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CamoTSS: analysis of alternative
transcription start sites for cellular
phenotypes and regulatory patterns
from 5' scRNA-seq data

Ruiyan Hou1, Chung-Chau Hon 2,3 & Yuanhua Huang 1,4,5

Five-prime single-cell RNA-seq (scRNA-seq) has been widely employed to
profile cellular transcriptomes, however, its power of analysing transcription
start sites (TSS) has not been fully utilised. Here, we present a computational
method suite, CamoTSS, to precisely identify TSS and quantify its expression
by leveraging the cDNA on read 1, which enables effective detection of alter-
native TSS usage. With various experimental data sets, we have demonstrated
that CamoTSS can accurately identify TSS and the detected alternative TSS
usages showed strong specificity in different biological processes, including
cell types across human organs, the development of human thymus, and
cancer conditions. As evidenced in nasopharyngeal cancer, alternative TSS
usage can also reveal regulatory patterns including systematic TSS
dysregulations.

Alternative usageofdifferent gene architectures enables todifferential
expression of various mRNA isoforms, including alternative tran-
scription start/end sites and alternative splicing (AS) events, such as
exon skipping, intron retention, alternative 5’ and 3’ splice sites1–3. The
advances of single-cell transcriptomic technologies have provided a
powerful tool to detect cellular heterogeneity in gene-level expression
by using the sum of all transcripts originating from the same gene4.
Several studies have developed computational and statistical approa-
ches to detect and quantify alternative splicing at single-cell
resolution5. Most of these studies focus on the exon-skipping event,
commonly by full-length based platforms like Smart-seq26–8 and also
possibly by UMI-based methods like 10X Genomics Chromium9,10.
Thanks to the higher throughput, 3’ tag-based scRNA-seq in 10x
Chromium platform has been broadly adopted to explore gene-level
expression. Several groups leveraged the technique characteristic of
polyA-biased scRNA-seq and developed computational pipelines to
detect alternative 3’ end usage, even with potential applicability to
detect alternative 5’ start site usages11,12. In addition, another recent

method, scraps, took the advantage of using read 1 (>100bp) to pre-
cisely identify polyadenylation sites at a near-nucleotide resolution in
scRNA-seq data by 10X Genomics and other TVN-primed libraries13.

Alternative transcript start site (TSS) usage is another major
mechanism to increase transcriptome diversity and its regulation. Cap
analysis gene expression (CAGE) has been widely used to capture the
5'-end of transcripts and identify TSS at a single-nucleotide resolution
from bulk samples14, which has been used as themajor tool to annotate
TSS across mammal genomes in the FANTOM project15 and to reveal
narrow shifts of TSS within a single promoter during zebrafish early
embryonic development16. The analysis of TSS and its alternative usage
has been further fueled by the extensive use of RNA-Seq in multiple
international consortium projects, including tissue-specific TSS by the
Genotype-Tissue Expression (GTEx) data1, the cell type specific novel
TSS by the RAMPAGE project17 and cancer type specific promoter reg-
ulations from a pan-cancer study18. More individual studies also evi-
denced the importance of TSS regulation for different biological
functions, e.g., tumor immune interaction in gastric cancer19, prognosis
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in multiple myeloma20, and synchronized cell-fate transitions in the
yeast gametogenesis program21.

Recently, attention has also been paid to TSS analysis at a single-
cell level, for example, a single-cell version of CAGE, C1 CAGE, was
introduced to identify TSS and enhancer activity with the original
sample multiplexing strategy in the C1TM microfluidic system22. This
was further extended to capture both 5' and 3' by the single-cell RNA
Cap And Tail sequencing (scRCAT-seq) method, where UMI became
applicable to further reduce the cost23. Besides these specialized
methods, conventional platforms, e.g., 10xGenomicshave commercial
kits for constructing a 5' gene expression library (often with V(D)J dual
readouts), where the fragmentation does not happen at sequences
close to template switch oligo (TSO), suggesting that this part of
sequences is an ideal material to detect transcription start site at a
(near-) nucleotide resolution (Fig. 1A). Many sequencing centers keep
its default setting of equal length paired-end (e.g., 150bp), hence
capturing the cDNA in read 1. Indeed, some public 5' 10x Genomics
datasets on the GEO repository have such information, bringing an
open rich resource to re-explore the TSS usage in various biological
contexts at the single-cell level. A software suite called SCAFE has
already used this type of sc-end5-seq data to de novo detect TSS at a
single-cell resolution, but it mainly paid attention to the cis-regulatory
elements (CRE, the proxy of the TSS) rather than the alternative tran-
scription start sites24. Therefore, there is an urgent demand for tailored
methods to analyse such 5' scRNA-seq both efficiently and accurately,
especially on alternative TSS usage.

Here, to identify and quantify potential TSSs and evaluate their
differential usages from 5' tag-based scRNA-seq, we fully utilize those
“rubbish" sequences in read 1 mentioned above (otherwise trimmed
before analysis) and developed CamoTSS (Cap and Motif-based TSS
modeling from 5' scRNA-seq data), a computational method suite
that calls TSSs by combining clustering of reads distribution and
classification with predictive features, followed by window sliding
technique to denoise the detection of single-nucleotide-resolution
TSS. CamoTSS further focused on the analysis of alternative TSS
among different cell populations, tissues, development stages and
disease contexts by leveraging our upgraded BRIE225 as a backend
engine. The effective application of our method was demonstrated
by using public 5' scRNA-seq data containing pair-ends (i.e. read 1
covering information of cDNA) including adult human cell atlas of 15
major organs, primary nasopharyngeal carcinoma and hyperplastic
lymphoid tissue, gastric cancer paratumor and adjacent paratumor
tissues and human thymic cell across development and postnatal life,
where alternative usages of TSSs were found with strong specificity
on cellular states and showed potential to assess their systematic
dysregulation.

Of note, CamoTSS is capable of analysing TSS both at a region
(around 100bp) and a single-nucleotide resolution. For the former, we
interchangeably use TSS region, TSS cluster or simply TSS, otherwise,
we will specifically call the latter CTSS (CAGE tag-defined transcription
start site, a concept borrowed fromCAGE16).Weprimarily focus onTSS
region/cluster analysis and only introduce the CTSS in the analysis of
the thymus development data, considering its biological relevance.

Results
Overview of CamoTSS pipeline
We developed a stepwise computational method CamoTSS to detect
alternative transcription start site clusters and quantify their differ-
ential usage utilizing 5' tag-based scRNA-seq data alone (Fig. 1B). In
brief, CamoTSS has three main steps after fetching TSS reads for a
certain gene from an aligned bam file: (1) clustering of TSS reads with
hierarchical clustering (minimum linkage distance: 100bp by default),
(2) filtering TSS clusters by technical thresholds (minimum UMIs: 50;
minimum inter-cluster distance: 300bp) and an embedded classifier
to prevent TSS clusters from artefacts by using predictive features (see

next paragraph) and (3) annotating these de-novo TSSs (by its summit
position) to known annotations (e.g., GENCODE) optimized by a
Hungarian algorithmwhile if a detected TSS cluster does not cover the
optimal known TSS position, it remains called as new-TC or novel-TSS
(Fig. 1B; Methods).

