of microbial
communities that involve horizontal gene transfer. The other is to
predict the dynamics of a microbial system that experiences tran-
sient perturbations. For the former, we simulated a two-member
microbial community exchanging two plasmids. We found that the
VAE-MLP pipeline could achieve high accuracy predictions using
E = 2 (Supplementary Fig. 5). Interestingly, we could achieve this
high-quality prediction with a VAE trained on only the species
community dynamics, without explicit information being provided
on the plasmid dynamics.

For temporal perturbations, we considered a three-member
community that experiences a pulse of antibiotic treatment. We

Fig. 3 | Classifying bacterial phenotype using embeddings. a Procedure for
classifying growth curves using embeddings. We begin by culturing each strain to
generate a set of growth curves. All growth curves are aggregated across all strains
to train a single autoencoder. After the autoencoder is trained, the low dimension
compression of each curve given by the encoder is used to generate a new dataset
consisting of embeddings. N separate support vector machine classifiers are then
trained used to classify each strain using embedding. b Classification of environ-
mental bacterial isolates. 12 growth curves were generated for each of 143 isolates
(Methods); each growth curve consists of 98 time points. The classification accu-
racy (orange line) on both the training set (left) and the testing set (right) increases
with E before converging asymptotically to the classification accuracy achieved by
using non-compressed curves (dashed line) around E = 10 to E = 15: c Classification
of clinical bacterial isolates. 4 growth curves were generated for each of 244

isolates; each curve consists of 98 time points (Methods). The classification accu-
racy on training and testing sets rapidly increases with E before saturating the
accuracy achieved using the non-compressed curves (dashed line) around E = 10 to
E = 15: d Procedure for predicting antibiotic resistance. A classifier is trained across
all embeddings for each class of antibiotic response. Four classifierswere trained to
predict whether a strain would be resistant to four different antibiotics: Cipro-
floxacin (CIP), S-Adenosylmethionine (SAM), Gentamicin (GM), and Sulfamethox-
azole (SXT). e Prediction accuracy for antibiotic resistance. 976 unique growth
curves of 244 isolates with known resistances to one ormore of the four antibiotics
(SAM, GM, SXT, CIP) were compressed and used to train four SVMs. The prediction
accuracy on the test set is shown for the four antibiotics. For CIP and GM, the
embeddings at E = 2 performed at comparable accuracy as that using the non-
compressed data.
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generated 5000 sets of dynamics by thedoseand timeof the antibiotic
pulse. We then used our MLP-VAE pipeline to predict community
dynamics from the combinations of antibiotic dose and time. The
pipeline enabled highly accurate predictions even at low embedding
dimension (E = 10) (Supplementary Fig. 6).

Predicting community dynamics from model parameters
Another common task is to predict the dynamics of a population while
varying a set of system parameters, which is relevant for under-
standing or controlling the dynamics of a microbiome under different
experimental conditions5,26,28. We thus examined if the autoencoder

Fig. 4 | VAE latent spaces can map to kinetic parameters of an ODE model.
a Mapping from growth curves to parameters. The encoder from a trained VAE is
used to map growth curves to a low dimensional latent space. A multilayer per-
ceptron is then trained to estimate model parameters from the latent space. The
VAE and MLPmodels are trained using simulated data with a wide range of growth
parameters selected at random from a distribution over a biologically plausible
range. The individual training examples correspond to three growth curves gen-
erated using an ODE model incorporating the effects of beta-lactam antibiotic and
Bla-inhibitor as in Fig. 2 (Methods). Each curve corresponds to a different combi-
nation of initial concentrations of the antibiotic and Bla inhibitor. b The neural

network enables accurate estimates of some but not all parameters. We show the
comparison of five estimated parameters vs the ground for training (blue) and test
(orange) sets of growth curves. The first four parameters can be estimated with
higher accuracy. The fifth parameter, κb, is poorly estimated, suggesting it is a
‘sloppy’ parameter. c Estimated parameters generate accurate predictions of the
growth dynamics. We apply our latent-space mapping procedure to experimental
growth curves used in Fig. 2 (Supplementary Table 1). Despite being only trainedon
simulated growth curves, NN-estimated parameters from the experimental growth
curves can enable the mechanistic model to predict growth curves with high
fidelity.
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representations could be used to achieve parameter-to-dynamics
predictions.

We used Eq. 2 to simulate dynamics of communities with
increasing complexity (N =3, 4, 5, and 6) (Table 1). For each simu-
lation, the initial abundance of each member was fixed to 0.1 arbi-
trary unit, but model parameters were sampled independently at
random. Growth rates were sampled from the Uni 0, 1ð Þ distribution

while species-species interaction strengths were sampled from
Uni �1, 1ð Þ. We set the population self-interaction terms γii =0 so that
intraspecies competition was captured by the growth rates. For
each community size, we generated 10,000 simulated growth tra-
jectories; each was split 3:1 into training and test sets. The training
sets were used to train VAEs with varying embedding dimension E
(Methods).
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To achieve parameter-to-dynamics prediction, we used anMLP to
map ODE parameters to the embeddings. The trained decoder then
maps the embeddings to growth dynamics (Fig. 6a). During training,
the weights of the pre-trained decoder were frozen so that the system
should construct predictions based on the latent embeddings and
information learned during autoencoding.

For each community size, we trained the MLP encoder using the
same training set used to train the VAE.We then assessed the quality of
model parameter-to-dynamics prediction based on performance on
the test set. Figure 6b shows the results of this analysis for a three-
member community. As E increases, there is an initially rapid increase
in qualitative prediction quality before saturating after a critical E*.
This is evidenced by the rapid improvement both qualitatively in test-
set predictions visualized in phase space, and quantitatively increasing
R2 coefficient between ground truth and predicted values. Rapid
improvement occurs between E =3 to 6 but relatively smaller
improvement between E =6 to E =9. That is, E* <N2. Despite the ODE
model requiring N2 unique parameters to successfully simulate dif-
ferent growth curves, the VAE model learns a smaller set of “latent
parameters” which can also be used to uniquely represent each com-
munity and predict their dynamics with high fidelity.

Repeating this analysis for N =4, 5, and 6 member communities
whilemaintaining the neural network architecture consistent revealed
a similar trend: the quality of reconstruction initially improves rapidly
before saturating, after which prediction quality saturates. The mean
square prediction error drastically drops before plateauing after a
threshold E value (E*) (Fig. 6C), which can be determined by a suffi-
ciently small threshold error (1:5 × 10�7). E* increases with size of the
initial community, reflecting the need for a larger latent dimension for
a larger community. However, as illustrated in Fig. 6D, E* increases
approximately linearly with the community size. In contrast, the
number of ODE parameters increases as the square of the community
size. That is, the number of effective parameters used by the auto-
encoder for predicting dynamics for a fixed initial condition scales
much more slowly than what is needed to parameterize a standard
mechanistic model.

