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Artificial light at night is a top predictor of
bird migration stopover density

Kyle G. Horton 1 , Jeffrey J. Buler2, Sharolyn J. Anderson3, Carolyn S. Burt 1,
Amy C. Collins1,4, Adriaan M. Dokter 5, Fengyi Guo6, Daniel Sheldon7,
Monika Anna Tomaszewska8 & Geoffrey M. Henebry 8,9

As billions of nocturnal avian migrants traverse North America, twice a year
they must contend with landscape changes driven by natural and anthro-
pogenic forces, including the rapid growth of the artificial glow of the night
sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as
essential areas to restore energy reserves and often act as refugia—making it
critical to holistically identify stopover locations and understand drivers of
use. Here, we leverage over 10million remote sensing observations to develop
seasonal contiguous United States layers of bird migrant stopover density. In
over 70% of our models, we identify skyglow as a highly influential and con-
sistently positive predictor of bird migration stopover density across the
United States. This finding points to the potential of an expanding threat to
avian migrants: peri-urban illuminated areas may act as ecological traps at
macroscales that increase the mortality of birds during migration.

Avian migration represents an intrinsic linkage between diverse sys-
tems. While active migration occurs in aerial habitats1, terrestrial and
aquatic stopover locations provide critical sites for migrants to rest2,
refuel, and offer a reprieve from adverse weather conditions3. Use of
these habitats, whether on land or in the air is anything but random,
with some areas showing greater and more consistent use season-
after-season, decade-after-decade. An objective and comprehensive
understanding of the drivers of migrant activity at the interface of
terrestrial and aerial habitats can have wide-ranging ecological and
conservation applications—yet such large-scale datasets are currently
absent. To this end, we leverage remote sensing data and geospatial
tools to quantify avianmigrant stopover density across the contiguous
United States for spring and fall.

The North American avian migration system is composed of
nearly 500 migratory species. Migrants are primarily songbirds from
both density and species richness perspectives4,5. Among songbirds,

diversity in behavior abounds, including migration phenologies,
foraging preferences, and tolerances to anthropogenic change. With
species ranging from waterfowl to shorebirds to songbirds, among
others, comprehensive and large-scale sampling can be remarkably
challenging, especially for songbirds. We currently have a poor
understanding of songbird stopover use because of their broad-
fronted migration strategy that relies on a distributed patchwork of
stopover habitat that covers the entire continental land mass. While
community science datasets can capture migrant richness6 and
broadscalephenologies4, they also capture latent properties of spatial
sampling biases7,8. Some of these biases can be accounted for
statistically8; however, it still remains a challenge to quantify active
migration to understandmigrant turnover. Additionally, with the vast
majority of migrants taking flight at night9, active migration can be
challenging to observe visually. Here, the use of weather surveillance
radar remote sensing data can inform our understanding of migrant
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distributions by capturing signals during active migration (i.e., birds
in flight).

For more than 75 years, radars have been used to detect birds10.
More recently, the low-elevation scans of radars have been instru-
mental in revealing the spatial distributions ofmigrants as they ascend
from stopover habitats at the initiation of flights bound for breeding or
nonbreeding grounds11–13. The heterogeneity of migrant density aloft
within these scans uncovers variability in howmigrants are distributed
among stopover locations at the ground. Coupled with com-
plementary data such as land cover, vegetation indices, and weather,
we can begin to address whymigrants stopover in some areas and not
others, and start to understand the patterns we see from the immense
diversity of avian migrants found in North America.

Such radar applications provide insights into how migrants
interact with changing landscapes, like the rapid global brightening of
the night sky from anthropogenic artificial light during the
Anthropocene14–16. Migrants in parts of the United States, Mexico, and
Israel have a positive association with artificial lights at night2,13,17–19—an
attraction that can draw migrants into suboptimal stopover habitats
near urban areas, and result in excess mortality. Such human-induced
rapid environmental change can bring about ecological traps: a
maladaptive habitat choice based on cues that were once reliable to
promote fitness20,21. While it remains unclear why nocturnally migrat-
ing birds are attracted to artificial light, it is clear that migrants are
shifting their behaviors in response to this broadscale pollutant13,22–24.
At times, this pollutant can result in fatal collisions with aerial
structures17. Yet urban areas can still serve as critical stopover loca-
tions, understanding where and when these areas are being used by
migrants can help direct mitigating actions25.

Despite the importance of holistically understanding such sys-
tems at large spatial and temporal scales, particularly given rapidly
changing climates and landforms, analyses are few. The dearth of
studies is primarily due to limitations in access to appropriate data and

timeseries to address these questions. Previous analyses focus on local
to regional scales2,12,13,19 and may be overlooking macroscale patterns,
particularly those important for conservation action. Recent large-
scale investigations reveal novel anthropogenic barriers to migrant
stopover, such as the vast agricultural region of commodity crops
grown in the Midwest United States26.

Using the US NEXRAD network, we harnessed the hierarchical
spatial structure of stopover measures from more than 1 million loca-
tions, assembled 49 predictors, and amassed 2500 models across the
contiguous United States to provide the first view of continent-wide
migration stopover. We generated spring and fall bird stopover density
layers—predicting that greater forest cover26, higher levels of artificial
light pollution13,22,27, and higher values of vegetative productivity28 would
result in higher levels of stopover density. Additionally, we developed
hotspotmaps of relative stopover intensity at the scale of a night’s flight
distance, with the understanding that conservation decisions, like the
mechanics of bird migration, are hierarchical in space and time.

Results and discussion
In all, we processed 3,066,623weather surveillance radar scans for this
analysis, from which we assembled approximately 133,000 scans that
aligned with optimal exodus sampling to maximize stopover density
while preserving spatial heterogeneity. Duringmodel training, we held
out 10 × 10 km subsets of our training data to assess model perfor-
mance. During spring, we found a strong positive correspondence
between predicted and observed values (R2 = 0.85, F1, 42430 = 244600,
p <0.0001; Fig. 1A), with strength varying only slightly across three
broad flyway groupings (Western R2 = 0.81, Central R2 = 0.82 and
Eastern R2 = 0.73). Similarly, fall holdout experiments showed a strong
positive relationship between predicted and observed values
(R2 = 0.87, F1, 42864 = 287300, p <0.0001; Fig. 1B), again with some
variation across flyway groupings (western R2 = 0.78, central R2 = 0.84
and eastern R2 = 0.80).
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Fig. 1 | Scatterplot of spring and fall predicted versus actual measured migra-
tion stopover density held out during model training from model sets. Points
were held out from a 10-km bounding box within one of the randomly selected
400-km bounding boxes and one year was randomly selected, among the five
possible years. The 10-km box was centered on the median X and Y coordinates of

training points within the 400-km bounding box. Linear regression fit forA spring:
F1, 42430 = 244600, p <0.0001, R2 = 0.85; B Fall: F1, 42864 = 287300, p <0.0001,
R2 = 0.87. The dashed line shows a 1:1 relationship between predicted and actual
migrant density.