Due to strand invasion26 and sequencebiases27, the classification is
a critical step to rule out false positives caused by technical artifacts
(Fig. 1C). By using ATAC-seq data from a matched sample as ground
truth, we labeled the intersecting TSSs captured from 5’ scRNA-seq
data as true TSS if it overlaps with a high-confidence ATAC peak or
false TSS if it overlaps with a low-confidence ATACpeakorwithout any
ATAC peak. Based on these samples, four reads-based features
(unencoded G percentage24, summit UMI count and cluster standard
deviation, UMI counts) were extracted and then feed to logistic
regression to do classification. In addition, we also introduced a
convolutional neural networkmodel (architecture detail inMethods)
to examine how well the pure genomic sequence (+/- 100 bp) pre-
dicts the TSS. Here, for deployment and user usage, the four reads-
based features were kept as the default setting with a pre-trained
logistic regression by using datasets from pluripotent stem cells
(iPSC) and human dermal fibroblasts (DMFB) lines. This setting
achieves a balance between reasonable accuracy, high general-
izability and remarkable simplicity (see next section). On the other
hand, we keep the sequence-based model as an optional component
not only to enhance prediction performance but can also imply
regulatory strength (see the NPC section).

Performance of CamoTSS in detecting TSS
To assess the performance of our proposed classifiers in filtering false
positive artefacts, we leveraged the positive and negative TSSs anno-
tated bymatched ATAC data (see above andMethods) and performed
tenfold cross-validations. In the combined data of iPSC and DMFB
lines, all models achieve high performance in both specificity and
sensitivity, with the area under the receiver operating characteristic
curve (AUROC or AUC) of 0.976, 0.988, 0.987 and 0.984 for cluster
model, sequence model, combined features models with separately-
training and jointly-training, respectively (Fig. 2A, Supplementary
Fig. S1A; all using same cross-validation split). Similar high accuracy
was also observed when running the same assessment on iPSC and
DMFB lines separately (Supplementary Fig. S1B, C). To prove the
generalizability of both the cluster and sequence models, we further
performed the out-of-distribution prediction. Specifically, for the
cluster model, we found it generalized well by training on iPSC and
predicting DMFB (AUC =0.985; Fig. 2B) or from the combination of
iPSC and DMFB to PBMC (AUC=0.965; Fig. 2B). For the sequence
model, we evidenced its robustness by knocking out the binding site
sequences of a certain TF (CTCF or E2F6) in the training set and only
predicting this TF’s binding sequence as a test set (AUC=0.908 for
CTCF and 0.948 for E2F6; Fig. 2C).We speculate thismaybe due to the
intrinsic similarity of binding sites among different TFs, especially
those in a certain family. When checking the importance of features by
combining all features using the separately-trained CNN model, we
found that the DNA sequence feature set (i.e. 32 weight features from
the CNNmodel; AUC =0.976) is themost predictive one, followed by a
single feature, the unencoded G percentage (AUC =0.974, Fig. 2D).
The coefficients of logistic regression display a consistent importance
rank (Supplementary Fig. S2).

Furthermore, the quality of detected TSS clusters can be assessed
by the consistencywith epigenetic signals, includingpromoter-specific
histone modifications (H3K4me3 and H3K27ac), gene-body-specific
markers (H3K36me3)28 and transcription initiation signal (RNA POL2
that collects general transcription factors to form the pre-initiation
complex)29. In the PBMC dataset, the RNA POL2, H3K4me3 and
H3K37ac signals were all highly enriched in the intervals around
CamoTSS-identified TSS clusters (no matter located in an exon or
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intron region), while the signal of H3K36me3 was mainly enriched
downstream of TSS clusters detected by CamoTSS (Fig. 2E). We also
checked the negative clusters (i.e intersect with negative scATAC-seq
peak or without intersecting to any scATAC-seq peak), and found no
signal surrounding these negative TSS clusters. As examples, Fig. 2F
shows one canonical and one novel TSSs of DPH1 and two canonical

TSSs of SCP2 detected byCamoTSS (highlighted by red lines), all with
signal support from histone modifications, RNA POL2 and scATAC-
seq, which suggests high reliability of CamoTSS. Then we calculated
the percentages of annotated and novel TSS clusters detected by
CamoTSS in PBMC (Fig. 2G) and it shows the majority of identified
TSS clusters (73.6%) are annotated. As we expected, most TSSs

Fig. 1 | Developing CamoTSS to identify transcription start site (TSS) from 5'
tag-based scRNA-seq data. A A flow chart of the 5' scRNA-seq gene expression
library construction (10x Genomics). B A schematic of CamoTSS which includes
clustering, filtering and annotation. “C” denotes cluster. The lines within the cluster

circles represent the aligned reads and their start positions are denoted by red
circles. C Classifier embedding in CamoTSS includes a logistic regression model
and a convolutional neural network model. Ranked ATAC-seq peaks were used as
ground truth labels for the TSS clusters when training classifiers.
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(4986 out of 9018) detected by CamoTSS were mapped to 5'UTR,
while a substantial part of TSSs was alsomapped to intron (2391) and
exon (1630) regions, presumably due to the alternative usage of
transcription start sites.

It is worth noting that users can customize the thresholds to filter
TSS according to their preference when running CamoTSS. Here, we
evaluated the minimum UMI and minimum inter-cluster distance
based on the PBMC dataset to provide a reference. As depicted in
Supplementary Fig. S3, both the cluster model and sequence model
exhibit their decreased performance when the dataset is derived from

clusters with UMI counts <50 (but >10), which suggests that using > 50
UMI is more effective to filter false positive TSSs, while users may still
use a lower threshold to detect rarer TSS if they can tolerate a lower
sensitivity (the ROC curve shows our models can still achieve a good
false positive control). For the parameter of minimum inter-cluster
distance, it was used to control the distance of clusters when detecting
the alternativeTSS after theywere retainedby the classifier. Therefore,
it does not largely affect the quality of clusters as shown in Supple-
mentary Fig. S4C, D. On the other hand, a larger parameter of clus-
ter distance can decrease the number of total TSS or genes with
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alternative TSS (Supplementary Fig. S4A, B) while may reflect more
biological differences on alternative TSS usage.

