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Polarization structured light 3D depth image
sensor for scenes with reflective surfaces

Xuanlun Huang 1,2,4, Chenyang Wu 1,2,4, Xiaolan Xu2, Baishun Wang2,
Sui Zhang2, Chihchiang Shen 2, Chiennan Yu2, Jiaxing Wang2, Nan Chi 1,3,
Shaohua Yu 1,3 & Connie J. Chang-Hasnain 1,2

Highly reflective surfaces are notorious in the field of depth sensing and three-
dimensional (3D) imaging because they can cause severe errors in perception
of the depth. Despite recent progress in addressing this challenge, there are
still no robust and error-free solutions. Here, we devise a polarization struc-
tured light 3D sensor for solving these problems, in which high-contrast-
grating (HCG) vertical-cavity surface-emitting lasers (VCSELs) are used to
exploit the polarization property. We demonstrate accurate depth measure-
ments of the reflective surfaces and objects behind them in various imaging
situations. In addition, the absolute error and effectivemeasurement range are
measured to prove the applicability for a wide range of 3D applications. Our
work innovatively combines polarization and depth information, opening the
way for fully understanding and applying polarization properties in the 3D
domain.

Highly reflective surfaces, such as glass, mirror, and water surface, are
common scenes in 3D imaging. They often cause irrevocable errors in
depth sensing and3D imaging, such asmirages leading towrongdepth
measurements or specular reflection blinding 3D sensors. However,
the correct perception of the surrounding environment is critical for
many applications, such as robotics, scene reconstruction, and virtual
reality. Hence, it is extremely important to manage the problem of
reflective surfaces. In recent decades, there are plenty of techniques
managing to detect the reflective surfaces, including polarization
imaging, active projectors and its fusion with other sensors, and deep
learning. However, due to the effects of reflective or multipath noise,
most of these techniques will result in erroneousmeasurements of the
reflective surfaces.

Polarization imaging is able to obtain the 3D shape of an object by
analyzing several images of reflected intensity at different polarized
angles. Its first use to determine the 3D orientations of reflective sur-
faces dated back to the 1990s1. Since then, polarization imaging has
been used to reconstruct the shape of transparent2–4 and specular5–8

objects. Furthermore, the integration with cues from various depth
sensors9–14 enables polarization imaging to obtain better shape
recoveries of the targets. However, polarization imaging needs to

capture multiple polarized images and can only estimate relative
depths. In addition, most of them requires knowledge of the refractive
index of the object, while some rely on other factors to ease this need,
such as various light conditions15,16 or multiwavelength17. In11, Berger
combined polarization and stereo vision and further extended the
application to general environments with reflective surfaces. However,
due to the inability to differentiate mirages from real objects, stereo
vision will result in a virtual and wrong distance. Some methods use
multiple polarized images18–22 or local reflection cues23,24 to separate
the reflection. In some cases, an additional infrared sensor is used to
provide depth information and to remove the mirage images25,26. One
major drawback of polarization-stereo-vision methods is that they do
not result in correct depth measurements of the reflective surfaces
(e.g., the depth of the glass).

Active projectors, such as laser range finders and structured light
projector, are widely used in the field of depth sensing. In the case of
laser range finder, in order to deal with the reflective surfaces, some
researchers use the reflected intensity profile to determine the glass
area27–29. The fusion of laser range finder and sonar30,31 is also devel-
oped for navigation in the glass environment. In addition, the method
used in polarization imaging is applied to the laser range finder, in
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which the degree of polarization is calculated and serves as a detection
standard of glass areas32. However, these methods require scanning
around to determine the depth and glass points, thus they are still in
the stage of 2D route mapping. As for structured light projectors, a
method33 employs the fusion of Kinect and sonar to obtain the depth
images of glass scenes. But, due to the sparse data and narrow angle of
the sonar, it needs to sweep multiple times to obtain enough infor-
mation. Besides, the fusion with sonar will make the system costly,
huge and complex.

Deep learning is also a good candidate for the detection of
reflective surfaces34–37, where a network model trained on abundant
images of reflective surfaces is employed to mark out the target area.
But we find that even the recent works36,37 might still misjudge the
areas with frames or borders, such as an empty framewithout glass, as
the reflective surfaces.

