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Constructing temporal networks with bursty
activity patterns

Anzhi Sheng 1,2, Qi Su3,4,5, Aming Li 1,6 , Long Wang 1,6 &
Joshua B. Plotkin 2,7

Human social interactions tend to vary in intensity over time, whether they are
in person or online. Variable rates of interaction in structured populations can
be described by networks with the time-varying activity of links and nodes.
One of the key statistics to summarize temporal patterns is the inter-event
time, namely the duration between successive pairwise interactions. Empirical
studies have found inter-event time distributions that are heavy-tailed, for
both physical and digital interactions. But it is difficult to construct theoretical
models of time-varying activity on a network that reproduce the burstiness
seen in empirical data. Here we develop a spanning-tree method to construct
temporal networks and activity patterns with bursty behavior. Our method
ensures any desired target inter-event time distributions for individual nodes
and links, provided the distributions fulfill a consistency condition, regardless
of whether the underlying topology is static or time-varying.We show that this
model can reproduce burstiness found in empirical datasets, and so it may
serve as a basis for studying dynamic processes in real-world bursty
interactions.

Temporal networks have been recognized as a powerful tool to model
complex systems with time-varying interactions1–3. A large body of
literature concentrates on analyzing the activation dynamics of nodes
and links in such networks. The inter-event time (the waiting time
between two consecutive interaction events, IET) is a canonical mea-
sure of temporal patterns, and it is known to have profound effects on
individual behavior4–7 and dynamical processes occurring on
networks8–12. A variety of empirical datasets, such as email and mobile
communications13–15, epidemic transmission16–18, and human
mobility19,20, exhibit non-Poisson activity patterns, known as
burstiness4,21,22. These IET patterns are characterized by periods of
frequent activation interleaved with long periods of silence. Empirical
networks often exhibit burstiness in both the activity of individuals
(nodes) as well as interactions (edges)23–25.

It has proven difficult to construct synthetic temporal networks
whose properties are similar to the bursty behavior seen in empirical
temporal networks26. Previous approaches can be divided into two
categories: structure-based modeling, and contact-based modeling.
The former approach applies dynamical processes to static underlying
topologies, such as random walks27,28, link dynamics29, and inhomo-
geneous Poisson processes30. For example, Barrat et al. used random
itineraries on weighted underlying networks to generate time-
extended structures with bursty behavior28. The latter approach uses
a stream of contacts generated by certain realistic mechanisms, such
as social appeal31, individual resource32, and memory33. For example,
Perra et al. proposed the activity-driven model34, in which each node,
isolated in the beginning, becomes active with a probability propor-
tional to its own activity potential and forms links with other nodes.
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Several related models have been proposed based on the activity-
driven framework35,36. Despite a large body of studies in constructing
temporal networks, they usually fail to reproduce the same level of
burstiness as empirical datasets, and they lack mathematical guaran-
tees for the behavior of the synthetic network. These goals require a
model to generate bursty behavior simultaneously in the activity of
both nodes and links, while the level of burstiness in nodes and links is
allowed to be easily modified in a reasonable parameter space.

In this study, weprovide ananalytical framework to systematically
construct temporal networks on both static and time-varying under-
lying topologies. Our construction algorithm can reproduce the bur-
stiness of both nodes and edges in four empirical datasets, including
social interactions in rural Malawi, colleague relationships in an office
building over two years, and friendship relations in a high school. The
assumptions of our model can also be tested in the empirical datasets.
Our construction thus serves as an efficient method to generate rea-
listic temporal networks that can then be used to investigate dyna-
mical processes (such as evolutionary dynamics, social contagion, or
epidemics) on temporal networks.

Our approach to constructing temporal networks uses a
spanning-tree method. Spanning trees are widely recognized as an
important family of sparse sub-graphs since they tend to govern
dynamical processes on full graphs37–40. For example, in social net-
works, the backbone of an aggregated communication topology is
often constructed as the union of shortest-path spanning trees, on
which information flows fastest39. As a result, a large portion of
directed edges are bypassed by faster indirect routes in the tree. In
studies of foodwebs40, spanning trees aredefined as theflows from the
environment to every species. The links in or out of the tree are

denoted as ‘strong’ or ‘weak’ links, related to delivery efficiency or
system robustness and stability.

Results
We introduce a spanning-tree method for constructing temporal net-
works on any underlying topology, which restricts the interaction
pattern between pairs of individuals. The activity of every single node
and link is a binary-state process, switching between active and inac-
tive. We use inter-event time (IET) distribution, which measures the
time intervals between consecutive activations, to quantify the activity
patterns of nodes and edges.