Article https://doi.org/10.1038/s41467-023-43046-z

Nature Communications |         (2023) 14:7446 2



Drivers of stopover density
From our 2000 400 km scale seasonal models, we found that impor-
tant predictor variables were similar across seasons, with elevation,
skyglow, distance to radar, precipitation, and year making up the top
five predictors (Fig. 2). In spring and fall, distance to radar and percent
cultivated crop at the 5 km scale showed negative associations with
stopover density. The remainder of the predictors in the top ten
showed positive correspondence with stopover density. Among the
terrestrial predictors, percent tree canopy cover, percent deciduous
forest (5 km scale), percent evergreen forest, skyglow, and precipita-
tion most consistently showed a positive association with stopover
density, with upward of 70% of models showing positive associations.
In spring, of the 47 predictors with sufficient data, 33 showed positive
associations, 7 showed neutral associations, and 5 showed negative
associations. In the fall, similar patterns were observed, with 32 posi-
tive associations, 7 neutral associations, and 8 showing negative
associations. Interestingly, in both spring and fall, of the 49predictors,
land cover proportions measured within 1 km pixels ranked the lowest
by gain, except for perennial ice at the 5 km scale, whichwas second to
least important in spring and fall.

Macroscale patterns of stopover density
During spring, we found the central portion of the country showed the
greatest stopover densities—in fact, on average, migrant stopover
density within this region was 1.5 times greater in the central flyway as
compared to the easternflyway, and 2.9 times greater compared to the
western flyway (Fig. 3A). In the spring, Arkansas, Oklahoma, Louisiana,
Texas, and Mississippi, showed the greatest mean stopover density, in
descending order. The highest stopover densities were in the coastal
Gulf ofMexico region, particularly southern Texas. In the fall, stopover
density was greatest in the southeastern United States, with Alabama,
Tennessee, Arkansas, Mississippi, and Georgia showing the greatest

mean stopover density, in descending order. The greatest fall stopover
density resided in the eastern flyway, showing 1.2 times more than the
central and 5.8 times more than the western flyway (Fig. 3B).

We also generated relative focal stopover maps parameterized by
average songbird flight distances (265 km29), with three levels of
varying intensity (Fig. 3C, D). Broadly, hotspots often resided near
coastlines, geographic barriers (e.g., mountain ranges in Colorado and
California), and in regions with large swaths of forest. However, these
represent generalizations, and each region showed a specific combi-
nation of drivers of stopover density (Fig. 4).

Examining differences in seasonalmagnitudes of stopover density
(spring vs fall), we found that 70.7% of 1 km pixels showed higher
stopover density in fall. On average, pixel-by-pixel, stopover densities
were 66% higher in the fall (Fig. 5)—32% of the contiguous US area
showed a 100% increase in stopover from spring to fall. Broadly, the
greatest positive differences (denoting fall showing higher stopover
density) occurred in the eastern half of the United States and the
mountain west region. Negative differences (denoting spring showing
higher stopover density) were found throughout the coastal western
United States, Texas and Louisiana coastlines, and the northern Great
Plains region (Fig. 5).

Stopover locations are paramount to the passage of billions of
migratory birds. For decades, identifying and prioritizing stopover
locations has remained a scientific priority30—we fill a perennial gap by
providing the quantification of high-density stopover locations. We
present the first contiguous US view of stopover density for spring and
fall migration seasons, filling broad spatial gaps of previous
assessments26. Our results provide a comprehensive understanding of
macroscale stopover biogeography while delivering high-resolution
stopover layers that can be leveraged across scales to fit conservation
priorities. We reveal stopover hotspots throughout the contiguous
U.S., whereby we identify some of the densest stopover locations

Fig. 2 | Top-10 variable importance plots ranked by mean gain for spring
and fall. Top-10 variable importance plots ranked by mean gain for A spring and
B fall. Blue bars show predictors that had a positive influence on migrant stopover
density in >55% of models, red bars show predictors that had a negative influence
on migrant stopover density in >55% of models, and gray shows neutral predictors
(between 45% and 55% positive). Note that neutral indicates that the variable was
not dominantly positive or negative across all models. However, it could hold a
negative or positive value.We show the percent of positive instances withinmodels

to the right of each bar. Pie charts show the summed percent of gain across non-
sampling predictors categories (i.e., we removed distance to radar and year from
the summation). For pie charts, “other” was composed of pooled predictors of
landcover at 1-km scale (spring = 1.9%, fall = 2.1%), EVI (spring = 4.0%, 3.4%), percent
impervious surface (spring = 0.4%, fall = 0.4%,), and percent tree canopy cover
(spring = 2.2%, fall = 3.6%); each individual category accounted for less than 5% of
the total gain.
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residing far from traditional ecological barriers (e.g., coastal barriers).
The overall eastward shift in stopover hotspots from spring to fall is
consistent with the clockwise looped migration trajectories for
migratory birds in North America31.

Is avian migration reshaping in the Anthropocene?
We offer maps of relative stopover density analyzed within windows
that scale to the distance that migrants generally fly in between stop-
over locations. Classifying relative stopover hotspots at this biologi-
cally based scale reveals a network of important stopover stepping-
stones, despite evidence that landbird species generally migrate in a
broad front and are ubiquitous during migratory stopover26. Our
approach also illustrates a different scale for prioritizing stopover
areas for conservation, which otherwise would typically occur within a
spatial hierarchy that scales with jurisdictional levels (i.e., national,
state, local, Figs. 3 and 4, Supplementary Fig. S5). Our maps can help
guide conservation efforts to protect critical habitats, and collectively
contribute to the full-annual cycle conservation of migratory birds.

Consistently, we found the amount of forest cover, skyglow, and
precipitation had positive associations with stopover density. Overall,
land cover at the broadest scale (5 km)was themost important class of
non-sampling predictors, accounting for 33-34% of summed predictor
gain (Fig. 2). Our analyses broadly reveal forest cover measures, whe-
ther percent canopy cover or percent forest land cover types (e.g.,
deciduous, evergreen, mixed forest), are critical drivers of migrant
stopover across the contiguous United States. Vegetation canopy

height and canopy complexity are additional potential variables to
include in the stopover distribution modeling32,33. GEDI (Global Eco-
system Dynamics Investigation), the vegetation lidar onboard the
International Space Station, generates products from which to esti-
mate these habitat variables that have been shown to relate to bird
diversity and abundance34–38. Our stopover modeling framework can
be adapted to integrate these additional predictors. Furthermore,
more than two decades of US NEXRAD awaits investigation in this
capacity, with insights dating back to the mid-1990s possible. Exam-
inations at the interaction of stopover density, stopover timing, and
land use change can illuminate how this hemispheric system of
migration is being reshaped.

Individually, elevation and skyglow were most important (by
predictor gain) and showed the strongest positive slopes across pre-
dictor space.Moreover, in thewesternflyway, skyglowwas found to be
the top predictor of stopover density. With 28% population loss of
migratory birds in the last five decades, and many regions becoming
drier39, less forested40, and brighter at night15,16, preserving important
and ecologically functional stopover locations is evermore important.
Understanding how human-induced environmental change affects
how and where migrants use stopover habitats is critical for con-
servation efforts as artificial lights act as an attractant for many avian
species, oftentimes with negative consequences including fatal colli-
sions with built structures41,42, decreased connectivity43,44, and changes
in phenology45–48. These findings lend support to the hypothesis that
light pollution can act as an ecological trap for migratory birds,

Fig. 3 | Migratory bird stopover density and hotspot maps for the contiguous
United States. A Spring and B fall predicted migrant stopover density for 2020.
C Spring and D fall relative stopover categories from predicted 2020 stopover
density. Red shades denote pixels above the 90th quantile of predicted stopover
density, yellow pixels between the 50th and 90th quantile of migrant stopover
density, and gray shows pixels below the 50th quantile of migrant stover density.

