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Imitation dynamics on networks with
incomplete information

Xiaochen Wang 1,6, Lei Zhou 2,6, Alex McAvoy 3,4 & Aming Li 1,5

Imitation is an important learning heuristic in animal and human societies.
Previous explorations report that the fate of individuals with cooperative
strategies is sensitive to the protocol of imitation, leading to a conundrum
about how different styles of imitation quantitatively impact the evolution of
cooperation. Here, we take a different perspective on the personal and
external social information required by imitation.We develop a general model
of imitation dynamics with incomplete information in networked systems,
which unifies classical update rules including the death-birth and pairwise-
comparison rule on complex networks. Under pairwise interactions, we find
that collective cooperation is most promoted if individuals neglect personal
information. If personal information is considered, cooperators evolve more
readily with more external information. Intriguingly, when interactions take
place in groups on networks with low degrees of clustering, using more per-
sonal and less external information better facilitates cooperation. Our unifying
perspective uncovers intuitionby examining the rate and rangeof competition
induced by different information situations.

Quantitatively understanding the evolution of collective behaviour in
animal and human societies is a fundamental question in modern
science1–3. Evolutionary game theory provides a prominent mathema-
tical metaphor to quantify behavioural strategies of individuals, rela-
ted payoffs, and how they change under the influence of natural
selection4–9. Unlike in unstructured populations where natural selec-
tion favours free riders10–12, network structure serves as a basic
mechanism that promotes cooperation13 by non-random and local
interactions14–18. The basic intuition dates back to Hamilton19,20, who
argued that the “viscosity” arising from limited (i.e., local) dispersal
leads to altruists benefiting from proximity to genetic relatives. This
intuition has been profoundly influential in evolutionary theory, and it
is partially responsible for our current understanding of how coop-
eration evolves in networked systems.

When scrutinizing the evolution of collective cooperation on
networks, researchers find that one of the key factors that determine
the fate of cooperation is the update rule, i.e., the rule that specifies

how individuals change their strategies over time14,17,21. Indeed, net-
work structures and update rules are two sides of a coin, with the
former acting as the substrate and the latter driving the evolution of
the entire system. Imitation-based update rules are commonly used
rules in previous studies since imitating successful peers via social
comparison is an important learning heuristic in both animal and
human societies22,23. Intriguingly, previous studies have shown that
whether cooperation evolves depends sensitively on the protocol of
imitation: forgoing one’s own strategy and imitating successful
neighbours by comparing all neighbours’payoffs (the so-called “death-
birth" update rule) makes cooperation evolve if the benefit-to-cost
ratio is greater than a positive threshold; comparing the payoff of a
random neighbour with one’s own and imitating based on this payoff
difference (the so-called “pairwise-comparison" update rule) instead
makes cooperation always disfavoured by natural selection irrespec-
tive of the benefit-to-cost ratio14,15,24. Such qualitatively different results
induced by distinctmechanismsof imitation raise important questions
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about how the mechanisms of imitation influence the evolution of
cooperation. So far, few studies provide clear and satisfactory answers.

To address these questions, we start by examining the
information required by different imitation-based update rules.
Two kinds of information are considered, personal and external
social information. The former refers to an individual’s own
strategies and payoffs while the latter refers to those of one’s
neighbours. From this perspective, the aforementioned two
update rules (and other classical imitation-based rules as well)
can be clearly differentiated: the death-birth update rule requires
no personal information but full social information; the pairwise-
comparison update rule needs both personal and social infor-
mation and weights them equally. This suggests that the amount
of personal and social information required and the relative
weighting of personal to social information may serve as indica-
tors to quantify the impact of imitation-based update rules on the
evolution of cooperation. To undertake a thorough investigation,
we propose a new class of imitation-based update rules called
“imitation with incomplete social information”. Under this rule,
the amount of personal and social information and the relative
importance of personal to social information during strategy
updating are all tunable, covering a wide range of information
requirements for strategy updating and recovering classical
imitation-based update rules as special cases.

Employing this new class of update rules, we first derive
analytical conditions for cooperation to prevail over defection in
pairwise social dilemmas. These conditions reveal that it is best
for the evolution of cooperation if individuals ignore their own
information and instead imitate more successful social peers,
irrespective of the number of peers (at least two) used for com-
parison. In group social dilemmas, the same result holds if the
degree of clustering in the network is sufficiently high; otherwise,
it is better to rely more on personal information and use less
social information. This finding arises mainly from the low over-
lap between individuals’ first-order and second-order neighbours,
which makes it easier for defectors to exploit cooperators
through group interactions when the network is sparse. Finally,
we demonstrate that our findings are robust to heterogeneity in
network structure as well as to the individualized utilization of
social information. Our results thus highlight the degree to which
social information affects the evolution of collective cooperation
in networked systems.

Results
Games and payoffs
We are interested in conflicts of interest arising in groups. Consider a
group of size n, consisting of individuals of type C ("cooperator” for
example) or D ("defector” for example). Suppose that f C nC

� �
and

f D nC

� �
are the respective payoffs to types C and D when there are nC

total cooperators in the group. A simple but highly influentialmodel of
a social dilemma was proposed by Dawes25 as possessing two prop-
erties: all individuals prefer widespread cooperation to widespread
defection (f C nð Þ> f D 0ð Þ), yet for all nC⩽ n, there is a temptation to
defect (f C nC

� �
< f D nC � 1

� �
). Here, we consider two kinds of these

social dilemmas: a donation game, which involves pairwise interac-
tions, and a public goods game, which involves interactions in larger
groups.

The networked system we consider consists of N individuals
arranged on the nodes of a network, whose structure represents the
relationships between individuals. At each time step, individuals
interactwith neighbours and obtain payoffs from these interactions. In
the donation game, every individual interacts with each neighbour
separately12,14,18. Cooperators (C) pay a cost of c to provide a neighbour
with a benefit b, while defectors (D) pay no costs and provide no
benefits. This pairwise “donation game” can be summarised by the

payoff matrix15,26,27

C D
C

D

b� c �c

b 0

� �
,

ð1Þ

where each entry gives the payoff to the row player against the cor-
responding column player.