Our method allows for both static and time-varying underlying
topologies. The underlying topology represents physical limitations
on pairwise interactions, where an interaction between two individuals
is possible only when there is a link between them in the underlying
topology. Here we first consider static underlying topologies, in which
the activation dynamics on a given topology is much faster than the
evolution of the underlying topologies, such as the time-varying traffic
flow on a relatively stable road network. We consider three classes of
topologies in order of increasing complexity: two-node topologies,
tree topologies, and finally arbitrary structured topologies. After
studying static topologies, we will subsequently consider cases when
the underlying topology itself also changes over time.

Two-node systems
Webeginwith a basic unit of a networked system – a two-node system,
which is composed of nodes x and y and a link z between them (see
Fig. 1a). The nodes and edges are either active or inactive at each
discrete time step. We assume that the state updating of x follows a
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Fig. 1 | Schematic illustration of constructing temporal networks on different
underlying topologies. Each node/link switches between two states, active (solid
circle/line) and inactive (dashed circle/line), and all nodes and links are set to be
active initially.aThebasic unitof a network system is a two-node systemwithnodes
x, y, and a link z connecting them. At the beginning of temporal network con-
struction, three probability mass functions F(Δt), G(Δt), H(Δt) are given as the
expected IET distributions for x, y, z, whereΔt represents the time interval between
two consecutive activations. Then, the activity of x, y, z is driven by the renewal
processeswith the corresponding expected IET distributions.We constrain that z is

active only if both x and y are active. b An extension of two-node systems is tree
systems, in which nodes are divided into two categories, a root (r) and leaves (a1,
a2, b1, b2). The state of nodes and links is updated by sequentially executing the
algorithm over each two-node system from the root (r-a1 and r-a2) to the outer-
most leaves (a1-b1 and a2-b2). c There is at least one spanning tree for any static
underlying topology. The links in the spanning tree are called trunks (purple lines)
and the links outside the spanning tree are called branches (blue lines). The states
of nodes and trunks are updated first, and then the states of branches are estab-
lished according to the state of the nodes on both sides.

Article https://doi.org/10.1038/s41467-023-42868-1

Nature Communications |         (2023) 14:7311 2



renewal process fXngn≥0 and assigns x a probability mass function
F(Δt) as its target IET distribution (see Supplementary Information
section 1). The random variable Xn equals 1 if x is active at time n,
otherwiseXn =0. Likewise for node y and edge z, whichhave respective
target IET distributions G(Δt) and H(Δt), and respective renewal pro-
cesses fYngn ≥0 and fZngn≥0. The initial state of x, y, z is active (i.e.,
X0 = Y0 = Z0 = 1). The goal is to construct a two-node temporal network
that satisfies the target IET distributions of x, y, and z.

By definition, we say that edge z is active when x, y are both active
(i.e., Zn = XnYn). Furthermore, we assume that, given the trajectory of x
until n, the probability of x being active at time n + 1 is independent of
the trajectory of y until n, that is,

PðXn+ 1,Y
ðnÞjXðnÞÞ=PðXn+ 1jXðnÞÞ �PðYðnÞjXðnÞÞ, ð1Þ

where X(n) is a random vector of length n + 1, equal to ðX0,X 1,:::,XnÞT.
The vector X(n) records the whole history of states of x through time n,
and so does Y(n). Given these assumptions, we can show that when all
targeted distributions are identical (i.e., F =G =H) the system must be
completely synchronous, that is, all of x, y, z are either active or inactive
at each time step (see Supplementary Information section 2).

Given the state of the first n times (from time 0 to n − 1), the
conditional probability that node x is active at time n is given by

PðXn = 1jXn�1 =w
ðn�1Þ
x ,:::,X0 =w

ð0Þ
x Þ :¼ pxðwðn�1Þ

x , 1Þ= Fðn�mÞP
i ≥n�m FðiÞ : ð2Þ

where wðn�1Þ
x = ðwð0Þ

x ,:::,wðn�1Þ
x ÞT 2 f0,1gn records all historical states of

node x before time n, called x’s trajectory, andm= maxfk ≤n : wðkÞ
x = 1g

represents the last activation time of x. Analogous conditional prob-
abilities apply to y and z, and it is straightforward to show that each
element ofwðn�1Þ

z equals the product of the corresponding elements of
wðn�1Þ

x and wðn�1Þ
y .