Relative quantiles identified using a circular focal window radius of 265 km, which
relates to measured average nightly flight distances of tracked free-flying Swain-
son’s (Catharus ustulatus) and hermit (C. guttatus) thrushes29. The western flyway is
defined as the contiguous United States west of 103° west longitude, the central
flyway is the contiguous United States between 103° and 90° west longitude, and
the eastern flyway is the contiguous United States east of 90° west longitude.
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drawing migrants into suboptimal stopover habitats and potentially
dangerous stopover locations with increased risk for collisions with
structures and predation17,41,49. However, with skyglow increasing
migration stopover density, a challenging conservation dilemma
arises. Specifically, are these bright areas, which may fit our definition
of a stopover hotspot, a result of attraction from artificial lights or
important ecological regions, or the combination of the two? Further
insight could be gained by integrating migration passage rates with
stopover densities to estimate the percentage of passagemigrants that
stop in an area (i.e., stopover to passage ratio2). A higher stopover to
passage ratio for bright areas compared todark areas could indicate an
ecological trap. Currently, bright areas are undoubtedly high-use
areas, but if light pollution is mitigated, would stopover density
redistribute spatially?

In a world increasingly characterized by changing habitats and
climate, it is critical to understand drivers of migrant distributions—

especially at critical stopover locations paramount to their success.
With skyglow growing at over 10% per year in North America15, and its
broad and consistent importance in predicting migration stopover—
broadscale collaboration, advocacy, and development of lighting
policies will be necessary to reverse the rise of this global pollutant50.
Yet while our results yield a first continental-scale perspective of this
ecological threat, our understanding of light pollution and its impacts
on avian migrants is far from complete—basic mechanisms of why
migrants are attracted to lights remain at large.

Methods
Radar data download
The United States National Weather Service, Federal Aviation Admin-
istration, andAir Force jointly run theNext Generation Radar (NEXRAD)
network. This network is composed of 159 S-band (10-cm wavelength)
radars, 143 of which reside in the contiguous US, each collecting 360°

Fig. 4 | Midwest inset showcasing measured and predicted stopover density.
AMeasured stopoverdensity (cm2/km2) for Fall of 2020 from7.5-km to 80-km from
radar stations in the Midwest region of the United States. B Predicted stopover
density for Fall of 2020. C Relative stopover categories, with red denoting pixels

above or equal to the 90th quantile of predicted stopover density, yellow pixels
equal to or greater than the 50th and below 90th quantile of migrant stopover
density, and gray showing pixels below the 50th quantile ofmigrant stover density.
Relative quantiles identified using a circular focal window radius of 265 km.
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horizon (azimuthal) scans of the lower atmosphere every 5–10min,
starting at an elevation angle of ~0.5°, and increasing in elevation angle
with successive scans, reaching up to 19.5° depending on the volume
coverage pattern51. Since 2008, these radars have operated in a super-
resolution format, generating polar grids (plan position indicators, PPI)
with 250m range resolution and 0.5° azimuthal resolution. Individual
sampling volumes (hereafter voxels) possess dimensions of 250m ×
0.5° × 1.0°. In this study, we focused on radar reflectivity (η), a measure
of the amount of radiation reflected back to the radar by objects in the
air that scales with animal density52–54. We quantified migrant stopover
density from reflectivity for 2016 to 2020 in spring (93 nights from
March 15 to June 15) and fall (93 nights fromAugust 15 to November 15).
We downloaded all radar scans from sunset to 2.5 h after local sunset
from the AmazonWeb Services repository (https://s3.amazonaws.com/
noaa-nexrad-level2/index.html). While our analysis focused on one
instantaneous measure per night, a priori, the sampling instant that
standardized thenightly site-specific timingof stopover exoduswas not
known, so a wide window of scans was initially downloaded and pro-
cessed (details below).

Radar clutter mitigation
For each downloaded scan, we first worked to remove non-biological
clutter andcontamination. For every scan,we removed rain at the voxel
level using theMistNet algorithm55, a convolutional neural network that
makes binary discrimination between biological or precipitation-
contaminated voxels using radar measures of reflectivity, radial velo-
city, and spectrum width. For every voxel identified as precipitation-
contaminated, we set reflectivity values to NA. Because voxels con-
taining precipitation can result in considerably stronger echo returns
than biological targets, they pose a greater risk of biasing our results—
for this reason, we took a conservative approach and also set voxels
within 5 km of precipitation to NA. We removed scans if greater than
30% of the PPI (from 7.5 to 80 km) was precipitation-contaminated.

We removed topographic and other ground-based clutter using
two static binary masks (clutter/not clutter). First, we generated radar-
specific topographic clutter layers based on underlying elevation and
beam geometry for the 0.5° elevational scan. If the radar beam inter-
sected the terrestrial landscape, we labeled it as a contaminated voxel,
and it was permanently removed from further analysis (set to NA).
Second, we generated radar-specific layers of contaminated voxels

characterized by consistently high reflectivity measures throughout
the life span of the radar. For each station and year from 1995 to 2020,
we computed the probability of detection (POD) for 30 clear scans
from the month of January. We processed the first 300 January scans
starting on January 2 00:00 UTC to avoid New Year’s Eve disturbances.
For each scan, we computed reflectivity on a fixed polar grid of 1° by
500m to a range of 150 km at elevation angles 0.5°, 1.5°, 2.5°, 3.5°, and
4.5° with values clipped to a ceiling of 35 dBZ. We then selected the
30 scans with the lowest total linear reflectivity as representing clear
conditions. From these scans, we computed POD at 10 dBZ, which is
the fraction of scans for which the reflectivity exceeded 10 dBZ. A grid
cell was marked as clutter if POD at 10 dBZ was 20% or more in two or
more years: this step helped mitigate false positives due to actual
atmospheric phenomena in a single year. These voxels could contain
clutter from terrestrial structures such as—but not limited to—build-
ings, broadcast towers, trees, and wind turbines.

In some regions of the southern United States, high-density bat
emergences from roosts also coincide with the onset of nocturnal bird
migration. Because large bat roost departure events show unique ring-
shaped features that are visually obvious56, we were able to screen for
these signatures and generate buffers around roost locations and also
permanently remove these areas from further analysis (set to NA). In
all, we screened 12 sites (KAMA, KCRP, KDFX, KEOX, KEWX, KGRK,
KHGX, KLBB, KMXX, KSJT, KTLH, KVAX); states included Alabama,
Florida, Georgia, and Texas. One site, KEWX (San Antonio, Texas) was
so severely contaminated by bats that we removed the station com-
pletely from our analysis, reducing the number of radars to 142. Lastly,
we note that insect classification remains a challenging task at the
voxel scale within NEXRAD observations. However, because radar
reflectivity is proportional to the product of the scatter diameter to the
sixth power, measures strongly skew toward larger scatterers, like
birds57. Additionally, past studies on NEXRAD data, such as ref. 58
showed no significant difference in models of bird migration intensity
trained on data with or without insect-dominated scans via airspeed
filtering. For this reason, we are confident that our measures reflect
signals from bird targets.