Instead of interacting with each neighbour separately, each game
could consist of group interactions, wherein every individual organises
a multi-player game28,29 involving all of its neighbours. If an individual
hasdneighbours, then theyparticipate ind + 1 group interactions, with
one initiated by the focal individual and d initiated by the neighbours.
A cooperator pays a cost c in each game, and the total costs from
cooperators are then enhanced by a multiplication factor and divided
among all members of the group. When there are nC (0⩽ nC⩽ n)
cooperators in a group of n individuals, the respective payoffs for
defectors and cooperators are

f D nC

� �
=
rnCc
n

, ð2aÞ

f C nC

� �
= f D nC

� �� c, ð2bÞ

where r is the multiplication factor for the public good. When 1 < r < n,
the players in this game are confronted with a social dilemma, wherein
the strategy to maximise individual payoffs (namely, defection) devi-
ates from the collectively optimal choice (namely, cooperation).

In either kind of social dilemma, an individual i’s payoff, ui, is
calculated as the average of their payoffs over all interactions. This
payoff is then transformed into fitness, Fi, by the mapping Fi = e

δui ,
where δ⩾0 is the intensity of selection12,15,18. The selection intensity
reflects the contribution of game interactions to the fitness of i, which
we assume to be weak. The case of neutral drift corresponds to δ =0,
where cooperators and defectors are indistinguishable from the
standpoint of reproductive success.

Imitation dynamics
Imitation-based rules are commonly used in exploring the evolution of
cooperation on complex networks5,14,18,26,30. Instead of viewing beha-
viour change as a result of death, birth, and replacement, imitation
models have the property that agents remain alive but canperiodically
copy the behaviour of others. Popular update rules such as “death-
birth” (DB) and “imitation” (IM)7,14,17,18,24,26,31,32, as well as “pairwise-
comparison” (PC)15,21,33,34, all have natural interpretations in terms of
strategy revision in a cultural context30. However, these update rules
(Fig. 1a–c) lie on the extreme ends of a spectrum in that they assumean
individual has access to information about either all neighbours (DB
and IM, with the distinction being that imitation is not compulsory
under IM) or only one neighbour (PC) when making a decision about
whether (and whom) to imitate.

After interactions, a single individual i is selected uniformly at
random to update its strategy. The set of neighbours of i whose
information (including strategies and payoffs at the current time step)
is accessible to i is denoted by Ωi. We note that j∈Ωi only if j is a
neighbour of i, so Ωi

�� ��⩽di, where di is the degree of i. If this inequality
is strict, then i has incomplete social information during imitation.
Once social information is determined, the relative importance of i’s
personal information is quantified by θ 2 0,1½ Þ. For any j∈Ωi, the
weight associated to j is 1� θð Þ= Ωi

�� ��, so the total weight associated to
all neighbours for comparison is 1 − θ. Under the “imitation with
incomplete social information” (abbreviated as “IMisi”) update rule
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(Fig. 1d), i imitates the strategy of j∈Ωi with probability

1� θð ÞFj

1� θð Þ P
k2Ωi

Fk +θ Ωi

�� ��Fi
: ð3Þ

Otherwise, individual i does not imitate anyone and retains its own
strategy. For complete social information ( Ωi

�� ��=di), IMisi reduces to
the canonical DB (θ =0) and IM (θ= 1= di + 1

� �
) update rules. PC cor-

responds to Ωi

�� ��= 1 and θ = 1/2.
For the parameters of interest, this update rule defines an

absorbing Markov chain, which eventually ends in a state where all
individuals take the same strategy (either all-C or all-D). As a result, we
consider the fixation probability of cooperators (resp. defectors), ρC
(resp. ρD), which represents the probability that one randomly-placed
cooperator (resp. defector) invades and replaces a population of
defectors (resp. cooperators). The metric we use to evaluate whether
selection favours cooperators over defectors is the value of ρC − ρD.
Specifically, cooperators are favoured relative to defectors11,14,18 if
ρC > ρD. Under neutral drift (δ = 0), both ρC and ρD take the value 1/N.
We note that for the class of imitation dynamics we consider, under
weak selection, the condition ρC > ρD is equivalent to the commonly-
used alternative condition ρC > 1/N, which measures the effects of
selection on ρC relative to its neutral value14,18,35.

Here, we are primarily interested in sets Ωi that are chosen ran-
domly, subject to the constraint of having fixed size Ωi

�� ��= s for some

parameter s, which represents the amount of social information.When
individuals neglect personal information (θ =0) and randomly select
one neighbour to imitate at each time step (s = 1), the evolutionary
process is equivalent to neutral drift and is independent of δ. There-
fore, we mainly focus on the cases where either θ >0 or s > 1. For the
sake of simplifying the expressions we present, we assume that the
network is unweighted, undirected, and regular of degree d, with no
self loops. This assumption is not crucial for deriving results on the
IMisi rule; but, in line with previous studies14,24,36, we find this
assumption to be useful to provide intuition for the impact of
incomplete information on the evolution of cooperation for the imi-
tation processes we consider. At the conclusion, we briefly consider
heterogeneous networks.

Pairwise social dilemmas
To investigate the influence of incomplete information on the fate of
cooperators, wefirst consider IMisi for pairwise interactions on regular
graphs. For the cases where either θ > 0 or s > 1, we show in Methods
that weak selection favours cooperators over defectors whenever
b=c> b=c