We propose an algorithm to construct two-node temporal net-
works such that the IET distributions of x, y, z will match the desired
targeted distributions F,G,H and the desired total time duration ttol. At
each time step t = n + 1 (0 ≤ n ≤ ttol − 1), we calculate four probabilities
with Eq. (2),

p1 =PðXn+ 1 = 1,Yn+ 1 = 1jXðnÞ,YðnÞÞ=pzðwðnÞ
z , 1Þ,

p2 =PðXn+ 1 = 1,Yn+ 1 = 0jXðnÞ,YðnÞÞ=pxðwðnÞ
x , 1Þ � pz ðwðnÞ

z , 1Þ,
p3 =PðXn+ 1 = 0, Yn+ 1 = 1jXðnÞ,YðnÞÞ=pyðwðnÞ

y , 1Þ � pz ðwðnÞ
z , 1Þ,

p4 =PðXn+ 1 = 0, Yn+ 1 =0jXðnÞ,YðnÞÞ = 1 +pzðwðnÞ
z , 1Þ � pxðwðnÞ

x , 1Þ � pyðwðnÞ
y , 1Þ:

ð3Þ

These four probabilities represent the conditional probabilities
for the four possible states of nodes x and y, given the previous states
of nodes x and y (i.e., wðn�1Þ

x and wðn�1Þ
y ). Specifically, p1 represents the

probability that edge z is active at time t = n + 1; p2 (or p3) represents
the probability that z, y are inactive but x is active; p3 represents the
probability that z, x are inactive but y is active; and p4 represents the
probability that x, y, z are all inactive at time t. Next, we determine the
state of x and y at t, inorder. Theprobability that x is active ispxðwðnÞ

x ,1Þ.
If x is active, theprobability of ybeing active isp1=pxðwðnÞ

x ,1Þ. Otherwise,
the probability becomes p3=ð1� pxðwðnÞ

x ,1ÞÞ. Finally, we update the
trajectory of z by the relation wðtÞ

z =wðtÞ
x wðtÞ

y . The construction stops
when t = ttol. Algorithm 1 in Supplementary Information outlines the
above procedure. It is worth noting that the activation order of x and y
does not affect the IET distributions of x, y, z.

Although the algorithm is specified for an arbitrary combination of
target IET distributions (F, G, H), these distributions must satisfy an
implicit condition in order to guarantee the consistency of the con-
struction. For example, if the targetdistributions specify that the link z is
activatedmore frequently than the nodes x and y, then no construction

is possible, because the link is active only when both nodes are active.
This would result in at least one of the probabilities pi (i = 1, 2, 3, 4) in Eq.
(3) being less than 0 during the construction. We say that the combi-
nation (F, G, H) of target distributions is consistent if pi (i= 1, 2, 3, 4)
belong to [0, 1] for all possible trajectorieswðnÞ

x andwðnÞ
y with any length

n. When a two-node system is consistent, the algorithm is well-defined,
and it ensures that the IET distributions of x, y, zwill satisfy the targets F,
G, H, respectively (see Supplementary Information section 2).

Tree systems
The construction for two-node systems can be naturally extended to
tree systems, which consist of a number of interconnected two-node
systems (Fig. 1b). We randomly select a node as the root r and classify
the remaining nodes (i.e., leaves) according to their distance from r.
We choose a desired target IET distribution for each node and link. At
each time step, wefirst determine the state of r, which is only related to
its own trajectory. Then, every leaf one step away from r (a1 and a2 in
Fig. 1b) forms a two-node system with r, and the states of these leaves
are determined by Algorithm 1. Next, all leaves one step away from r
form two-node systems with their corresponding leaves two steps
away from r [(a1, b1) and (a2, b2) in Fig. 1b]. Analogously, the states of
all leaves are updated within a two-node system in order of their dis-
tance from r. Algorithm 2 in Supplementary Information summarizes
this procedure.

This procedure requires an additional assumption of conditional
independence – that for a pair of two-node systems sharing a node, if
the state of the common node is given then the activity of the other
two nodes is independent. As shown in Fig. 1b, we present two exam-
ples, (r, a1, a2) and (r, a1, b1), fulfilling this condition. The former
indicates that the activity of nodes with the same distance from r (i.e.,
a1, a2) is independent given the state of their common node (i.e., r),
which is closer to the root. The latter indicates that the activity of a
node (i.e., b1) is not affected by the node that is more than one step
away (i.e., r), given the state of the intervening node (i.e., a1).

It is straightforward to show that a tree system is consistent if all
two-node systems in the tree are consistent. When a tree system is
consistent, the IET distribution of every single node/link generated by
this construction is guaranteed to match its corresponding target
distribution (see Supplementary Information section 2).

