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Comprehensive mapping of lunar surface
chemistry by adding Chang'e-5 samples with
deep learning

ChenYang 1,2 , Xinmei Zhang 1, Lorenzo Bruzzone 3, Bin Liu 2, Dawei Liu2,
Xin Ren 2, JonAtli Benediktsson 4, Yanchun Liang 5, BoYang5,MinghaoYin6,
Haishi Zhao 5 , Renchu Guan 5 , Chunlai Li 2 & Ziyuan Ouyang2,7

Lunar surface chemistry is essential for revealing petrological characteristics
to understand the evolution of the Moon. Existing chemistry mapping from
Apollo and Luna returned samples could only calibrate chemical features
before 3.0Gyr, missing the critical late period of the Moon. Here we present
major oxides chemistrymaps by addingdistinctive 2.0GyrChang’e-5 lunar soil
samples in combination with a deep learning-based inversion model. The
inferred chemical contents are more precise than the Lunar Prospector
Gamma-Ray Spectrometer (GRS) maps and are closest to returned samples
abundances compared to existing literature. The verification of in situ mea-
surement data acquired by Chang'e 3 and Chang'e 4 lunar rover demonstrated
that Chang’e-5 samples are indispensable ground truth in mapping lunar sur-
face chemistry. From these maps, young mare basalt units are determined
which can be potential sites in future sample return mission to constrain the
late lunar magmatic and thermal history.

The surface of the Moon is the critical interface between the lower
boundary of the lunar atmosphere and the upper boundary of the crust.
It is awindow through thatwecanview the compositionof the crust and
the history of theMoon1. The entire lunar surface is coveredwith a layer
of lunar regolith, except on some very steep-sided crater walls and lava
channels. Remote sensing technology, i.e., the high-energy or optical
techniques, such as gamma ray, neutron spectroscopy (GRNS) and
X-ray spectroscopy2, and missions, i.e., Clementine3–5, SMART-16,
Chang’e-17–9, Chandrayaan-110, Lunar Reconnaissance Orbiter (LRO)
missions11 and SELENE (KAGUYA)12, are important measurements of the
chemical properties of lunar material from lunar regolith. It is critical
that the surface composition inferred by remote sensing is calibrated
with the actual abundances. Lunar samples collected by six Apollo
and three Luna missions from lunar regolith provide the valuable
ground truths and have resulted in a significantly enhanced

understandingof theglobal distributionsof the lunar surface chemistry.
However, the samples in the low latitude region returned by the Apollo
and Luna missions only revealed the evolution of Moon 3.0 Gyr ago,
missing the critical late period of the Moon13. Young lunar soil samples
with different chemical characteristics are necessary for a more accu-
rate surface chemistry estimation.

On 1 December 2020, China’s first lunar-sample-return mission
Chang’e-5 (CE-5) successfully landed in the northeastern Oceanus
Procellarum (51.916°W and 43.058°N), which is one of the youngest
mare basalt units14. The Chang’e-5 sampling region explored a high
latitude that was not reached by the previous Apollo and Luna sam-
pling missions. After ten months, the age of the Chang’e-5 sample, i.e.,
2.030 ±0.004 Gyr ago (Ga) was reported by the Institute of Geology
and Geophysics, Chinese Academy of Sciences15. Meanwhile, the study
of the Key Laboratory of Lunar and Deep Space Exploration, National
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Astronomical Observatories, Chinese Academy of Sciences shows that
the minerals and compositions of Chang’e-5 soils are consistent with
mare basalts and can be classified as low-Ti/low-Al/low-K type with
lower rare-earth-element contents than materials rich in potassium,
rare earth element and phosphorus16. Chang’e-5 soils have high FeO
and low Mg index, which could represent a new class of basalt16. It is
proven that Chang’e-5 samples carry information about young volca-
nic activity on the Moon and are an indispensable ground truth in
mapping lunar surface chemistry17.

Owing to the high-resolution advantage of the optical technology
compared with high-energy technology, existing researchmostly uses
optical images to estimate the abundance and distribution of major
oxides on lunar surface. Abundance algorithms and inversion models
are two main methods for the surface compositional inferences. The
abundance algorithms determined only the TiO2 and FeO contents
with the defined sensitive parameters by performing a coordinate
rotation in UV/VIS ratio versus VIS reflectance space.5,18. For the
inversionmodels, traditional linear and nonlinear regressionmethods,
suchas the partial least squares regression19,20, neural network9,21–23 and
support vector machine24, have applied to establish the relationships
between the spectral values and ground truths of major oxide (e.g.,
TiO2, FeO, Al2O3, MgO, CaO, and SiO2) abundances at the lunar sam-
pling sites. Throughout existing global distribution maps, varying
degrees of differences are present in chemical abundance even with
the same lunar samples11.