Predicting experimental community dynamics from system
parameters
To experimentally test our ML pipeline, we generated a dataset of
7200 time courses corresponding to triplicate measurements of GFP
andODof 1200 configurations of two-membermicrobial communities
(Methods): (12 strain/plasmid/drug combinations) × (100 combina-
tions of drug concentrations for each strain/plasmid/drug combina-
tion). Eachof these communities consisted of onemember that carried
a plasmid which conferred both fluorescence and antibiotic resistance
and another lacking both fluorescence and resistance. During experi-
ments, we measured the total OD and the GFP fluorescence for 145
time points over 24 h as surrogate measures of the community
dynamics.

We split our data 2:1, with 4800 curves in our training set and
2400 in our test set. The training data was used to train a VAE with
varying latent dimensions. We then trained a MLP to map the experi-
mental configuration (strain/plasmid/drug combination/drug con-
centration) to the latent space, which was decoded, using the decoder
of the trained VAE, to community dynamics (Fig. 7a). Even with E = 5,
which is much smaller than the initial dimension of the concatenated
data (D=290), the trained MLP-VAE enabled high-accuracy prediction
of both GFP and OD dynamics (Fig. 7b). The same VAE latent spaces
also allowed classification of community growth curves to match
experimental configurations (strain/plasmid/drug combination) (Sup-
plementary Fig. 7).

Discussion
Here we show that autoencoders can map dynamics of microbial
communities into a low-dimensional latent space that contains suffi-
cient information to enable study of key biological properties, such as
determination of strain identity, antibiotic resistance, or predicting
dynamical trajectories. In other words, the high dimensional growth
curves possess a low-dimensional “latent structure” that ML models
can exploit for downstream analysis.

An immediate practical application is the use of autoencoder for
building pipelines for microbial dynamics analysis. The autoencoder
embeddings provide a non-biased approach to denoising growth
curves without losing critical biological information. The level of detail
to bemaintained canbe tuned by choosing the embedding dimension.
In addition, mapping growth data to a low-dimensional space could
enable simpler,more efficient, andmore effectivemodel optimization,
as demonstrated in the use of embeddings for strain classification and
resistance prediction. Furthermore, the latent space of VAE models
serves as a continuous, compact approximation of the underlying
distribution of growth curves which can be used for downstream
machine learning tasks, including generative tasks such as predicting
growth dynamics from parameter sets or initial conditions. Already,
exploiting the “latent structure” of datasets through such regularized
autoencoder representations is the critical first stage formost modern
ML techniques spanning audio processing, single-cellmulti-omics, and
computer vision29–36. Here we demonstrated that these representation
learning methods hold similar promise for the study and engineering
of microbial community dynamics.

The existence of a low-dimension latent structure in microbial
community dynamics has implications for effective modeling and
measurements of such dynamics. For a system that is sufficiently well
understood, a mechanistic model represents a much more concise
representation of the system than the raw data. For instance, if
population growth can be well described by the logistic model, only
two parameters (growth rate and carrying capacity) are needed for
predicting growth, whereas a sufficiently high-resolution experimental
sampling is needed to generate a high-quality growth curve. That is,
the mechanistic model represents an effective dimension-reduction,

Fig. 5 | Predicting dynamics from initial conditions using VAE embedding.
a Two-step initial condition to trajectory mapping. We combined the pre-trained
decoder component of theVAEwith anMLPencoder. TheMLPencodermaps initial
conditions of growth dynamics to the VAE embedding. The VAE decoder then
translates the latent embedding into phase space to generate a predicted trajec-
tory. During training, the parameters of the MLP encoder are optimized to mini-
mize the mean square error between predicted trajectory and a ground truth
generated fromODE simulation starting from the initial condition. The parameters
of the VAE decoder are fixed during MLP training. b Accuracy of predicted
dynamics. We trained several predictive models using different sets of simulated
growth curves, each corresponding to different sets of gLV parameters and/or
community sizes. For two-member communities, we trained our predictive model,
both VAE and MLP components, using 4800 training examples and then evaluated

their performance on 1600 testing examples with an embedding dimension E = 2:
For the three-member and five-member communities, we used 3:1 train/test split
for training and evaluation with E = 3 and E = 5 respectively (Methods). The top row
shows a random subset of the simulated test set curves (in orange). Themiddle row
shows the corresponding reconstructed curves (in blue). The bottom row shows a
linear regression between predictions and the ground truth for all time points in all
curves in the test set. Perfect alignment corresponds to the line y = x. TheMLP-VAE
models achieve high quality predictions (R2 ≥0:99) for ecological dynamics with
fixed point (columns 1,2, and 4), limit cycle (column 3), and chaotic attractors
(column 5). c Sample predicted dynamics for two, three, and five member com-
munities. Growth curves predictions (dashed blue) for two-member, three-mem-
ber, and five-member communities and the corresponding ground truth curves
(solid orange). For five-member communities simulated, the average R2 was 0.998.
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compared to the direct representation of the system dynamics using
time-course data.

However, a mechanistic model, even if perfectly accurate, can
suffer from the “curse of dimensionality” as a system gets more com-
plicated. For a gLV model, the number of parameters grow on order
OðN2Þ with the number of species; for models that also incorporate
plasmid growth the number of parameters can grow exponentially37,38.
Our results indicate, however, the community dynamics can be

represented using many fewer variables than the number of para-
meters in the mechanistic model. That is, the effective dimension of
system can be much smaller than the number of parameters needed
for a mechanistic model.

This compressibility is amanifestation of the “sloppiness”ofmany
dynamical models: a specific system output often depends on only a
minority of the parameters (stiff parameters) but insensitive to chan-
ges in other parameters (sloppy parameters)21,39. The embedding

Fig. 6 | Predicting dynamics from system parameters using VAE embedding.
a Two-step parameter to trajectorymapping. For an N-member community, the N2

parameters for theODEmodel aremappedvia aMLPencoder to thepretrainedVAE
embeddings. The VAE decoder then maps these embeddings to predicted growth
curves. During MLP training, the weights of the VAE decoder are frozen; only the
weights of theMLP encoder are tuned tominimize the error between the predicted
dynamics and ground truth dynamics.b Prediction quality initially increases before
saturating with embedding dimension. The predicted dynamics in phase space for
one hundred communities drawn randomly from the test set partition are shown
for increasing embedding dimension. Increasing E from 2 to 6 led to substantial
qualitative and quantitative improvement in the prediction accuracy, as evidenced
by phase space visualization andR2 coefficients respectively. Increasing E from6 to
9 led to more incremental, suggesting that past some intrinsic or “apex”maximum

embedding dimension, the quality of prediction saturates. c Normalized mean
square error (MSE) decreases with the embedding dimension. Normalized MSE is
calculated by computing theMSEof the predicted dynamics from the ground truth
value and then normalizing by the average square norm of the ground truth
dataset. For each community size (N), the error vs embedding dimension is fit with
an exponential curve. The MSE drops rapidly before saturating at E*, which corre-
sponds to a sufficiently small threshold error (1:5 × 10−7). E* indicates the number of
parameters needed to reconstruct the community dynamics with the pre-specified
fidelity; it increases with N. d The critical dimension E*