Spanning-tree based construction
For any static (but arbitrary) underlying topology, we can always find a
spanning tree (Fig. 1c). A link is called a trunk if it is in the spanning tree,
and it is called a branch otherwise. In our construction, we first ran-
domly select a spanning tree and the root of the tree, and then choose
a target IET distribution for each node and trunk. Next, we execute
Algorithm 2 on the spanning tree, so that all nodes and trunks will
update their states to achieve the targeted IETs. The state of each
branch is then active when the nodes on both ends are active. As a
result, the activity of the entire system is determined by its spanning
tree. Algorithm 3 in Supplementary Information summarizes this
procedure.We say that the system is consistent when its spanning tree
system is consistent.

Synthetic temporal networks
To test our algorithm,weconstruct temporal networkswithoneof two
activity patterns—bursty activity patterns and Poisson activity pat-
terns. Bursty patterns arisewhen there is a simultaneousbursty activity
in node and links activity, and Poissonpattern arises in settings such as
bank queuing systems41 and spreading dynamics42. In particular, we
choose target IET distributions of nodes and trunks that are power-law
distributions for bursty activity patterns, given by

pðΔt;αÞ∼Δt�α ðα > 1Þ: ð4Þ
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And we choose discrete exponential distributions for Poisson-like
activity patterns, given by

pðΔt;αÞ∼
Z Δt + 1=2

Δt�1=2
αe�αxdx ðα >0Þ, ð5Þ

where Δt represents the inter-event time and α the exponent. The
respective survival functions are given as

PðT >ΔtÞ∼Δt�α + 1 ð6Þ

with exponent α − 1 and

PðT >ΔtÞ∼ e�αΔt ð7Þ

with exponent α.
In themain text, we focus ona simple casewhen all nodes (trunks)

have a common exponent αpmf (βpmf), and we use the aggregated IET
distribution21–23, which counts the IETs of all nodes or links, to quantify
the intensity of activity. In Supplementary Information, we also con-
sider the IET distributions of every single node and link (Supplemen-
tary Fig. 1) and we investigate the relationship with the aggregated IET
distributions. We also explore a more general case in which the
exponents of nodes and trunks are sampled independently from a
distribution (Supplementary Fig. 2).

We begin our analysis by constructing temporal networks with
bursty activity patterns.We derive a necessary and sufficient condition
for system consistency, which applies to any network length ttol (see
Methods Eq. (14) and Supplementary Information for details). As
examples, we consider two pairs of exponent setups, (αpmf,
βpmf) = (2.00, 1.90) and (αpmf, βpmf) = (1.80, 1.30), and we execute
Algorithm 3 over two classes of static underlying topologies, Barabási-
Albert scale-free networks43 and Watts-Strogatz small-world
networks44. Figure 2a shows the aggregated IET distributions of nodes
and links. For both underlying topologies and both parameter setups,
the probability mass functions PðΔtÞ and the corresponding survival

functions PðT>ΔtÞ are well fit by power-law distributions, showing
simultaneous burstiness in nodes and links. The best-fit exponent for
nodes matches the exponent of the target IET distribution, and the
exponent for links is slightly lower than the target exponent, due to the
impact of branches (edges outside the spanning tree, where the
algorithm is guaranteed to work).

Next, we construct temporal networks with Poisson-like activity
patterns. If the target distributions for nodes and trunks are Poisson
distributions, then we can prove that the system is never consistent
(see Supplementary Information section 2). However, it is possible to
construct consistent systems when the target IET follows discrete
exponential distributions. In this case, we derive a necessary and suf-
ficient condition for system consistency—namely, that the difference
of αpmf and βpmf lies in ½0, ln 2�, meaning that the activity of nodesmust
be more frequent than links but not too frequent (see Methods and
Supplementary Information for details). Figure 2b shows the aggre-
gated IET distributions along with the exponents of the target dis-
tributions (αpmf, βpmf) = (2.50, 2.00) and (1.80, 1.30). All the
distributions follow the expected exponential decay.

Comparing the results for the two topologies, we find that the
exponents produced by the algorithmic construction are sensitive to
the choice of target IET distribution, but are stable to the choice of
network topology. To examine this observation more generally, we
investigated awide range of random regular underlying topologieswith
different average degrees, ranging from 5 to the well-mixed case (i.e.,
each node linked to all other nodes, see Supplementary Figs. 3 and 4).
We find that we can robustly match target IET distributions across all
these topologies: the relativedeviationbetween the largest and smallest
exponent in algorithmically constructed networks is within 4%.