CamoTSS facilitates cell identity analysis
Given that CamoTSShas the capability of detecting TSSs at a single-cell
level, we wonder howmuch it can enhance cell identity analysis and to
which extent it presents a cell-type specificity. Here, we downloaded
84,363 single-cell transcriptomes (profiled by 10x Genomics, 5' tagged
scRNA-seq with reads 1) across 15 organs from one adult donor to
detect the variability of TSS usage across cell types and organs30. By
leveraging CamoTSS, we can obtainmatched gene expression and TSS
expression for each individual cell, allowing for direct comparison of
RNA and TSS clusters without the need for integration methods. We
tookmuscle (5,732 cells) as an example and used the same parameters
to preprocess the gene and TSS expressionmatrices and clustered the
cells (Supplementary Fig. S5). Overall, the majority of cells showed
consistent clustering between using gene- or TSS-level expressions
(Adjusted Rand index: 0.572; Supplementary Fig. S6). Interestingly, we
noticed that NK/T cells have different clustering results when using
TSS- or gene-level expressions as input (Fig. 3A). The NK/T cells were
clustered as NK cells and T cells at gene level, while our TSS level
analysis returns NK (& CD8 T) cells and CD4 T cells (Supplementary
Fig. S7). While this difference in clustering preference mainly happens
in the coarse resolution, it suggests the TSS-level contains com-
plementary information for characterizing cells. We speculate this
differenceconveys that the extra information coming from thedistinct
promoter usage between cell populations, which links to the reg-
ulatory variability between cells that may be evident at the epigenetic
level. To validate our hypothesis, we leveraged Single-Cell Regulatory
Network Inference and Clustering (SCENIC)31 to analyze gene expres-
sion data and obtain the AUCell score of regulons in each cell. This
activitymatrixwas used to separately predict clusters of RNA level and
TSS level with a logistic regression model. As we expected, the TSS
clusters (S4 and S9) are more separable than the RNA clusters (R5 and
R7) in this supervised approach (AUROC0.982 vs 0.914; Fig. 3B), which
is consistent visually in the top two principal components via an
unsupervised manner (Supplementary Fig. S8), suggesting that the
TSS expression profile contains regulation information.

From another perspective, the R7 cluster (identified at the gene
level) exhibits two distinct TSS profiles (TSS clusters S4 and part of S9)
that are highly concordant with the two subpopulations named CD8+
T cell (GZMK T cell) and CD4+ T cell (IL7R T cell) (Supplementary
Fig. S7)30. We also detected the regulatory patterns of R7 cluster and
found it displays different regulatory patterns between S4 and S9, for
example, IKZF1, a regulator of lymphocyte differentiation (Supple-
mentary Fig. S9A). Otherwise, the clear differential pattern of R7 dis-
appeared when we shuffled the order of cells (Supplementary
Fig. S9B), which suggests the TSS-level analysis can capture distinct
regulation status that is masked by gene-level analysis. Furthermore,
when comparing the transcription factors binding possibility to the
top 1000 cluster-specific TSS regions by using Homer32, we found that
S4 and S9 showed enrichment of different transcription factor family

motifs, including nuclear receptors (NR) and basic leucine zipper
(bZIP) respectively, as illustrated in Fig. 3C.

Subsequently, we surveyed the TSS profiles in all 15 organs and
asked if the TSS profiles are more similar within cell types or organs. In
total, 21,125 TSSs were detected bymerging all cells from 15 organs and
then used to calculate a Pearson’s correlation coefficient between each
cell type in each organ (at a pseudo-bulk level). By performing the
hierarchical clustering on the correlation, the dendrogram shows that
samples of the same cell type (across organs) have a higher similarity,
with few exceptions (Fig. 3D), consistent with direct grouping by cell
types or organs (Supplementary. Fig. S10). This “cell type-dominated
clustering”pattern implies thatmost cell types possess a conservedTSS
expression signature. To further illustrate the usage of the TSSprofile at
cell type identification, we compared the top 20 most significant mar-
kers at both TSS and gene levels for each cell type in the bladder
(Fig. 3E). Venn diagrams show partial overlap between gene- and TSS-
based markers in all cell types, indicating that TSS may serve as addi-
tional predictive features for cell type identification, for example,
RAMP3_ENST00000242249 as a marker for endothelial cells and
C7_ENST00000313164 for fibroblast (Fig. 3F, Supplementary Fig. S11).

Next,we focusedongeneswhichhave at least twoTSSs. To identify
cell-type differential expression at the TSS level, we performed a dif-
ferential analysis betweenoriginal annotatedcell types and searched for
genes with both cell-type-specific TSS shifts (one cell type vs each of
others) and non-cell-type-specific TSS (one cell type vs any of others;
Methods).We detected 2,301 genes containing such isoformmarkers in
15 organs (Supplementary Dataset S1, Supplementary Fig. S12). Fig-
ure 3G top panel shows an example of such TSS from the zinc finger
E-box binding homeobox 2 (ZEB2) gene inmuscle, which is known to be
a transcription factor to regulate epithelial to mesenchymal transition
associatedwithmany cancers33.While the gene-level expressionof ZEB2
is less distinct across cell types, we find that among the 2 TSSs detected
by CamoTSS, one TSS without annotation (with minor expression), is
almost exclusively expressed in satellite cells. The histonemodification,
RNA POL2 and scATAC-seq signals all appeared at the same position
of TSS (Supplementary Fig. S13), which indicates the reliability of
TSS identified by us. As another example, MFSD1 plays an essential
role in liver homeostasis as a lysosomal transporter34. It undergoes an
isoform shift in fibroblast in the heart, where the expression of the
ENST00000486568 is significantly higher, suggesting distinct cell-type-
specificTSS localization (Fig. 3Gbottompanel, Supplementary Fig. S13).
To further determine the role of TSS as a cell typemarker, we used all of
these TSS-level cell-type markers (cell number > 50) to predict cell type
annotated by gene expression profile from the original report, and
achieved accurate predictions on all cell types in the esophagus
(Fig. 3H). We were, then, curious about how many TSS markers of cell
type are shared by other organs. To solve this problem, we used the
upsetR package35 to detect the intersection of genes including TSS
markers among organs and found there are still some TSS markers
overlapping across multiple organs (Supplementary Fig. S14). SH3KBP1
shared the same TSS switch among 7 distinct organs in NK/T cell
(Supplementary Fig. S15, Supplementary Fig. S16), indicating the

Fig. 2 | CamoTSS can accurately detect TSS. A Receiver operating characteristic
(ROC) curves for TSS classification with three groups of features by using logistic
regressions; the curves are for pooled non-redundant TSSs form iPSC and DMFB
datasets (Methods; individual sample shown in Supplementary Fig. S1). Ten-fold
cross-validation is used for the evaluation. Source data are provided as a Source
Data file. B ROC curves showing using iPSC dataset to predict DMFB dataset and
using pre-trained cluster model (with combining iPSC and DMBF) to predict PBMC
dataset with paired scATAC-seq and scRNA-seq data. Source data are provided as a
SourceData file.CROCcurves for using samples which donot contain binding sites
of the CTCF or E2F6 as training datasets to predict samples which only contain
binding sites of the CTCF or E2F6. Source data are provided as a Source Data file.
D All features (e.g. clusters features and sequence features), the combination

dropping one feature in all features and each one feature were fed to the logistic
regression model to perform prediction. AUROC values are obtained via 10-fold
cross-validation (n = 10). Source data are provided as a Source Data file. E The
distributions of RNA POL2, H3K4me3, H3K27ac and H3K36me3 signals around the
TSSs detected by us and the random regions produced by bedtools. RNA POL2,
H3K4me3andH3K27ac showenrichment aroundTSSswhileH3K36me3 is enriched
downstream of our TSSs. F Tracks plots of two examples (DPH1 and SCP2) show
peaks of scRNA-seq, scATC-seq, POL2, H3K27ac and H3K4me3. Red lines denote
the locationof our detectedTSSs.GPie chart of the percentage of our detectedTSS
regions/clusters as annotated by reference genome or novel TSSs. H Genomic
distribution of the detected TSS regions. Source data are provided as a Source
Data file.
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generalizability of TSS as a cell type marker. Next, we explore the bio-
logical function of the TSS markers of each cell type (Fig. 3I, Supple-
mentary Fig. S17). Notably, the functions of signature TSS of NK/T cells
are mainly enriched in terms related to various immune response pro-
cesses, including immune system development, cellular responses to
stress, regulation of cell activation and regulation of innate immune.