� �*>0, where
b
c

� �*

=
2θ N � 1ð Þ+ 1� θð Þ 1s s�1

d�1d N � 2ð Þ
�2θ+ 1� θð Þ 1s s�1

d�1 N � 2dð Þ : ð4Þ

To investigate how θ and s affect b=c
� �*, we start from the scenario

where individuals ignore their own information during strategy

Fig. 1 | Illustrationof imitation dynamicswith incomplete information. aUnder
the death-birth (DB) update rule, an individual i (denoted as the focal individual
marked by a black circle) is randomly selected to update its strategy, and it forgoes
its own strategy and imitates its neighbourswith a probability proportional to their
fitness15. The link between i and the neighbour that i imitates is highlighted by a
bold black line. The orange and blue filled circles represent cooperators and
defectors, respectively. b Under the imitation (IM) update rule, an individual i is
selected at random to evaluate its strategy. The individual either keeps its current
strategy or imitates a neighbour’s strategy with a probability proportional to
fitness54,55. c Under the pairwise-comparison (PC) update rule, an individual i is
chosen randomly to evaluate its strategy, and a neighbouring individual is chosen
at randomas a rolemodel33,34. Individual i either adopts this neighbour’s strategy or

retains its own with a probability proportional to their fitness. d Under imitation
with incomplete social information (IMisi), only s (of d = 5) neighbours' information
is accessible to the focal individual, and the relative importance of i’s personal
to external social information is quantified by θ (namely, the weights for all
accessible neighbours are identical and equal to (1− θ)/s). Here, neighbours whose
information is not accessible to the focal individual are represented by grey filled
circles. Under the IMisi rule, the focal individual could imitate a cooperative or non-
cooperative strategy from s neighbours or keep its own strategy (see Eq. (3) for
corresponding probabilities). e The IMisi rule is a general imitation-based update
rule that unifies classical rules including DB, IM, and PC by adjusting the value of θ
and the level of social information ϕ = s/d: DB (ϕ = 1, θ =0), IM (ϕ= 1,θ= 1= d + 1ð Þ),
neutral drift (ϕ = 1/d, θ =0), and PC (ϕ = 1/d, θ =0.5).
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updating (θ=0). In this case, Eq. (4) reduces to b=c
� �* =

d N � 2ð Þ= N � 2dð Þ for any 1 < s⩽d, and we find that the amount of
social information used during imitation has no impact on the fate of
cooperators (Fig. 2a). Note that the canonical DB rule14,24,26,36 is a special
case of IMisi with s=d and θ=0 (Fig. 1e), and for large populations, we
obtain a well-known rule14, namely limN!1 b=c

� �* =d.
When individuals treat all information the same (including both

personal and social information), meaning θ= 1= s + 1ð Þ, we obtain

b
c

� �*

=
ds +d � 2ð ÞN � 2ds +2

s � 1ð ÞN � 2ds +2
: ð5Þ

When s = 1, IMisi then degenerates to PC (Fig. 1c), and we have
b=c
� �* = 1� N<0, suggesting that cooperation is not favoured17,21,29,30.
In fact, cooperation is not favoured in this case whenever
1⩽ s < N � 2ð Þ= N � 2dð Þ since the critical benefit-to-cost ratio b=c

� �* is
negative. When N � 2ð Þ= N � 2dð Þ< s⩽d, the critical ratio becomes
positive and decreases as s grows, suggesting more social information
favours the evolution of cooperation. When s = d, meaning individuals
have information about all neighbours, we recover the traditional IM
rule14, and limN!1 b=c

� �* =d +2, as reported previously17. In addition,
heterogeneous networks also support these qualitative findings (see
Methods).

When an individual’s own information dominates (θ→ 1), we
obtain limθ!1 b=c

� �* = 1� N, which is independent of s. Interestingly,
for well-mixed populations (d =N − 1), we get the same critical benefit-
to-cost ratio b=c

� �* = 1� N from Eq. (4). This implies that when indi-
viduals depend almost exclusively on their own information to update
strategies (θ→ 1), the evolution of cooperation on graphs under IMisi
resembles that of a well-mixed population. This finding echoes those
obtained from aspiration-based update rules where individuals rely on
only their own information for strategy updating21,37–39.

To systematically explore the effect of personal information
on the evolution of cooperation, we plot b=c

� �* as a function of θ
in Fig. 2c. As a general trend, we find that increasing the relative
importance of an individual’s own information (θ) leads to an
increase in b=c

� �*, suggesting that personal information is detri-
mental to the fixation of cooperation. Moreover, for fixed θ > 0,
we find that increasing s can decrease b=c

� �*. Thus, when more
social information is used during strategy updating, there is more
room for cooperation to be favoured over defection. This is
contrary to the intuition in previous studies14, in which large

neighbourhoods impede cooperation. We find that θ = 0 and s > 1
provide the best possible condition (lowest critical benefit-to-cost
ratio) for the evolution of cooperation, suggesting that com-
pletely neglecting personal information best promotes the evo-
lution of cooperation under pairwise interactions, and in this
case, the amount of social information has no impact on the
evolution of cooperation.

Group social dilemmas
Even with complete social information, such as in standard DB, a
remarkable property of pairwise interactions on regular networks is
that the critical benefit-to-cost ratio depends on only the size, N, and
the degree, d, of the network. This critical ratio was first derived for
vertex-transitive graphs24, which look the same from every vertex, and
subsequently extended to regular graphs36. For IMisi, too, we find that
pairwise interactions give a critical ratio that depends on just N, d, θ,
and s (Eq. (4)). However, when considering group interactions, an
individual’s payoff can be affected by both one- and two-step (i.e., first-
and second-order) neighbours, which suggests that clustering in the
network plays a role in the evolution of cooperation. To simplify the
expressions we report for group interactions, we now assume that the
network is vertex-transitive of degree d, a slightly stronger notion of
symmetry than regularity.

In the public goods game, we find that cooperators evolve
whenever r > r*, where

r* =
d + 1ð Þ2 2θ N � 1ð Þ+ 1� θð Þ ds s�1

d�1 N � 2ð Þ� �
2θ d + 1ð Þ N � d � 1ð Þ+ 1� θð Þ ds s�1

d�1 d � 1ð ÞC +d + 3ð ÞN � 2 d + 1ð Þ2
� � :

ð6Þ

Here, C is the global clustering coefficient of the graph, which
quantifies the overlap of first-order and second-order neighbours (for
an explicit expression, see Methods). As shown in Fig. 3i, the critical
multiplication factor, r*, decreases as the clustering coefficient C
increases, which means that highly clustered network structures
generally promote the evolution of cooperation by reducing the
barriers for selection to favour cooperators.