Radar range correction
Because the narrow radar beamsamples at a tilted angle (lowest ~0.5°),
the beam, and by extension airspace sampled, is higherwith increasing

Fig. 5 | Seasonal difference in predicted migrant stopover density (Fall minus spring stopover density). Blue shades show greater stopover activity in the fall, red
greater activity in the spring, and white showing no seasonal difference.
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range from the radar and only samples a fractionof the birds above the
ground. This characteristic tends to result in fewer birds detected with
an increasing range from the radar and raises concern when trying to
map biological activity across large spatial extents59. To reduce this
bias, we used a range-correction technique whereby we first calculate
the vertical distribution of migrants by generating a vertical profile of
reflectivity (VPR)60 between 0 and 2000 m above ground level using
100m altitude bins. For any voxel, the profile allows us to predict the
amount of reflectivity through a column of airspace as if it were
entirely sampled by the radar. We used the integrate_to_ppi function in
the R package bioRad to generate PPIs of the vertical integration of
biological scatterers based on all available elevation scans61,62. We
corrected for range effects due to partial beam overlap with the layer
of biological echoes at larger distances from the radar. We restricted
our range correction to voxelswith adjustment factors less than 10 and
only to a maximum range of 80 km.

Radar exodus selection time
Various approaches have been used to select radar scans to align best
with the sampling of migrant take-off. If scans are selected too early in
the night, they are likely to represent an underestimate of migrant
activity; however, if too late in the night, the linkage between the
spatial heterogeneity in radar signatures and the underlying terrestrial
landscape is eroded (i.e., migrant distributions are largely homo-
geneous). This tension makes selecting the sampling time particularly
important. While some early radar studies selected scans at specific
sun angles12,60,63 (e.g., 5.5°, 7.0°, 8.0°, 9.0°), others have found geo-
graphic variation in flight initiation times13. Because our study exam-
ined a spatial scale larger than any previously undertaken, it was
imperative thatweworked to capture spatial variation in exodus times,
rather than selecting a fixed angle for all sites. Tomodel exodus times,
we used radar scans from sunset to 2.5 h after sunset, and for each
scan, we calculated the median radar reflectivity (η) of the lowest
elevational scan (~0.5°) out to 100 km. We fit a generalized additive
model (GAM) to median η (response) with the hour after sunset as a
smooth predictor (k = 10) and date as a random effect. We then used
this model to determine the time after sunset that predicted the
greatest rate of change in η. Across all radar stations, this analysis
resulted in an average sampling time of 49min after local sunset but
ranged between 27 and 77min after local sunset (Supplementary
Fig. S1). Using these times, we explored drivers of variation in sampling
time using two linear regression models with sampling time as the
response variable and elevation and mean skyglow as predictors. We
quantified mean skyglow at two scales, within 37.5 km and 80 km
buffers; one model was run for each scale. At both scales, we found
that radar site elevation was a significant predictor of sampling time
(p < 0.001), but not mean skyglow (37.5 km buffer, p =0.383; 80 km
buffer, p = 0.751). These models explained 51.7% (37.5 km scale) and
51.4% (80 km scale) of the variance in sampling time.

Using site-specific exodus sampling times, we selected and
assembled all seasonal range-corrected and filtered scans closest to
the period of interest. With scans assembled, we took the mean of
stopover density across all sampling nights within a season-year
interval. For each season-year combination, we mosaicked stopover
densities from all 142 radar stations, taking the mean where overlap in
sampling areas occurred. Lastly, we resampled to a 1 km resolution.
These data served as our response variable for stopover modeling.

Predictor variables for niche model
To understand the drivers of stopover densities, as estimated by radar,
we assembled a broad suite of predictor variables, including the
enhanced vegetation index (EVI) (4 predictors), land cover classes and
composition (30), percent canopy cover (1), percent impervious sur-
face (1), accumulated nocturnal degree-days (8), precipitation (1),
skyglow (1), elevation (1), distance to radar (1), and year (1). In all, we

used 49 predictors, of which 48 were geospatial (see Supplementary
Fig. S2). We use National Land Cover Data (NLCD) to capture cover
type associations, MODIS data to quantify annual and within-season
fluctuations in vegetation greenness and surface temperature, and
VIIRS DNB to derive an index of skyglow.

MODIS enhanced vegetation index. We used the MODIS/Terra vege-
tation indices monthly L3 global product (MOD13A3 V061) at 1 km spa-
tial resolution64.We downloaded the 14 tiles covering the contiguous US
from 2016 through 2020. We focused on two scientific datasets—the
monthly EVI and the monthly VI Quality. We filtered pixels based on
values in the quality bits. We included those pixels with (1) VI Quality
equal to 00or 01; (2) VI Usefulness from “highest quality” to “decreasing
quality” (0000 to 1010); (3) Aerosol Quantity from “low” to “inter-
mediate”; (4) Possible snow/ice equal to No (0). We thenmerged all tiles
and reprojected the data into the Albers Conical Equal Area projection
with 1 km pixel resolution to match other predictor variables and esti-
mates of stopover density using nearest neighbor resampling. We seg-
mented the EVI into four spring monthly periods (March to June) and
four fall periods (August to November).We included eachmonthly layer
as an individual predictor (four per seasonal model).

MODIS land surface temperature (LST) products and calculation of
thermal time. We used the MODIS/Terra and MODIS/Aqua land sur-
face temperature/emissivity products (MOD11A2/MYD11A2 V061) at
1 km spatial resolution which provide the 8-day average of Land Sur-
face Temperature (LST) from all qualifying MOD11A1/MYD11A1 LST
pixels65,66. Using the same 14 MODIS tiles, we selected two scientific
datasets from each product: LST_Night_1km (8-day nighttime 1 km grid
Land Surface Temperature), and the corresponding QC_Night (Quality
control for nighttime LST and emissivity). We filtered pixels using
values in the quality bits of each product. We included those pixels
with Mandatory QA flags equal to 00 or 01 and LST Error flag (all bits
for average LST error <3 K). We then converted LST from K to °C.

We chose to focus on nighttime LST for two reasons: (1) daytime
LST exhibits a troublesome positive bias relative to near-surface air
temperature while nighttime LST does not67, and (2) it corresponds
more closely to nocturnal bird migration patterns than daytime LST58.
To characterize the progression of thermal time during the year, we
calculated Accumulated Nocturnal Degree Days (ANDD, accumulated
only when the average nighttime degree-days were above the base
temperature of 0 °C68). We used a modification69 of an algorithm used
in earlier studies67,70. The transformation of two nighttime observa-
tions from Terra and Aqua into minimum MODIS LST used [1]:

MinimumMODISLST= minðLST2230, LST0130Þ ð1Þ

Where LST2230 is the nominal nighttime overpass of the Terra MODIS
and LST0130 is the nighttime overpass of the MODIS on Aqua69. To fill
gaps due to missing or excluded pixels in quality filtering, we used
Seasonally Decomposed Missing Value Imputation71. It first removes
the seasonal component from the time series, then performs imputa-
tion on the deseasonalized series using the weighted moving average
with k = 4 (8 observations with 4 left and 4 right), determines the
exponential weighting based on the deseasonalized series, and then
adds back the seasonal component.