� �
grows more slowly than

ODE parameter count. As the size of the community (N) increases, the number of
unique parameters needed for the ODE model scales O N2

� �
, but E* scales

approximately O Nð Þ.
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variables from an autoencoder may represent the combination or
transformation of the stiff parameters. As such, the autoencoder
compression can be used to estimate the number of effective para-
meters necessary to capture the dynamics of interest (e.g., growth
curves). In our analysis, the classification accuracy of distinguishing
resistant from non-resistant strains plateaus at E ≥ 10. This implies that
around 10 parameters would be sufficient to constrain a model to
predict resistance.

Nevertheless, this compressibility can explain the effectiveness of
other types of coarse-graining and abstraction, such as the develop-
ment of a simple metric for predicting plasmid persistence in a
microbial community37 or basic principle for understanding mutua-
listic communities40. A central theme across these studies is that
though quantitative microbial models are often complex, they fre-
quently give rise to simpler rules that emerge from structural
redundancy20,41. This work provides additional evidence, discovered
directly from data, of this emergent simplicity in microbial systems.
This property suggests that the analysis of complex microbial com-
munities should focus on identifying the essential variables for both

experimental design and modeling analysis, instead of attempting to
model and measure every observable output. While we focus on
microbial community dynamics, our approach and conclusion could
be applicable for the analysis other high-dimensional biological sys-
tems, such as intracellular gene expression42–44, cancer
development45,46, and macro-scale ecological interactions2,47.

Several caveats exist, however, for using low dimensional auto-
encoder embeddings to analyze microbial growth dynamics. Though
autoencoders can be used to probe the sloppiness of parametrized
mechanistic models of microbial growth as well as develop general
purpose representations of microbial dynamics, the embeddings they
generate themselves are not directly biologically interpretable. The
values of the latent variables are constrained by several factors asso-
ciated with neural network training, including: the neural network
architecture and parameterization, the size of the latent space, as well
as the hyperparameters during training (e.g., batch size and learn rate).
Two different autoencoders with same latent dimension size can
achieve similar reconstruction fidelity and performance on down-
stream prediction and classification tasks while using very different

Fig. 7 | VAE enables dynamics prediction for two-member communities. a Two-
step growth curve to parametermapping. Our procedure for predicting the growth
dynamics from growth parameter for two-member microbial communities is
identical for simulated curves. For parameters, we consider the E. coli strain type,
antibiotic resistance plasmid type, initial antibiotic concentration, inhibitor type,
and initial inhibitor concentration (Methods). We aim to map these to the growth
dynamics of the two-member community consisting of one strain carrying anti-
biotic resistance genes and one sensitive strain. Only the resistant strains produce
GFP, so the total optical density (OD) measurement (orange) can be treated as a
measure of the total community biomass while the GFP intensity (green) is a

surrogate measure of the resistant strain. b Sample community predictions for
various embedding dimensions. We plot the predictions (thin line) vs ground truth
(thick lines) for randomly chosen communities. As the embeddingdimensionof the
embedding increases, the resultant quality of predictions also improves. This is
corroborated byplotting thepredicted vs ground truth values for the entire dataset
in 2D cartesian grid. As the embedding dimension increases, the points cluster
closer to the line and accuracy increasing is corroborated with an increasing R2

value. We note the accuracy dramatically improves between E = 2 to E= 5 but
saturates at E = 10.

Article https://doi.org/10.1038/s41467-023-43455-0

Nature Communications |         (2023) 14:7937 11



sets of latent variables. However, once they are deduced, the latent
embeddings can be mapped to variables and conditions that have
concrete interpretations. For instance, we have demonstrated that the
latent embeddings can be mapped to the initial conditions, kinetic
model parameters, and experimental configurations. On the technical
front, this mapping can be more effective than direct use of the ori-
ginal, uncompressed data, as evidenced by the improved performance
in strain ID and resistance prediction using the latent embeddings. On
the conceptual front, the mapping provides an indirect manner to
interpret the latent variables, through the parameters or system con-
figurations they are mapped to. Furthermore, in this study we use
various canonical architectures of autoencoder and other neural net-
works as a tool to demonstrate thatdespite the apparent complexity of
microbial dynamics and communities, the number of effective vari-
ables needed to describe them can be very small. In the future work, it
would be interesting to evaluate and benchmark various autoencoder
architectures to generate the most informative representations for
microbial community dynamics.

Methods
Terminology
Throughout this report, we discuss the dimensionality of the growth
curves, latent spaces, microbial communities, and parameter spaces.
We summarize these below with examples:

Numerical simulation of community dynamics
Population and community growth curves were simulated with varia-
tions of the logistic growth and generalized Lotka-Volterramodels. For
the initial one-member communities shown in Fig. 1a, we modeled the
system using the logistic growth equation (Eq. 1), where the growth
rate parameter was sampled from a Gaussian distribution with mean
μ=0:13 and standard deviation σ =0:02. We simulated in total 1000
growth curves, each for 101 equally sized time points over the time
interval 0, 100½ � total time units for a population startingwith a relative
abundance of 0.05. The derivative of the growth curve was estimated
by computing the finite difference between adjacent time points,
yielding 100 time point final curves. These were then used as input to
the autoencoder.

The community simulations in Fig. 1b, c were generated using a
modified gLV (Eq2):8

dpi

dt
=μipi 1� pi �

σ
1 +
P

pjγ
+
ij
�
X

pjγ
�
ij

 !
ð2Þ

Here pi corresponds to the relative abundance of species i, μi is
the specific growth rate of species i, γij represents the influence that
species j has on species i, and σ represents background stress of the
environment on species growth rate. We treat separately the positive
interactions, γ +

ij >0, in thedenominatorwhere they increase the rate of
growth by reducing background stress. Negative interactions, γ�ij >0,
on the other hand directly subtract from the total growth rate of the
species proportional to the abundance of inhibitory species. This for-
mulation ensures that the relative abundance of all species does not
ever grow unbounded to infinity.