At present, three unavoidable factors, i.e., the limited number of
lunar samples, the resolution of optical images and the complex rela-
tionship between the spectral characteristics and oxide contents, make
estimation results uncertain. (i) awidegapexists between thenumberof
sampling points and the amount of values to be estimated. For example,
thenumberof samplingpoints of theClementine,Chang’e-1 andSELENE
for spectral parameters are 475, 188, and 5318, and for inversion models
are 1921, 399, and 4023/3824, but over billions oxide abundance values
should be calculated. (ii) every Apollo mission includes some closer
distance samplingpoints inwhichboth the geologically uniformand the
inhomogeneous soils producedbymixtures of localmarematerialswith
highland ejecta are present11. The returned samples collected in these
areasmaybenot necessarily fully representative of the surfaceobserved
fromorbit. Remote sensingpixelsmeasureareasdozens to thousandsof
meters in size, whereas the returned samples are from areas that are
typically much smaller than a square meter. (iii) the spectral albedo
characteristics and values show complicated relations between the
oxide abundances and their relationships. It is difficult to establish these
complicated relationships by the traditional inversion models. Thus,
estimating reliable and accurate lunar surface chemical contents is the
basic for extending subsequent scientific research.

The Chang’e-5 samples considered in this research were analyzed
by X-ray fluorescence spectrometer (XRF) (sample CE5C0800YJF-
M002)16. The major elements were analyzed (Na, Mg, Al, K, Ca, Ti, Fe,
and Mn). The SELENE (KAGUYA) multiband imager (MI) data, char-
acterized by the abundant spectral features (UV–vis and NIR spectro-
scopy with eight wavelengths) and a high spatial resolution (59 m/
pixel)25, are selected to infer abundances of six major oxides (TiO2,
FeO, Al2O3, MgO, CaO, and SiO2). The MI reflectance data have been
terrain shade-corrected. Meanwhile, the number of sampling points
were expanded to 55 according to thehigh spatial resolutionofMIdata
(Supplementary Table 1). Furthermore, a deep learning (DL) algorithm,
i.e., a 1D convolutional neural network26, was designed to establish an
oxide inversion models and to acquire more accurate lunar surface
chemical contents.

Results and discussion
Maps of lunar surface chemical abundances
Formapping lunar surface chemical abundances, a deep learning-based
inversion method with a 1D convolutional neural network26 (Methods)

wasdesigned tomodel the complex relationshipsbetween the sixmajor
oxide abundances and MI values with the Apollo, Luna and Chang’e-
5 samplingpoints. Due to the small sample size, the leave-one-out cross-
validation (LOOCV) was adopted for evaluating the generalization
ability of the inversion method and avoiding overfitting and
underfitting27. In this work, the MI spectral features and the measured
oxide abundances from sample-return sites both by adding Chang’e-
5 samples and by only with Apollo and Luna data (w/o Chang’e-5) have
been used to build two training sets to derive the inversion model. The
average test precision is used as the validation accuracy of the inversion
model. After training and testing, the abundances inversion models of
six major oxides, i.e., TiO2, FeO, Al2O3, MgO, CaO, and SiO2 were
established (Methods). The prediction accuracies of the inversion
model and the verification accuracies of LOOCV for sixmajor oxides are
shown in Supplementary Fig. 1. The average and the best determination
coefficients (R2) for the prediction of oxide abundances are all greater
than 0.99 with both training sets. The R2 values for the validation of
oxide contents are all greater than 0.90 (Supplementary Fig. 2). The
high precision value confirms that the established inversion models
achieve reliable performance on all six major oxides.