Although the critical ratio of Eq. (6) looks quite different from that
of Eq. (4), there are some notable qualitative similarities between the
two kinds of interactions. For example, when the relative importance
of personal information takes extreme values (θ→0 or θ→ 1), the

DB IM

ca b

Fig. 2 | Effects of incomplete information on the fixation of cooperation in
pairwise social dilemmas.Here, we present simulations of the fixation probability
difference ρC − ρD of cooperation and defection as a function of benefit-to-cost
ratio, b/c. Markers are from numerical simulations and lines from the corre-
sponding linear curve fitting. The vertical arrows point to the values of (b/c)*

derived theoretically underweak selection (Eq. (4)). a If individuals ignore theirown
information (θ =0), then the b=c

� �* above which cooperation is favoured is the

same for different amounts of social information s > 1. b When individuals treat
social and personal information as being equally important (θ= 1= s + 1ð Þ), b=c

� �*
decreases as s grows. c We also illustrate b=c

� �* as a function of the weight of
personal information, θ, for different amounts of social information, s, according to
Eq. (4). All curves converge to the same value of b=c

� �* as θ→0, suggesting that
cooperation is favouredmost when individuals neglect their personal information.
Here, we set N = 100, δ =0.01, and d = 6 in a and b, and d = 15 in c.

Article https://doi.org/10.1038/s41467-023-43048-x

Nature Communications |         (2023) 14:7453 4



critical multiplication factor, r*, is independent of s. Specifically,

limθ!0 r
* = d + 1ð Þ2 N�2ð Þ

d�1ð ÞC +d + 3ð ÞN�2 d + 1ð Þ2 and limθ!1 r
* = d + 1ð Þ N�1ð Þ

N�d�1 . Despite these

similarities, our findings for group interactions differ when 0 < θ < 1.
Indeed, we find that there exists a critical threshold for the clustering
coefficient,

C* = d2 +d +2� 2N
N � 1ð Þ d � 1ð Þ , ð7Þ

which satisfies both ∂r*/∂s < 0 if and only if C > C* and ∂r*/∂θ >0 if and
only if C > C*. What this means is that, when C > C*, the more social
information that is used and the less that individuals weight their own
information, the easier it is for cooperation to be favoured over
defection (Fig. 3g). However, when C < C*, the results are reversed,
meaning that themore social information that is used and the less that
individuals weight their own information, the harder it is for coop-
eration to be favoured over defection (Fig. 3h). Intuitively, if the net-
work has a low level of clustering, then cooperative clusters are not
robust and are easily exploited by defectors. In this case, it is better for
cooperators to retain their strategy in order to increase the likelihood
of survival during strategy competition to fill a vacancy.

To verify our theoretical results, we perform numerical simula-
tions on two graphs with different clustering coefficients: C =0:5 >C*

(Fig. 3a) and C =0<C* (Fig. 3b). The effect of social information on
cooperation is completely the opposite for large and small clustering
coefficients (Fig. 3c, d, e, and f). When C =0, increasing social infor-
mation and decreasing the weight of personal information increases r*

and thus impedes the evolution of cooperation, but this effect is
reversed when C =0:5. In addition to our explorations on regular
graphs, we confirm that our findings are robust to heterogeneous
network structures suchas scale-free40 and small-worldnetworks41 (see
Methods and Supplementary Fig. S2). Moreover, we also numerically
present the existence of the critical clustering coefficient determining
the impact of social information in Supplementary Note 4 and Sup-
plementary Fig. S8.

The rate and range of competition induced by the IMisi
update rule
Intuitively, the evolutionary dynamics generated by the IMisi rule can
be understood as involving two competitive relationships. First, when
an individual is selected to change its strategy, the focal individual
competeswith its neighbours to avoid imitation and retain its strategy.
If it fails, the neighbours then compete to be the role model for
imitation.

Regarding the evolutionary process, the spread of cooperation
can be understood using a random walk on networks. Denote by u nð Þ

the expected payoff to an individual at the end of an n-step random
walk from a cooperator (see Supplementary Note 2.3). Theoretically,
we show that weak selection favours cooperators whenever

2θ
s
d

u 0ð Þ � u 1ð Þ
� �

+ 1� θð Þ s � 1
d � 1

u 0ð Þ � u 2ð Þ
� �

>0: ð8Þ

The first term in this summation, weighted by θ, is associated to
competition between one-step neighbours. The weight s/d is the
probability of that a fixed neighbour is part of a focal individual’s
information set. The factor of 2 arises due to the two kinds of
competition between one-step neighbours. The first occurs when a
cooperator is chosen as the focal individual and competes to retain
its strategy. The second occurs when a neighbour of the focal
individual is a cooperator and is included in the focal individual’s
social information set. The remaining term in Eq. (8), weighted by 1 − θ,
is associated to competition between two-step neighbours. Given a
focal individual and a neighbour chosen for comparison, the
probability that a fixed neighbour among the remaining nodes is part
of the information set is s � 1ð Þ= d � 1ð Þ. Competition between these
neighbours can be understood by placing a cooperator at one location
and comparing the respective payoffs of the two players. Figure 4
illustrates the selection condition of Eq. (8).

It is difficult for cooperators to prevail in the competition with
one-step neighbours. Specifically, the corresponding expected payoff
of a focal cooperator is always less than the average of its random first-
order neighbour, namely, u 0ð Þ<u 1ð Þ, because the first-order neighbours

2r

2r
2r

2r

r

r

a c

d

e

f

g i

Cooperator

Defector

b h

r ∗

Fig. 3 | Effects of incomplete information on the fixation of cooperation in
group social dilemmas.We consider two different regular networks with different
clustering coefficients (C). a On the graph with C =0:5, the payoffs of the public
pools organised by cooperators are 2r. bOn the graphwith C =0, the payoffs of the
group organised by the cooperators on both sides decrease. We perform simula-
tions on fixation probability difference ρC − ρD as a function ofmultiplication factor
r. Here markers are from numerical simulations and lines are from the corre-
sponding linear curve fitting. When individuals ignore their own information
(θ =0), r* is the same for different amounts of social information s (c, d). The arrow
points to the value of r* derived theoretically under weak selection (Eq. (6)). When

individuals treat both kinds of information equally (θ = 1/(s + 1)), the small amount
of social information s makes r* larger for C =0:5 > C* (e). The influence is totally
reversed when C =0< C* (f). We draw the critical r* as a function of the weight of
personal information θ (Eq. (6)) for the networks in a and c. As θ goes up, r*

increases when C =0:5 > C* (g), and decreases when C =0< C* (h). The critical r* is a
decreasing function of the clustering coefficient C for multi-player game when
θ =0.9 (i). The curves converge when C = C*, and then diverge, reversing the influ-
enceof the amount of social information s. Here, c = 1, and otherparameters are the
same as those in Fig. 2.
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of the focal cooperator always have a cooperative neighbour. How-
ever, competition with second-order neighbours is the key to the
success of the evolution of cooperation. Success in such competition
for a cooperator happens when its neighbour starts to cooperate.
Thus, the payoff of the focal cooperator increases and an aggregation
of cooperators forms. Hence, increasing the relative weight of com-
petition with second-order neighbours can promote cooperation.