Altered TSS usages in nasopharyngeal carcinoma micro-
environment
Although alternative promoter usage has been found to be cancer type-
specific and predictive of patient prognosis via bulk RNA-Seq18, it

remains largely unexploredwhether and towhichextent thepreciseTSS
usage at a single-cell resolution can further explain the heterogeneity in
the cancer microenvironment. To explore this problem, we applied
CamoTSS to a nasopharynx dataset (5' scRNA-seq, 10x Genomics) from
patients with either nasopharyngeal carcinoma (NPC; n = 7 patients) or
nasopharyngeal lymphatic hyperplasia (NLH; n =3 patients), covering
51,001 cells in total (Fig. 4A, B), downloaded from a recent study36. Then
we applied CamoTSS to the whole datasets and identified 7,058 TSSs,
where 1,784 genes contained at least two TSSs. By employing BRIE225

on these multi-TSS genes, 547 genes were found with significant dif-
ferential usage of alternative TSS between NPC and NLH (FDR<0.01;

Fig. 3 | CamoTSS analysis on TSSs between cell types across 15 human organs.
A UMAP projection of TSS profile (left) and RNA profile (middle and right) in
muscle. The T cell cluster is highlighted in the colors. All the other cells are colored
gray. B ROC curves for NK/T cell clusters prediction by AUCell scores. Source data
are provided as a SourceDatafile.CThe topdenovomotifs enriched in the top 500
cluster-specificpeaksof S4andS9.P-valueswerecalculatedbyusingbinomial tests.
D Heatmap of Pearson’s correlation of expression of common TSS among all cells
from all organs. E Venn diagrams of top 20 significant TSS markers and RNA
expression markers in 8 cell clusters of the bladder. F UMAP plots of TSS data
specific marker. G tSNE plots show alternative TSS marker masked at gene level.

H ROC curves for prediction of cell types from the first 20 PCs of TSS matrix by
using a randomforest in amulti-label classification.Modelswere evaluatedbyusing
10-fold cross-validation, whereby the overall average is obtained bymerging all cell
types at a micro level. I Enrichment network representing the top 20 enriched
terms of significant alternative TSS. The enriched terms that displayed high simi-
larity were grouped together and presented as a network diagram. In this diagram,
each node corresponds to an enriched term and is assigned a color based on its
cluster. The size of each node reflects the number of enriched genes, while the
thickness of the lines connecting nodes represents the similarity score between the
enriched terms.

Article https://doi.org/10.1038/s41467-023-42636-1

Nature Communications |         (2023) 14:7240 6



Supplementary Dataset S2). Take T cell as an example (Fig. 4C), among
the genes that show alternative-TSS activation in NPC, multiple of them
are well-known cancer-related biomarkers such as QSOX1 serving as a
prognosis biomarker in breast cancer37, DTNBP1 relating with memory
and executive functions in brain tumor38, and FAM107B associated with
gastric cancer39. Particularly, two TSSs of CCND3 have been reported to
generate mRNAs with distinct 5' transcript leaders, resulting in protein
isoforms with different N-termini40 (Fig. 4C).

Additionally, cell type-specific differential TSS usages between
cancer status were also identified, for example, SIDT2 is only detected
in B cells (Supplementary Fig. S18), which aligns well with a recent
report on the cell-type-specific genetic effects to its isoform expres-
sion involving TSS changes41. Another prominent example is LIMS1,
which contains three major cell-type specific TSSs, including TSS1
(LIMS1-215) as a leading TSS for B cells, TSS2 (LIMS1-201) for Myeloid
cells and TSS3 (LIMS1-210) for T cells (Fig. 4D). Interestingly if focusing
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types (A) and disease status (B). C Volcano plot to show the relationship between
ELBO_gain and effect size on logit(PSI) for detecting differential TSS between NPC
and NLH patients. Cell_coeff is the effect size on logit(PSI). Positive value means
higher PSI in NPC. ELBO_gain denotes the evidence lower bound difference for the
two hypotheses (Methods).D Genome track plot of LIMS1 in different cell types of
NLH and NPC patients. One horizontal genome track denotes the coverage of all
cells in one cell type. E, F Violin plot on example gene LIMS1 for T cell (E; n = 6964
cells forNLH;n = 17,607 cells forNPC) andMyeloids (F;n = 158 cells forNLH;n = 923
cells for NPC) in NLH and NPC patients. The y-axis PSI denotes the proportion of
TSS1 (LIMS1-215; minor TSS here) among the top two TSSs in each cell type. G Bar
plot showing the enriched terms of genes with differential TSS usage between NLH
and NPC patients in the T cell. HWebLogo of the base frequency of MA1929.1 (i.e.

one motif of CTCF) enriched in the sequences detected by FIMO (top) and dis-
played in the JASPAR database (bottom). I Scatter plot of the binding frequency of
human TFs on 528 TSS regions elevated in NLH and NPC patients (shown is based
on T cells). Source data are provided as a Source Data file. J Box plot of expressed
cell proportion of CTCF between NLH (n = 3 patients) and NPC (n = 7 patients).
K Heatmap shows the hierarchical clustering of patients by the proportion of
expressed cells of TFs that have significant differential binding frequency between
NPC and NLH groups (n = 10 patients). The color in the heatmap means the pro-
portion of expressed cells with rescaling to the range of 0 and 1 on row. The up- and
down- regulated TFs were displayed in red and blue, respectively (NPC vs NLH).
Blue ID **: fold change < 0.6; Blue ID *: 0.6 < fold change < 0.8; red ID *: 1.2 < fold
change < 1.5; red ID**: fold change> 1.5. Source data are provided as a Source
Data file.
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on the proportion of the top two TSSs in T cells (TSS1 and TSS3), we
further found that proportion of the minor TSS (TSS1, LIMS1-215)
shows a significant up-regulation in cancer condition (NPC) compared
to NHL (Fig. 4E), consistent with the trend of expressed cell propor-
tions across patients (Supplementary Fig. S19SA, B). Surprisingly,
Myeloid cells show an opposite trend, where the proportion of the
same minor TSS (TSS1) decreases in NPC (Fig. 4F and Supplementary
Fig. S19C, D), demonstrating the complexity of TSS regulation and its
coupled modulation of cell types and disease conditions. To further
understand the potential functions associated with NLH and NPC-
specific TSSs at different cell types, we examinedGO terms enriched in
the TSS-shift gene sets between NLH and NPC for each cell type
(Fig. 4G, SupplementaryFig. S20). Specifically, inT cells, the geneswith
differential TSS usage show enrichment in GO terms related to
hemopoiesis, regulation of leukocyte activation, pathway in cancer
and negative regulation of apoptotic signaling pathway, suggesting
that an abundant TSS-mediated diversity is required for these genes
associatedwith fundamental immune and cancer response properties.