We can understand why the algorithmic construction for produ-
cing a desired IET distribution is not significantly dependent on
topology by analyzing the activity of branches. In particular, we prove
that the IET distribution of every single branch is approximately a
power-law distribution (respectively a discrete exponential distribu-
tion) in bursty activity patterns (respectively Poisson-like activity pat-
terns) with uniform upper and lower bounds related only to the target
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Fig. 2 | Aggregated IET distributions of nodes and links ondifferent underlying
topologies.We consider the construction of temporal networks on two classes of
static underlying topologies, Barabási-Albert scale-free networks (first row) and
Watts-Strogatz small-world networks (second row). The targeted exponent of every
single node (trunk) is identical, denoted as αpmf (βpmf). We select a pair of high
exponents (blue dots) and a pair of low exponents (green dots) for the bursty
activity pattern (a) and the Poisson-like activity pattern (b), given as (αpmf,

βpmf) = (2.00, 1.90), (1.80, 1.30) and (αpmf, βpmf) = (2.50, 2.00), (1.80, 1.30), respec-
tively. The algorithmic distributions of nodes (circles) and links (squares) are well-
predicted by power-law distributions in (a) and by exponential distributions in b.
The thick black lines with fitted exponents are plotted for reference. The dis-
tributions are the average over 50 independent trials. Parameter settings: network
sizeN = 103, averagedegree k = 6, and network length ttol = 104 in a and ttol = 103 inb.
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distributions (see Supplementary Information section 3). This is also
why the performance of our method is stable with respect to the
choice of spanning tree (Supplementary Fig. 5).

Empirical temporal networks
We tested the ability of our algorithm to reproduce the burstiness of
activity patterns observed in four empirical datasets, collected by the
SocioPatterns collaboration. These four datasets record pairs of face-
to-face interactions from different social contexts, ranging from a vil-
lage in rural Malawi, to an office building and a high school in France.
Each dataset is comprised of contact events with timestamps, repre-
sented by triplets (t, i, j)—indicating the occurrence of an interaction
between individual i and individual j at time t.

It is worth noting that the empirical data record only the commu-
nication moments, so that only the active nodes with at least one active
neighbor can be detected. In other words, the empirical data are
observations of the inter-communication times (ICTs), rather than the
IETs of nodes. Nevertheless, we demonstrate that the ICT distribution of
single nodes converges exponentially to the IET distribution as the
number of neighbors on the underlying topology increases (see Supple-
mentary Information section 4). Since empirical datasets often originate
from highly connected populations, the ICT distributions approximate
the statistical properties of the corresponding IET distributions.

Before applying our algorithm, we first test whether the assump-
tions underlying the algorithmic construction are consistent with the
empirical datasets. The assumption that the activity of nodes and links
is a renewal process is reasonable, compared to the empirical data
(Supplementary Fig. 6). However, the strong form of the conditional
independence (Eq. (1)) assumed by our construction is rejected for the
empirical data (Supplementary Fig. 7). Nonetheless, the empirical data
satisfy a weaker form of conditional independence (Supplementary
Fig. 8, see Supplementary Information section 5 for details).

After pre-processing the datasets (see Methods), we obtain four
empirical temporal networks with population sizes ranging from

N = 84 to N = 327 and length from ttol = 7, 375 to ttol = 43, 436 time-
steps. For all of these temporal networks, the empirical ICT distribu-
tions of nodes and links both exhibit heavy tails, with different decay
rates, showing simultaneous burstiness in activity. We fit these
empirical ICTs with power-law distribution (Eq. (4)) by maximum
likelihood estimation45,46, and we use the fitted distributions as targets
for constructing synthetic temporal networks. Figure 3 shows the
comparison between the empirical and algorithmically constructed
ICT distributions of nodes and links. Our algorithm successfully
replicates the qualitative patterns of burstiness observed in empirical
datasets. Supplementary Fig. 9 shows the comparison between the IET
and ICT distributions of nodes. Since the average degree of these
empirical underlying topologies is large, the IET distribution collapses
onto the ICT distribution.

Combination with network evolution
Although some underlying topologies are static, a variety of real-world
systems also exhibit topology changes over timescales that are com-
parable to the activation dynamics on the network. For example, in
online social networks, new users can enter the network and engage in
new interactions with existing users; or users can switch between
online and offline states. As a consequence, temporal changes in
activity originate not only from the states of existing nodes and links,
but also from the addition and subtraction of nodes and links in the
underlying structure. In these cases, the underlying topology (i.e.,
physical limitations on interactions) is no longer static, but time-
varying.