In these simulations, growth rate for each species was drawn at
random from a Gaussian distribution with mean μ=0:10 and standard
deviation σ =0:02. Entries in the community interaction matrix γij
were similarly all sampled identically and independently (i.i.d.) at
randomwithμ=0 and standarddeviation σ = 1:0. The stressparameter
σ was fixed across all simulations at 0.05. We simulated in total 1900
different five member communities, yielding in total 9500 unique
growth curves, with each species starting with a relative abundance of
0.05. Eachwas numerically integrated for 134 timesteps on the interval
over the time interval of 0,1000½ �. The finite difference method was

used identically as with the single species population growth simula-
tions to estimate the growth curve derivative.

Simulation of microbial dynamics with antibiotic and antibiotic
response
Tomodel the dynamics of ourmicrobial strains of our Group 2 dataset
with and without antibiotic and antibiotic inhibitor, we developed the
following model of three coupled odes:

dn
dt

= αg � βlð Þn
db
dt

= βln� Dbb

da
dt

= � κbb +ϕn
� � a

Ka +a
� daa

ð3Þ

Where n is the cell density, b is the concentration of extra-cellular
β-lactamase, and a is the concentration of beta-lactam antibiotic.
Starting, with n, the size of the population is governed by growth due
to nutrient consumption and cell division as captured by αg and death
due to antibiotic induced lysis as captured by βl. α represents the
maximum population growth rate, but it is modulated by g to capture
the complexity of experimental data:

g =
1

1 + n
NmKs

� �θ
0
B@

1
CA 1� n

Nm

� �

Here, Nm is the carrying capacity of the population. Ks and θ are
shape parameters for the growth curve. The death term is given by the
product of β, constrained between 0 and 1, which measures the sus-
ceptibility of an individual population to β-lactam antibiotic and l, the
lysis rate as determined by the concentration of antibiotic (a). We
define β as:

β=βmin + c ð1� βminÞ

βmin expresses the minimum susceptibility of an individual bac-
terium to β-lactam cytotoxicity. c, also constrained between 0 and 1,
measures thepermeability of an individual cell toβ-lactamase inhibitor
such as clavulanic acid. c = 1 implies a cell is totally permeable to
antibiotic. c=0 means a cell is totally impermeable to beta-lactamase
inhibitor. If an inhibitor is present and c>0, then we model the
resulting inhibition of intra-cellular β-lactamase as an increase of the
susceptibility of the population, with at most β= 1 for c= 1.

The lysis rate l in turn is given by:

l= γgð Þ aha

1 +aha

� �

where γ is the maximum lysis rate and g is as defined above. ha is Hill
coefficient. The antibiotic concentration (a) is scaled with respect to
the half-maximum concentration, such that l reaches half maximum
when a = 1.

During simulations, we take l=0, until the population size
reaches some critical density n> Ln, after which l is determined by the
equation above for the remainder of the simulation even if n falls
below Ln. This constraint captures the fact that there is time-lag
between the initial exposure to antibiotic where individual bacteria
need to accumulate damage to lyse48.

For extra-cellular beta-lactamase, the dynamics are primarily dri-
ven by the release of intracellular beta-lactamase from lysing cells, as
captured by βln term, and a basal decay rate of Db.

Lastly, for the antibiotic, the dynamics are driven by degradation
by both extracellular and intracellular beta-lactamase as well as a basal
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decay in solution. Degradation by β-lactamase is captured in the term:

�ðκbb +ϕnÞ
a

Ka +a

Where κb is the degradation rate by extracellular beta-lactamase. ϕ in
turn captures the degradation rate due to intracellular beta-lactamase
and is thus proportional to the microbial population. We calculate ϕ
according to:

ϕ=ϕmaxð1� cÞ

Where ϕmax is the maximal degradation rate due to intracellular beta-
lactamase. c is our previous permeability to beta-lactamase inhibitor.
For totally permeable cells, c= 1, implying that the inhibitor totally
blocks all intra-cellular beta-lactamase activity. The final Michealis-
Menton term ensures that degradation occurs in an antibiotic density
dependentmanner. The da similarly captures the backgrounddecay of
the antibiotic in solution not due to β-lactamase activity.

To generate the dataset of numerically simulated curves used in
our VAE-MLP prediction pipeline, we generated random values for
α,Ks ,θ,Ln,κb,ϕmax,γ,βmin,db, and c from truncated normal distributions
constrained to abiologically plausible range.Detailednumerical values
for these ranges canbe found in the linkedGitHub repository. For each
set of parameters, we generated three distinct growth curves corre-
sponding to different initial values of antibiotic and antibiotic inhi-
bitor. Specifically, we generated a curve for the case of no antibiotic,
the case of a0 = 10 with no inhibitor, and a0 = 10 with inhibitor. For
eachof these simulations, we integrated the system for 145 timepoints
over a range of 24hours, matching our experimental growth curves in
group 2. The initial value of n0 was drawn similarly from a truncated
normal distribution with mean μ=0:04O:D: and standard devia-
tion σ =0:005O:D:

Predicting community dynamics from different initial
conditions
For our two-member communities, 6400 curves were generated using
Eq. 2 for a given set of model parameters μi and γij .
σas with Figure1B and1C was fixed to0:05. These model parameters
were initially generated by sampling growth rate values μi uniformly
between 0,1½ � and interaction parameters γij from the standard normal
distribution. For our two-member communities, we integrated the
system for thirty total steps between 0- and 20-time units, yielding 30-
dimensional growth curves. No finite differencing was applied. Initial
conditions were sampled in a square, equally spaced grid on the unit
cube of 0,1½ �× 0,1½ �. For three member communities, the same process
was repeated except the simulation was run for 30 time points
between 0- and 20-time units to enable most of the trajectories to
reach steady state and we sampled 3375 total communities, this time
with initial conditions on an equally spaced grid in the unit cube. For
five member communities, the process was again identical except we
ran the numerical simulation for 40-time units and sampled 7776 total
initial conditions equally spaced on the five-dimensional unit
hypercube.

To simulate dynamics corresponding to the 2D limit cycle shown
in Fig. 5b, we used a modification on the standard generalized Lotka-
Volterra incorporating nonlinear competition terms:

dp1

dt
= p1 1� p1

� �� ap2

d +p1

dp2

dt
=bp2 1� p2

p1

� �
ð4Þ

With a= 1,d =0:1, and b =0:2. As with the fixed-point dynamics,
we sampled initial conditions at equal spacing from the unit square, in
total sampling 5625 growth curves integrated between 0 and 20-time
units. Here we sampled D=40 total time points on this interval.

For the chaotic attractor, we utilized a previously studied varia-
tion of gLV and associated set of parameters which are known to
generate chaotic dynamics49:
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We sampled points 8000 total initial conditions for these
dynamics uniformly spaced on the domain [0.3, 1.0]3 and ran all
simulations on the time interval 0,20½ � for 30 time points.