We further generated Nocturnal Degree Days (NDD) dataset,
wherewe filtered outminimumMODIS LST below0 °C at compositing
period t as themaximumofminimumMODIS LST and Tbase, whichwas
set to 0 °C [2]:

NDDt = maxððminimumMODIS LSTt � TbaseÞ,0Þ ð2Þ

Since we used the 8-day product, we multiplied NDD composite
values by 8 to account for that 8-day compositing period. However,
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because we work on a monthly time frame, we did the multiplication
based on the actual number of days per month (between 0 to 8
depending on the compositing periods alignment with the calendar).
We checked each 8-day composite for whether it spanned across
months. For example, composite DOY057 starts on 02/26 and ends on
03/05, so that composite covers three days in February and five days in
March (and shifted in leap years). If the composite was in themiddle of
the month, then multiplication was by 8. We then accumulated across
the year using [3]. Accumulationswere reset to zero at the start of each
year.

ANDDt =ANDDt�1 + ðNDDt ×mÞ ð3Þ

where m is a specified number of days [from 0 to 8] within a month
from 8-day composite.

Finally, we merged all tiles and reprojected data into the Albers
Conical Equal Area with 1 km pixel resolution using nearest neighbor
resampling. We segmented ANDD into eight spring (March to June)
and eight fall (August to November) periods based on the first and
second half of each month. We included each semimonthly layer as
individual predictors.

National Land Cover Database. We used the 2016 and 2019 National
Land Cover Database (NLCD) releases to characterize the percent
canopy cover (2016), percent impervious surface (2016, 2019), and land
cover classification (2016, 2019). NLCD products are distributed at a
30m resolution and land cover products contain 16 unique land cover
classes. To simplify the land cover classification scheme, we merged
Developed, Open Space (class 21) and Developed, Low Intensity (class
22) into one Developed class. All three datasets (landcover, percent
impervious surface, and percent canopy cover) were resampled to
25m, using a nearest neighbor rule, allowing each pixel to neatly
delineatewithin the target 1 kmresolution. Then,within a 1 kmpixel, we
calculated (1) for both percent canopy cover and impervious surface,
the average percent of each, (2) formodified land cover, the percent of
each cover type. The frequencyof each land cover classwas included as
an individual predictor variable, yielding a total of 15 variables. Lastly,
to characterize the neighboring region surrounding the 1 km pixel of
interest more broadly, we also calculated the percent of each cover
type within a 5 km buffer. Again, each land cover class represented one
predictor variable. In total, we derived 32 predictor variables from the
suite of NLCDproducts. For landcover and percent impervious surface,
we assigned radar data from 2016, 2017, and 2018 to the 2016 NLCD
products, and 2019 and 2020 to the 2019 NLCD products.

Precipitation. We used Daymet72 version 4 R1 to calculate the mean
daily precipitation for spring and fall for all years of interest
(2016–2020). Daymet is distributed at a 1 km resolution gridded across
North America. We reprojected the 1 km grid to align all pixels to
previously resampled spatial layers.

Skyglow. We used the Visible and Infrared Imaging Suite (VIIRS) Day
Night Band (DNB) monthly cloud-free DNB composite products to
calculate skyglow. These data products are produced by the Earth
ObservationGroup, Payne Institute for Public Policy, at a 15 arc second,
or roughly 500m resolution. These products remove non-stable
lighting from the imagery73. The average monthly composites for
springwereweighted averages for themonths ofMarch to Juneof each
year and for the fall season August to November for years 2016 to
2020. We used the “vcmsl/vcmslcfg” (VIIRS Cloud Mask-Stray Light
Removed) monthly VNL V1 as the base data for the simplified all-sky
light pollution model (sALR)74. To calculate skyglow, the sALR model
was run for each seasonal image from 2016 to 2020. This simplified
spatial model provides a high-confidence estimate of an all-sky light
pollution ratio (ALR) metric for large regions.

The all-sky light pollution ratio (ALR) is the ratio of artificial light at
night to the natural night sky74. For example, a ratio of 0.33means that
the sky is less than 33% brighter than the natural night sky which is
pristine (ALR =0.0); whereas a ratio >10.0 indicates that theMilkyWay
is invisible. We used skyglow, rather than VIIRS DNB to capture indices
of light pollution that may be perceived on the horizon by in-flight
migratory birds, rather than measures from VIIRS DNB, which capture
upward radiance.

Elevation. We used theNASADEMdata product (NASADEM_HGTv001)
to capture elevation throughout the contiguous United States. The
NASADEM is derived from telemetry data from the Shuttle Radar
Topography Mission (SRTM), a collaboration between NASA and the
National Geospatial-Intelligence Agency (NGA), as well as participation
from theGerman and Italian space agencies.We resampled theoriginal
1-arc second spatial resolution to 1 km.

Correlation of predictors
When examining the influence of model predictors, we wanted to
understand the relationship between a suite of core predictors,
including skyglow and habitat cover types. While we predict skyglow,
forest cover, and riparian corridors to have a positive association with
stopover density, we wanted to understand if their occurrence was
correlated (e.g., is high skyglow also associated with a high percent of
canopy cover?). To test this, we summarized the distribution of cor-
relation coefficients and proportion of significant correlations (based
on an alpha value of 0.05), examining pairwise correlations of skyglow
and % canopy cover, skyglow and proportion of forest cover types
(NLCD classes 41, 42, and 43), skyglow and proportion of open water
(NLCD class 11), and just as a proof-of-concept, % canopy cover and
proportion of forest cover types (NLCD classes 41, 42, and 43), which
we predicted would be highly correlated. For habitat-specific correla-
tions, we focused on the 5 km buffer scale. We used predictors from
one season, 2016, because % canopy cover only had one replicate in
our study—otherwise, in our correlations, pixel values would be
pseudo-replicated (i.e., the same value repeated in 2017–2020). Lastly,
rather than examining correlations across all 2016 pixels (~1 million),
we examined Pearson’s correlation coefficient from 10,000 random
draws of 100 locations. We show these results in Supplementary
Fig. S4. Generally, we found very weak correlations between skyglow
and canopy cover, skyglow and forest cover types, and skyglow and
open water (median Pearson’s correlation coefficient values between
−0.1 and 0.04), with between 1.2% and 10.2% of correlations showing
significance. We found strong positive correlations between % canopy
cover and proportion of forest cover types, with 100% of correlations
showing significance.

Niche modeling
In total, we included 49 predictor variables in ourmodeling ofmigrant
stopover density. We extracted 1,002,511 random points from the
radar coverage area (50.5% of possible locations) and ensured that no
single location was replicated in our training dataset (e.g., checking
that multiple random points did not fall within a 1 km pixel). Our radar
coverage area represented 26.2% of the contiguous United States;
distributionalmodeling filled the remaining 73.8% of the land area.We
used gradient-boosted trees, carried out through the XGBoost75,76

package in R, to examine relationships between predictor variables
and stopover density. This approach uses a tree ensemble model,
which consists of a set of regression trees, as applied in a supervised
learning environment that relates a training dataset to a response
variable (i.e., stopover density). We divided our dataset into three
groups: a training set (75%) for learning; a validation set for model
tuning (15%); and a test set to evaluate performance (10%). We ran-
domly assigned locations to these categories to ensure independence
across the sets at the location level.
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We guarded against overfitting the model by choosing the best
combination of parameters, iterating through variations of the fol-
lowing parameters: max_depth = 8, 10, 12, 14, 16, 18, 20, min_child_-
weight = 1, gamma =0, 1, 2, 5, and 10, colsample_bytree = 1, and
subsample =0.7 and 1.0. We set the learning rate to 0.1 and set ear-
ly_stopping_rounds to 10 to determine the optimal number of boosting
iterations for that learning rate. We examined R2 on the test set and
settled on a max_depth = 16, min_child_weight = 1, gamma =0, colsam-
ple_bytree = 1, and subsample = 1.