With this as a backdrop, we extend our algorithm from static to
dynamic underlying topologies, starting first with networks that grow
in size. We introduce a new model that combines our algorithm for
constructing temporal networks with the Barabási-Albert model43,
which we call the temporal Barabási-Albert model. The construction
process is as follows. An underlying topology is initialized with m0

nodes, and the spanning tree is selected randomly. At each time step,
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Fig. 3 | Burstiness in empirical datasets. We analyze four empirical temporal
networks of social interactions within and across households among 84 individuals
in a village69; colleague relationships among 95 and 219 employees in an office
building in two different years (2013 and 2015)25,70; and friendship and educational
relationships among 327 students in a high school in Marseilles71. The length of
these temporal networks from left to right are 43436, 20129, 21536, and 7375. For
each empirical temporal network, we count the aggregated ICT distributions of

nodes (solid circles) and links (solid squares), which both present bursty behaviors
and are well-predicted by power-law distributions. The thick black lines are power-
law distributions with the fitted exponents. We take the fitted distributions as
targets andobtain the respective algorithmicdistributionsofnodes (hollow circles)
and links (hollow squares). The algorithmic distributions present the same level of
burstiness as the corresponding empirical distributions.
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the activity state of the existing network updates once with Algorithm
3, then one adds a new node with m ≤m0 links connected to m dif-
ferent existing nodes following the preferential attachment rule43. All
the newly added elements are set to be active, and the states of the
older pre-existing elements are updated accordingly. The spanning
tree is then updated by adding the new node and a link randomly
selected from m new links. At some time point, the underlying topol-
ogy stops growing, and the construction process continues with g ≥0
more steps on the final state of the underlying topology. Figure 4a
shows a schematic illustration of the above procedure. Figure 4b
shows numerical simulations of the temporal Barabási-Albert model in
bursty and Poisson-like activity patterns. We find that the IET dis-
tributions of nodes and links are stable with respect to the duration
time g, which means that the activity pattern is established during the
evolution of the underlying topology, and it is then preserved after the
topology is fixed.

Aside from overall growth in system size, some systems change
underlying topologieswithout increasing in size, but rather by changes
in the links between individuals, even if the total number of links is
stable over time.We show that ourmodel is also applicable in this case
(see Supplementary Figs. 10 and 11). In addition to changing the loca-
tion of edges, nodes, and links may also be removed over time, due to
aging or other recessionary impacts, which is a counterpart of system
growth; a straightforward example is the reverse process of the tem-
poral Barabási-Albert model.

To model these various kinds of network evolution, we have
developed a more general procedure for constructing temporal net-
works on time-varying underlying topologies (see Supplementary
Information Algorithm 4). The key to this algorithm is to update the
spanning tree in accordance with the evolution of the underlying
topology.

Topology of aggregated static networks
In addition to bursty in inter-event times, real-world temporal net-
works exhibit several other characteristic and distinguishing
features28,47. One important feature, distinct from the IET distribution,
is the topology of the weighted network generated by integrating

snapshots of activity over time. In particular, we can consider the
weighted network produced by aggregating active nodes and edges
from time t = 1 to time t = tagg (Fig. 5a). The aggregated network is
weighted, and we characterize its topology by considering the dis-
tribution of weighted node degree, which is a generalization of the
node degree distribution.

Our algorithm for constructing a temporal network with desired
IET distributions also can reproduce the stationary property of the
associated weighted node degree distribution. In particular, if the
node degree distribution of the (unweighted) static underlying
topology follows d(x), and if all links have the same activity pattern
specified by parameter β, then for a sufficiently large aggregation time
tagg we can prove that the weighted node degree distribution pro-
duced by our algorithm will satisfy

ptagg
ðxÞ∼ vðβÞdðxvðβÞ=taggÞ

tagg
: ð8Þ

Here v(β) is a function of the parameter β that governs activity
patterns (see Supplementary Information section 7 for detailed deri-
vations). Equation (8) shows that, when the underlying topology is a
scale-free network (i.e., d(x) follows a power-law distribution), then
ptagg

ðxÞ will also follow a power-law distribution with the same expo-
nent as d(x), regardless of the aggregation duration tagg. Figure 5b
shows an example of this general mathematical result in the case of a
Barabási-Albert scale-free underlying topology.

For an arbitrary (unweighted) node degree distribution d(x), we
can still find a normalization method such that the aggregated dis-
tribution is insensitive to the duration tagg. The normalization pro-
ceeds as follows: First, an aggregated network of aggregation time tbase
is selected as the baseline. Then for any aggregated network of
aggregation time tagg > tbase, we multiply tbase/tagg by each node
strength. When tbase is sufficiently large, the normalized survival
function for any tagg > tbase will collapse onto the survival function for
tbase (see Supplementary Information section 7 for detailed deriva-
tions). We have verified this result on a network with a small-world
topology (Fig. 5c).

