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A robotic sensory system with high
spatiotemporal resolution for texture
recognition

Ningning Bai1,2,5, Yiheng Xue 3,5, Shuiqing Chen3, Lin Shi1, Junli Shi1,
Yuan Zhang1, Xingyu Hou1, Yu Cheng1, Kaixi Huang1, Weidong Wang 2,
Jin Zhang3, Yuan Liu4 & Chuan Fei Guo 1

Humans can gently slide a finger on the surface of an object and identify it by
capturing both static pressure and high-frequency vibrations. Although
modern robots integrated with flexible sensors can precisely detect pressure,
shear force, and strain, they still perform insufficiently or requiremulti-sensors
to respond to both static and high-frequency physical stimuli during the
interaction. Here, we report a real-time artificial sensory system for high-
accuracy texture recognition based on a single iontronic slip-sensor, and
propose a criterion—spatiotemporal resolution, to corelate the sensing per-
formance with recognition capability. The sensor can respond to both static
and dynamic stimuli (0-400Hz) with a high spatial resolution of 15μm in
spacing and 6μm in height, together with a high-frequency resolution of
0.02Hz at 400Hz, enabling high-precision discrimination of fine surface fea-
tures. The sensory system integrated on a prosthetic fingertip can identify 20
different commercial textiles with a 100.0% accuracy at a fixed sliding rate and
a 98.9% accuracy at random sliding rates. The sensory system is expected to
help achieve subtle tactile sensation for robotics and prosthetics, and further
be applied to haptic-based virtual reality and beyond.

Robotic technologies have a growing demand for tactile sensation to
enable friendly interaction between robots and their surroundings1–6.
This functionality is often realized using artificial sensory systems
based on flexible tactile sensors. Existing flexible tactile sensorsmostly
focus on the precise detection of physical stimuli, including pressure,
shear force, and strain, for better feedback during the grasping or
manipulation tasks of robots7–11. However, artificial sensors often lack
the ability or perform insufficiently to perceive and recognize the real
world upon touching the target objects12,13. By contrast, the human
skin, especially the fingertip, not only feels and weighs but also helps
identify the objects it touches6,14,15. The biological haptic perception
involves the detection of both static pressure and high-frequency

vibrations: the slow adaptive (SA) receptors in the skin respond to the
static pressure, and the fast adaptive (FA) receptors respond to subtly
changed dynamic pressure—the rich frequency information provides a
newdimension tounderstand the characteristicsof the interaction and
to identify the target objects16–18. A representative example is that
humans can recognize braille alphabets or types of textiles by gently
sliding a fingertip over those objects (textures with surface features).
The identification of objects can in return feedback tomanipulation—a
human pinches an egg more carefully than holding a plastic ball with
the same shape, size, and weight, while such discriminative dexterous
manipulation is still challenging for robots due to their lack of touch-
based object recognition. Recently, a few flexible sensor-based
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artificial sensory systems inspired by biological sensory systems have
been developed and shown the potential to realize subtle tactile sen-
sation for machines19–24.

A key challenge for the perception and recognition of fine surface
features such as the texture or roughness of an object lies in the dif-
ficulty of achieving both high sensitivity and a rapid response-
relaxation speed for both static pressure and vibration detection in
flexible tactile sensors. Ultrahigh sensitivity is needed to allow a sensor
to respond to weak stimuli during its interaction with tiny surface
features, preferably down to a few microns; and a rapid response-
relaxation speed is required for the sensor to resolve the characteristic
spacings of surface features or to detect high-frequency and tiny
vibrations. The existing work for fingertip sensing can hardly balance
the two properties in a single sensor25–27. As a result, artificial sensory
systems often use two sensors (together with two circuits that collect
and process different types of signals), one for the detection of static
pressure, and the other specifically for the detection of vibration.
Furthermore, the correlation between the sensing performance and
the recognition capability is still not fully understood. For example, a
sensor with a wide frequency range is often pursued, while for dis-
crimination a high temporal resolution (or frequency resolution) is at
least equally important, but this has seldom been discussed.