Predicting temporal dynamics from different parameter sets
For each community size, 10,000 communities were sampled of which
7500 were used in the training set and 2500 used in the test set, once
again using Eq. 2. For each community simulation, the initial abun-
dance of each community member was fixed to 0.1 arbitrary units but
the growth rate parameters μi were sampled i.i.d. from the uniform
distribution Uni 0,1ð Þ and the elements of the interaction matrix γij
were sampled i.i.d. from the uniformdistributionUni �1,1ð Þ. We set the
population self-interaction terms γii =0. Each growth curve corre-
sponding to a species’ growth dynamics within each community con-
sists of 20 time points sampled on the time interval 0,20½ �:

All numerical simulation was performed in Python leveraging the
SciPy integration library with LSODA solver.16.

Causal convoluted autoencoder compression
For analysis associated for Figs. 1 through 3, we used a causal con-
volutional autoencoder for generating our lowdimensional time series
embeddings. The encoder network operates by iteratively applying
one dimensional diluted causal convolution operations in each layer
followed by ReLU activation functions, allowing for the encoder to
generate representations that consider multiple different time scales
of the growth curve (or concatenated growth curves) sample. The
decoder consists of a standard multilayer perceptron which maps its
input by a series of dimensionality increasing linear transformations
followed by nonlinear ReLU activations. A schematic of these opera-
tions can be found in Supplementary Fig. 1. The choice of this encoder
architecture was inspired by previous success in generating high
quality latent representations, particularly by Francheschi et al.50, from
whom we derived the initial code for the encoder, and WaveNet51.

During training, the network aims tominimize the reconstruction
loss which is given by the mean square error between the initial curve
and the network’s reconstructions averaged across all training exam-
ples:

Lrecon =
1
n

Xn
i

jxi�xreconj22

During training, we iteratively tune the model’s internal para-
meters in both the convolutional and linear layers via the stochastic
gradient descent. The number of total training iterations for each
experiment to ensure that the network trained until this loss saturated
(ranging generally from 5000 to 50,000 epochs). Additionally, across
experiments wemanually tuned the depth of the network, the number
of convolutional layers, and the number of channels per layer hyper-
parameters to ensure that for a given dataset, simulated or experi-
mental, the final mean square error converged and that the final
reconstructions qualitatively captured the dynamics of each growth
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curves such as capturing smaller peaks or valleys and matching cur-
vature with the initial curves.

We found that swapping the diluted causal convolutions with
more standard 1D convolutions did not affect the reconstructed
quality of the simulated data.

All optimizationwasperformedusing theAdamoptimizer and the
neural network was implemented in python using the PyTorch ver-
sion 2.0.020.

Variational autoencoder compression
For dynamics prediction problems, we leveraged a variational auto-
encoder to ensure a continuous latent space to assist in generative
tasks. Specifically, we use a convolutional variational autoencoder
(CVAE), which applies iterative one-dimensional convolution opera-
tions in the encoder network to generate time-series specific features,
which are then passed through a linear layer to generate a final latent
embedding for each individual community. A more detailed look of
our CVAE architecture is found in Supplementary Fig. 3. In the encoder
portion of the network, these convolution operations extract features
from the input community dynamics xi which in the final stage of the
encoder are flattened into a single vector. These flattened features are
then transformed by two parallel series of linear layers to two latent
vectors, dubbed the mean vector μ and standard deviation vector σ.

During optimization, the VAE does not generate a single encoding
vector zi for each input like a vanilla AE, but rather to each point
associated a small region of the output latent space characterized by a
Gaussian distribution with center μ and standard deviation σ .During
training, the forward pass of the model deterministically generates a
unique set of μ,σð Þ for each input datapoint xi (Supplementary Fig-
ure 3). The actual latent embedding is then generated by sampling a
vector from this learned distribution via l=μ+σϵ where ϵi ∼N 0,1ð Þ
randomvariable and thenpassing that sampled vector through a single
dense linear (affine) layer z=ReLU Wl+bð Þ. This latent embedding is
then decoded via the decoder as with a standard AE, with the predic-
tion xrecon =ψ zð Þ, which are then used, during training, to compute
reconstruction loss as usual. This stochastic sampling encourages the
neural network to not simply associate a single point with a particular
training example but rather a small continuous region of the latent
space. This in turn ensures the local region of the latent space near the
mean vector μ for each training example can be decoded and yield
biologically meaningful interpolations.

To ensure that the variational autoencoder learns not just a locally
continuous, but also a globally continuous distribution of latent
embeddings, the VAE loss also incorporates an additional Kullbeck-
Leibler divergence loss whichmeasures the discrepancy of each latent
embeddings form a standard Gaussian distribution:
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Whereμi and σi are components of the latent E-dimensionalmean
and standarddeviation vectorsgeneratedby theoutput of the encoder
network for a given xi. This additional loss encourages that the regions
of the latent space associated with training example cluster closely
near one another at the origin and that region of the latent space
associated with each training example do not grow individually too
large. This causes the that the local regions associated with each
embedding to overlap each other and overall ensure that the entire
distribution globally remains continuous such that interpolatingwithin
the convex hull of the entire latent distribution remains biologically
meaningful.

A more detailed discussion of the derivation and theory of this
loss and greater architecture of the VAE can be found in Kingma and
Welling (2019)52.

Additionally, we found that adding an reconstruction loss which
penalizes the model for errors on the first time point during recon-
struction improved the ability of the curve to encode and then
reconstruct the earlier transient phase of a given phase space trajec-
tory. We dubbed this the boundary point loss (BPL):

LBPL xi

� �
=
1
n

Xn
i

jxi 0ð Þ�xrecon 0ð Þj22 ð7Þ

wherexi tð Þ gives thepoint on thephase space trajectoryat a given time
t. The final loss of the model was then given by:

Ltotal = Lrecon +αLKL + γLBPL

The hyperparameters α and γ are used to vary the relative
importance of KL and BPL penalties relative to the reconstruction loss
and can be tuned up to place higher priority on either regularizing the
latent space into a Gaussian or reconstructing the initial time point,
respectively. During our numerical experiments we set α =0:001 and
increased γ between 0 and 10 from dataset to dataset until recon-
structions stopped improving.

All optimizationwasperformedusing theAdamoptimizer and the
neural network was implemented in python using the PyTorch
library53.

Classification of strains using support vector machines
Support vector machines are a class of binary linear classifier. They
operate by learning an optimal hyperplane that separates two classes
of data points. They can be used to separate nonlinearly separable
datasets by using appropriate “kernels”54.