To inform the potential regulatory mechanism leading to the
alternative usage of cancer-related TSS, we used FIMO (v4.11.2) to find
validated motifs in JASPAR in the NLH- and NPC-elevated TSS sequen-
ces. One prominent example is CTCF, whose protein level reduction or
binding deficiency were found associated with the EBV-positive hyper-
methylation in NPC42. Here, by examining the JASPAR database, we
found CTCF contains three binding motifs: MA0139.1, MA1929.1 and
MA1930.1, which are highly similar to the sequence logo of its binding
sequencesdetectedbyFIMOfromourTSSs (Fig. 4HandSupplementary
Fig. S21), confirming the reliability of ourmethod. Thenwe counted the
frequency of the database-curated motifs occurring in the two sets of
TSSs (n = 528 for T cells and n = 556 for B cells) that are elevated in NLH
or NPC groups. Interestingly, dozens of TFs have significant binding
frequency changes between NPC VS NLH, favorably with down-
regulation in both T cells (20 down-regulated vs 16 up-regulated,
FDR<0.05; Fig. 4I) and B cells (82 vs 19, FDR<0.05 Supplementary
Fig. S22), by large consistent with a recent report of EBV-positive NPC42,
suggesting a global change of transcription factor activities in this
cancer. Such systematic bias is not likely caused by random chance, as
no obvious difference is observed if randomly swapping the binding
situation forNLHandNPCaround 1000 times in T cells (Supplementary
Fig. S23 left panel, K-S test: P-value = 9.09e-08) or B cells (Supplemen-
tary Fig. S23 right panel, K-S test: P-value = 3.2e-20).

To explore the underlying reason, the significant differential TFs
were counted according to their classes. Nearly half (49.28%) of the
differential TFs belong to C2H2 zinc finger factor class, while this
proportion is only one-fifth when counting all TFs (Supplementary
Fig. S24). All of these indicate the C2H2 zinc finger factor class play an
essential role in the regulation of alternative TSS in this cancer, which
has been reported in a previous study43. In addition, we also compared
motif patterns bound by the top 10 significant TF with randommotifs
and discovered top 10 motifs have higher GC percentages, which is
consistent with the binding pattern of C2H2 zinc finger factor class
(Supplementary Fig. S25).

On top of that, to explain the inclined trend between NLH and
NPC,we extracted 200bp (+/- 100 bp) sequence around significant TSS
start of NLH and NPC separately as two groups test data and exploit
our pre-trained convolutional neural network to predict the prob-
ability of being a positive sample. As Supplementary Fig. S26 shows,
more TSSs in the NLH group were predicted as positive (i.e. the
probability is >0.9) compared with the NPC group (n = 239 vs 175) and
fewer TSSs in the NLH group were predicted as negative sample (i.e.
the probability is <0.1) comparingwith NPC group (n = 175 vs 229). The
difference is significant (P = 4.9e-5, Fisher exact test), which indicates
the sequence strengths around NPC-specific TSSs become weaker
compared to NLH patients. We next asked if the expression profile of
these TFs aligns with their binding frequency. Taking the critical and

well-studied CTCF as an example, though the expression level of
expressed cells is similar between these two groups, the proportion of
expressed cells is higher in NLH (Fig. 4J, Supplementary Fig. S27, fold
change = 1.235), consistent with the report from another group42. Also,
the whole proportion of expressed cell profiles of all significant TFs
show a consistent trend with the binding frequency changes by large,
and an unbiased clustering analysis of them well segregated NLH and
NPC samples (Fig. 4K). Of note, the signal of TF expression is generally
weak and our TSS analyses may further strengthen it via the binding
site-based regulon activities.

Alternative TSS usage in the tumor cells of gastric cancer
Besides the immune cells, we further studied the TSS switch in tumor
cells compared to normal epithelial cells by analysing a recently pub-
lished dataset on gastric cancer44. Specifically, we used the CamoTSS
to obtain the transcription start site profile of 8,485 epithelial cells of
tumor tissues (5,977 cells) andmatched adjacent normal tissues (2,508
cells) from six primary gastric cancer (GC) patients (Fig. 5A). Next,
1,323 genes withmultiple TSSs were selected and input to the BRIE2 to
identify differential TSS usage between normal and tumor epithelial
cells. As shown in Fig. 5B, 453 genes present significant TSS
shifts (FDR <0.01; Supplementary Dataset S3) between normal and
tumor epithelial cells. As an example, SLC29A1 (hENT1) shows a sub-
stantially decreased proportion of the upstream TSS (i.e., PSI value;
Fig. 5C, D), due to the elevated expression of the shorter transcript
ENST00000472176 (Fig. 5D), which may explain the finding that
SLC29A1 has a significantly higher expression level in gastric tumor
tissue comparedwith normal stomach tissue45. ThenweperformedGO
enrichment analysis to investigate which biological functions are
associated with the alternative TSS usage events (Fig. 5E). We found
that these TSS-shifting genes play an important role in Rho GTPases
signaling which has been reported involved inmost cancers46. Also, we
further examined if these normal or tumor cell-preferred TSSs are
enriched in any transcription factor binding motifs, again by counting
the binding frequency with FIMO47 (Fig. 5F; Methods) and testing the
significance by Fisher exact test (Fig. 5F; FDR<0.001 displayed here).
13 and 17 TFs were found significantly more frequent in normal and
tumor preferred TSSs, respectively (FDR <0.01; Supplementary Data-
set S4).Multiple of themare involved in cancer-related regulation such
as EBF1 modulating TERT expression in gastric cancer48 and E2F8
exhibiting tumor-suppressing activity49.

Transcription start site shifting during human thymic
development
Even though scRNA-seq is extensively used to study human develop-
ment, the actual mechanism of choosing TSS in different development
stages in various cell types remains unknown. To explore
developmental-stage-specific TSS usage, we analysed a profile of
transcription initiation events in three development time points of
human thymus, including 11-week and 12-week in prenatal and 30-
month in postnatal at distinct cell types (Fig. 6A, B). Next, we focused
on genes with multiple TSSs and detected their TSS shift across time
points at the single cell level respectively between 11-week vs 12-week,
11-week vs 30-month and 12-week vs 30-month (FDR <0.01; Fig. 6C,
Supplementary Dataset S5). Pairwise comparisons between time
points show that similar genes with differential TSS-shifting patterns
appear in 11-week Vs 30-month and 12-week Vs 30-month in T cells,
which suggests that the closer the development distance, the more
similar alternative TSS usage patterns are. The same trend was also
observed in other cell types (Supplementary Fig. S28, Supplementary
Dataset S5). We then summarized genes which are widely significantly
differential in all three timepoints (Fig. 6D, SupplementaryDataset S6)
or just have TSS-shift in a certain development time point (Supple-
mentary Fig. S29, Fig. S30, SupplementaryDataset S6). For those triple
differential TSSs (across all time point pairs), the dynamics patterns
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can be either monotonic (38 for TSS1 increasing and 26 for TSS1
decreasing) or transient (17 for TSS1 upregulation first and 50 for TSS1
downregulation first; Fig. 6D, Supplementary Dataset S7); TSS1
denotes the most upstream TSS along the transcription direction.
Notably, most genes containing TSS shift during three stages are well
studied in immune development and promoter research such asRAC2,
playing dual roles in neutrophil motility and active retention in zeb-
rafish hematopoietic tissue50 and SLC3A2, helping branched-chain
amino acids (BCAAs) to control Regulatory T cell maintenance51. In
addition, many genes with differential TSS usage only between two
certain stages also play critical roles in development such as FCHO1,
involved in T-cell development and function in humans52 and ST6GAL1
which can enhance B cell development and produces IgG in a CD22-