The inversion models between the MI spectral features and the
measured oxide abundances, where derived two kinds of lunar surface
chemistrymaps, onewith only Apollo and Luna samples (w/o Chang’e-
5) (Supplementary Fig. 2) and the other addingwith Chang’e-5 samples
(Fig. 1). The average abundances of TiO2, FeO, Al2O3, MgO, CaO, and
SiO2 when adding Chang’e-5 samples are 1.2 wt%, 8.94wt%, 19.9wt%,
12.62wt%, 9.23wt%, and 45.05wt%; w/o Chang’e-5 are 1.23wt%, 8.59wt
%, 22.02wt%, 14.24wt%, 8.3 wt%, and 45.13wt%. From a global per-
spective, the major six oxides in both cases with Chang’e-5 and w/o
Chang’e-5 maps exhibit trichotomy distributions. The maria show
more TiO2, FeO and MgO and the highlands have higher Al2O3, CaO
and SiO2 abundances. The oxides in the SPA basin are different from
the maria and highlands, TiO2 and FeO are lower than those on mare
surfaces, and Al2O3 and CaO are in between those in the maria and the
highlands, while MgO and SiO2 are higher than those on highlands.
However, these results point out significant differences of oxide
abundances between cases with Chang’e-5 and w/o Chang’e-5. In the
maria, the Chang’e-5 has various degrees higher TiO2, FeO, Al2O3, CaO
and SiO2 abundances with respect to the w/o Chang’e-5 except for the
MgO. On highland surfaces, the Chang’e-5 results in lower Al2O3 and
CaO abundances and higher MgO values compared with the w/o
Chang’e-5. In the SPA basin, the Chang’e-5 displays higher Al2O3 and
CaO and lowerMgOand SiO2 abundances. The differences of sixmajor
oxides TiO2, FeO, Al2O3, MgO, CaO, and SiO2, between the measured
abundances of Chang’e-5 samples (Supplementary Table 1) and w/o
Chang’e-5 are 3.85wt%, 5.44wt%, −0.73wt%, −0.09wt%, −2.58wt% and
2wt%, respectively. Obviously, the inversion results present significant
errors when using only Apollo and Luna data.

Two no-sample returned lunar landing site regions, i.e., Chang’e-3
andChang’e-4, are selected to demonstrate the validity of the Chang’e-
5 inversion results (Table 1). For Chang’e-3, the latest corrected in situ
chemical compositions have been acquired by Active Particle-induced
X-ray Spectrometer (APXS) on Yutu rover28. Compared to the results
acquired by the APXS, the chemical contents of TiO2 and FeO in the
inversion model by adding the Chang’e-5 samples are respectively
0.73wt% and 0.03wt%, whereas those of Al2O3, MgO, CaO, and SiO2

are 5.3 wt%, 2.15wt%, 2.28wt% and 3.37wt% higher. However, the
chemical contents of TiO2 and FeO in the w/o Chang’e-5 inversion
model have distinct differences relative to the APXS abundances,
especially the TiO2 and FeO values down to 3.5wt% and 3.23wt%,
respectively. This may be due to the fact that Chang’e-3 and Chang’e-5
are both on young Eratosthenian lava flows29–32 and the values of TiO2

and FeO are close to each other (Table 1 and Supplementary Table 1).
Chang’e-5 samples represent a new typeof differentiated lunar basaltic
rock compared with Apollo and Luna samples, which have distinctive
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TiO2 (5wt%) and significantly higher FeO content (22.5 wt%). Most
mare basalts from Apollo and Luna collections have TiO2 contents in
the range 0.6–10wt%, and abundances between 5 and 6wt% are rela-
tively lacking. Furthermore, the FeO contents are all below 21wt% in
the Apollo and Luna samples. Therefore, the w/o Chang’e-5 inversion
model results in a large error in the TiO2 and FeO contents. For
Chang’e-4, the inferred (FeO + TiO2) contents are 14.66wt% and
14.70wt% in the Chang’e-5 and w/o Chang’e-5 models, there is a good
agreementwith the range 9 ± 4%and 11 ± 4% foundbyChang'e-4 LPR at
this site33. In general, the abundances of six major oxides inferred by
adding Chang’e-5 samples exhibit more reasonable values.

Comparison with previous lunar chemical maps
We compared the inversed lunar surface chemistry results with the
Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) maps34 (Sup-
plementary Fig. 3), and the estimated contents by Clementine UVVIS5,

Diviner CF22, Chang’e-1 IIM9, and SELENE MI data23,24 with abundance
algorithms or inversionmethods (Supplementary Fig. 4), respectively.
The oxide abundances on the global or lunar lithologic unit’s surfaces35

between the inversed map and the previous maps show varying
degrees of difference.

In the comparison of LP GRS maps, only TiO2, FeO, and Al2O3 in
the lunar maria were selected for the low precision of the MgO, CaO,
and SiO2 abundances determined from the LP GRS data. To accurately
simulate the spatial response function of the LP GRS that sampled at
2°per pixel (61 km pixel scale at the equator), a Gaussian weight
function11 is used. The correlation between the LP GRS and SELENE MI
abundance maps with Chang’e-5 was examined by extracting the
average and standard deviation of each mare (Supplementary Fig. 3).
For TiO2 and FeO, the comparison of LP GRS maps and SELENE MI
abundancemaps with Chang’e-5 average values for eachmare fall near
the 1:1 line, while R2 are 0.623 and 0.633, respectively. Meanwhile, TiO2

Fig. 1 | The lunar surface chemistry maps of six major oxides by including the
Chang’e-5 samples. a–c shows the maps of TiO2, FeO, and Al2O3 abundances
respectively calculated from the deep learning-based inversion method. d, e and f

show themaps of MgO, CaO and SiO2 abundances respectively calculated from the
deep learning-based inversion method.