For multiclass strain identity classification and antibiotic predic-
tion experiments, we leverage SVM classifiers trained in a one-vs-all
procedure. In our analysis, for each unique strain label or antibiotic
resistance label one SVM classifier was trained to discriminate that
strain vs all others such that for a dataset with n classes a total of n
SVMs were trained. During training, the hyperparameters of each SVM
were optimized via three-fold-cross validation on the training set,
performing a grid-search through the hyperparameter space of C, the
margin of error of the SVM, kernel type, either linearorRBFkernel, and
γ, a parameter which tunes the relative “sharpness” of data point peaks
for RBF kernel SVMs. A more detailed explanation and theory of these
hyperparameters is provided in Hoffman54. During three-fold-cross
validation, we partition the training dataset into three smaller sets and
use two components for training and the third for testing the accuracy
of a given hyperparameter configuration. After testing every hyper-
parameter set on a particular hold-out set, this validation set is swap-
ped out with one of the other two partitions and the whole procedure
is repeated with the new validation and training sets. We select
the optimal hyperparameters based on which set gave the highest
average classification accuracy across all fold combinations. We then
use these set of hyperparameters and retrain the model on the entire
training set (all three partitions) and then evaluate its final perfor-
mance on the testing set. SVMs were trained using the of scikit-learn
1.3.0, along with numpy 1.25, and scipy 1.11 python libraries.

Measurements of bacterial growth curves
For the final dataset (Supplementary Table 1, row 4), we used a library
of 311 clinical Enterobacteriaceae isolates collected from the Duke
University Hospital (supplied by Vance Fowler and Joshua Thaden) and
North Carolina community hospitals (supplied by Deverick
Anderson)55. These isolates have been described previously inmultiple
separate studies [Bioprojects PRJNA290784, PRJNA259658, and
PRJNA551684]17,56,57. They were collected as part of the ongoing Duke
Infection Control Outreach Network (DICON) MDR Biorepository
(since 2010) and theDuke Blood Stream Infection Biorepository (BSIB)
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(since 2002). Both repositories contain prospectively collected Gram-
negative organisms from hospitalized patients. The DICON bior-
epository consists of isolates identified by microbiology laboratories
at member hospitals as causing multidrug-resistant infections, while
isolates in the BSIB were collected from patients with monomicrobial
bacterial BSI at Duke University Hospital. These studies were approved
by the Duke University Institutional Review Board. None of the clinical
information related to these isolates, including how and where they
were collected, was used in the present study.

The generation of the bulk of experimental data used in this work
was described in Zhang et al.17. Frozen stocks were streaked on lyso-
geny broth (LB) agar plates, and three separate colonies were selected
to inoculate growth media. Overnight cultures were prepared in 1mL
of LBbroth in96-well deep-wellmicroplates (VWR),whichwere shaken
at 37 °C for 16 h at 1000 rpm. The OD600 (absorbance at 600 nm) for
the overnight culture was taken on a plate reader (Tecan Spark). To
ensure a consistent initial cell number, cultureswere diluted to 1OD600

(assumed to be equivalent to 8 × 108 cells/mL) and further diluted 1:8
(1 × 108 cells/mL). Cultures were then finally diluted 10-fold in 100 µL of
fresh media in a 384-well deep-well plate (Thermo Scientific) using a
MANTIS liquid handler for an initial cell density of 1 × 106 cells/well. LB
media was used for all experiments, with three culture conditions: (1)
no antibiotic treatment, (2) 50μg/mL amoxicillin, and (3) 50μg/mL
amoxicillin + 25μg/mL clavulanic acid.

Each of the three overnight cultures (three biological replicates,
each from a distinct colony) were used to inoculate four wells for each
condition (to generate four technical replicates), for a total of 12
replicates. The spatial position of all wells for each experiment was
randomized across the plate to minimize plate effects. To minimize
evaporation, the plate was loaded with the lid into the plate reader,
whichwas equippedwith a lid lifter, and the chamber temperaturewas
maintained at 30 °C. OD600 readings were taken every 10min with
periodic shaking (5 s orbital) for 24 h.

Measurements of mixed-population growth curves
As with the clinical isolates, frozen stocks of the plasmid-free and
plasmid-carrying laboratory strains used in mixed-population
experiments were streaked on LB agar plates. Colonies were used
to inoculate 2mL LB in 16mL culture tubes. 1 mM IPTG and 50 μg/
mL kanamycin were added for overnights of plasmid-containing
populations to maintain selection pressure and induce beta-
lactamase production. Overnights were shaken at 37 °C for 16 h at
225 rpm. OD600 for the overnight cultures were measured; both
cultures were corrected to an OD600 of 1. A total of 500 μL of
plasmid-free and plasmid-carrying cells, respectively, were mixed.
The resulting mixture was then diluted 1:16 for an assumed density
of 5 × 107 cells/mL and 50 μL of 1M IPTG was added to induce the
beta-lactamase enzyme. Stock solutions of amoxicillin (Sigma) and
a beta-lactamase inhibitor, either clavulanic acid (Sigma), tazo-
bactam (Fisher Scientific), or sulbactam (Fisher Scientific), were
prepared in DMSO (amoxicillin, tazobactam) or water (clavulanic
acid, sulbactam) and were diluted into LB at concentrations 2.5
times the final concentrations. Using a MANTIS liquid handler,
40 μL of the appropriate antibiotic and inhibitor-containing solu-
tions were dispensed into each well in a 384-well deep well plate
(Thermo Scientific), followed by 20 μL of the diluted culture. Final
initial cell density was 1 × 106 cells per 100 μL well, final IPTG con-
centration was 1 mM, and final antibiotic and inhibitor concentra-
tions formed a dose-response matrix of 0, 0.5, 1, 2, 4, 8, 16, 32, 64,
and 128 μg/mL of the agents. Three replicate wells corresponded to
each condition, and well positions were randomized across the
plate. The plate was loaded with lid into the plate reader, and the
chamber temperature was maintained at 30 °C. OD600 and GFP
readings were taken every 10min with periodic shaking (5 s orbital)
for 24 h.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is available in the main text and the supplementary informa-
tion are accessible at: https://github.com/yasab27/LSMGD.

Code availability
All code is available in the main text and the supplementary informa-
tion are accessible at: https://github.com/yasab27/LSMGD58.

References
1. Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and

community dynamics on plant roots and their feedbacks on plant
communities. Annu. Rev. Microbiol. 66, 265–283 (2012).

2. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial
community dynamics and their ecological interpretation. Nat. Rev.
Microbiol. 13, 133–146 (2015).

3. Cooper, R. M., Tsimring, L. & Hasty, J. Inter-species population
dynamics enhancemicrobial horizontal gene transfer and spread of
antibiotic resistance. Elife 6, https://doi.org/10.7554/eLife.
25950 (2017).