Therefore, a compact and robust method is still needed for
applications in environments full of highly reflective surfaces. Here, we
develop a polarization structured light (PSL) 3D sensor38 with polar-
ization properties on both the transmitter (TX) and receiver (RX). In
TX, high-contrast-grating (HCG) vertical-cavity surface-emitting lasers
(VCSELs) are specially designed to provide structured light with a
strong polarization selection ratio. In RX, a polarization-selection
CMOS camera is designed to receive the signal selectively. According
to Fresnel’s theory39, the specular reflection from a reflective surface
maintains the same polarization as the incident polarized light. How-
ever, diffused reflection from objects without smooth surfaces does
not exhibit any polarization even incident by a strongly polarized light.

Hence, using a polarization-selection CMOS camera can differentiate
reflection from a reflective surface. Thus, the depth information of a
reflective surface or objects behind it can be obtained based on the
choice of the polarizer direction. Here, we report three experiments to
demonstrate how PSL 3D sensors can be used to see as well as to see
through highly reflective surfaces.

Results
Polarization structured light 3D sensor
ThePSL 3D sensor is illustrated in Fig. 1a. It consists of a transmitter TX,
a receiver RX and an RGB camera. In TX, we have embedded an HCG-
VCSEL array inside, whose working wavelength is 940 nm. VCSELs are
critical sources for dot projectors used in structured light cameras40.
Typical VCSEL uses distributed Bragg reflectors (DBRs) as its top and
bottom mirrors. The DBRs are many 10s of layers of planar hetero-
epitaxial layers and do not provide or maintain a fixed polarization to
the VCSELs. HCG is a thin-film subwavelength metastructure that is
effective in providing high reflection with a fixed polarization. Hence,
HCG VCSELs have exhibited a very high polarization selection ratio
independent of operating temperature or drive conditions41. With this
specially designed HCG-VCSEL array, the TX of PSL 3D sensor can
project dot-array structured light (see Supplementary Fig. S1 and
Methods) in either transverse electric (TE) or transversemagnetic (TM)
polarization.

The polarization direction of the structured light emitted fromTX
is denoted by a double-head blue arrow in Fig. 1a and its projection
range is 75. 5° × 65. 7°, which is indicated by a pink area bounded by
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Fig. 1 | Principle of the polarization structured light 3D sensor. a The model of
PSL 3D sensor. In TX, polarized structured light is produced by anHCG-VCSEL array
inside. In RX, signals are received selectively by a rotatable polarizer mounted on
the receiving infrared CMOS camera. In addition to TX and RX, PSL 3D sensor
contains a RGB camera in the middle as well. b The scheme of seeing through the
reflective surface. On the upper row, it shows the 3D sensor can obtain depth
information of both the reflective surface and the objects behind.On the lower row,

the 3D sensor can remove the depth of the reflective surface. The specific steps are
shown in the flow diagram. c The scheme of seeing against reflective noise. On the
left side, it shows the 3D sensor can obtain the correct depth of the scene by
eliminating the effect of reflective noise. The flow of this mission is shown on the
right. Note that the plane of the PSL 3D sensor is set to be x-y plane and the light
propagation direction is in z direction.

Article https://doi.org/10.1038/s41467-023-42678-5

Nature Communications |         (2023) 14:6855 2



gray dot arrow lines. Here, we set the plane of the PSL 3D sensor to be
x-y plane and the light propagation direction to be z, then define the
horizontal (x direction) polarization, as pointed by the blue arrow in
Fig. 1a, to be TM polarization. In RX end, a rotatable polarizer is
mounted on the infrared CMOS camera. Its polarization direction is
denoted by a double-head green arrow and its receiving angle is
74° × 50. 5°, which is indicated by a pink area bounded by orange dot
arrow lines. The polarizer can be rotated to receive the dot patterns
selectively. By calculating the spatial displacements of known dot
patterns, depth information can be obtained for an entire image at
high frame rates.

Seeing through the reflective surface
According to the polarization feature of the HCG-VCSEL-based PSL 3D
sensor, we can fully exploit its merits for 3D imaging in scenarios with
large reflective surfaces. Based on Fresnel equations39, when S- or P-
polarized light is incident on a highly reflective surface, the reflection
will maintain the same polarized direction. As shown in the upper
picture of Fig. 1b, TX of the PSL 3D sensor projects TM-polarization (P-
polarization, Pin1) structured light onto the scene. The reflected light
from the reflective surface (Pout1), which is denoted by the black solid
line, will bounce back with the same polarization as the TX, while the
light reflected from the object behind the reflective surface (Sout2,
Pout2), whose light path is denoted by the black dot line, is polarized in
various directions due to diffuse reflection. Then RX can receive the
signals (Pout1,2) of both the reflective surface and the object behind
with its polarizer set in the samepolarizeddirection, i.e., xdirection. As
shown in the lower picture of Fig. 1b, if we change the direction of the
polarizer to be orthogonal, i.e., y direction, the depth information of
the reflective surface is eliminated, leaving that (Sout2) from the diffuse
object behind.