Table 1 | Chemical compositions of the Chang’e-3 and Chang’e-4 landing sites

Chang'e 3 Chang'e-4

Chang'e-3 Yutu APXS Chang’e-5 w/o Chang’e-5 Chang'e-4 LPR Chang’e-5 w/o Chang’e-5

TiO2(wt%) 3.88 3.15 0.38 %(FeO+TiO2) 9±4%
11±4%

14.66 14.70

FeO(wt%) 22.6 22.57 19.37

Al2O3(wt%) 10.83 16.13 14.75

CaO(wt%) 9.93 12.21 12.24

MgO(wt%) 10.57 8.42 8.68

SiO2(wt%) 41 44.37 41.57

The abundances of sixmajor oxides (TiO2, FeO, Al2O3, CaO,MgO, andSiO2) analyzedwithChang'e-3 Yutu APXS (Active Particle-induced X-ray Spectrometer) and (FeO+ TiO2) contents foundby the
Chang'e-4 LPR (Lunar Penetrating Radar) are from refs. 29, 34, respectively.
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and FeO contents in LP GRS and SELENEMI with Chang’e-5 abundance
maps both are comparable with the most lunar samples points (Sup-
plementary Fig. 4). It indicates that LP GRS maps and SELENE MI
abundance maps with Chang’e-5 show broadly consistent estimates in
TiO2 and FeO contents. However, obvious deviation exists between
Al2O3 LP GRS and SELENE MI abundance maps. The SELENE MI abun-
dance maps compared with Chang’e-5 maps shows higher Al2O3

abundances (+1~6wt%) in most lunar maria, particularly in Oceanus
Procellarum and Mare Imbrium. It should be noted that Al2O3 LP GRS
contents are generally lower than in lunar samples points (Supple-
mentary Fig. 4). In terms of the rich spectral features and high spatial
resolution, the SELENEMI abundancemaps aremuchbetter thanAl2O3

contents estimated.
The Chang’e-5 inversion accuracy has been further evaluated by

comparing with the Clementine UVVIS5, Chang’e-1 IIM9, Diviner CF22,
and SELENE MI data23,24 between measured abundances and the esti-
mated values. The measured abundances are calculated from the
sample compositional data and estimated values are extracted from
oxide prediction result (Supplementary Fig. 4). As shown in Supple-
mentary Fig. 4, Chang’e-5 inversion model achieved the best perfor-
mance using the high spatial resolution SELENE MI data with the most
lunar samples points. The Diviner CF have a large error due to their
relatively low resolution. In contrast, the three SELENE MI results have
small differences in the six major oxides contents. It is worth noting
that the estimated values of Chang’e-5 inversion model have good
consistency with the measured abundances at almost all the sampling
sites, especially the Chang'e-5 landing site.

The root mean square errors (RMSEs) (Methods, Supplementary
Table 2) show that the Chang’e-5 inferred values of the major oxides
are the closest to the measured abundances. The RMSEs of Chang’e-5
inferred six major oxides are significantly smaller than the RMSEs of
the Clementine UVVIS, LP GRS and Diviner CF oxides. The RMSE of
Chang’e-5 FeO is only 0.0027 higher than the Chang’e-1 IIM; other
oxides prediction accuracy is better than the Chang’e-1 IIM. For the
SELENE MI, the inversion models, i.e., Zhang et al.23 and this work by
adding with Chang'e-5 samples shows obvious good performance.
However, the RMSEs of oxides indicated that results of this work are
more accurate, the errors of TiO2, FeO, Al2O3, MgO and CaO derived in
this paper are smaller than those in Zhang et al.23, i.e., 0.0449, 0.1556,
0.1479, 0.0939, 0.2555 and 1.10, respectively. There are two main
reasons for this. In this work, we selected all the returned samples
abundances for mapping lunar surface chemistry. Note that the in situ
chemical contents of Chang’e-3 data are also used in Zhang et al.23. The
in situ chemical contents of Chang’e-3 data are derived based on APXS
measurements that exist deviation between lunar samples28,36, which
may introduce uncertainty in the process of inversion. On the other
hand, the inversion model of this work adopted the convolution layer
with a convolution kernel size of 1 × 3, which canmodel the interaction
information among long-range spectra more effectively than the
convolution kernel size of 1 × 2 used in Zhang et al.23. Meanwhile, the
convolution operation with the stride of 2 is used in the second and
fourth convolution layers to achieve the goal of downsampling and
enlarging the receptive field of the model. Therefore, this work can
reduce the information loss in the process of spectral information
extraction when model the relationship between the spectra and the
oxides abundances.