To prevent long-distance learning in these models7, we spatially
partitioned our data by generating 2,500 random locations across the
contiguous United States. Long-distance learning occurs when asso-
ciations between response andpredictors are learned in one region and
are then used tomake predictions in a distant spatial environment. This
approach has been used for modeling species distributions from eBird
community sciencedata7, but never forweather surveillance radar data.
For 2000 of these locations, we subset our training data to within a
400 km bounding box centered on the random point (Supplementary
Fig. S3). For the remaining 500 random locations, we subset our
training data to an 800km bounding box centered on the random
points to provide broader coverage, particularly in areas with fewer
radars (Supplementary Fig. S3). For each model generated, we used
gradient-boosted trees to predict stopover density at 1 km pixel reso-
lutionwithin theboundingbox. For thesepredictions,wefixeddistance
to radar at 35 km and used 2020 predictor variables where possible
(e.g., NLCD land cover from 2019). We mosaicked all predictions
together to generate a continuous seasonal surface of stopover density,
averaging predictions where redundant predictions occurred. From
predicted surfaces of stopover density, we also calculated a focal win-
dow analysis of relative intensity. We used a circular focal window
radius of 265 km, which relates to measured average nightly flight dis-
tances of tracked free-flying Swainson’s (Catharus ustulatus) andhermit
(C. guttatus) thrushes29. For each pixel at the center of a focal window,
we identified three levels of intensity: high (greater than or equal to the
90th percentile), medium (greater than or equal to the 50th and below
the 90th percentile), and low (below the 50th percentile). Because
conservation decisions of landmanagement tend to be hierarchical, we
also generated state-level maps of hotspots following the same defini-
tions of low,medium, and high-intensity regions. Lastly, for summaries,
we also examinedmigrant stopover density by flyway classification77, in
which the western flyway is defined as the contiguous United States
west of 103° west longitude, the central flyway is the contiguous United
States between 103° and 90° west longitude, and the eastern flyway is
the contiguous United States east of 90° west longitude.

Variable importance and directionality
For each model trained, we output variable importance by monitoring
gain,which represents the fractional contributionof each feature to the
model based on the total gain of a feature’s splits76. Additionally, for all
variables and for each model, we generated partial dependence plots.
Partial dependence plots are predictions of the response variable while
holding all variables at their median levels, but allowing the variable of
interest to vary across the range of values in the training dataset. For
both the spring and fall 400 km model sets, we calculated the mean
gain for each variable. Additionally, to capture the directionality of how
the variable of interest influenced stopover density, we fit a linear
model to the predictions from partial dependence plots (sensu8). For
each of these linear models, we extracted the slope coefficient and the
p-value.We then subset those variables that hadp-values less than0.05.
Of the linear fits with significant coefficients, we calculated the percent
of positive coefficients. From these data, we considered a variable to
have a global positive influence if greater than 55% ofmodels showed a
significant positive association; we considered the variable to show a
negative association with stopover density if less than 45 percent of
significant coefficients showed a positive association.

Holdout experiment
To understand how our models would perform in areas not sampled
by the radar, we conducted a series of holdout experiments. We
separately reran all 2000 400 km bounding boxmodels, but this time
holding out a small spatial portion of data. For each of these models,
prior to training, wedetermined themedianof the X andY positions of
the training data and subset a 10-km bounding box centered on that
median location. These data were held out of the model training
process, and when training was completed, predictions were made at
these locations. This holdout approach ensured that training and
validation data were spatially separated, which could otherwise inflate
our performance metrics due to spatial autocorrelation. We only
included predictions in our assessment if at least 25 sampling points
resided in our 10 km bounding box, which restricted this experiment
to 1324 models in spring and 1340 in fall. We sped up training by
increasing the learning rate from 0.1 to 0.25 and injected additional
randomness into thismodel by setting the colsample_bytree parameter
to 0.75 and the subsample parameter to 0.5. We averaged any pre-
dictions that were generated for the same location and same year; this
could occur if the 10 × 10 km holdout location overlapped in multiple
models (e.g., location X from models 1 and 2). Lastly, for each season,
we randomly selected one prediction from the five possible years—this
step ensured we did not include multiple predictions from the same
location (i.e., to limit pseudoreplication). We then compared esti-
mated stopover density versus predicted stopover density.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The weather surveillance radar and predictor data used in this study
are available in the FigShare database under https://doi.org/10.6084/
m9.figshare.24438280.

Code availability
The code used to model our results in this study is available in the
FigShare database under https://doi.org/10.6084/m9.figshare.
24438280.

References
1. Diehl, R. H. The airspace is habitat. Trends Ecol. Evol. 28,

377–379 (2013).
2. Cohen, E. B. et al. A place to land: spatiotemporal drivers of stop-

over habitat use by migrating birds. Ecol. Lett. 24, 38–49 (2021).
3. Linscott, J. A. & Senner, N. R. Beyond refueling: investigating the

diversity of functions of migratory stopover events. Ornithol. Appl.
123, duaa074 (2021).

4. Haas, E. K., La Sorte, F. A., McCaslin, H. M., Belotti, M. C. T. D. &
Horton, K. G. The correlation between eBird community science
and weather surveillance radar-based estimates of migration phe-
nology. Glob. Ecol. Biogeogr. 31, 2219–2230 (2022).

5. Dokter, A. M. et al. Seasonal abundance and survival of North
America’s migratory avifauna determined by weather radar. Nat.
Ecol. Evol. 2, 1603–1609 (2018).

6. Sullivan, B. L. et al. The eBird enterprise: an integrated approach to
development and application of citizen science. Biol. Conserv. 169,
31–40 (2014).

7. Fink, D. et al. Spatiotemporal exploratory models for broad-scale
survey data. Ecol. Appl. 20, 2131–2147 (2010).

8. Fink, D. et al. Modeling avian full annual cycle distribution and
population trends with citizen science data. Ecol. Appl. 30,
e02056 (2020).

9. Horton, K. G. et al. Bright lights in the big cities: migratory birds’
exposure to artificial light. Front. Ecol. Environ. 17, 209–214 (2019).

Article https://doi.org/10.1038/s41467-023-43046-z

Nature Communications |         (2023) 14:7446 9

https://doi.org/10.6084/m9.figshare.24438280
https://doi.org/10.6084/m9.figshare.24438280
https://doi.org/10.6084/m9.figshare.24438280
https://doi.org/10.6084/m9.figshare.24438280


10. Lack, D. & Varley, G. C. Detection of birds by radar. Nature 156,
446–446 (1945).

11. Bonter, D. N., Gauthreaux, S. A. & Donovan, T. M. Characteristics of
important stopover locations for migrating birds: remote sensing
with radar in the Great Lakes Basin. Conserv. Biol. 23,
440–448 (2009).

12. Buler, J. J. & Dawson, D. K. Radar analysis of fall bird migration
stopover sites in the northeastern U.S.Condor 116, 357–370 (2014).

13. McLaren, J. D. et al. Artificial light at night confounds broad-scale
habitat use by migrating birds. Ecol. Lett. 21, 356–364 (2018).