In this work, we report a real-time and visual artificial sensory
system of prosthetics based on a single flexible sensor, and we
introduce spatiotemporal resolution as the criterion that determines
the ability of a sensory system for texture recognition. The sensor
utilizes tunable electric double layers (EDLs) that have a nanoscale
charge separation for capacitive signals, giving rise to ultrahigh
sensitivity up to 519 kPa–1, in addition to a high spatial resolution
down to 15 μm in spacing and 6 μm in height. Furthermore, the
selection of low-viscosity ionic material together with the micro-
structural design allows the sensor to rapidly respond to high-
frequency vibrations up to 400Hz with a high frequency resolution
of 0.02 Hz. Thehigh spatiotemporal resolution allows a slip-sensor to
discriminate tiny surface features with close spacings. We demon-
strate that the real-time sensory system can be used for the classifi-
cationof 20different textiles with an average recognition accuracyof
98.6%, and the results can be real-time displayed in a visual interface.
Such a system is expected to promote the sensing technologies of
robotics and prosthetics, and is potentially useful for the sensory

recovery of patients wearing artificial prostheses, haptics-based vir-
tual reality, and consumer electronics.

Results
Concept of the artificial sensory system
In the human biological sensory system (Fig. 1a), a non-conductive
potential change is generated when the skin perceives the outer world
by the SA and FA cutaneous mechanoreceptors, and the signal is
transmitted to the brain via the nervous system for further analysis and
judgment (recognition)6,17,28. Our artificial sensory system mimics the
function of the human sensory system by using only a sensor to realize
both functions of the SA and FA receptors (Fig. 1b)—the sensor can
respond to both static pressure and high-frequency vibrations during
the physical interaction with textures or other objects. The signal with
spatiotemporal information is further collected and transmitted using
a circuit broad, and analyzed using machine learning with the recog-
nition result being output in a visual user interface.

Materials, structure, sensing properties, and mechanism for
static and dynamic pressure detection of the slip-sensor
The sensor, which is called slip-sensor, consists of an artificial finger-
print made of polydimethylsiloxane (PDMS), an ionic gel layer of
polyvinyl alcohol (PVA)-phosphoric acid (H3PO4, 8.3wt.%), two flexible
electrodes of a gold (Au) film on polyethylene terephthalate (PET), and
a flat PDMS film for encapsulation (Fig. 2a). The artificial fingerprint
consists of a set of concentric elliptical structures thathave a triangular
ridgewith a height of 260μmand an inter-structure spacing of 350μm
(Fig. 2b). Both the dimensions (Supplementary Fig. 1) and elastic
modulus of the artificial fingerprint are close to that of the human
fingerprints to effectively capture the vibrational stimuli during
taction18,29. The PVA-H3PO4 gel has a graded, microstructured surface
with two levels of structures: periodic domes with a diameter of
200μm and a height of 55μm, and finer protrusions that are densely
distributed on the domes (Fig. 2c). The specific dimensions of the
periodic domes or finer protrusions, including their diameters and
heights, are determined by a trade-off between the fabrication reso-
lution and the thickness of the device.

The graded microstructures of the ionic layer help improve the
sensitivity and reduce the response-relaxation time of sensors. Here,
the sensor exhibits an ultrahigh capacitance-to-pressure sensitivity up
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Fig. 1 | A robotic sensory system mimicking the human sensory system for texture recognition. a The biological sensory system of humans. b The artificial sensory
system of this study, for which the sensor can detect both static and dynamic pressures.
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to 519 kPa–1 (Fig. 2d). The response maintains stable over cycling—no
substantial signal drift is observed during 10,000 loading–unloading
cycles with a peak pressure of 100 kPa (Supplementary Fig. 2). Fur-
thermore, the sensor exhibits low hysteresis by loading a maximum
pressure of 100 kPa and releasing (Supplementary Fig. 3).

The high sensitivity is attributed to the subtle change in micro-
structured EDL interface upon loading. Before applying pressure, the
presence of an air gap prevents the contact between the electrode and
the ionic gel, resulting in a low initial capacitance (C0) of ~8 pF. When
pressure is applied, the smaller protrusions of the ionic gel begin to
contact with the electrode, and the signal increases sharply because of
the increasing EDL capacitance. As the pressure further increases, the
larger microdomes are involved in the contact, and the capacitance
remains increasing (Supplementary Fig. 4). Therefore, such two-level
microstructures increase the sensitivity and extend the working range
of the sensor.