4. Korem, T. et al. Growth dynamics of gut microbiota in health and
disease inferred from single metagenomic samples. Science 349,
1101–1106 (2015).

5. Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R. & Stan, G. B. Control
engineering and synthetic biology: working in synergy for the
analysis and control ofmicrobial systems.Curr. Opin.Microbiol.62,
68–75 (2021).

6. Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors:
engineeredpopulationdynamics increasegenetic stability.Science
365, 1045–1049 (2019).

7. Huang, S. et al. Coupling spatial segregation with synthetic circuits
to control bacterial survival. Mol. Syst. Biol. 12, 859 (2016).

8. Wu, F. et al. Modulation of microbial community dynamics by
spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).

9. Marguet, P., Tanouchi, Y., Spitz, E., Smith, C. & You, L. Oscillations
by minimal bacterial suicide circuits reveal hidden facets of host-
circuit physiology. PLoS ONE 5, e11909 (2010).

10. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the micro-
biome: Networks, competition, and stability. Science 350,
663–666 (2015).

11. Kovarova-Kovar, K. & Egli, T. Growth kinetics of suspended micro-
bial cells: from single-substrate-controlled growth to mixed-
substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998).

12. Ram, Y. et al. Predicting microbial growth in a mixed culture from
growth curve data. Proc. Natl Acad. Sci. USA 116,
14698–14707 (2019).

13. Krishnamurthi, V. R., Niyonshuti, I. I., Chen, J. & Wang, Y. A new
analysis method for evaluating bacterial growth with microplate
readers. PLoS ONE 16, e0245205 (2021).

14. Nev, O. A. et al. Predicting microbial growth dynamics in response
to nutrient availability. PLoS Comput. Biol. 17, e1008817 (2021).

15. Angulo, M. T., Moog, C. H. & Liu, Y. Y. A theoretical framework for
controlling complex microbial communities. Nat. Commun. 10,
1045 (2019).

16. Treloar, N. J., Fedorec, A. J. H., Ingalls, B. & Barnes, C. P. Deep
reinforcement learning for the control of microbial co-cultures in
bioreactors. PLoS Comput. Biol. 16, e1007783 (2020).

17. Zhang, C. et al. Temporal encoding of bacterial identity and traits in
growth dynamics. Proc. Natl Acad. Sci. USA 117,
20202–20210 (2020).

18. Aida, H., Hashizume, T., Ashino, K. & Ying, B. W. Machine learning-
assisted discovery of growth decision elements by relating

Article https://doi.org/10.1038/s41467-023-43455-0

Nature Communications |         (2023) 14:7937 15

https://github.com/yasab27/LSMGD
https://github.com/yasab27/LSMGD
https://doi.org/10.7554/eLife.25950
https://doi.org/10.7554/eLife.25950


bacterial population dynamics to environmental diversity. Elife 11,
https://doi.org/10.7554/eLife.76846 (2022).

19. Tan, C., Smith, R. P., Tsai, M. C., Schwartz, R. & You, L. Phenotypic
signatures arising from unbalanced bacterial growth. PLoS Com-
put. Biol. 10, e1003751 (2014).

20. Transtrum, M. K. et al. Perspective: sloppiness and emergent the-
ories in physics, biology, and beyond. J. Chem. Phys. 143,
010901 (2015).

21. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in
systems biology models. PLoS Comput. Biol. 3, 1871–1878
(2007).

22. Song, H. S., Cannon, W. R., Beliaev, A. S. & Konopka, A. Mathema-
tical modeling of microbial community dynamics: a methodologi-
cal review (vol 2, pg 711, 2014). Processes 3, 699 (2015).

23. Widder, S. et al. Challenges in microbial ecology: building pre-
dictive understanding of community function and dynamics. ISME
J. 10, 2557–2568 (2016).

24. Qian, Y., Lan, F. & Venturelli, O. S. Towards a deeper understanding
of microbial communities: integrating experimental data with
dynamic models. Curr. Opin. Microbiol. 62, 84–92 (2021).

25. Clark, R. L. et al. Design of synthetic human gut microbiome
assembly and butyrate production. Nat. Commun. 12, 3254
(2021).

26. Lindemann, S. R. et al. Engineering microbial consortia for con-
trollable outputs. ISME J. 10, 2077–2084 (2016).

27. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows
simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1,
109 (2017).

28. Lawson, C. E. et al. Common principles and best practices for
engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).

29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-
Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 https://doi.org/10.48550/arXiv.2112.10752
(2021).

30. van den Oord, A., Vinyals, O. & Kavukcuoglu, K. Neural Discrete
Representation Learning. arXiv:1711.00937 https://doi.org/10.
48550/arXiv.1711.00937 (2017).

31. Tran, D. et al. Fast and precise single-cell data analysis using a
hierarchical autoencoder. Nat. Commun. 12, 1029 (2021).

32. Esser, P., Rombach, R. & Ommer, B. Taming transformers for high-
resolution image synthesis. 2021 IEEE/Cvf Conference onComputer
Vision and Pattern Recognition, Cvpr 2021, 12868-12878, https://doi.
org/10.1109/Cvpr46437.2021.01268 (2021).

33. Li, X. et al. Deep learning enables accurate clustering with batch
effect removal in single-cell RNA-seq analysis. Nat. Commun. 11,
2338 (2020).

34. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J.
Single-cell RNA-seq denoising using a deep count autoencoder.
Nat. Commun. 10, 390 (2019).

35. De Donno, C. et al. Population-level integration of single-cell data-
sets enables multi-scale analysis across samples. bioRxiv,
2022.2011.2028.517803, https://doi.org/10.1101/2022.11.28.
517803 (2022).

36. Seninge, L., Anastopoulos, I., Ding, H. X. & Stuart, J. VEGA is an
interpretable generative model for inferring biological network
activity in single-cell transcriptomics. Nat. Commun. 12, doi:ARTN
568410.1038/s41467-021-26017-0 (2021).

37. Wang, T. & You, L. The persistence potential of transferable plas-
mids. Nat. Commun. 11, 5589 (2020).

38. Ansari, A. F., Reddy, Y. B. S., Raut, J. & Dixit, N. M. An efficient and
scalable top-down method for predicting structures of microbial
communities. Nat. Comput. Sci. 1, 619–628 (2021).

39. Brown, K. S. & Sethna, J. P. Statistical mechanical approaches to
models with many poorly known parameters. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 68, 021904 (2003).

40. Wu, F. et al. A unifying framework for interpreting and predicting
mutualistic systems. Nat. Commun. 10, 242 (2019).

41. Anderson, P. W. More is different. Science 177, 393–396 (1972).
42. Simsek, E., Yao, Y., Lee, D. & You, L. Toward predictive engineering

of gene circuits. Trends Biotechnol. https://doi.org/10.1016/j.
tibtech.2022.11.001 (2022).