An individual’s personal information and the number of social
peers account for the range and rate of competition. Individuals may
compete with first-order neighbours, second-order neighbours, or
both (Fig. 4), depending on the information encoded in θ and s. As Eq.
(8) shows, no competition occurs under neutral drift (θ = 0, s = 1). If
individuals neglect personal information and consider more than one
piece of social information (θ = 0 and s > 1), individuals compete only
with their second-order neighbours for expansion, suggesting that the
amount of social information has no impact on the critical value b=c

� �*
(Figs. 2a, 3c, d). Otherwise for θ >0, if individuals only consult one
piece of social information (s = 1) or depend almost exclusivelyon their
own information (θ→ 1), individuals only competewith theirfirst-order
neighbours, which is harmful to the evolution of cooperation con-
sidering u 0ð Þ<u 1ð Þ. In other conditions with θ >0 and s > 1, individuals
compete with both first-order and second-order neighbours. And
increasing the amount of social information s and decreasing the
weight of personal information θ represent a larger relative weight of
the competition with second-order neighbours, namely, (1− θ)(s − 1)/
(d − 1) compared to that with first-order neighbours (2θs/d). This
explains why using less personal information and more social infor-
mation better facilitates cooperation.

Our findings shed light on the famous perplexing result15,17 that
regular networks promote the evolution of cooperation under DB but
not under PC. Only competing with first-order neighbours leads to the
finding that PC fails to promote cooperation. In contrast, it is possible
for the expected payoff of a focal cooperator to exceed that of a ran-
dom second-order neighbour under DB as long as b/c is above a
threshold. The nature of this threshold, as it depends on the amount of
social information, the relative weightings, and the network structure,
is captured by Eq. (4) in donation games and by Eq. (6) in public
goods games.

Heterogeneity in external information
So far, wehave explored the scenario inwhichdifferent individuals use
the same amount of external social information (the same value of s).
Considering that different individuals may have different abilities for
collecting and processing social information, we next consider the
scenario of heterogeneous social information. Let si denote the num-
ber of neighbours that individual i selects at random for comparison.
We compare three distributions for si (homogeneous, uniform, and
Gaussian) in a population of size N = 100 and degree d = 5. Let n sð Þ be
the number of individuals having si = s. The homogeneous distribution
fixes s at 3 for all individuals, i.e. n 3ð Þ= 100. For the uniform distribu-
tion, we use n 1ð Þ=n 2ð Þ=n 3ð Þ=n 4ð Þ=n 5ð Þ= 20. For the Gaussian dis-
tribution, we use n 3ð Þ=48,n 2ð Þ=n 4ð Þ=20, and n 1ð Þ=n 5ð Þ=6. In each
case, the mean of si is 3.

When individuals do not take their own information into account
during strategy updating (θ =0), we find that the critical benefit-to-
cost ratio holds the same for different distributions of si (Fig. 5a, b).
This means that, when θ =0, heterogeneity in social information over
different individuals does not qualitatively alter our results obtained
under the homogeneous distribution. However, if individuals instead
consider their own information for strategy updating, heterogeneity of
social information usage generally hinders the fixation of cooperation
(Fig. 5c, d).

These results again highlight the role that an individual’s own
information plays in the evolution of cooperation: it acts as a switch.
When personal information is neglected during strategy updating,
heterogeneity in the usage of social information has no impact on the
evolution of cooperation; whenever personal information is con-
sidered, such heterogeneity generally inhibits the evolution of coop-
eration. This switching effect can be intuitively and approximately
explained by our previous theoretical analysis. When θ = 0, we have
shown that the amount of social information used does not affect
b=c
� �*. When θ= 1= s + 1ð Þ, we see that

b=c
� �*> 0, ∂ b=c

� �*
=∂s <0, and ∂2 b=c

� �*
=∂s2 > 0, ð9Þ

whenever 1⩽ N � 2ð Þ= N � 2dð Þ< s⩽d (see Eq. (5)). As a result, the rate
at which b=c

� �* decreases will slow down as s increases, which explains
the inhibitory effect of heterogeneous usage of social information:
when the number of neighbours si that an individual consults deviates
from the average value s, individualswith si < swill induce an inhibitory
effect on cooperators, and it cannot be counterbalanced by the posi-
tive effects led by those individuals with si > s. This also explains why
we observe that the homogeneous distribution is superior to uniform
and Gaussian distributions: a smaller standard error (Fig. 5) indicates
there are fewer individuals using si ≠ s.