Thus, for seeing through the reflective surface, the process can be
divided into three steps, as illustrated in the flowof Fig. 1b. Step 1 is the
projection of polarized structured light with a specific polarization
direction (Pin1). Step 2 is the setting of RX polarization direction to be
orthogonal to TX. Step 3 is obtaining the depth information of the
scene (Sout2), where the part of the reflective surface (Pout1) is removed.
In addition, thedistinctionbetween twopolarization settings of RX can
be further used to complete the reflective surface.

Seeing against the reflective noise
In Fig. 1c,we also showtheprinciple ofworking against reflective noise.
In this sketch, the influence of natural light (Sin3, Pin3) is indicated by
the graydash line, whose incident plane is in the x–zplane. Its reflected
component is stronger in S-polarization (y direction, Sout3) according
to Fresnel equations39. Hence it can be eliminated when a P-polarized
TX and RX are used to enhance the signal-to-noise ratio (SNR),
enabling clear 3D image acquisition of the whole scene where there is
strong reflective noise from the natural light. The process for this
mission can be concluded into four steps, as illustrated in the flow of
Fig. 1c. Step 1 is the projection of polarized structured light with spe-
cific polarization direction (Pin1). Step 2 is the determination of polar-
ization direction of noise (Sout3). Step 3 is the setting of RXpolarization
direction to be orthogonal to the reflective noise. Step 4 is obtaining
the correct depth information of the scene (Pout1).

Completing the reflective surface
In addition to seeing through the reflective surface and seeing against
the reflective noise, we further present the PSL 3D sensor’s capability
to detect and complete the reflective surfaces. The two-step working
principle is illustrated in Fig. 2. In step 1, we extract the glass region by
the collaboration of the depth and color channels. In the depth
channel, wefirst obtain thedepth imageof the scene inpolarization0°.
Polarization 0°means thatboth theTXandRXof the PSL 3D sensor are
in the same polarization, herewe set them in TMpolarization. Next, we

rotate the RX to the orthogonal polarization, obtaining the depth
image in polarization 90°. As illustrated in the principle of seeing
through the reflective surface, the glass part canbeeliminatedbecause
its reflected polarization is orthogonal to the RX. Then, subtraction is
applied between these two depth images to capture the area with
sharp contrast. Meanwhile, in the color channel, we adopt the deep
learningmethod36 to get the glass boundary from theRGB imageof the
scene. For a glasspixel, it is predicted tobe 1 (white) and for a non-glass
pixel, it is 0 (black). Combining the subtraction result in the depth
channel and the boundary result in the color channel, the depth points
belonging to the glass can be determined and extracted, which is
highlighted in red in the depth image. Note that, for scene without
glass, there is no sharp contrast between two polarization settings in
the depth channel (see Supplementary Fig. S3 and the results of
completing the reflective surface).

After getting the glass region, we move forward to step 2. The
extracted glass depth points Pd = [u, v, z]⊤ are transformed to the world
coordinate of the infrared camera Pir = [x, y, z]⊤ using the following
equation:

x = zðu�cx Þ
f x

y =
zðv�cyÞ

f y
,

ð1Þ

where {fx, fy, cx, cy} are the internal parameters of the infrared camera.
Then the glass is fitted to a large enough area in this world coordinate
(Supplementary Fig. S4 explains why it needs to fit in the world coor-
dinate). The fitted glass points are next transformed to the world
coordinate of the RGB camera Prgb = ½x0,y0,z0�> with the external para-
meters, i.e. the rotational matrix R and translational matrix T:

Prgb =RPir +T : ð2Þ

These points Prgb aremapped to the color channel Pc = ½u0,v0,z0�> using
equation (1) but with the internal parameters of the RGB camera
ff 0x ,f 0y,c0x ,c0yg. In the color channel, we can interpolate inside the glass
boundary according to the fitted glass points Pc and finish the com-
pletion of the glass. At last, the completed point cloud can be con-
verted back to the world coordinate. As shown in the right part of step
2, the original point cloud is plotted in the first row, where only the
middle region of the glass is detected. After applying step 1 and 2, the
whole glass area can be completed, which is highlighted in the second
rowwith red color. With this proposed method, not only the glass can
be seen and completed correctly, but also the objects behind the glass
can be reconstructed, enabling seeing and seeing through the reflec-
tive surfaces.