0

G

T

1

G

T

2 3

0 Activation

Underlying topology evolution Evolution stabilization

a b Bursty activity pattern Poisson-like activity pattern

Activation Tree Update
Growth Activation Tree Update

Growth

Fig. 4 | Construction on time-varying underlying topologies. aWe consider the
temporal network construction with a time-varying topology modeled by the
Barabási-Albert model. There arem0 nodes in the initial snapshot. When the
underlying topology is evolving, a node with m link(s) enters the network system
(snapshot G), and the spanning tree is updated accordingly (snapshot T). When the
evolution is stable, the construction process degenerates to that for the static

underlying topology.bWeconsider the impact of theduration time g after network
evolution stabilization. Our model produces expected bursty and Poisson-like
activity patterns on such a time-varying underlying topology. Furthermore, the
activity patterns formed during network evolution (hollow dots) are maintained
after evolution stabilization (solid dots). Parameter settings: αpmf = 1.8, βpmf = 1.5,
m0 = 3,m = 3, and final network size N = 500.
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Finally, we have applied this normalization procedure to the
aggregated activity patterns of the four empirical datasets shown in
Fig. 3. This analysis verifies that our construction of temporal networks
to match empirical IET distributions also matches the stationary
property of the weighted node degree in empirical data (Supplemen-
tary Fig. 12).

Discussion
Simple models that neglect temporal variation in individual behavior
do not suffice to describe the dynamics of many real-life complex
systems. A large and growing body of studies suggest that state
switching of individuals and interactions plays a significant role in
diverse dynamical processes, such as face-to-face communication25,
evolutionary dynamics12,48, and network control49. We have proposed
an analytical framework and corresponding spanning-tree method to
construct temporal networks with specific activity patterns, including
bursty and Poisson-like activity patterns. Unlike prior constructions of
temporal networks in the literature5,35,36, our algorithm is able to
reproduce the simultaneous burstiness of both nodes and edges
observed in empirical datasets, from diverse social contexts (Supple-
mentary Fig. 13).

The central ingredient inour construction algorithm—the spanning
tree—has been widely recognized as a significant feature in both
theoretical50–52 and real-world applications of network science53. For
example, in path-finding algorithms such as Dijkstra’s algorithm54 and

the A* search algorithm55, the shortest paths from a given source node
to all other nodes, together with the source node, form a shortest-path
tree. These algorithms are widely used in mobile robot covering
problems56, for tracking the establishment of oil pipelines57, and for
vehicle routing58. The tree structure is the backboneof these networked
systems. Other examples include telecommunication networks,
including the Internet, where the Spanning Tree Protocol59 and Aug-
mented tree-based routing60 are used to avoid routing loops, to solve
the scalability problem, and gain resilience against node failure and link
instability. In social networks, spanning tree-based algorithms have
beenproven effective in detecting communities, oneof themostwidely
studied issues in network science61. Thus our spanning tree-based
method for generating specific activity patterns might have implica-
tions in several areas of application, which remain to be investigated.

Our analysis of activity patterns on different underlying topolo-
gies shows that the algorithmic IET distribution of nodes or edges does
not significantly depend on the underlying topology, for a given
spanning tree. This result indicates that the macroscopic activity pat-
ternof a general networkcanbe largely determinedby thedynamics of
its key components, such as its spanning tree. Branches from the
spanning tree will cause only small perturbations to the activity pat-
tern, regardless of their number and location, akin to the effects of
’weak links’ in food webs40. As a result, we can construct a temporal
network with a desired consistent activity pattern, even if the under-
lying topology is not precisely known, or even changing in time.

21 3

2

AgAg

1
1

1

1
1

2 3
Aggregation

Time

a

b cBursty activity pattern Poisson-like activity patternPoisson-like activity pattern Bursty activity pattern

Temporal network Aggregated network

Fig. 5 | Node strength of aggregated temporal networks. a The aggregated
network is a weighted network (network Ag) that collates all interactions from the
first snapshot, at time t = 1, though the snapshot at time t = tagg. Link weights
represent the activation numbers summed over network evolution, which can
exceed 1 (such as the orange and green links). b, c The stationary property of node
strength distributions on synthetic temporal networks. We consider two
(unweighted) underlying topologies: Barabási-Albert scale-free networks (b) and
Watts-Strogatz small-world networks (c). For the first topology, the survival func-
tion of the degree distribution follows a power-law distribution with an exponent

γ ≈ 1.7 (red diamonds). The survival function of the node strength for aggregated
networks also follows a power-law distribution with the same exponent as for the
underlying topology, regardless of the aggregation duration tagg. For the second
topology, we set a baseline aggregated network of aggregation time tbase. For any
aggregation duration tagg > tbase, we normalize the survival function of node
strength with respect to tbase, and we find that the survival function of the aggre-
gated network collapse onto that of the baseline network, regardless of the dura-
tion tagg. Parameters: (αpmf, βpmf) = (2.00, 1.90) for the bursty activity pattern and
(αpmf, βpmf) = (2.50, 2.00) for the Poisson-like activity pattern.
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Another straightforward way to measure the burstiness and
memory of temporal networks is to calculate the burstiness
parameter26 and the auto-correlation function (see Supplementary
Information section 8). A larger burstiness parameter means a higher
level of burstiness, and a lower absolute value of the auto-correlation
function means a weaker dependence on memory. Our results show
that our synthetic bursty activity patterns have strong auto-
correlation and a positive and high burstiness parameter, while the
Poisson-like activity patterns are memoryless and have a negative
burstiness parameter (Supplementary Tables 1 and 2, Supplemen-
tary Fig. 14).