Discussion
Many classical evolutionary processes in networked systems can be
interpreted as being intelligent, cultural and arising from imitation
dynamics. Although these processes are abstractions of reality and
cannot capture every aspect of the intricacies of intelligent animal and
human behaviour, they are often amenable to mathematical analysis,
which yields important insights into how traits spread over systems. In
an overwhelming majority of these models, the imitation mechanism
lies on an extreme end of the spectrum, involving either complete or
very limited external information. Furthermore, they frequently
assume that individuals interact with only first-order neighbours. In
this study, we have considered a natural family of parametrised update
rules, which includes classical imitation processes as special cases. We
have analysed this model in terms of general payoff relationships,
which allows for the study of traditional social dilemmas with first-
order neighbours, like thedonationgame, aswell as group interactions
with individuals farther afield, including public goods games. Our
framework can be easily extended to investigate imitation dynamics

Fig. 4 | Intuition about competition and the evolutionary success of coopera-
tors. The selection condition for cooperators to be favoured relative to defectors
involves three kinds of competition, at two ranges. The individuals with black
circles are the individuals who are changing strategy, and the individuals with
purple circles linked by the purple lines are the individuals who are competing.
a Conditioned on a cooperator (orange solid circle) being chosen as the focal
individual (black circle) to evaluate its strategy, this cooperator competes with a
first-order neighbour (purple circle) to retain its strategy. b Conditioned on a
cooperator being a one-step neighbour of the focal individual (black circle), this
cooperator competes to be a candidate (purple circle) for imitation. c Once the
focal individual (black circle) decides to imitate some neighbour, a neighbouring
cooperator competes with other neighbours (purple circle) to fill the vacancy.
d Putting these three kinds of competition together, one obtains the selection
condition reported in Eq. (8).Here, u nð Þ is the expectedpayoff to an individual at the
end of an n-step random walk from a cooperator.
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based on nonlinear multi-player games42,43 and general group
interactions44. In addition, howdifferent types of personal and external
information affect the evolution of cooperation in heterogeneous
networks, from a theoretical viewpoint, deserves further investiga-
tions. Exploring the independent impact of personal information and
social information is also worthwhile45.

For the prosperity of altruistic behaviour in donation games,
individuals should ignore personal information and relymore on social
peers for comparison. The situation is more nuanced in public goods
games, as clustering in the network plays a greater role. There, another
critical threshold appears for the clustering coefficient. Above this
threshold, cooperation ismore easily favoured byweighting one’s own
success less and using more neighbours for comparison. Below this
threshold, these findings are flipped. In fact, the appearance of clus-
tering coefficients is interesting in and of itself, evenwhen restricted to
a classicalmechanism like DB. Clustering is absent from the analysis of
donation games altogether, and our results show that the critical
multiplication factor in public goods games is a monotonically
decreasing function of the clustering coefficient, reflecting the fact
that cooperation in these games is favoured most when there is sig-
nificant overlap between first- and second-order neighbours. The dif-
fering results between pairwise and group interactions are mainly due
to the sparsity of connections: with sparse connections, defectors
easily exploit cooperators through group interactions even when they
are inside cooperative clusters. In such settings, it is better for coop-
erators to weight their own success more when deciding whether to
imitate a neighbour.

The first-order competition for resisting strategy change is an
instance of the so-called “status quo bias" in economics and
psychology46,47. People tend to be inclined to keep their present
behaviour, especially when they are successful. Our results show that,

for the emergence of cooperation, such behaviour is not necessarily
conducive to the well-being of the community. Learning from better-
performing individuals, represented by second-order competition, is
often a more efficient way to promote the spread of altruism.
And it has been shown that such a process plays an important role in
human decision-making48–51. Our study provides possible intuition for
how coupling this inherent human psychological activity to incom-
plete social information influences the emergence of collective
cooperation.

The IMisi rule and its selection condition, Eq. (8), raise the ques-
tion of relationships to classical imitation rules on weighted graphs.
For example, under IM dynamics, when an individual itself is weighted
by θs and neighbours are weighted by θn, the probability that j imitates
i ≠ j is θnFjhji=ðθn

PN
k = 1 Fkhki +θsFiÞ, where hij stands for the weight of

the edge between i and j. Although such an update rule is evidently
distinct from that of Eq. (3), it is not immediately obvious that this is so
under the assumption of weak selection. By way of analogy, stochastic
payoff schemes can be reduced to deterministic models (i.e. in
expectation) under weak selection30. In the present model, intrigu-
ingly, one cannot generally find weights θs and θn such that the weak-
selection dynamics generated match those of Eq. (3) (see Methods).
Therefore, generically, IMisi constitutes a new class of imitation
mechanisms.

From a modelling perspective, our approach departs from
the standard paradigm of fixing the update rule and varying the
system structure. Instead, we fix a class of (regular) networks and
study the effects of changing the parameters of the update rule
on the evolution of cooperation. This approach is similar in spirit
to that of Grafen and Archetti52, who studied the effects of the
range of density dependence on the evolution of altruism, which
in turn illuminated why update rules with global competition for
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Fig. 5 | Effects of heterogeneous social information on the fixation of coop-
eration. For three different distributions of external social information (homo-
geneous, uniform, and Gaussian), we present the fixation probability difference
ρC − ρD forpairwise andgroup social dilemmason regular graphs.Here,markers are
from numerical simulations and lines are from the corresponding linear curve
fitting. The vertical arrows point to the values of b=c

� �* and r* derived theoretically.
When personal information is not considered (θ =0), we find that information

heterogeneity does not change the critical values (i.e., b=c
� �* and r* as shown in

Figs. 2 and 3) overdifferent distributions forpairwise (a) and group (b) interactions.
When an individual’s personal information is taken into account, the results change
(c, d), showing that the homogeneous distribution generates the smallest value of
b=c
� �* and r*. The mean for the homogeneous, uniform, and Gaussian distributions
of social information is 3, and the standard error is 0, 1.41, and 0.90, respectively.
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reproduction do not favour cooperation while others, with
involving more localised competition, can. Recently, there has
also been a focus on classifying the pertinent update rules for
(meta-) populations of fixed structure53. Such update rules can
involve several steps (birth, death, and migration at various
levels), and it is an open problem how each of these steps affects
the evolution of density-dependent behaviours. Although the
specific motivation for our study is quite different from these
earlier works, it fits into the theme of understanding how the
microscopic details of reproduction and survival affect the evo-
lutionary dynamics of a population, which will continue to be an
important task going forward.