43. Lugagne, J.-B., Blassick, C. M. & Dunlop, M. J. Deep model pre-
dictive control of gene expression in thousands of single cells.
bioRxiv, 2022.2010.2028.514305, https://doi.org/10.1101/2022.10.
28.514305 (2022).

44. Uhlendorf, J. et al. Long-term model predictive control of gene
expression at the population and single-cell levels. Proc. Natl Acad.
Sci. USA 109, 14271–14276 (2012).

45. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F.
Cancer evolution: mathematical models and computational infer-
ence. Syst. Biol. 64, e1–e25 (2015).

46. Bozic, I. &Wu, C. J. Delineating the evolutionary dynamics of cancer
from theory to reality. Nat. Cancer 1, 580–588 (2020).

47. Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the
architecture of biodiversity. Ann. Rev. Ecol. Evolut. Syst. 38,
567–593 (2007).

48. Kim, K. et al. Mapping single‐cell responses to population‐level
dynamics during antibiotic treatment.Mol. Syst. Biol. 19, https://
doi.org/10.15252/msb.202211475 (2023).

49. Arneodo, A., Coullet, P., Peyraud, J. & Tresser, C. Strange attractors
in Volterra equations for species in competition. J. Math. Biol. 14,
153–157 (1982).

50. Franceschi, J. Y., Dieuleveut, A. & Jaggi, M. Unsupervised scalable
representation learning for multivariate time series. Adv. Neural Inf.
Process. Syst. 32 (Nips 2019) 32, https://doi.org/10.48550/arXiv.
1901.10738 (2019).

51. van denOord,A. et al.WaveNet: AGenerativeModel for RawAudio.
arXiv:1609.03499 https://doi.org/10.48550/arXiv.1609.
03499 (2016).

52. Kingma, D. P. & Welling, M. An introduction to variational auto-
encoders. Found. Trends Mach. Learn. 12, 4–89 (2019).

53. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. Adv. Neural Inf. Processing Syst. 32
(Nips 2019) 32, https://doi.org/10.48550/arXiv.1912.01703 (2019).

54. Hofmann, T., Schölkopf, B. & Smola, A. J. Kernel methods in
machine learning. math/0701907 (2007). https://doi.org/10.
48550/arXiv.math/0701907.

55. Kanamori, H. et al. Genomic analysis of multidrug-resistant
Escherichia coli fromNorth Carolina community hospitals: ongoing
circulation of CTX-M-Producing ST131-H30Rx and ST131-H30R1
Strains. Antimicrob. Agents Chemother. 61, https://doi.org/10.1128/
AAC.00912-17 (2017).

56. Bethke, J. H. et al. Environmental and genetic determinants of
plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6,
eaax3173 (2020).

57. Bethke, J. H. et al. Vertical and horizontal gene transfer tradeoffs
direct plasmid fitness. Mol. Syst. Biol. 19, e11300 (2023).

58. Baig, Y., Ma, H., Xu, H. & You, L. Autoencoder neural networks
enable low dimensional structure analyses of microbial growth
dynamics. LSMGD Repository., https://doi.org/10.5281/zenodo.
10059229 (2023).

Acknowledgements
We thank Daniel Cordray, Jerry Liu, Mirza Khalid Baig, Sumera
Alam, Teng Wang, Kade Heckel, Abdullah Kuziez, Hunter Kemeny,
Zachary Holmes, Anita Silver, and Zhengqing Zhou for lively discussion
and comments on this work. This was work was partially supported by
the Angier Buchanan Duke Memorial Scholarship (Y.B.), the National
Institutes of Health (L.Y., R01AI125604, R01GM098642, and
R01EB031869) and DARPA (L.Y. HR0011-23-2-0008).

Article https://doi.org/10.1038/s41467-023-43455-0

Nature Communications |         (2023) 14:7937 16

https://doi.org/10.7554/eLife.76846
https://doi.org/10.48550/arXiv.2112.10752
https://doi.org/10.48550/arXiv.1711.00937
https://doi.org/10.48550/arXiv.1711.00937
https://doi.org/10.1109/Cvpr46437.2021.01268
https://doi.org/10.1109/Cvpr46437.2021.01268
https://doi.org/10.1101/2022.11.28.517803
https://doi.org/10.1101/2022.11.28.517803
https://doi.org/10.1016/j.tibtech.2022.11.001
https://doi.org/10.1016/j.tibtech.2022.11.001
https://doi.org/10.1101/2022.10.28.514305
https://doi.org/10.1101/2022.10.28.514305
https://doi.org/10.15252/msb.202211475
https://doi.org/10.15252/msb.202211475
https://doi.org/10.48550/arXiv.1901.10738
https://doi.org/10.48550/arXiv.1901.10738
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.math/0701907
https://doi.org/10.48550/arXiv.math/0701907
https://doi.org/10.1128/AAC.00912-17
https://doi.org/10.1128/AAC.00912-17
https://doi.org/10.5281/zenodo.10059229
https://doi.org/10.5281/zenodo.10059229


Author contributions
Y.B. and L.Y. conceived the research and designed the research frame-
work. H.R.M. and L.Y. formulated the ODEmodel of the isolate antibiotic
response. Y.B. performed all model simulation, neural network training,
and machine learning analysis. H.R.M. and H.X. generated the experi-
mental data. Y.B. and L.Y. wrote the paperwith inputs fromH.R.M. &H.X.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43455-0.

Correspondence and requests for materials should be addressed to
Lingchong You.

Peer review information Nature Communications thanks Gail Rosen,
and Bei-Wen Ying for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43455-0

Nature Communications |         (2023) 14:7937 17

https://doi.org/10.1038/s41467-023-43455-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Autoencoder neural networks enable low dimensional structure analyses of microbial growth dynamics
	Results
	Autoencoder compression of simulated growth�curves
	Experimental growth curve compression and reconstruction
	Strain identity classification
	Low-dimensional embeddings outperform raw data in predicting antibiotic resistance
	Low dimensional embeddings enable efficient parameter estimation
	Predicting growth dynamics from initial conditions using embeddings
	Predicting community dynamics from model parameters
	Predicting experimental community dynamics from system parameters

	Discussion
	Methods
	Terminology
	Numerical simulation of community dynamics
	Simulation of microbial dynamics with antibiotic and antibiotic response
	Predicting community dynamics from different initial conditions
	Predicting temporal dynamics from different parameter�sets
	Causal convoluted autoencoder compression
	Variational autoencoder compression
	Classification of strains using support vector machines
	Measurements of bacterial growth�curves
	Measurements of mixed-population growth curves
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