dependent manner in vivo53. To decipher the function of genes with
alternative TSS, we performed GO enrichment analysis and found the
enriched GO terms are highly relevant to cell cycle, development and
stress response (Fig. 6E).

Next, inspired by the work fromHaberle and colleagues16, we also
aimed to discover narrow shifts within one TSS region (i.e., cluster)
during thymicdevelopment. ThebonafideTSS clustersdetected in the
first stepwere selected and thenweutilized a sliding-windowapproach
to denoise the data and obtain reliable “CTSS" (CAGE-based TSS, i.e., at
a single-nucleotide resolution) in one TSS cluster (Fig. 6F; Methods).
Here, we applied the percentage of annotated TSS (allowing up- and
down- stream 5bp shift) as evaluation criteria for the window size in
PBMC dataset (mentioned in Fig. 2) and found that the window size

Fig. 5 | CamoTSSdetected transcription start site switch fromepithelial cells of
gastric cancer. AUMAP visualization of epithelial cells (n = 8485) in gastric cancer.
Eachdot represents an individual cell,where colors indicate subcell type.BVolcano
plot displaying the relationship between ELBO_gain and effect size on logit(PSI) for
detecting differential TSS between normal and tumor cells. Cell_coeff is the effect
size on logit(PSI). A positive value means higher PSI in normal cells. ELBO_gain
denotes the evidence lower bound difference for the two hypotheses (Methods).
C Boxplot showing an example gene that has a significant TSS usage between

normal (n = 5977) and tumor cells (n = 2508). D Genome track plot of SLC29A1 in
normal and tumor cells.Onehorizontal genome track represents the coverageof all
cells within one specific cell type. E Bar plot exhibiting the enriched terms of genes
with differential TSS usage between normal and tumor epithelial cells in gastric
cancer. Source data are provided as a Source Data file. F Scatter plot of the binding
frequency of human TFs from JASPAR database on 453 TSS regions elevated in
normal and tumor epithelial cells. Source data are provided as a Source Data file.
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does not have toomuch impacton thenumbers and accuracy detected
CTSS (Supplementary Fig. S31). To detect these narrow shifts within
one TSS cluster (usually within 100bp), we first selected two farthest
CTSSs within one cluster and then exploited BIRE225 to detect alter-
native CTSS usage during the three time points in each cell type. In
total, we found 1891 genes with significant CTSS shifts between any
two development points (233 between 11-week and 12-week, 663

between 11-week vs 30-month, and 995 between 12-week vs 30-month;
FDR <0.01; Fig. 6G and Supplementary Fig. S32), with higher overlap
between the twoprenatal stages vs the postnatal stage. In other words,
these significant TSS regions contain CTSS shifting from one end to
another during thymus development, for example, KTN1 and SETD5
(Fig. 6H–I, Supplementary Fig. S33), both of which were reported as
important genes for development in zebrafish54 or mammals55. To

Fig. 6 | CamoTSS identifies differential alternative TSS usage from human
thymus development. A, B UMAP visualization of all cells (35,629) in thymus
development. Each dot is one cell, with colors coded according to the time points
(A) and cell types (B). C Volcano plot showing the relationship between ELBO_gain
and effect size on logit(PSI) for detecting differential TSS between week11 and
week12 (Top), week11 and month30 (Middle), week12 and month30 (Bottom).
Cell_coeff is the effect size on logit(PSI). Positive value means higher PSI in week12
(Top), month30 (Middle) andmonth30 (Bottom), respectively. ELBO_gain denotes
the evidence lower bound difference for the two hypotheses (Methods). D Line
chart showing four patterns of example genes which are all significant at three
development stage pairs. Data are presented asmean values ± SD (n = 7059 cells for
week11; n = 12,249 cells for week12; n = 13854 cells formonth30). EBar plot showing
the enriched GO terms of genes with alternative TSS usage between week11 and

month30 in the T cell. Source data are provided as a Source Data file. F Illustration
of the window sliding algorithm for identifying CTSS within one TSS cluster. Count
and fold change parameters were used to filter noise. G Volcano plot between
ELBO_gain and effect size on logit(PSI) for detecting differential CTSS between
week11 and month30 in T cell. Same figure form as panel (C). Source data are
provided as a Source Data file.H Violin plot of PSI value of KTN1 and SETD5 among
week11 (n = 7059 cells), week12 (n = 12,249 cells) andmonth30 (n = 13854 cells). The
two farthest CTSSs were picked up to calculate PSI for each gene. I Histogram
showing the coverage of reads 1 with unencoded G at the cap obtained from 5'
scRNA-seq inKTN1 (Left) and SETD5 (Right). The gray and red lines represent CTSSs
identified by CamoTSS, while the red line shows the two farthest CTSS used for
differential CTSS analysis with BRIE225.
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unveil the potential functions of these genes with narrow shifting
CTSSs between each pair of time points, we performed GO terms
enrichment and found that recurrent terms included cell cycle, chro-
mosome organization and translation (Supplementary Fig. S34), sug-
gesting that the alternative CTSS usagewithin oneTSS regionmayplay
an essential role in thymus development.

Discussion
In this work, we present CamoTSS, a computational method for de
novo detecting TSS from 5' tag-based scRNA-seq data. This method
enjoys a data-driven design and embeds a classifier to accurately
detect TSSs, and enables efficient identification of alternative TSS
usage between single-cell populations by seamlessly leveraging our
BRIE2 model. Specifically, this method first adopts a hierarchical
clustering algorithm to determine the potential TSS clusters, followed
by filtering the false positive clustersmainly via an embedded classifier
from reads and/or sequence-based features. Finally, it annotates those
genuine TSS clusters with known transcript annotations (e.g., from a
GENCODE GTF file) by a Hungarian algorithm and counts the UMIs of
each TSS at a single-cell level. Generally, the four reads-based features
with a logistic regressionmodel provide high accuracy, hence are used
in practice by default. On the other hand, our convolutional neural
networkmodule, by extracting sequence features from the query TSS,
can achieve comparable performance and further improve the accu-
racy when combined with the reads-based features. Additionally, as
shown in the NPC data, this sequence-based model can further reveal
the weakened TSS patterns in a disease condition.