The response-relaxation speed is a crucial parameter that deter-
mines the capability of a sensor to detect high-frequency vibrations.
Existing piezocapacitive sensors often exhibit a response-relaxation
time of tens of milliseconds, corresponding to a vibration detection

limit on the level of 10Hz9,30–32. Our sensor exhibits a rapid response
timeof0.6ms and a relaxation timeof 1.8msupon loading (50 kPa) and
unloading, adding up to a total response-relaxation time of ~2.4ms
(Fig. 2e). Such a rapid response-relaxationprocess enables the sensor to
effectively respond to high-frequency vibrations up to 400Hz, as
shown in the time-dependent capacitance signals and the correspond-
ing Fourier transform spectra (Fig. 2f). The response-relaxation time is
almost two orders ofmagnitude shorter than that of existing capacitive
sensors, and comparable to that of a rigid-soft hybrid sensor33.

The slip-sensor can respond to a combined mode of static pres-
sure and high-frequency vibrations, which is a common case that
humans interact with the environment. Figure 2g shows the detected
signals of three conditions: static pressure (50kPa), 200Hz vibrations
(amplitude: ~5 kPa) superimposed to the static pressure, and 400Hz
vibrations superimposed to the static pressure—the vibrational signal
is not interfered at such a high base pressure.

Our sensor is superior to existing capacitive sensors in terms of
combined high sensitivity and rapid response-relaxation speed (or a
wide frequency-response range, see Fig. 2h)8,9,29–32,34–42. Other types of
sensors, say, piezoelectric and triboelectric sensors, although being
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Fig. 2 | Structure, sensing properties, and mechanism for static and dynamic
pressure detectionof the slip-sensor. a Schematic diagramof the structure of the
slip-sensor. b Scanning electron microscopy (SEM) images of the artificial finger-
print. c SEM images of the PVA-H3PO4 gel. dNormalized change of capacitance as a
function of pressure over 100kPa, showing a high sensitivity of 519 kPa–1 at the low-
pressure range. e Response-relaxation time (0.6 and 1.8ms) of the slip-sensor.
f Capacitive response of the sensor at vibration frequencies of 10, 200, and 400Hz
in the time-domain and the frequency spectra of the capacitance signals. g Static

pressure (~50 kPa) detection and vibrations detection with frequencies of 200 and
400Hz under a static base pressure of ~50 kPa. h Comparison between our sensor
and existing capacitive sensors in terms of sensitivity, response-relaxation time,
and corresponding frequency range. i Schematicdiagramof adhesion strength test.
j Adhesion strength between the PET-Au electrode and samples with different
moduli. k Contact between the microstructured ionic gel and the electrode under
different pressures.
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capable of capturing vibrational signals with a wider range, fail to
detect static pressures43,44.

We ascribe the rapid response-relaxation speed to both the
materials selection and structure design. First, we select an ionic gel
that has a high stiffness, which leads to a low viscosity and weak
interfacial adhesion. This stems from that a highly crosslinked or stiff
network has a shorter chain length and thus a lower viscosity. Here, the
elastic modulus (E) of the gel is 5.5MPa, much higher than that of the
materials (PDMS, softer PVA-H3PO4, etc.) used in existing capacitive
sensors8,29,35,38. The interfacial adhesion behavior between the elec-
trode and the ionic gel determines the relaxation time of the sensor
because the contact area is proportional to the capacitance value. We
measured the adhesion strength versus the displacement upon load-
ing 50kPa, holding for 3min, and release (Fig. 2i). The graded PVA-
H3PO4 gel (E ~ 5.5MPa) exhibits a negligible adhesion strength (close to
0 kPa). By contrast, three control samples, flat PVA-H3PO4 gel with a
higher modulus (E ~ 5.5MPa), flat PVA-H3PO4 gel with a lower modulus
(E ~ 2.0MPa), and flat PDMS (E ~ 1.5MPa) (Supplementary Fig. 5),
exhibit adhesion strengths of 1.8, 27, and 122 kPa, respectively (Fig. 2j).
It is the low viscosity of thematerial and the low adhesion strengths of
the interface that greatly reduce the rapid response and relaxation
time. Second, the graded structure—microdomes with finer protru-
sions of the ionic gel, can lead to a small contact area between the
electrode and the ionic gel (Fig. 2k). Such a small contact area further
reduces the adhesion energy of the interface and increases the energy
release rate of the system, thereby an increased response and relaxa-
tion speed. In addition, the ionic radii of hydrogen ions and inorganic
anions in the PVA-H3PO4 gel enable faster ion migration, contributing
to a rapid response-relaxation speed as well.