Analysis of 3D imaging in scenes with reflective surfaces
Before showing the results of three experiments, we first analyse 3D
imaging in scenes with reflective surfaces. Among the reflective sur-
faces, the indoor glass wall is a typically challenging situation (Fig. 3a,
b). In this scene, we place the sensor in front of a glass wall, with a
reflecting image of two persons and the sensor on the same side of the
glass at about 1.2 m distance in front. In this situation, the depth image
obtainedwith a stereo vision camera (Intel RealSenseD455) is shown in
Fig. 3c, which is unable to see the depth of the glass. In fact, the stereo
vision camera provides erroneous depth measurements based upon
the image of the persons reflected by the glass with a measured dis-
tance of about 2.4 m behind the glass wall, whereas the actual should
be 1.2 m in front of the glass wall. In contrast, when TM polarized
structured light patterns produced from the TX of PSL 3D sensor hit
the glass, depth information of part of the glass can be reconstructed
with TM polarization in RX, as shown by the area encircled by the
dashed line in Fig. 3d. Thesemeasured values agreewell with the actual
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distance and this correct depth information can be further used to
demonstrate and complete the glass wall.

Deep learning is an effective tool to detect glass36,37, where a
trained deep neural network is used to predict the glass part. However,
suchRGB-image-baseddeep learningmethodwill causemisjudgement
in some scenes. As shown in Fig. 3e, a cardboard box with its front
surface removed isplaced in front of the sensor. Inside thebox, there is
a boxof gloves and ametal breadboard. The RGB image of this scene is
sent to the network for prediction and its result is shown in Fig. 3f. The
prediction result is the probability of being considered as glass, whose
range is 0 to 1. For a glass pixel, it is evaluated as 1 (white) and for a non-
glass pixel, it is 0 (black). From the result, we can see that almost the
whole front surface area is considered to be the glass area. This is
because the context of having box boundaries and objects inside will
lead to errors in prediction. Moreover, we test another glass door
scene. As shown in Fig. 3g, weplace the sensor in front of a soundproof
room with its door open. That is, there is glass on the left and no glass
on the right. Inside the soundproof room, a cardboard box with a

basketball on its top is placed on the left, and another box and a book
are on the right. Again, the result in Fig. 3h shows that the network
predicts both parts as glass areas.

Due to these disadvantages, a much more robust method for the
detection of reflective surfaces is required to develop. On the one
hand, it needs to obtain the correct 3D information on reflective sur-
faces. On the other hand, it should be able to determine whether the
depth information belongs to them. In the following, we will illustrate
how the PSL 3D sensor and its corresponding imaging methods facil-
itate in such a mission.

Results of seeing through the reflective surface
We start with a typical situation, i.e. glass door with objects behind,
to illustrate PSL 3D sensor’s ability to see through the reflective
surface. We analyze different factors that can affect this mission,
including the distance from the 3D sensor to the glass, the 3D sensor
incident angle, the distance of objects behind glass and the density
of objects behind glass. Their specific conditions are listed in Table 1.
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Fig. 2 | Principle of completing the reflective surface. In step 1, the glass region is
extracted through a combination of depth and color channels, where the glass
points are highlighted in red. In depth channel, two depth images are obtained in
polarization 0∘ and 90∘ respectively. Then, subtraction is employed between these
two depth images for extraction of the glass points. In color channel, the glass
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method. In step 2, the extracted glass points are transformed to the world coor-
dinate for fitting. After fitting, the results are mapped to the color channel. In this
channel, the reflective surface can be interpolated and completed inside the glass
boundary. At last, the completed point cloud can be converted back to the world
coordinate, as shown in the before and after comparison on the right side.
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In Fig. 4, we show the influence of the first factor. The color pictures
of the scene are shown in the first column. In this situation, the PSL
3D sensor is facing the glass door with a distance changing from 0.4
m to 1.2 m. Behind the glass door, there is a movable cabinet with a
basketball on the top. Their distances to the glass are fixed to 0.5 m.
The TX of the PSL 3D sensor projects TM-polarized structured light
to the scene. Then the structured light is reflected back to the RX,
containing depth information of both the glass door and objects
behind. Asmentioned in the principle, the reflected light of the glass
door maintains the same polarization as the TX, while those of the
cabinet and basketball are in various polarized directions due to
diffuse reflection.