While CamoTSS can identify all TSS clusters, we focused on the
analysis of alternative TSS usage in this study, covering broad biolo-
gical scenarios including cell types across 15 human organs, cancer
conditions frommultiple samples and thymus developmentwith three
time points. Differential TSS usage in different cell types was observed
in multiple organs, where TSS clusters provide additional molecular
signatures otherwise masked by gene expression and help to identify
cell clusters with higher purity. Importantly, compared to NLH indivi-
duals, differential TSS usage, especially a general preference toward
weaker promoter, was detected in all major nasopharynx cell types of
NPC patients, which may be regulated by TFs from C2H2 zinc finger
factor class. In addition, we also found hundreds of genes with TSS-
shift during thymus development stages and many of them have nar-
row shifts within 100bp in a cell type-specific manner. Taken together,
the TSS-level information, especially the alternative TSS usage, can
provide more detailed cellular phenotypes and may imply regulatory
patterns across various biological contexts. Considering the almost
free access to the TSS from the 5' scRNA-seq data, CamoTSS may
introduce a new paradigm in analysing such data and resolving the
cellular heterogeneity in a finer-grained resolution with better inter-
pretation from the regulatory perspective.

Additionally, there are also open challenges in the TSS analysis.
First, whenweperformed alternative TSS usage,wemainly support the
analysis of proportional change of the two major TSSs among cell
populations. However, there can be more than two TSSs playing cri-
tical roles, especially when ranging from different cell types and dis-
eases in one setting. Therefore, an extended model with support to
jointly analyse multiple TSSs would account for such compositional
change. Second, a large fraction of public 5' scRNA-seq datasets, e.g.,
on GEO, may only contain cDNA on read 2 for various reasons.
Therefore, extending our CamoTSS to support a read2-onlymodewith
high accuracy can be another timely contribution to data mining from
theexponentially increasing single-cell data across the community. For
addressing this potential challenge, our sequence-based neural net-
work model would play a more important role in specifying the TSS
region. Third, considering that the cell-by-TSS UMI count matrix can
serve as a more informative input compared to the conventional cell-
by-gene count matrix, it remains to be further examined if the

downstream analysis pipeline needs to be adapted, especially when
integrating with data from other platforms, e.g., 3’ scRNA-seq data.
Last, we also anticipate rapid advances in long-read technology for
potential TSS analysis and CamoTSS may be further extended to
support it.

Methods
scRNA-seq initial data analysis
The raw fasta files including reads1 (>100bp) and reads2 were down-
loaded, and then sequences were aligned to the Homo sapiens refer-
ence genome (hg38) to generate pair-end read alignment bam file by
using the cellranger count pipeline (with parameter –chemistry SC5P-
PE) of 10x Genomics CellRanger (v3.1) software. The possorted_ge-
nome_bam.bam file was manually filtered by using xf:i:25 tag before
performing reads counting, same strategy according to the 10x
Genomics criteria56. In most instances, we aggregated the bam file
from each donor sample by using an in-house script (https://github.
com/StatBiomed/CamoTSS). In brief, it adds sample ID to the cell
barcode by using pysam package57 and then merges all bam files by
using samtools merge57.

Construnction of CamoTSS method
CamoTSS is a stepwise computational method to identify TSS clusters
and it includes three major steps: to cluster reads into TSS clusters/
regions, to detect true clusters, and to annotate bona fide TSS clusters.

Step1: Cluster for reads start site. Preprocessed bam file was used as
input to perform clustering for subsequent promoter evaluation. We
fetch all reads 1 for each gene by using BRIE6. All obtained reads 1 then
filtered according to the cell barcode list specified by users. We remove
strand invasion artifacts by aligning theDNA sequence starting from the
-14base andending at the aligned start sit of reads1 to theTSOsequence
(5'-TTTCTTATATGGG-3'). The read is regarded as a strand invaderwhen
the edit distance is <3. The edit distance was calculated by utilizing
editdistance python package. The reads were also filtered according to
the SCAFE criteria to precisely calculate the number of unencoded G24.
In brief, we require reads 1 that (1) should contain the last 5nt of TS oligo
(i.e. ATGGG) and the edit distance is <4, (2) start with a softclip region
(i.e."S" in CIGAR string) and the value of “S" is >6 and <20, (3) thematch
region following the softclip region is >5 bp. If the number of fetched
reads is >10,000, we randomly selected 10,000 reads from all reads in
that gene to make sure the efficiency of our software.

The start position of reads was extracted and then input to
agglomerative clustering which is a kind of from-bottom-to-up hier-
archical clustering method. In brief, it first determines the proximity
matrix containing the Euclidean distance between each start position
using a distance function. Then, this matrix is updated to display the
distance between each cluster. Here, we use the average linkage
method to define the distance between two clusters, which can be
calculated by (1).

LðA,BÞ= 1
nAnB

XnA

i= 1

XnB

j = 1

DðXAi
,XBj

Þ: ð1Þ

If the linkage distance between two clusters is at or above 100bp, then
the two clusters will not be merged.

Step2: Filter false positive cluster. Although we discarded some
aberrant reads which are strand invasion artifacts and affect the
counting of unencoded G, quite a lot of clusters still can be observed
located at the end of the gene body via integrative genomics viewer
(IGV). We added another filtering step to efficiently identify high-
confidence transcription start site clusters, by utilizing the power of
ATAC-seq data given that TSSs are generally tagged as open regions.
Specifically, for our main ATAC-seq data sets (DMFB and iPSC), the
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bigwig file was downloaded and transformed to a bedGraph file by
using UCSC Genome Browser’s bigWigToBedGraph tool. Then liftOver
was utilized to convert the bedGraph coordinates from hg19 to hg38.
Peaks from ATAC-seq were ranked based on the p-value and the top
and bottom 5% peaks were defined as ground-truth positive and
negative peaks, respectively. Then the bam files of DMFB and iPSC
from scRNA-seq were input to our software CamoTSS to detect clus-
ters without filtering with a classifier. These clusters were defined to
gold positive (n = 5560) and negative samples (n = 5432) by using
bedtools (v2.26.0)58 to intersect (parameter: -f 0.1) with ATAC-based
positive and negative peaks, followed by removal of double-detected
TSS regions if combining multiple datasets. Of note, the candidate
TSSs without intersecting to any ATAC peak should also be taken as
negative samples when using lowly covered data, e.g., scATAC-seq for
our PBMC data. Last, we used a subsampling method to ensure a
balanced training set. Then, we designed and tested the following
three models to distinguish high-confidence TSS from false positive
clusters, and compared them with the above-annotated data to select
the most suitable model to embed into our pipeline.
1. The first model is “logistic regression" with four reads-based

features (next paragraph). Specifically, we extracted four features
including cluster count, summit count, the standard deviation,
and unencoded G percentage for each cluster. The cluster count
refers to the total UMI counts within one cluster and the summit
count is themaximumUMI count for a certain position within the
cluster. The standarddeviationwas calculated by statisticspython
package to measure the dispersion of the cluster (treating each
UMI as a sample). An intact mRNA with the cap structure can
reverse transcribe to cDNA possessing an additional dGMP and
cDNA with an extra dGMP cannot be produced by cap-free RNA59.
This evidence suggests unencoded G percentage within one
cluster can be regarded as an essential feature to identify the
transcription start site. Because of the number uncertainty of
extra added dGMP, reads whose CIGAR string starts with “14S",
“15S" and “16S" are all considered as reads with unencoded G.
Finally, total samples (n= 10,992) with four properties were used
to train logistic regression model at 10-fold cross-validation by
implementing Scikit-learn python package (v1.0.2).We choose0.5
as the default threshold and classify samples with a probability
>0.5 as a true transcription start site cluster.