Spatiotemporal resolution of the slip-sensor
The PDMS fingerprint on top of the sensor mimics the human finger-
print to capture the vibrational stimuli during interaction, and the
fingerprint tip size determines the spatial resolution of the sensor.
Without a fingerprint, although being highly sensitive, the sensor may
not effectively interactwith surface textures.We set the ridge tipwidth
of the artificial fingerprint to be 13μm (Fig. 3a), and tested the
response of the slip-sensorwhen it slides on surface textureswithfixed
feature spacings (l) of 10, 15, and 50μm (insets of Fig. 3b) at a sliding
rate of 1.0mms–1. Our results show that the slip-senor is capable of
detecting features with a characteristic spacing larger than the fin-
gertip size (e.g., features with a spacing of 50 or 15μm), while failing to
detect smaller features (10μm) because the fingerprint tips cannot fill
into the small gaps to interact with the structure (Fig. 3b). Such a size
match can be verified in a further experiment: when the artificial fin-
gerprint tip width increases to 25μm (Supplementary Fig. 6a), the slip-
sensor fails to detect surface structures with a spacing of 20μm, but
can respond to structures with a larger spacing (30μm) (Supplemen-
tary Fig. 6b). In addition, signal magnitude increases with contact
pressure due to the stronger interaction between the slip-sensor and
the microstructure (Supplementary Fig. 7). Note that the height of the
surface texture also affects signal amplitude (Fig. 3c). At afixed spacing
of 50μm, the signal amplitude decreases with decreasing feature
height from 50, to 30, and to 10μm(Fig. 3d).We further verify that our
slip-sensor could detect features with a spacing of 15μm and a height
of 6μm (Supplementary Fig. 8).

The high spatial resolution (15μm for spacing and 6μm for
height) allows the sensor to detect tiny surface features including the
microscale fibers (tens of microns in diameter) of textiles. Further-
more, the spatial resolution of the slip-sensor is superior to that of the
human fingertips. The human fingertip shows poor accuracies (with a
24.3% average accuracy, and accuracy≤44% for all cases) together with
a small Kappa coefficient (0.12, which indicates the lowest level of
agreement with unreliable data45) in differentiating a nonstructured
surface, and surface textureswith feature sizes of 10, 15, 20, 30, 40, and

50μm, based on our experimental results from five volunteer subjects
(Supplementary Fig. 9). The result suggests that humans cannot
resolve structures small than 50μm after excluding random guessing.

Besides the high spatial resolution, the slip-sensor exhibits high
temporal or frequency resolution as well. Figure 3e shows that the slip-
sensor can effectively differentiate vibrationswith close frequencies of
400.0, 400.1, and 400.2Hz in the time domain, and such a difference
can also be seen in Fig. 3f, where clear pulses corresponding to the
frequencies are shown. The frequency resolution is determined to be
~0.02Hz (or ~0.005% at 400Hz), identified by the full width at half
maximum (FWHM) of the peaks. Such a high frequency resolution
allows the slip-sensor to identify surface textures with close feature
spacings.

In an ideal case, the characteristic frequency f of vibrations during
the interaction between the slip-sensor and a surface texture is
determined by the sliding rate v of the sensor and the feature spacing l
of the texture:

f = v=l ð1Þ

This relation is verified in our experiment: when the slip-sensor
slides on a blended textile (consisting of 56% polyester and 44%
polyamide) with l of ~275μm (Fig. 3g) at different sliding rates (2, 20,
and 100mms–1), signals in the time-domain can be well detected
(Fig. 3h), and the frequency-domain shows corresponding character-
istic frequencies of 7, 73, and 365Hz (Fig. 3i), respectively. Note that a
base pressure of ~50kPa is applied to the sensor upon sliding in case
that intimate contact is lost. The moderate pressure also ensures the
slip-sensor to capture high-frequency vibration at a high sliding rate of
at least 100mms–1, which is much faster than the typical sliding rate of
human fingers. This allows the slip-sensor to work with high efficiency.