14. Falchi, F. et al. The newworld atlas of artificial night sky brightness.
Sci. Adv. 2, e1600377 (2016).

15. Kyba, C. C. M., Altıntaş, Y. Ö., Walker, C. E. & Newhouse, M. Citizen
scientists report global rapid reductions in the visibility of stars from
2011 to 2022. Science 379, 265–268 (2023).

16. Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing
in radiance and extent. Sci. Adv. 3, e1701528 (2017).

17. Van Doren, B. M. et al. Drivers of fatal bird collisions in an urban
center. Proc. Natl Acad. Sci. USA 118, e2101666118 (2021).

18. Schekler, I., Smolinsky, J. A., Troupin, D., Buler, J. J. & Sapir, N. Bird
migration at the edge—geographic and anthropogenic factors but
not habitat properties drive season-specific spatial stopover dis-
tributions near wide ecological barriers. Front. Ecol. Evol. 10,
822220 (2022).

19. Cabrera-Cruz, S. A., Cohen, E. B., Smolinsky, J. A. & Buler, J. J.
Artificial light at night is related to broad-scale stopover distribu-
tions of nocturnally migrating landbirds along the Yucatan Penin-
sula, Mexico. Remote Sens. 12, 395 (2020).

20. Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and
evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).

21. Battin, J.Whengoodanimals lovebadhabitats: ecological traps and
the conservation of animal populations. Conserv. Biol. 18,
1482–1491 (2004).

22. La Sorte, F. A., Fink, D., Buler, J. J., Farnsworth, A. &Cabrera-Cruz, S.
A. Seasonal associations with urban light pollution for nocturnally
migrating bird populations. Glob. Change Biol. 23,
4609–4619 (2017).

23. Van Doren, B. M. et al. High-intensity urban light installation dra-
matically alters nocturnal bird migration. Proc. Natl Acad. Sci. USA
114, 11175–11180 (2017).

24. Burt, C. S. et al. The effects of light pollution on migratory animal
behavior. Trends Ecol. Evol. 38, 355–368 (2023).

25. Horton, K. G., Van Doren, B. M., Albers, H. J., Farnsworth, A. &
Sheldon, D. Near-term ecological forecasting for dynamic aero-
conservation ofmigratorybirds.Conserv. Biol.35, 1777–1786 (2021).

26. Guo, F., Buler, J. J., Smolinsky, J. A. & Wilcove, D. S. Autumn stop-
over hotspots and multiscale habitat associations of migratory
landbirds in the eastern United States. Proc. Natl Acad. Sci. USA
120, e2203511120 (2023).

27. Zuckerberg, B., Fink, D., La Sorte, F., Hochachka, W. & Kelling, S.
Novel seasonal land cover associations for eastern North American
forest birds identified through dynamic species distribution mod-
elling. Divers. Distrib. 22, 717–730 (2016).

28. Youngflesh, C. et al. Migratory strategy drives species-level varia-
tion in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. 5,
987–994 (2021).

29. Wikelski,M. et al. Avianmetabolism: costs ofmigration in free-flying
songbirds. Nature 423, 704–704 (2003).

30. Mehlman, D. W. et al. Conserving stopover sites for forest-dwelling
migratory landbirds. Auk 122, 1281–1290 (2005).

31. La Sorte, F. A., Fink, D., Hochachka,W.M., DeLong, J. P. & Kelling, S.
Spring phenology of ecological productivity contributes to the use
of looped migration strategies by birds. Proc. R. Soc. B 281,
20140984 (2014).

32. Bergen, K. M. et al. Remote sensing of vegetation 3-D structure for
biodiversity and habitat: review and implications for lidar and radar
spaceborne missions. J. Geophys. Res. Biogeosci. 114, 1–13 (2009).

33. Burns, P. et al. Incorporating canopy structure from simulated GEDI
lidar into bird species distribution models. Environ. Res. Lett. 15,
095002 (2020).

34. Dubayah, R. et al. The Global Ecosystem Dynamics Investigation:
high-resolution laser ranging of the Earth’s forests and topography.
Sci. Remote Sens. 1, 100002 (2020).

35. Dubayah, R. et al. GEDI launches a new era of biomass inference
from space. Environ. Res. Lett. 17, 095001 (2022).

36. Farwell, L. S. et al. Satellite image texture captures vegetation
heterogeneity and explains patterns of bird richness. Remote Sens.
Environ. 253, 112175 (2021).

37. Bakx, T. R. M., Koma, Z., Seijmonsbergen, A. C. & Kissling, W. D. Use
and categorization of light detection and ranging vegetation
metrics in avian diversity and species distribution research. Divers.
Distrib. 25, 1045–1059 (2019).

38. Carrasco, L., Giam, X., Papeş, M. & Sheldon, K. S. Metrics of lidar-
derived 3D vegetation structure reveal contrasting effects of hor-
izontal and vertical forest heterogeneity on bird species richness.
Remote Sens. 11, 743 (2019).

39. Zhang, F. et al. Five decades of observed daily precipitation reveal
longer and more variable drought events across much of the wes-
tern United States.Geophys. Res. Lett. 48, e2020GL092293 (2021).

40. Homer, C. et al. Conterminous United States land cover change
patterns 2001–2016 from the 2016 National Land Cover Database.
ISPRS J. Photogramm. Remote Sens. 162, 184–199 (2020).

41. Loss, S. R., Will, T., Loss, S. S. & Marra, P. P. Bird–building collisions
in the United States: estimates of annual mortality and species
vulnerability. Condor 116, 8–23 (2014).

42. Doren, B. M. V. et al. Drivers of fatal bird collisions in an urban
center. Proc. Natl Acad. Sci. USA 118, e2101666118 (2021).

43. Laforge, A. et al. Reducing light pollution improves connectivity for
bats in urban landscapes. Landsc. Ecol. 34, 793–809 (2019).

44. Korpach, A. M. et al. Urbanization and artificial light at night reduce
the functional connectivity ofmigratory aerial habitat. Ecography8,
e05581 (2022).

45. Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of
artificial light at night on biological timings. Annu. Rev. Ecol. Evol.
Syst. 48, 49–68 (2017).

46. Gaston, K. J., Duffy, J. P.,Gaston, S., Bennie, J. &Davies, T.W.Human
alteration of natural light cycles: causes and ecological con-
sequences. Oecologia 176, 917–931 (2014).

47. Meng, L. et al. Artificial light at night: an underappreciated effect on
phenology of deciduous woody plants. PNAS Nexus 1,
pgac046 (2022).

48. Smith, R. A., Gagné, M. & Fraser, K. C. Pre-migration artificial light at
night advances the spring migration timing of a trans-hemispheric
migratory songbird. Environ. Pollut. 269, 116136 (2021).

49. Loss, S. R.,Will, T. &Marra, P. P. The impact of free-rangingdomestic
cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).

50. Burt, C. S. et al. Can ecological forecasting lead to convergence on
sustainable lighting policies? Conserv. Sci. Pract. 5, e12920 (2023).

51. Crum, T. D., Alberty, R. L. & Burgess, D. W. Recording, archiving,
and using WSR-88D data. Bull. Am. Meteorol. Soc. 74, 645–653
(1993).

52. Gauthreaux, S. A. A radar and direct visual study of passerine spring
migration in southern Louisiana. Auk 88, 343–365 (1971).