It should be emphasized that the estimated oxide in existing lunar
chemical maps with abundance algorithms and inversion models only
represents the upper-most surface materials11. Meanwhile, estimated
abundances can only reflect the regional average values of the lunar
surface materials for the complex geologic settings. For example, the
range of SiO2 contents in lunar chemicalmaps based onChang’e-1 IIM,
Diviner CF, and SELENE MI with Chang’e-5 samples are about
39–48.2wt%, 37.3–46.4wt%, and 37–48.5wt%, respectively. The silicic
regions on the Moon, i.e., Hansteen Alpha, Gruithuisen Domes,

Aristarchus Crater, Lassell Massif, Helmet, Apennine Bench, Mairan
Domes, and Compton-Belkovich volcanic complex, the SiO2 contents
in the inversed map are 45.09wt%, 44.36wt%, 43.14wt% (crater rim
is about 46%), 47.36wt%, 46.59wt%, 46.82wt%, 46.98wt% and
42.87wt%, respectively. The estimated SiO2 contents in these silicic
regions are relatively high compared with the other lunar surfaces.
However,most of these silicic regions are located at the interchange of
the lunarmare and highlands or in the lunar mare, such as Aristarchus
craters where the Si-rich materials are confined to the rim and
ejecta37–39. Higher resolution orbital images from future spacecraft
missions, particularly returned samples from the silicic regions, will
allow for examination of silicic materials from the upper subsurface,
which inmany cases could reveal the original surface SiO2 abundances
before mare contamination.

Lunar surface chemistry in the division of geologic units
The molar or atomic ratio of Mg/(Mg+Fe) symbolized as Mg# reflects
the ratio of Mg to Fe in rocks or minerals and is related to the source
region, composition, and partial melting degree of the original
magma and the magmatic evolutionary progress40. The Mg# map for
the Moon calculated with the Chang’e-5 inferred MgO and FeO is
shown in Fig. 2a. The average Mg# value across the Moon is 0.53,
which is close to the Clementine Mg# 0.5740 optimized with gamma-
ray spectroscopy data, and lower than the LP GRS Mg # 0.60635,
Diviner Mg # 0.65222, Chang’e-1 IIM-derived Mg # 0.6469, and SELENE
MI Mg # reported 0.67523 and 0.6724. Meanwhile, the separability of
Chang’e-5 inferred Mg # in lunar maria (0.4), highlands (0.58), and
South Pole-Aitken basin (0.46) are prominent. The division of three
lunar geologic units, i.e., the lunar maria (LM), Feldspathic Highland
(FH), and South Pole-Aitken (SPA) units are refined (Fig. 2a). The
extensive high-Mg# regions are more highlighted at the centre of
feldspathic highland terrain, i.e., Freundlich Sharonov, Dirichlet
Jackson basins, Compton-Bel'kovich, Milikan, Chappell-Debye, and
Fowler-Klute, also around the Apollo 16 site, compared with the
results from the Kaguya Spectral Profiler41. Therefore, the Chang'e
5 samples play an important role in revealing mineral and petrologic
characteristics of the Moon and in re-establishing the lunar magma
ocean (LMO) model.

In the lunar maria (LM), a young mare basalt unit is determined
based on inversed inferred compositions, as shown in Fig. 2b. They are
mainly distributed in the centre of the Procellarum-KREEP-Terrane42,
with two content division, i.e., low-medium TiO2 (4–6wt%), high FeO
(>18 wt%), low Al2O3 (<15wt%) abundance and high TiO2 (>6wt%), FeO
(>18wt%), Al2O3 (>15wt%) abundance. In the first content range,
Chang'e-5 is a typical representative; whereas, no returned samples are
available in the second range. For further exploring the late lunar
magmatic and thermal history with Chang’e-5 lunar samples, compo-
sitional units were defined according to the distribution of oxide
abundances. In the definition of lunar geologic units, compositional
homogeneity is an essential precondition43. Each compositional unit is
formedwithin a short period and eachunit represents a single volcanic
eruptive phase providing consistency in oxide abundances. It is very
important to define compositional units to obtain reliable age deter-
minations for analyzing the eruption of lunar young mare basalts.
Twenty-six young mare basalts compositional units (U1-U26) were
defined andmapped in this study. Each compositional unit has distinct
element composition, including low-median-Ti and high-Ti mare
basalts44,45 that reflect complex magmatism. The model ages of young
mare basalts were referred to Hiesinger et al.46 and Qian et al.47. Two
distinct young mare basalts regions were identified, i.e., the basalts
located in the southwest of Kepler crater (U12) and that below
the Aristarchus Plateau crater (U7). U12 has the highest TiO2