In addition to the feature spacing and height, the stiffness of the
objects also affects the signal output of the slip-sensor. Unlike the
characteristic frequency f that is solely correlated with l, the signal
amplitude depends on not only structure height but also the elastic
modulus of the material. With the same geometry and size (Supple-
mentary Fig. 10a), textures with a higher stiffness present a higher
signal amplitude in the time-domain (Supplementary Fig. 10b) and
frequency-domain (Supplementary Fig. 10c). Therefore, it is not valid
to identify textures by simply considering signal amplitude or fre-
quency, given that the relationship between the parameters of surface
features and corresponding signal amplitude is undermined, together
with the fact thatmany textiles have close structural spacings.Machine
learning, as a powerful artificial intelligence technology that can use
the measured data of sensors to predict outputs, is thus used for the
recognition of textures in an artificial sensory system.

Artificial sensory system for the recognition of textiles
We constructed an artificial sensory system based on the slip-sensor
and leveraged machine-learning techniques for texture classification.
A dataset was first built to train a model for the sensory system. The
slip-sensor was set to slide on 20 textiles with different structures
(Fig. 4a and Supplementary Fig. 11) and different materials including
wool, cotton, and several blended fabrics (Supplementary Table 1) at a
certain sliding rate. The structure periods of the textiles were mea-
sured based onmicroscopic observation, and it shows that the periods
of most textiles are close (Fig. 4b)—some of the differences are within
2.5% (e.g., 449μm for textile no. 9 and 439μm for no. 19). Corre-
spondingly, the characteristic frequencies are also close at a given
sliding rate (Fig. 4c, which shows the results at sliding rates of 2 and
40mms–1), while our sensor can well discriminate such tiny differ-
ences in both spatial and frequency domains because of its adequately
high spatiotemporal resolution. A simple comparison can illustrate the
capability of our sensor to distinguish such textiles: it has a high
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frequency-resolution of 0.005%, while the smallest frequency differ-
ence between the textiles is close to 2.5%.

Weusea readout circuit board to collect the instantaneous signals
generated when the sensor slides across the textiles. The circuit board
consists of five parts: a power supply module, a microcontroller
module (STM32) serving as the central processing unit to process data
and make decision, an input/output interface module for commu-
nication with external devices, a signal processingmodule responsible
for conditioning internal signals, and a 24-bit analog-to-digital con-
version (ADC) module for sampling signals (Supplementary Fig. 12).

Figure 4d shows the distinguishable signals in the time-domain
collected at a sliding rate of 2mms–1 for the 20 textiles, and the dis-
tinctive frequency-domain features of the signals are calculated using
wavelet transformation (Supplementary Fig. 13). Considering that the
complex factors (height, spacing, stiffness, etc.) of the textiles all affect
the output signal, we use machine learning to classify these complex

features. We use T-distributed stochastic neighbor embedding (t-SNE)
to project higher-dimensional data into a two-dimensional (2D) space
to visualize the data while preserving their global and local structure.
Figure 4e presents distinguished clusters of different sets of data col-
lected from the 20 textiles, showing that the datapoints of the objects
can be well visualized and distinguished in a 2D space.

We adopt a Bagging ensemble learning approach to solve the
classification problem,which improves the generalization capability of
the model and the overall classification performance. The classifica-
tion models (or classifiers) employed in the ensemble include
K-nearest neighbors, random forests, logistic regression algorithms,
anddecision trees. In order to accurately distinguishbetweendifferent
textures, we used the Tsfresh tool—a Python package to extract hun-
dreds of time-series features, such as statistical, frequency-domain,
autoregressive, wavelet transform, and time-domain features (Sup-
plementary Table 2). There are 20 categories and dozens of features in
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our dataset, and Fig. 4f shows four categories and two features for
simplified illustration. Each category has 100 sets of data, which were
divided into five blocks. We selected one block at a time as the testing

set and the rest as the training data, and iterated the prediction results
in the testing set several times. By combining the predictions of each
base classifier through voting, more accurate and robust overall
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100.0% is achieved. The inset shows the prosthetic hand integrated with a slip-
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classification results can be obtained. The output confusion matrix
finally confirms an accuracy of 100.0% for textile recognition (Fig. 4g).
The high recognition accuracy can be attributed to two aspects. First,
the slip-sensor can sensitively capture the small differences between
different textiles. Second, the tactile dataset for each textile is con-
sistent at a fixed sliding rate. We extracted a multitude of features
using the Python package tsfresh that helps achieve a high classifica-
tion accuracy. The high recognition accuracy can be maintained at
higher sliding rates for enhancedworking efficiency. At a higher sliding
rate of 40mms–1, the system can still achieve a high recognition
accuracy of 99.5% (Supplementary Fig. 14). The human fingers touch
objects at variable sliding rates, we thus conducted texture recognition
at a random sliding rate. We fixated the slip-sensor on the index finger
of a human subject and unconsciously slid the sensor over the textiles
with unknown contact pressure and sliding rate. Here, we collected
signals for the whole interaction between the sensor and the textile:
before contacting, finger touching, finger sliding over the textile, and
finger withdrawing (Fig. 4h and Supplementary Fig. 15).