Methods
Notation and payoff calculation
The population consists of N individuals, and its structure is repre-
sented by a d-regular graph, G. The state of the population can be
represented by a binary vector, x 2 0,1f gN , where xi = 1 indicates that
individual i is a cooperator and xi = 0 means a defector. Let us con-
sider random walks on G in discrete time. For a random walk on the
regular graph G, the probability of a one-step walk from node i to
node j is pij = 1/d if they are connected; otherwise, pij = 0. We denote
by p mð Þ

ij the probability of going from i to j in anm-step random walk.
Since the graph is regular, the unique stationary distribution places
weight limm!1 pðmÞ

ij = 1=N on node j. Let u mð Þ
i be the expected average

payoff of an individual at the end of an m-step random walk from
individual i. Under pairwise interactions in the donation game, a
cooperator pays a cost c to offer its opponent a benefit b and a
defector pays nothing and provides no benefit. Thus, the average
payoff is

u mð Þ
i = � cx mð Þ

i + bx m+ 1ð Þ
i , ð10Þ

where x mð Þ
i =

P
j2G p

mð Þ
ij xj represents the probability that an individual at

the end of an m-step random walk from individual i is a cooperator.
Intuitively, the first term in Eq. (10) represents the expected cost
incurred for the individualsm-step away if they cooperate. The second
term represents the benefits that these individuals receive when their
neighbours cooperate. For group interactions, a cooperator pays a
cost c in each game, and the total cost from cooperators is then
enhanced by a multiplication factor r and divided among all members
of the group (i.e. the focal individual who organises the game and its d
neighbours). Without loss of generality, here we set c = 1. According to
the definition and the detailed derivation presented in Supplementary
Note 2.3, we have

u mð Þ
i = r d2

d + 1 x
ðm+ 2Þ
i + r 2d

d + 1 x
ðm+ 1Þ
i + r 1

d + 1 � ðd + 1Þ	 

xðmÞ
i : ð11Þ

For a detailed derivation of Eq. (11), please refer to Supplementary
Note 2.3.

General condition for the success of cooperators
LetD xð Þ be the expected instantaneous rate of change in the frequency
of strategy C. We have D xð Þ=Pi2Gxi bi xð Þ � di xð Þ� �

, where bi xð Þ is the
probability that i replaces one of its neighbours and di(x) is the prob-
ability that it is replaced by its neighbours18. Intuitively, D xð Þ>0
represents a net increase of cooperators. Under neutral drift (δ =0),
D xð Þ=0: Thus, we have D xð Þ= δ∂D xð Þ=∂δ +Oðδ2Þ: Consequently,
under weak selection (0 < δ≪ 1), the condition for cooperation to be
favoured over defection is

∂
∂δ

DðxÞ
� ��

=
∂
∂δ

X
i2G

xi biðxÞ � diðxÞ
� �* +�

>0, ð12Þ

where �h i� represents the expectation over states arising under neutral
drift. Intuitively, Eq. (12) guarantees that the average difference
between the birth and death rates for cooperators (xi = 1) is larger than
zero, indicating a net increase in the population of cooperators.

Basedon Eq. (12), wederive a general condition for cooperation to
be favoured over defection, which reads

X
i2G

xi
N

2θ
s
d
ðuð0Þ

i � uð1Þ
i Þ+ ð1� θÞ s � 1

d � 1
ðuð0Þ

i � uð2Þ
i Þ

 �* +�

>0: ð13Þ

The equation makes sense when xi = 1, which means that the
individual i is a cooperator. uð0Þ

i is the payoff of the cooperator,
and uðmÞ

i (m≥1) is the payoff of a random mth-order neighbour of
the cooperator. As demonstrated in Eq. (12), to ensure that the
expected instantaneous rate of change of cooperators remains
greater than zero, it is imperative for the average payoffs of
cooperators to exceed those of their surrounding competitors.
Eq. (13) states that for cooperators to be favoured, the net result
of the combination of three types of competition that a
cooperator engages in should be positive: (i) competition with a
random first-order neighbour for not being replaced, uð0Þ

i � uð1Þ
i ,

occurring with weight θ; (ii) competition with a random first-
order neighbour to replace it, uð0Þ

i � uð1Þ
i , occurring with weight

θ; and (iii) competition with one of the second-order neighbours
for finally replacing its first-order neighbours, uð0Þ

i � uð2Þ
i

with weight (1 − θ). Here, (s − 1)/(d − 1) is the probability for a
second-order neighbour to be randomly selected to participate in
the competition, given that the cooperator has already been
selected.

Condition for success under pairwise and group interactions
To calculate condition (13), we introduce the coalescing
random walk, which is a collection of random walks that step inde-
pendently until two walks meet18. Let τij denote the expected coa-
lescence time between i and j under the discrete-time coalescing
random walk. Suppose i and j are the two ends of a random walk of
length m. Analogous to other imitation-based update rules, we have
τii = 0 and

τij =
1

1� θ
+
1
2

XN
k = 1

p 1ð Þ
ik τkj +

1
2

XN
k = 1

p 1ð Þ
jk τik , ð14Þ

for i ≠ j. We let τðmÞ =
P

i,j2Gp
ðmÞ
ij τij=N, which represents the expectation

of τij over all possible choices of i and j in the stationary distribution of
the random walk. According to a previous study18, for m1,m2 ≥0, we
have

X
i2G

1
N
xi � ðxðm1Þ

i � xðm2Þ
i Þ

* +�

=
τðm2Þ � τðm1Þ

2N
: ð15Þ

Letting τ +
ii = 1=ð1� θÞ+Pj2Gpijτij be the expected remeeting time in

the discrete-time random walk, we have

τðm+ 1Þ � τðmÞ =
X
i2G

1
N
pðmÞ
ii τ +

ii � 1
1� θ

, ð16Þ

where pðmÞ
ii denotes the probability that an m-step random walk ter-

minates at its starting position i. In particular, for regular graphs, we
have τ +

ii =N=ð1� θÞ and pðmÞ
ii =pðmÞ for all i∈G18. Now, we have that for

regular graphs with degree d,

pð1Þ =0, pð2Þ =
1
d
, pð3Þ =

d � 1

d2 C: ð17Þ
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Substituting Eqs. (15), (16), and (17) to Eq. (12), wehave that for pairwise
interactions