(6.69 ± 1.4wt%), also high FeO (20.15 ± 1.02wt%), and Al2O3

(16.23 ± 0.96wt%) abundances with the model age (1.3–1.4 Ga46,47) that
is different from the abundance of existing returned samples. U7 has
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low TiO2 (3.78 ± 1.1 wt%), high FeO (22.13 ± 1.56wt%) and low Al2O3

(14.37 ± 0.98wt%) abundances which is similar to Chang’e 5 samples
but with different model ages (1.0 Ga48 and 1.9 Ga47). Therefore, more
samples are required, especially in the two distinct youngmare basalts
units, for understanding the late lunar thermal evolution.

The SPA unit is a compositionally unique region on theMoon, the
titanium and iron abundances on the nonmare of this basin range from
0 to 1.5 wt% and from 9 to 16wt%, which is consistent with an
approximate 1:1 mixture of lower crustal material of the Moon and
mantle rock containing <0.1wt% TiO2 and 10µ16wt% FeO48. The results
indicate that the SPA unit is a mixture of mantle and lower-crust
material48. Meanwhile, the average MgO abundance and Mg# within
SPA unit are 10% ± 0.8% and 0.46, respectively, which are lower than
expected formantlematerial, suggesting that thematerials in SPA unit
represent a relatively ferroan composition and mafic complement to
ferroan anorthosites49. Although the interpretation of the previous
research claims to have identifiedmantle-derived olivine50, but further
to reduce uncertainty will require a sample from the interior of South
Pole-Aitken basin. China’s Chang'e 6 mission will collect samples from
the South Pole-Aitken Basin on the far side of the Moon by 202451. At
that time, the lunar surface chemistry would be further refined on the
SPA unit.

Methods
Sample selection
In this work, considering spectral and spatial characteristic of SELENE
MI data, a total of 115 lunar soil samples acquired from 55 lunar sam-
pling sites of Apollo, Luna, and Chang’e-5 landing regions (which

deemed to be relatively geologically uniform) were selected to
represent the ground truth of chemical abundances (Supplementary
Table 1)16,25,52,53. For Maria, highlands and transitional regions, 9, 19, 42,
1, 6, and 1 samples were selected at Apollo 12, Apollo 15, Apollo 17, luna
16, luna 24, and Chang’e-5 sites, respectively; 31 and 1 samples were
selected at Apollo 16 and Luna 20 sites, respectively; and 5 samples
were selected at Apollo 14 site, respectively. Due to the higher spatial
resolution of the Multiband Imager (MI), the number of sampling
stations were refined and expanded at Apollo 12 and 14 comparedwith
ref. 52,53 and 25. The Apollo 11 samples were not considered for data
missing in the MI. The abundances of six major oxides, i.e., TiO2, FeO,
Al2O3, MgO, CaO, and SiO2 were recalculated using the samples
marked by ref. 53 except for Apollo 17 sites where six oxide abun-
dances were from ref. 25, and Chang'e-5 site from ref. 16. The source
literatures of the measured abundances were indicated in Supple-
mentary Data 1.

Data pre-processing
SELENE (KAGUYA) multiband imager (MI) data have rich spectral fea-
tures and high spatial resolution. MI has five UV–vis spectral bands at
415, 750, 900, 950, and 1001 nm, and four near-infrared spectral bands
at 1000, 1050, 1250, and 1550 nm. The spatial resolution is 20meters in
the five visible bands and 62 meters in the four near-infrared bands at
the orbital altitude of 100 km18. In this work, the MI reflectance data
have a resolution of 59m/pixel after topography shadow correction54.
Eight wavebands, i.e., 415, 750, 900, 950, 1001, 1050, 1250, and
1550nm were employed to calculate the abundances of the six major
oxides by removing similar bands, i.e., 1000nm and 1001 nm. The

Fig. 2 | The partition of geologic units based on the inversed lunar surface
chemistry maps. a Mg# map across the Moon. The Mg # map highlights the
boundaries of three lunargeologic units, i.e., LM, FH, andSPA.The red lines encircle
the LM unit, the blue lines mark the SPA unit, and the remaining region is the FH

unit. b Young mare basalts unit determined based on the inferred TiO2, FeO, and
Al2O3 compositions. The black lines denote the boundaries of the young mare
baslts units. The “+” denotes the Chang’e-5 ang Chang’e-3 landing sites. The age of
young mare basalts was from Hiesinger et al.43 and Yuqi Qian44.
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spectral features of MI and the corresponding lunar samples for each
site are shown in Supplementary Table 1. Two spectral angle para-
meters, i.e., θTi and θFe were also adopted to suppress the impact of
optical maturity (i.e., space weathering) on the inversion of TiO2 and
FeO abundances5,55. In this work, θTi and θFe were calculated from MI
data using the following algorithms25.