Considering the potential consistency within the sliding habits of
the same subject, we collected data on random sliding rates from three
different subjects. Each category involved random touches from three
individuals in a 2:1:1 ratio, resulting in a total of 400 sets of data for each
category and a total of 8000 sets for the 20 textile types, with 40% of
the data reserved for testing. We used an inertial measurement unit
(IMU) to record the acceleration during the sliding process. The evi-
dently chaotic acceleration in the x-y plane confirms that the sliding
rates of an individual continuously change during sliding (Supplemen-
tary Figs. 16–18). An average recognition accuracy of 98.9% was
achieved, revealing the high robustness and reliability of our sensory
system in texture recognition (Fig. 4i). We ascribe the higher recogni-
tion accuracy of our artificial sensory system to the high spatiotemporal
resolution: our sensor can respond to tiny surface features and differ-
entiate yarns even if they have close spacings. Note that the signal for
the onset of the slip (Fig. 4h) may reflect extra features (such as friction
coefficient) of the texture to further improve the classification accuracy.

We further constructed a portable sensory systemwith a real-time
and visual user interfacedisplayed on a PC for intuitive classification of
surface textures. This system consists of a slip-sensor integrated into a
fingertip of prosthetic or human hand, a circuit board for collecting
sensing information of textures and sending real-time data to a PC via
USB wired transmission, the aforementioned machine learning
method for classifying the textures, and a user interface for visualizing
the output results (Fig. 5a).

In the real-time sensory system, all 2000 data sets collected at a
sliding rate of 2mm s–1, and all 8000 data sets collected at random
rates were used for training, while the test sets that consisted of
independent data were collected by the circuit board in real-time. By
analyzing the real-time data, features were extracted and classification
models were applied to make immediate predictions or recognitions.
Real-time recognition enables rapid decision-making and faster feed-
back based on streaming data, making it suitable for time-sensitive
applications or scenarios that require immediate response. Our
experimental results showed that the inference time was below 20ms,
validating the real-time feasibility of our sensing system. With the
machine learn-based classifier, we can identify the textiles in the sig-
nals collected in real-time and display the confidence of the recogni-
tion aswell as themicroscopicmorphology of the textiles identified on
a real-time visual user interface. Figure 5b illustrates an implementa-
tion of the real-time sensing systems, showing the high confidence
when a prosthetic hand with an integrated slip-sensor touches textiles
at a sliding rate of 2mms–1. Of particular note is that the real-time
system shows an average accuracy of 100.0% for these 20 textiles
(SupplementaryMovie 1).When the sensor slides over the same textile
at variable rates, the confidence slightly decreases due to the diversity
and complexity of the data (Fig. 5c). However, the sensory system

consistently achieves an average recognition accuracy of 98.6% for
these 20 textiles (Supplementary Movie 2).

Existing work has reported several sensory systems for texture or
material recognition using two types of sensors (e.g., piezoresistive and
piezoelectric sensors, or piezoresistive and triboelectric sensors) to
simulate SA and FA receptors25,26,46–49. These sensory systems, however,
require two sensors integrated together with two sets of data acquisi-
tion systems (Supplementary Table 3). In contrast to these sensory
systems, our sensory system can achieve a high recognition accuracy
using a single sensor, while the system is simplified and robust.

Discussion
The fine fingerprint plays a key role in allowing the sensor to fully
interact with the fine features of textures, even at high sliding rates.
Without the fingerprint, the recognition accuracy drops to only
54.5% at a sliding rate of 2mm s–1 (Supplementary Fig. 19). Fur-
thermore, the slip-sensor exhibits a high signal-to-noise ratio of
86.79 dB and a high effective number of bits of 14.12 bits (Supple-
mentary Fig. 20). These characteristics ensure that the sensor can
precisely capture subtle tactile signals and deliver high-quality
output in texture recognition.