53. Horton, K. G., Shriver, W. G. & Buler, J. J. A comparison of traffic
estimates of nocturnal flying animals using radar, thermal imaging,
and acoustic recording. Ecol. Appl. 25, 390–401 (2015).

54. Chilson, P. B. et al. Estimating animal densities in the aerosphere
using weather radar: to Z or not to Z? Ecosphere 3, art72 (2012).

Article https://doi.org/10.1038/s41467-023-43046-z

Nature Communications |         (2023) 14:7446 10



55. Lin, T. et al. MISTNET: measuring historical bird migration in the US
using archived weather radar data and convolutional neural net-
works. Methods Ecol. Evol. 10, 1908–1922 (2019).

56. Stepanian, P. M. & Wainwright, C. E. Ongoing changes in migration
phenology andwinter residency at Bracken Bat Cave.Glob.Change
Biol. 24, 3266–3275 (2018).

57. Stepanian, P. Radar Polarimetry for Biological Applications. PhD
thesis, University of Oklahoma (2015).

58. Van Doren, B. M. & Horton, K. G. A continental system for fore-
casting bird migration. Science 361, 1115–1118 (2018).

59. Larkin, R. P. & Diehl, R. H. Radar techniques for wildlife biology.
Techniques for Wildlife Investigations and Management, 319–335
(Wildlife Society, 2012).

60. Buler, J. J. & Diehl, R. H. Quantifying bird density during migratory
stopover using weather surveillance radar. IEEE Trans. Geosci.
Remote Sens. 47, 2741–2751 (2009).

61. Kranstauber, B. et al. High-resolution spatial distribution of bird
movements estimated from aweather radar network. Remote Sens.
12, 635 (2020).

62. Dokter, A. M. et al. bioRad: biological analysis and visualization of
weather radar data. Ecography 42, 852–860 (2019).

63. Buler, J. J. & Moore, F. R. Migrant–habitat relationships during
stopover along an ecological barrier: extrinsic constraints and
conservation implications. J. Ornithol. 152, S101–S112 (2011).

64. Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km
SIN Grid V061. distributed by NASA EOSDIS Land Processes Dis-
tributed Active Archive Center, https://doi.org/10.5067/MODIS/
MOD13A3.061 (2021).

65. Wan, Z., Hook, S. & Hulley, G. MODIS/Terra Land Surface Tem-
perature/Emissivity 8-Day L3 Global 1km SIN Grid V061. distributed
byNASAEOSDIS LandProcessesDistributedActiveArchiveCenter,
https://doi.org/10.5067/MODIS/MOD11A2.061 (2021).

66. Wan, Z., Hook, S. & Hulley, G. MODIS/Aqua Land Surface Tem-
perature/Emissivity 8-Day L3 Global 1km SIN Grid V061. distributed
byNASAEOSDIS LandProcessesDistributedActiveArchiveCenter,
https://doi.org/10.5067/MODIS/MYD11A2.061 (2021).

67. Krehbiel, C. P. & Henebry, G. M. A comparison of multiple datasets
for monitoring thermal time in urban areas over the U.S. Upper
Midwest. Remote Sens. 8, 297 (2016).

68. Nguyen, L. H. & Henebry, G. M. Urban heat islands as viewed by
microwave radiometers and thermal time indices. Remote Sens. 8,
831 (2016).

69. Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface
phenology in the highland pastures of montane Central Asia:
interactionswith snowcover seasonality and terrain characteristics.
Remote Sens. Environ. 240, 111675 (2020).

70. Nguyen, L. H., Joshi, D. R., Clay, D. E. & Henebry, G. M. Character-
izing landcover/landuse frommultiple yearsof Landsat andMODIS
time series: a novel approach using land surface phenology mod-
eling and random forest classifier. Remote Sens. Environ. 238,
111017 (2018).

71. Moritz, S. & Bartz-Beielstein, T. imputeTS: time series missing value
imputation in R. R. J. 9, 207–218 (2017).

72. Thornton, M. M. et al. Daymet: monthly climate summaries on a
1-km grid for North America, Version 4 R1. ORNL DAAC https://doi.
org/10.3334/ORNLDAAC/2131 (2022).

73. Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS
night-time lights. Int. J. Remote Sens. 38, 5860–5879 (2017).

74. Duriscoe, D. M., Anderson, S. J., Luginbuhl, C. B. & Baugh, K. E. A
simplified model of all-sky artificial sky glow derived from VIIRS
Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 214,
133–145 (2018).

75. Chen, T. &Guestrin, C. XGBoost: a scalable tree boosting system. In
Proc. 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’16), 785–794 https://doi.org/10.
1145/2939672.2939785 (2016).

76. Chen, T., He, T., Benesty, M., Khotilovich, V. & Tang, Y. Xgboost:
extreme gradient boosting. R Foundation, 1–4 (2017).

77. La Sorte, F. A. et al. The role of atmospheric conditions in the sea-
sonal dynamics of North American migration flyways. J. Biogeogr.
41, 1685–1696 (2014).

Acknowledgements
Funding for this project was provided by NASA Biodiversity
80NSSC21K1143 to K.G.H., M.A.T. and G.M.H. K.G.H. and C.S.B. were
supported by National Science Foundation Growing Convergence
Research program (GCR-2123405). This material is based upon work
supported by the National Science Foundation under Grant Nos.
1661259 (D.S.), 1749854 (D.S.), 1927743 (A.M.D.) and 2017817
(A.M.D.). USDA NIFA Hatch (DEL-00774) to J.J.B.

Author contributions
K.G.H., J.J.B.,M.A.T. andG.M.H. conceived the idea for this paper. K.G.H.,
J.J.B., F.G., C.S.B., M.A.T. and G.M.H. worked to draft and edit the
manuscript. M.A.T. and G.M.H. led the processing and curation of
satellite-based remote sensing and geospatial data. S.J.A. led the pro-
cessing of skyglow indices. A.C.C. assembled precipitation, radar, ele-
vation, and VIIRS DNB data, prepared spatial layers, and screened radar
data for bat contamination. A.M.D. and D.S. generated clutter layers.
K.G.H. led the processing of radar data, data integration, statistical
analyses, and generated figures.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43046-z.

Correspondence and requests for materials should be addressed to
Kyle G. Horton.

Peer review information Nature Communications thanks Jason Chap-
man and the other anonymous reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43046-z

Nature Communications |         (2023) 14:7446 11

https://doi.org/10.5067/MODIS/MOD13A3.061
https://doi.org/10.5067/MODIS/MOD13A3.061
https://doi.org/10.5067/MODIS/MOD11A2.061
https://doi.org/10.5067/MODIS/MYD11A2.061
https://doi.org/10.3334/ORNLDAAC/2131
https://doi.org/10.3334/ORNLDAAC/2131
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/s41467-023-43046-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Artificial light at night is a top predictor of bird migration stopover density
	Results and discussion
	Drivers of stopover density
	Macroscale patterns of stopover density

	Methods
	Radar data download
	Radar clutter mitigation
	Radar range correction
	Radar exodus selection�time
	Predictor variables for niche�model
	MODIS enhanced vegetation�index
	MODIS land surface temperature (LST) products and calculation of thermal�time
	National Land Cover Database
	Precipitation
	Skyglow
	Elevation
	Correlation of predictors
	Niche modeling
	Variable importance and directionality
	Holdout experiment
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