∂
∂δ

D
� ��

=
1
2N

2θ+ ð1� θÞ ðs � 1Þd
sðd � 1Þ

� �
bðNpð1Þ � 1Þ � cðNpð0Þ � 1Þ	 
�

+ ð1� θÞ ðs � 1Þd
sðd � 1Þ bðNpð2Þ � 1Þ � cðNpð1Þ � 1Þ	 
�

=
1
2N

b N ð1� θÞ ðs � 1Þ
sðd � 1Þ

� �
� 2ð1� θÞ ðs � 1Þd

sðd � 1Þ � 2θ
 ��

�c N ð1� θÞ ðs � 1Þd
sðd � 1Þ + 2θ

� �
� 2ð1� θÞ ðs � 1Þd

sðd � 1Þ � 2θ
 ��

:

ð18Þ
Similarly, for group interactions, we have

∂
∂δ

D
� ��

=
ðd + 1Þ
2N

r N ðCðd � 1Þ+2Þð1� θÞ ðs � 1Þd
sðd � 1Þ

��

+ ðd + 1Þ ð1� θÞ ðs � 1Þd
sðd � 1Þ +2θ

� ��
=ðd + 1Þ2

�2ð1� θÞ ðs � 1Þd
sðd � 1Þ � 2θ

�

�N ð1� θÞ ðs � 1Þd
sðd � 1Þ +2θ

� �
+ 2ð1� θÞ ðs � 1Þd

sðd � 1Þ +2θ
�
:

ð19Þ

Solving
�

∂
∂δD

��
>0, we recover conditions (4) and (6) for the success of

cooperators.

Simulations on heterogeneous networks
We performed simulations under different amounts of social infor-
mation on two well-known classes of heterogeneous networks: small-
world networks41 and Barabási-Albert networks40. For both networks,
the average degrees are set to d =6, and we take the minimum degree
of each network to be 3. Due to degree heterogeneity, the number of
neighbours may vary for different individuals. We perform the simu-
lations for 1 ≤ s ≤ 3 and for the cases where individuals know all the
social information. Two relative weights of personal information are
considered, namely θ =0 and θ= 1= s + 1ð Þ.

When s > 1 and θ = 0, the critical benefit-to-cost ratio b=c
� �* is the

same for various amounts of social information (Supplementary
Figs. S1a, c, and S2a, c). This indicates that if an individual’s personal
information is neglected, the amount of social information has no
impact on the evolution of cooperation. When θ= 1= s + 1ð Þ, the critical
ratio b=c

� �* decreases as s increases, meaning cooperation is pro-
moted (Supplementary Figs. S1b, d and S2b, d). These results are
consistent with our findings on regular graphs.

Compared with our results on regular graphs, heterogeneity does
affect the evolution of cooperation. Under donation game, for regular
graphs, b=c

� �* = 6:68 when θ =0,N = 100, and d = 6. Barabási-Albert
networks have inhibitory effects on the evolution of cooperation
( b=c
� �*

≈7:2). But small-world networks can slightly promote coop-
eration ( b=c

� �*
≈6:4). However, this effect of small-world networks is

not strong at θ= 1= s + 1ð Þ. In public goods game, small-world networks
have larger clustering coefficients41, which may be the reason why
these kinds of networks better facilitate the evolution of cooperation.
Nevertheless, when θ= 1= s + 1ð Þ, the inhibitory effect with small
amounts of social information on small-world networks is more pro-
found.When all social information is known, small-world networks are
better for the evolution of cooperation. When s = 1, the critical value
b=c
� �* of the small-world networks grows rapidly, surpassing the cor-
responding value of Barabási-Albert networks.

We also investigate the impact of heterogeneous levels of social
information on cooperation in Barabási-Albert networks40. The dis-
tribution of social information si is the same as those in Fig. 5. Our
findings reveal that the conclusions remain unchanged on hetero-
geneous networks (Supplementary Fig. S3). Specifically, when θ =0,

the critical benefit-to-cost ratio stays the same for various distributions
of si. When θ >0, homogeneous distributions of social information
predominantly foster cooperation, while the heterogeneity of social
information tends to impede the fixation of cooperation.

Relationship to classical imitation dynamics
Since the imitation rule we consider involves choosing s model indivi-
duals uniformly from all d neighbours, a natural question to ask is
whether the dynamics are equivalent to those of classical imitation
dynamics ("IM”)14 on weighted graphs, with one weight θs correspond-
ing to the individual itself and another θn corresponding to neighbours.
That all neighbours correspond to the same weight, θn, arises from the
assumption that social information sets are sampled uniformly under
IMisi. The weight of the edge between i and j is hij. For such a process,
the probability that i imitates j’s strategy in state x 2 0,1f gN is

1
N

θnFj xð Þhji

θn
PN

k = 1 Fk xð Þhki + θsFi xð Þ
, ð20Þ

and the probability that i keeps its own strategy is

1
N

θsFi xð Þ
θn

PN
k = 1 Fk xð Þhki + θsFi xð Þ

: ð21Þ

For general selection intensity, δ, this update rule is clearly
different from the one defined by Eq. (3), but we can still ask
about weak-selection dynamics. By scaling θs and θn, we may
assume that θnd + θs = 1. Differentiating both transmission
probabilities with respect to δ at δ =0 and searching for appropriate
weights θs and θn ( = 1� θs

� �
=d) such that the two derivatives are

equal, we find that θ 1� θð Þ= θs 1� θs
� �

, 1� θð Þ2 1
s
s�1
d�1 = 1� θs

� �
θn, and

1� θð Þ 1� 1
s 1� θð Þ� �

= 1� θs

� �
1� θn
� �

. The first equation implies that
θs = θ or θs = 1 − θ, and in either of these cases the second and third
equations are equivalent. If θs = θ, then the second equation requires

s = d. If θs = 1 − θ, then the second equation requires θ=

ffiffiffiffiffi
s�1
d�1

pffiffiffiffiffi
s�1
d�1

p
+

ffiffi
s
d

p . Thus,

generically, IMisi dynamics are not equivalent to IM dynamics on a
weighted graph, even under weak selection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included within
the paper and its supplementary information files.

Code availability
All numerical calculations and computational simulations were per-
formed in Julia 1.4.1. All data analyses were performed in Python 3.9.12.
All codes have been deposited into the publicly available repository at
https://zenodo.org/record/8430355.
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