Overall, our artificial sensory system has a higher accuracy in the
differentiation of fine textures. Such an artificial sensory system is not
only potentially useful in robotics, but also expected to be applied in
healthcare and consumer electronics by helping humans achieve
enhanced haptic functions, and by offering new technologies for
metaverse.

Methods
Fabrication of the slip-sensor
The fabrication of the slip-sensor included the preparation of the
artificial fingerprint, the flexible electrodes, the ionic gel, and the
encapsulation of the device (Supplementary Fig. 21).

Fabrication of the artificial fingerprint
A reverse template of fingerprints that have a similar aspect ratio and a
depth-width ratio to the human fingerprint was constructed by 3D
modeling, and printed out using resin by high-precision 3D printing
(NanoArch S130, BMF Precision Tech, Inc.). All other resin micro-
structures were also prepared using high-precision 3D printing. PDMS
base and curing agent (Sylgard 184, DowCorningCo., Ltd.) with amass
ratio of 5:1 were cast on the surface of the fingerprint mold. After
curing at 80 °C for 30min, the PDMS fingerprint (thickness: ~350μm)
was peeled off from the mold.

Preparation of the ionic gel
A resin mold with an inverse-graded microdome structure was 3D-
printed and used as a mold for preparing the microstructured ionic
film. Two grams of PVA (Mw ~145,000, Aladdin Industrial) was dis-
solved in 20 g deionized water and stirred at 90 °C for 2 h. Next, the
PVA solution was cooled to 50 °C, and 1.5mL H3PO4 (AR, ≥85%,
Shanghai Macklin Biochemical Co., Ltd.) was added and stirred con-
tinuously for 1 h. The PVA-H3PO4 mixture was then casted onto the
surface of the resin mold and cured for 24h at a temperature of 24 °C
and 43% humidity. Finally, the PVA-H3PO4 films (thickness ~120μm)
were removed from the mold and cut into circles with a diameter of
7mm for later use.

Preparation of flexible electrodes and sensor encapsulation
A layer of 100-nm-thick Au film was deposited on 40-μm-thick PET
(HD, DuPont) using ion sputtering (MC1000, Hitachi High-Tech), ser-
ving as the electrodes for the sensor. The PET-Au filmwas then cut into
circles with a diameter of 7mm for later use. The slip-sensor consisted
of five layers from top to bottom: artificial PDMS fingerprint, a PET-Au
top electrode, a PVA-H3PO4 layer with graded microdomes as the
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active layer, a PET-Au bottom electrode, and a flat PDMS membrane
(thickness: 100μm) as a bottom encapsulation material. The PDMS
fingerprint layer and the flat PDMSmembrane were treated by plasma
and bonded to the bare side of the PET layer. Finally, the PDMS fin-
gerprint and the flat PDMS film were bonded with silicone adhesive
(Sil-Poxy, Smooth-On, Inc.).

Characterization and measurements
The morphology of the PDMS fingerprints, the ionic film, and the
textiles were characterized by field-emission scanning electron
microscopy (TESCAN MIRA3). A computer-controlled mechanical
testing machine (XLD-20E, Jingkong Mechanical Testing Co., Ltd) was
used to load the external pressure. The signals of the sensor were
recorded using either a high-speed LCRmeter (TH2840B, Tonghui) or
a digital circuit board. For the consideration of high sampling fre-
quency, all high-frequency vibration signals, including response-

relation speed, were collected using an LCR at a testing frequency of
10 kHz with a sampling frequency was ~1600 Hz. The circuit board
wasused in the artificial sensory system to acquiredigital signalswith a
sampling frequency of 1000Hz.