θTi
= arctanf½ðR415=R750Þ � 0:208�=ðR750 � ð�0:108ÞÞg ð1Þ

θFe
= arctanf½ðR950=R750Þ � 1:250�=ðR750 � 0:037Þg ð2Þ

where, R415, R750, and R950 represent the reflectance values at the
wavelengths of 415 nm, 750nm, and 950nm in MI data, respectively.

Deep learning-based inversion model
This work aims to invert the abundance of major oxides from the
spectral images by establishing the complicated relations between
the oxide abundances and the spectral albedo characteristics. To
accurately predict the oxide abundances on the lunar surface, a deep
learning-based inversion model was designed. After pre-processing,
a pixel xi on SELENE (KAGUYA) multiband imager (MI) data repre-
sents a local lunar surface region with eight spectral observations,
i.e., xi = [xi0, xi1, ..., xi8], which can be regarded as a one-dimensional
sequence. It should be noted that the task in this study is to invert
abundance of oxides from a 1D spectral sequences, the reflectance
characteristics exhibited by oxides in a certain band on the spectral
profile can be regarded as local features. The 1D convolutional neural
network (1D CNN)26 with small-window local connectivity property
has the ability to extract local features. Meanwhile, the weight-
sharing mechanism enables the 1D CNN to have fewer parameters
compared to other models such as Multilayer Perceptrons (MLPs).
This makes it more effective for our analysis where there is a very
small number of returned lunar samples. Accordingly, we designed a
1D convolutional neural network-based inversion algorithm demon-
strated by high accuracy and low risk of overfitting. According to the
above considerations, the proposed inversion model contains a
feature extraction module which is composed of five 1D convolu-
tional blocks and a predictionmodule with one fully connected layer.
Each convolution block in the feature extractionmodule consists of a
1D convolution layer, a Batch Normlization (BN)56 layer and the
ReLU57 activation function. The number of channels of the features in
the five convolution blocks is set to [64, 64, 128, 128, 256]. The pre-
diction module predicts the six major oxide abundances corre-
sponding to the spectral observation based on the features extracted
by feature extraction module. More specifically, we adopted a two-
stage strategy to derive an inversion model with good performance
and high robustness for abundance estimation of the major oxides
on the lunar surface. In the first stage, leave-one-out cross-validation
(for a dataset with N samples, which can be viewed as N-fold cross-
validation) was employed to obtain the best 1D CNN inversion model
of each fold. For each fold, one sample was selected as the validation
set, and the remaining samples were adopted to train themodel. The
training was done with the following settings: the Adam optimizer
was used58–60, learning rate was initialized to 0.01, weight decay was
0.0001, the max number of epochs was 100 and the batch size was
set to the number of the training samples. During the training pro-
cess of each fold, the evaluation results on the validation set were
used to select the best model corresponding to this fold, while an
early-stopping strategy based on the accuracy results was also used
to avoid the problem of overfitting due to continued training. Thus,
N models could be obtained in the first stage. Then, in the second
stage, inspired by the work of 59 and 60, a simple yet effective
strategy was adopted, i.e., averaging the weights of the obtained N
models to derive the final model for predicting the oxide abundance

on the lunar surface. These N averaged models are the best models
corresponding to each fold in leave-one-out cross-validation. The
weight averaging process can be regarded as a model-level ensemble
strategy, which ensures that the final model has a good general-
ization ability. The model is implemented with PyTorch61 framework
on a PC workstation (Intel(R) Xeon(R) Platinum 8352Y CPU @
2.20GHz with 128 GB of RAM and NVIDIA GeForce RTX 3090 Gra-
phics Processing Unit).

Evaluation and validation
To assess of the performance of the proposed deep learning-

based inversion model, the root mean square errors (RMSE) and the
determination coefficients (R2) are adopted and can be calculated as
follows:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

k = 1
yk � ŷk
� �2

r

ð3Þ

R2 = 1�
PN

k = 1 yk � ŷk
� �2

PN
k = 1 yk � �y

� �2 ð4Þ

where N is the total number of samples; yk and �y are the oxide abun-
dances of the k-th sample and the mean oxide abundances of all
samples, respectively; ŷk represents the estimated oxide abundances
of the k-th sample by using the inversion model.