Hence, when we set the RX to be TM polarization, depth infor-
mation of the glass door, cabinet, and basketball can all be recon-
structed,which is shown inPolarization0°of Fig. 4a. In this depthmap,
bright yellow represents the nearpoints andblack represents the far or
missing points. The middle bright yellow area accurately reveals the
depth of the glass, while the farther cabinet and basketball are darker.
Unlike Fig. 3d, the central part shows the depth of the basketball rather
than the glass because reflection from the basketball is stronger. Next,
if we rotate the RX to the orthogonal direction, i.e. TE polarization, the
glass part can be filtered, leaving clear depth information of the cabi-
net and basketball (Polarization 90° in Fig. 4a). As we change the dis-
tance to 0.8m, themiddle ball area becomes smaller because the glass
depth begins to dominate (dot line in Polarization 0° of Fig. 4b). As for
1.2 m (Fig. 4c), the middle is almost replaced by glass depth, while the
whole proportion of glass depth is smaller as compared to that of 0.4
m. In Polarization 90° for both cases, the glass part can still be
eliminated.

More details about the incident angle of 3D sensor, distance and
density of objects behind glass are displayed in Supplementary
Fig. S5–S8. Regardless of different incidence angles, or different dis-
tances and object densities, the 3D sensor can eliminate the depth of
the glass and achieve the function of seeing through the reflective
surface. Supplementary Movie 1 clearly shows this phenomenon by
rotating the RX polarizer 360 degrees. The high contrast between
Polarization 0° and Polarization 90° can further serve as a determi-
nationmethod of the reflective surface, which will be demonstrated in
the section after next.

Results of seeing against the reflective noise
We also set up outdoor and indoor scenes to demonstrate the
advantage of detecting against noise (Fig. 5). We first show a case of
outdoor glass scene (Fig. 5a). In this situation, a book is placedbehind a
tilted glass, where there is strong specular reflection from the natural
light.We can see that the reflectednoise incapacitates the stereo vision
camera for obtaining the depth of the scene, leading to black-irregular-
patch errors in the depth map (encircled by white and red dot lines
while the book is indicated in red). However, as mentioned in the
Fig. 1c, this noise has a larger component of S polarization. Note that in
this setting, S polarization is in the horizontal direction (x direction)
when facing the glass. Therefore, we can utilize P-polarized (i.e. y-
direction polarization) TX and RX to filter this noise, enhancing the
SNR. As shown in Fig. 5c, the book behind the glass (encircled by the
red dot line) can be measured clearly with the PSL 3D sensor in this
P-polarized setting.

Besides this sunlight noise, the shadow of objects may also
severely blind the depth camera based on stereo vision. As illustrated
before in Fig. 3c, the reflection noise of two persons makes the stereo
vision camera provide erroneous measurement. Another outdoor
scene with reflection overlapped with the detecting object is also
illustrated in Supplementary Fig. S9, where the stereo vision camera is
still affected by the reflection of outside objects while the PSL 3D
sensor can get the depth information correctly.

In the next case, we analyze the ability to detect against noise in
the situation of wall corner, which is a common scene for indoor ser-
ving robot. The results are displayed in Fig. 5d–l. As shown in Fig. 5d,
the comparison is first done at a height of 0.24m and a distance of 0.7

Table 1 | Influence factors for seeing through the reflective
surfaces

Influence factor Specific experimental condition

Distance from 3D sensor to glass 0.4 m 0.8 m 1.2 m

3D sensor incident angle − 30∘ 0∘ 30∘

Distance of objects behind glass 0.3 m 0.5 m 0.7 m

Density of objects behind glass Low Medium High
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No glass
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b c d

f h
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camera
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Fig. 3 | Analysis of 3D imaging in scenes with reflective surfaces. (a) and (b) are
scheme and picture of the indoor glass wall scene. The glass wall is about 1.2 m in
front of the sensor, with a reflecting imageof two persons and the sensor. Note that
two persons are on the same side as the sensor. c Depth image from the stereo