The sensitivity was defined as S = δ(ΔC/C0)/δP, where P represents
the applied pressure, andΔCwas the differencebetween themeasured
capacitanceC and the initial capacitanceC0 (~8 pF). Increased dynamic
pressures up to 100 kPa were applied to the sensor, and the corre-
spondingpeak capacitancevalue for eachpressurewas recordedusing
the LCRmeter at the test frequencyof 1000Hz. The slope in theΔC/C0-
P curve represented the sensitivity value of the sensor. The response-
relaxation time was tested by rapidly applying and withdrawing a
pressure of ~50 kPa to the sensor using manual pulling on a flat metal
post with a diameter of 3mm. The time for the rising edge represented
the response time, and the time for the descending edge was the
relaxation time.

a
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Feature extraction
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Fig. 5 | A portable and real-time sensory system with a visual user interface.
a Structureof the real-time sensory system.bDemonstration of the real-time visual
user interface for the recognition of textiles using a prosthetic hand integrated

with a slip-sensor working at a sliding rate of 2mms–1. cDemonstration of the real-
time visual user interface for which the sensor works at random sliding rates.
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A vibration generator (Model BL-ZDQ-2185, Hangzhou Peilin
Instrument Co. Ltd.) was used to apply constant frequency vibrations
to the sensor at a pressure of ~10 kPa, and the corresponding vibration
response signals of the sensor were collected using the LCR meter.
Electrochemical etching was adopted to characterize the change in
contact area between the microstructured ionic gel and the electrode
(Fig. 2k). A PET-Au electrode was used as the bottom electrode, and a
copper film which was deposited on silicon was used as the top elec-
trode,with themicrostructured ionic gel sandwiched inbetween as the
electrolyte. The etching was performed for 10 s at fixed pressures of
10, 30, 50, and 100 kPa at a bias of 1.5 V (CORRTEST, CS350).

The textiles were purchased from local markets. The structure
periods of the textiles were measured by microscopic observation
(Supplementary Fig. 11), three times for each textile in order to cal-
culate the corresponding average structure period and error bar
(Fig. 4b). A mechanical test platform, consisting of a tensile machine
and a lifting platform (LZ80-2, OMTOOLS), was used for texture
recognition test at fixed sliding rates. A polymethyl methacrylate rod
bonded with a slip-sensor was fixed to the tensile machine, and the
objects under test were fixed to the surface of the lifting platform. The
pressure applied on the slip-sensor was controlled by adjusting the
height of the lifting platform.The sensor slid across the surface of each
object driven by the tensile machine to interact with its surface and
corresponding capacitance signal was recorded. The data for the 20
textiles were collected at a sliding distance of 40mmand a sliding rate
of 2mms–1, with a total of 2000 data sets. A static pressure of ~50kPa
was applied to the sensor before sliding. The texture recognition test
at random sliding rates was conducted by fixing the slip-sensor on the
subject’s index finger and randomly sliding the sensor onto the textile
with estimated sliding rates of 0–30mms–1. The details about the
recognition ofmicrostructure by human subjects were provided in the
Supplementary Information.

Design of digital circuits
The design principle of the circuit is as follows. First, a 12-bit digital-
to-analog converter inside the STM32 microcontroller was pro-
grammed to generate a stable sine wave signal as the excitation
source for the measurement. This excitation signal was applied to
the capacitor to be measured, causing a current to flow through the
capacitor. During this process, the capacitor exhibited a fixed
resistive characteristic known as capacitive reactance, which was
proportional to the capacitance value. Next, a reactance-to-voltage
conversion circuit was used to transform the capacitive reactance
into a voltage signal that is proportional to the capacitance value.
Subsequently, the output voltage signal was processed through a
low-pass filter to obtain a DC voltage. Finally, this DC voltage was
sampled using a 24-bit ADC, and the STM32 microcontroller cal-
culated the capacitance value.

The circuit boardhaddimensions of 5.5 cm in length and 3.5 cm in
width (inset in Supplementary Fig. 12), which were determined based
on the functional requirements and component quantity.

Construction of the real-time sensory system with a visual user
interface
In the real-time artificial sensory system with a visual interface, the
signals were collected using a digital circuit board. Python package
tsfreshwas used to extract the features of textures, and random forest
algorithms were used for classification and analysis. A user interface
was designed and displayed on a PC to provide real-time feedback on
the predicted signal waveform, the real sampled signal waveform, and
the microscopic image of the textile, together with the predicted
confidence value. The experiments were conducted on a laptop with
64 GB of RAM, and the preprocessing and classification times were
consistently <20ms per data point.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study are provided in the Main Text and the
Supplementary Information. Additional data are available from the
corresponding author upon request.

Code availability
The MATLAB code for wavelet transformation and the Python codes
supporting the portable and real-time sensory system for texture
recognition are openly available on GitHub at https://github.com/
Billy1203/SUSTech-texture-recognition.
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