The past ten years have shown increasing interest in under-
standing the effects of group interactions and higher-order
interactions62–66, meaning behavioral activities that are not limited
to just pairs of individuals. A recent study has shown that higher-
order interactions in empirical datasets display similar bursty beha-
viors to pairwise interactions67. And so a natural extension of this
work is to study the activity of higher-order interactions in temporal
networks. Our approach may provide a method to decompose net-
works into several elementary components, analogs of spanning
trees in the context of hyper-graphs, which remains a direction for
future research on the temporal dynamics in groups of interacting
agents.

Methods
Mathematical formalization
Here we provide a mathematical model of the two-node temporal
network construction, which is a stochastic process fSmgm≥0 coupling
the activity of every unit. Complete mathematical details about the
existence of fSmgm≥0 and the modeling of other systems are provided
in the Supplementary Information.

We follow the notation in the Two-node systems section.
According to the constraint Zn = XnYn, we construct a stochastic pro-
cess fSmgm≥0, which for arbitrary sets of t1,:::,tk 2 N,k 2 Z+ satisfies

μS2t1 ,:::,S2tk
=μXt1

,:::,Xtk
,

μS2t1 + 1,:::,S2tk + 1
=μY t1

,:::,Y tk
,

μðS2t1 �S2t1 + 1Þ,:::,ðS2tk �S2tk + 1Þ =μZt1
,:::,Ztk

,
ð9Þ

and S0 = S1 = 1. Here μXt1
,:::,Xtk

represents the finite dimensional dis-
tributionof fSmgm≥0 at the timeslice (t1,...,tk). fSmgm≥0 can be viewed as
composing of the following sequence

ðS0, S1,:::,S2n, S2n+ 1,:::Þ= ðX0,Y0,:::,Xn,Yn,:::Þ, ð10Þ

and Zn = S2nS2n+1. fSmgm≥0 follows the activation order in the main text
(i.e., the state of x is determined first). If we exchange the order, the
corresponding indexes in Eq. (9) and the sequence of Xn and Yn in Eq.
(10) are also swapped.

System consistency
The consistency of the two-node system is equivalent to the existence
of fSmgm≥0. If fSmgm≥0 is well-defined, the algorithmically produced
IET distributions of x, y, z will satisfy the target distributions F, G, H.

We derive the equivalence of the consistency condition for bursty
and Poisson-like activity patterns in a two-node system. Let
pðnÞ
x =pxð0ðn�1Þ,1Þ denote the conditional probability that x is active for

the first time at n, where

0ðm�1Þ = 1, 0,:::,0|fflfflffl{zfflfflffl}
m�1

0
@

1
AT

ð11Þ

is a trajectory with lengthm and only one active state occurring at the
initial time. For a power-law distribution with exponent α,

pðnÞ
x ≈ 1� n+ 1

2

n� 1
2

 !�α + 1

, ð12Þ

and for a discrete exponential distribution with exponent α,

pðnÞ
x = 1� e�α : ð13Þ

From the definition of the distribution consistency, the equiva-
lence is given as

αnode ≥αlink ,p
ð1Þ
x +pð2Þ

y <1,pð1Þ
x +pð1Þ

y < 1 +pð1Þ
z ð14Þ

for bursty activity patterns and

0≤αnode � αlink ≤ ln 2 ð15Þ

for Poisson-like activity patterns. Note that these consistency condi-
tions ensure that the algorithm works for any length ttol.

Construction of empirical temporal networks
We generate an unweighted underlying topology S and a temporal
network T for each empirical dataset. We first determine the length of
T by counting the number of timestamps in the dataset. Then, the
snapshot at time t is formed by all contact events with the corre-
sponding timestamps. Finally, we obtain S by aggregating all snap-
shots, that is, link (i, j) exists on S if individuals i and j interact at
least once.

Data availability
All the empirical datasets used in this paper are freely and publicly
available at http://www.sociopatterns.org.

Code availability
Code has been deposited into the publicly available GitHub repository
at https://github.com/anzhisheng/Temporal-networks-by-spanning-
trees68.
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