vision camera (Intel RealSense D455). d Depth image from the PSL 3D sensor. The
glass part is denoted by the dashed line. (e) and (g) are testing scenes of the deep
learning method. Their corresponding prediction results are shown in (f) and (h).
The jet color bar applies to (c) and (d), the gray color bar applies to (f) and (h).
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m away from the corner, with the sensor 45° downward. In this situa-
tion, due to the influence of reflection and multipath noise, the stereo
vision camera will make the wrong depth judgment. As indicated by
the red dot line in Fig. 5e, the depth has gone deep below the floor
plane. Only a small part (orange dot line) has accurate floor informa-
tion. However, for the PSL 3D sensor (Fig. 5f), a complete and correct
shape of the corner can be obtained by setting TX and RX to be P
polarization (y direction). Then we change to the height of 0.4 m
(Fig. 5g), with a distance 0.7 m and an incline angle 45° unchanged. It
means that the incident angle decreases. In this condition, the correct
floor area obtained from the stereo vision camera starts to increase
(orange dot line in Fig. 5h), but the depth area encircled by the red dot
line still penetrates into the floor. As we change to the height of 0.56m
(Fig. 5j), the floor area of the stereo vision camera goes back to the
correct plane (Fig. 5k), but there are still some black speckles in the
depthmapbecause of noise. However, for the PSL 3D sensor, the intact
depthmap and point cloud aremaintained in these twoheights (Fig. 5i
and l) with this P-polarized setting.

For these common scenes of reflective surface, PSL 3D sensor can
remove noise through specific polarization combinations, improve the
signal-to-noise ratio, and obtain complete depth information of the
scene. More polarization combination experiments and comparison
with time of flight (ToF) camera, presented in Supplementary
Fig. S10–-S13, further demonstrate the superiority of PSL 3D sensor in
these scenarios.

Results of completing the reflective surface
In the following, we prove the feasibility of completing the reflective
surfaces. The results of eight common scenes are selected to illustrate
in Fig. 6 and Supplementary Fig. S14. In Fig. 6, we display four of these
scenes, including balcony glass, soundproof room glass, spherical
glass and office door glass. In the balcony glass scene, a yellow square
box is placed outside the glass door which has reflections of the
interior furniture. With polarization 0° and polarization 90° settings,

we obtain two depth images of the scene. In polarization 0°, partial of
the glass and the boxoutside canbothbe reconstructedwhile the glass
part is eliminated in polarization 90°. Compared to the stereo vision
camera, which fails to detect the glass depth and misjudges the
reflections as real objects, such a change in depth channel can serve as
a reliable cue for determining the reflective surfaces. Thus, using the
subtraction of two depth images and the glass boundary predicted
from the RGB image of the scene, we are able to extract the glass
region, which is highlighted in red in the fifth row. The extracted glass
points are then used to fit and complete the reflective surface. The
completed depth image is shown in the seventh row, where the par-
tially empty glass has nowbeen filled in. The final comparison between
the original point cloud and the completed point cloud is shown in the
last two rows. In the completed point cloud, we can see that the new
glass plane, which is colored in red, matches well with the glass frame
and the 3D information of the box outside the glass can be acquired
simultaneously.

As for the soundproof room glass scene, we execute the same
process. In this scene, the right door of the soundproof room is open,
that is, only the left side has glass. Inside the room, a cardboard box
with a basketball on its top is placed on the left, and another box and a
book are on the right. As seen in the depth images, only the left side
with glass has a large change while the right side shows no significant
change. If simply relying on the predicted glass boundary from deep
learning, we will mistakenly consider the right side as glass. However,
our method can determine the regions that actually have glass and
extract effective depth information belonging to the glass. Similarly,
this accurately extracted depth information is used for the following
fitting and completion. In the completed results, the left glassdoor and
objects inside the roomcanbe reconstructed, as if exploring the inside
and outside of the soundproof room from God’s perspective.

Besides planar glass, our method can also be applied to curved
glass, which is displayed in the third column. In this situation, we use a
spherical exhibition stand with two 3D-printed models inside as the

a

1.4 m

0.4 m

Scene Polarization 0°

40 cm

b

1.7 m

0.7 m

80 cm

c

1.9 m

0.9 m

120 cm

Polarization 90°

Scene Polarization 0° Polarization 90°

Scene Polarization 0° Polarization 90°

Fig. 4 | Seeing through the reflective surface. (a)–(c) are the results of different
distances from 3D sensor to glass. Polarization 0∘ is the depthmapwhen TX and RX
are in the same polarization. Polarization 90∘ is the depthmapwhen TX and RX are

in the orthogonal polarization. The yellow-black color bars apply to both second
and third columns.
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detecting object. Likewise, two depth images are obtained from two
polarization directions. We can see that the front face of the glass ball
is eliminated in polarization 90°. With the ball-shaped glass boundary,
we acquire the glass region in the fifth row. These points are from the
spherical glass so the fitting result is a quadric surface. Then we
complete the glass inside the glass boundary and get the completion

result. As seen from the point cloud in the last row, it completes well
the front surface of the spherical glass. Note that, there are still some
misjudged points in the predicted glass boundary, such as the
unsmoothness and the false positive outliers at the ball edge. These
minor flaws can be solved by optimizing the predicting network in
future work.