In the process of inversion, the leave-one-out cross-validation
(LOOCV), an evaluation method for assessing model generalization in
the case of small samples, is utilized to validate the effectiveness of the
proposed inversion model. Considering a total of N available samples,
each sample is selected as a test sample, and the remainingN-1 samples
areused as the training set to train the inversemodel. Then, the trained
model estimated the oxide abundances with the test sample. This
process is repeated N times to obtain inversion results for N samples,
and RMSE andR2 values are considered to evaluate the performanceof
the inversionmodel. LowerRMSEandhigherR2 values indicate that the
inversion model has better performance as well as better general-
ization ability to avoid overfitting.

Ablation and comparative experiments
The ablation experiments of the proposed 1D CNN inversion model
were performed on themodel size and hyperparameters (i.e., learning
rate and weight decay). With the same network structure (5 convolu-
tion blocks), the model size was changed by adjusting the number of
channels in each convolution layer, and four model sizes were exam-
ined in the ablation experiments, i.e., ‘small’: [16, 16, 32, 32, 64],
'medium': [32, 32, 64, 64, 128], 'large': [64, 64, 128, 128, 256], 'huge':
[128, 128, 256, 256, 512]. The two hyperparameters, i.e., the learning
rate and the weight decay were set to {0.1, 0.01, 0.001, 0.0001} and
{0.01, 0.001, 0.0001, 0.00001}, respectively. RMSE and R2 under the
LOOCV configuration were used as evaluation metrics. From the
results of ablation experiments, one can see that the 'large' 1D CNN
inversion model with the learning rate = 0.001 and weight decay =
0.0001 achieved the best LOOCV performance (Supplementary Fig. 5
and Supplementary Data 2).

To demonstrate the superior performance of the proposed 1D
CNN inversion model, we compared it with the standard Extreme
Learning Machine (ELM)62 and a new MLPs variant, namely General-
ized Operational Perceptrons (GOPs)63,64. The latter is capable of
using any neuron model, linear or nonlinear, while having a hetero-
geneous network structure like the human nervous system. The
RMSE and R2 under the LOOCV configuration were used to evaluate
the performance of each method. From the results of comparative
experiments on the six oxides, it can be seen that the 1D CNN
inversion model designed on the basis of the considered task and
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data characteristics achieved the best LOOCV performance (Sup-
plementary Table 3).

Comparison strategy
Two kinds of comparison strategies were adopted to demonstrate the
importance and the necessity of Chang’e-5 samples whenmapping the
surface chemistry. In the first strategy, we computed the six major
oxide abundances by both using the proposed deep learning-based
inversion model with the MI spectral features and measured contents
from sample-return sites by adding Chang’e-5 data and only with
Apollo and Luna data (w/o Chang’e-5). Please note that the same
parameters were used for the network training in the Chang’e-5 and
without Chang’e-5 inversion models. Then the difference between the
results obtained by adding Chang’e-5 and without Chang’e-5 were
analyzed. Meanwhile, the chemical compositions of in situ measure-
ments obtained by Active Particle-induced X-ray Spectrometer (APXS)
on the Chang’e-3 Yutu rover28 and Chang’e-4 Lunar Penetrating Radar
(LPR) were also used for quantitative comparison. On the second
comparison strategy, the six major oxides abundances investigated by
the gamma ray spectroscopy (GRS) data with the Lunar Prospector
(LP)34 and estimatedby theClementineUVVIS5, Chang’e-1 IIM9, Driviner
CF22 and SELENE MI23,24 were introduced for further assessment. In
addition, the alteration of division of geologic and compositional units
in the Chang’e-5 landing area, i.e., the northeastern Oceanus Pro-
cellarum (41–45°N, 49–69°W), was shown.

Data availability
Themaps data generated in this study have been deposited in Figshare
[https://doi.org/10.6084/m9.figshare.24081438 and https://doi.org/
10.6084/m9.figshare.24460114]. The SELENE (KAGUYA) multiband
imager (MI) data with a resolution of 59 m/pixel after topography
shadow correction used in this study are available at https://
astrogeology.usgs.gov/maps/lunar-kaguya-multiband-imager-mosaics
and https://planetarymaps.usgs.gov/mosaic/Lunar_MI_multispectral_
maps/, the Clementine UV–vis data are available in https://
planetarymaps.usgs.gov/mosaic; and the Lunar Prospector Gamma
Ray Spectrometer Elemental Abundance are accessible from https://
pds-geosciences.wustl.edu/lunar/lp-l-grs-5-elem-abundance-v1/. The
experimental data generated in this study are provided in the Source
Data file. Source data are provided in this paper.

Code availability
The deep learning-based inversionmodel used in this work is available
at https://github.com/hszhaohs/DL-IM.
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holder. To view a copy of this license, visit http://creativecommons.org/
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