a b
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Fig. 5 | Seeing against the reflective noise. (a)–(c) are comparison results of an
outdoor glass scene, where (a) is the picture of the scene, (b) is the depthmap from
stereo vision camera (Intel RealSense D455) and (c) is the depth map from PSL 3D
sensor. (d)–(l) are comparison results of an indoor corner scene. The experiments
are done in different height, whose schemes are shown in (d), (g), and (j). The

corresponding depthmap and point cloud from stereo vision camera are displayed
in (e), (h) and (k) respectively, while those from PSL 3D sensor are in (f), (i), and (l).
The jet color barwith range (0.48m, 1.1m) applies to (b), (c), and theonewith range
(0.3 m, 1 m) applies to the depth map column.
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Fig. 6 | Detection and completion results. The results of four scenes are pre-
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settings respectively. The fourth row is thepredictedglass boundaryusing thedeep
learningmethod. The fifth row is the extracted glass region, which is obtained from
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shows the fitting of the extracted glass points in the world coordinate. The seventh
row is the completed depthmap. The original point cloud and the completed point
cloud are shown in the last two rows. In the completed point cloud, the completed
glass is highlighted in red. The parula color bar applies to the last two rows and the
yellow-black color bar applies to the rows of polarization 0∘, polarization 90∘, and
depth completion.
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At last, we showanofficedoor glass scenewith a larger tilted angle
than the first column. In likemanner, there is a cabinet with a ball on its
top behind the glass. Due to different imaging angles and distances,
the position of the glass depth is different in polarization 0°, whereas it
will not affect the elimination of glass in polarization 90°. With the
same subtractionmethod, the glass points are extracted and shown in
the fifth row. Then the glass door is fitted and completed. From the
completion results in the seventh row and the last row, we can see that
the glass can be completed well and the box and ball behind the glass
can also be reconstructed, reinforcing the idea of seeing and seeing
through the reflective surfaces.

It can be seen from the above experiments that the position and
proportion of effective glass information are variational for different
experiment situations. This is because of the combined effect of the
illumination angle and the cleanliness of the reflective surface. In
Supplementary Fig. S15, we analyze the influence of different cleanli-
ness of the reflective surface on the detection area. In fact, if the
reflective surface perfectly follows the specular reflection model, only
an area with the size of the emitter will be fully received. But in com-
monscenes, this kindof situation rarely exists on the reflective surface.
Actually, itwill be affectedby the randomlydistributedparticles on the
surface, expanding the reflection range to a certain extent, which is
the so-called off-specular reflection42,43. As our experiments show,
the PSL 3D sensor can extract enough effective glass information in
various scenes.

We also describe the effective measurement angles in Supple-
mentary Fig. S16. We fix the position of the sensor facing the glass and
then measure the working range by rotating the sensor horizontally
and vertically tomeasure theproportionof theglass points.Weuse the
number at 0° as a base and the ratio down to 2% as the limit, and the
measured working range is ± 45° horizontally and ± 30° vertically.
Moreover, the rest of the eight scenes are also illustrated in Supple-
mentary Fig. S14, demonstrating the general applicability of our
method.

As for the measurement accuracy, we use the absolute error to
evaluate, and the results are shown in Fig. 7. Among them, Fig. 7a-h are
the error maps of eight scenes, where Fig. 7a-d correspond to the four
scenes in Fig. 6 and Fig. 7e-h correspond to the four scenes in Sup-
plementary Fig. S14. Specifically, we cover the reflective surfaces with
thin stickers and conduct depth detection on the scene again, the
fitted depth of which is used as a benchmark. We then calculate the
absolute error between the depth map of the completed reflective
surface and this benchmark. Then we perform boxplot statistics on
these eight error maps, and the results are shown in Fig. 7i. The green
box includes the median and the upper and lower quartiles of each
error map, the gray points are outliers exceeding 1.5 times the inter-
quartile range, and the yellow circle dashed line is the mean value of
each error map. From the error analysis, we can see that the errors are
maintained at the level of 1mm, demonstrating the precise recon-
struction of ourmethod. Note that there are outliers in the errormaps.
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These errors mainly come from the fluctuation of the data, such as the
influence of the interreflection, which can be reduced to a much lower
level if we include the model to suppress it in the future.

The above experiments of completion are froma single view. Ifwe
want to reconstruct thewhole scene,weneed to employourmethod in
different views. In Supplementary Fig. S17, we show the reconstruction
of a fish tank by employing ourmethod in four sides of the fish tank. In
addition, amore complicated scenewith amirror at the back of glass is
used to prove the feasibility of our method in Supplementary Fig. S18.
The ToF camera is also compared in Supplementary Fig. S19, which
once again demonstrates the distinction of the PSL 3D sensor.

Discussion
In summary, we have invented an HCG-VCSEL-based polarization
structured light (PSL) 3D sensor and proposed the corresponding
imaging methods for 3D reconstruction in a wide type of scenes with
highly reflective surfaces.

We first chose a glass scene to demonstrate the ability of the PSL
3D sensor to obtain 3D information of objects behind reflective sur-
faces. Next, we compare with the stereo vision camera and ToF cam-
era, and show that in the scene with strong reflective noise, through a
specific polarization setting, our sensor can eliminate the reflective
noise and accurately obtain the 3D image of the scene. Then, we select
8 different scenes to prove that ourmethod can be robustly applied to
the detection and completion of the reflective surfaces. Moreover, we
show that the effective working range of incident angle is as large as
90° × 60°. In contrast, stereo vision cameras, ToF cameras, and deep
learning methods will cause erroneous measurements in these sce-
narios. At last, we evaluate the absolute errors of our detecting results,
and themean error of each scenemaintains at the level as low as 1mm,
equivalent to 0.1%. Through these different experiments, we demon-
strate that the PSL 3D sensor can realize seeing and seeing through the
reflective surfaces.

Currently, the proposed methods are conducted in post-proces-
sing, but in fact they can be integrated into the module. We can also
modify and optimize the design of the deep learning network, so that
they can be transferred to the processing chip of the sensor for real-
time detection and completion. On the receiving end, we can also
design a unique polarizer array like that in44, which can be coated on
the CMOS camera and receive the signal from different polarizations
simultaneously, making our system more compact.

Serving as the eyes of a robot, PSL 3D sensors will find many
applications such as service robots and logistics robots. These robots
will inevitably encounter the problem of reflective surfaces such as the
glass door and floor corner shown in the main text. The PSL 3D sensor
can make them handle these cases correctly. Besides, object or scene
reconstruction of reflective surfaces, such as office and exhibition hall,
will also benefit from this method. Thus, with the special polarization
characteristic, the PSL 3D sensor can be further extended to a wide
range of indoor and outdoor applications.

Methods
Generation of dot-array structured light
The polarized dot-array structured light is generated directly from
the TX. Inside the TX, there is a 940 nm HCG-VCSEL array, a colli-
mating lens with 4.8 mm focal length and a diffractive optical ele-
ment (DOE). The HCG-VCSEL array and the DOE are mounted at the
focal points of both sides of the lens. By designing the bandwidth
and airgap of the HCG, the VCSEL sources produce polarized
Gaussian beams. These beams propagate to the lens and are colli-
mated to compensate the divergence. Then the collimated light
travels to the DOE. Passing through the DOE, one beam can diffract
to 11 × 9 orders uniformly. If we properly position the VCSEL on the
array, then the far-field distribution of the laser array can be dupli-
cated in 11 × 9 copies, enabling the production of dot-array

structured light over 30,000 points. The far-field dot-array dis-
tribution is shown in Supplementary Fig. S2.

Postprocessing of the point cloud data and RGB images
The reading and drawing of point clouds are done by the Point Cloud
Processing of Computer Vision Toolbox in MATLAB. The fitting uses
the fit function of Curve Fitting Toolbox with its robust option set to
bisquare. The other processing of the point clouds is also based on
MATLAB. The prediction of the reflective surface boundary is based on
PyTorch. In addition, the visualization of the point clouds in Fig. 5,
Supplementary Fig. S10–S13 and Supplementary Fig. S17 is based on
CloudCompare45.

Calculation of the depth of reflective surfaces
By calculating the spatial displacements of known dot patterns, depth
information of reflective surfaces can be obtained according to trian-
gulation. The received dot patterns on the reflective surfaces are
shown in Supplementary Fig. S20 and a model of triangulation is also
shown to illustrate how depth is calculated.

Data availability
All the data and codes that support the findings of this study are
available in Supplementary files and Figshare under accession code
https://doi.org/10.6084/m9.figshare.2372241646.

Code availability
All custom codes are uploaded along with the data, as stated in Data
Availability.
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