2. The second model is a “convolutional neural network". The same
dataset (n = 10,992) used in the logistic regressionmodel was also
used to train this deep learning model. We utilized bedtools
(v2.26.0) : getfasta to extract 200bp sequence shifting around
the cluster summit position. These sequences were transformed
to numbers between 0 and 3 representing the 4 possible
nucleotides and were then one-hot encoded to provide a
categorical representation of nucleotide in numerical space to
train this neural network (i.e. A: [1,0,0,0], T: [0,1,0,0], C: [0,0,1,0],
G: [0,0,0,1]). The convolutional neural network was constructed
with PyTorch (v1.12.1) and it consists of two convolution layers
connecting toRectifiedLinearUnit (ReLU) for activation, followed
by batch normalization, one max pooling and a dropout layer
(probability of dropout: 0.4). The output from dropout layer was
flattened and fed to fully connected layers (32 neurons) with a
ReLU activation function. Then the second fully connected layers
of 2 neurons were connected with the sigmoid function to
calculate the probability of classification. The first convolutional
layer has 128 filters with 8-mer width and 4 channels. The second
convolutional layer has 64 filters, where the filter size is 4x4. This
model can be summarized as follow,

Oi = f
Sigmoidf Linearf Linear ReLUf Flattenf Dropoutf Maxpooling

f BatchNormf Conv ReLUf conv ReLU ðXiÞ
ð2Þ

whereXi denotes the one-hot encodedmatrix (4, 200). All 10,992One-
Hot-Encoded matrices were split into a training set, test set and
validation set according to the 6:2:2 ratio. Then this model was trained
with a batch size of 256 and 500 epochs with SGD optimizer with a
learning rate of 0.003 and momentum of 0.8. The model with the
lowest validation loss during training was kept at last.
3. The third model is the “combination of logistic regression and

convolutional neural network". The 32 dimensions features of the
first fully connected layer were saved and combined with the four
cluster features mentioned above as input features (36 dimen-
sions) to the logistic regression. The same dataset was used to
train logistic regression at 10-fold cross-validation. The difference
between this model and the first model is the features used to
train logistic regression changing from4 to 36 (i.e., 4+32).Of note,
we have also implemented another version of the combined
model with jointly training the CNN models, namely concatenat-
ing the four reads-based features to the second-last layer before
the sigmoid activation (namely it becomes 36 instead of 32). This
setting archives minor improvement compared to the separated
training, hence is only supported as an option to choose.

We assess the performance of the three methods above by plot-
ting the receiver operating characteristics (ROC) curves and calculat-
ing the area under the curve (AUC) values, which can systematically
evaluate the sensitivities and specificities of models.

Of note, we have also included threshold-based filtering before
the classifier by using the total read counts within one cluster and after
the classifier by the distance between two neighboring clusters. Both
parameters can be flexibly adjusted according to specific preferences.

Step3: Annotate clusters. In order to connect detected clusters with
existing gene annotation, the start site of transcripts from a compre-
hensive gene annotation GTF file was assigned to the position with the
highest count as the label of clusters by using theHungarian algorithm.
The cost matrix was created by calculating the distance between the
start site of each known transcript and the summit position of a query
TSS cluster (i.e., with the highest UMI counts within each cluster). Our
goal is to find a complete assignment of clusters to transcripts with
overall minimal distance, which means to minimize Eq. (3),

X * = argmin
Xnc

c= 1

Xnt

t = 1

Cc,tXc,t ð3Þ

where X is a boolean matrix (X[c,t] = 1 if row c is assigned to column t)
and C is the cost matrix, denoting the genomic coordinate distance
mentioned above. The optimize.linear_sum_assignment function from
scipypythonpackagewas used to solve this assignment problem. After
assigning a transcript to one cluster, we named this cluster as the
corresponding transcript if the transcript is in the cluster. On the other
hand, the cluster is defined as a new TSS.

Detect CTSSwithin one cluster. Once the TSS clusters (regions) were
detected, CamoTSS can further support detection of CTSS at a near
single-nucleotide resolution. First, reads 1 were filtered to keep those
with ‘unencodedG’ (i.e. CIGAR string starts with “14S", “15S" and “16S").
Then the UMI counts for each position were calculated. To further
denoise the signal of CTSS, a sliding window algorithm was used to
calculate the fold change, as follows,

FC =
C0 + 1

1
W

PW
i= 1 Ci + 1

ð4Þ

whereW is thewindow size, and thedefault value is 15 inCamoTSS, and
Ci denotes the UMI counts for the i position within the downstream-
orientedwindow (i =0means the query position). The bonafideCTSSs
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within each cluster were obtained after filtering according to the fold
change and UMI counts values defined by users. In the thymus
development dataset, we used the default setting (fold change = 6,
UMI counts = 100).

Analysis of scATAC-seq PBMC dataset. The PBMC dataset with
paired scRNA-seq and scATAC-seq was download from ArrayExpress
(Data availabilty). The raw scATAC-seq data was processed with
cellranger-atac (v2.1.0). Reads were aligned to hg38 reference genome
download from 10x Genomics website. Then theMACS360 was applied
to call peak [option -g hs -B -q 0.01]. Then the approach to acquiring
positive samples remains unchanged from the aforementioned
method. We selected the clusters intersected with low confidence
scATAC-seq peaks and no scATAC-seq peak at all as negative samples.

Evaluation of epigenetic features and RNA POL2 enrichment of
detected TSS
The processed histone modification data (i.e. bigWig file) of PBMC
were downloaded from the Roadmapproject in ENCODE. The target of
histone Chip-seq includes H3K27ac (accession: ENCFF067MDM),
H3K4me3 (accession: ENCFF074XHZ) and H3K36me3 (accession:
ENCFF953FFP). The aligned RNA POL2 data of PBMC obtained from
Chip-seq targeting POLR2A was downloaded from ENCODE and the
accession is ENCFF595NCO. The fold change (FC) data of each signal
compared with the input signal was used for the histone modification
data. The scRNA-seq data of PBMC was dealt with CamoTSS to obtain
the region of TSS (i.e. bed file). Additionally, we used bedtools random
to generate a random set of intervals in bed format as the negative
control. Then the computeMatrix from deepTools was utilized to cal-
culate the histone signal score of TSS and random region [options:
computeMatrix reference-point –referencePoint TSS -b 5000 -a 5000].
The matrix generated by computeMatrix was input to plotProfile to
create a profile for the score.

Genomic tracks were obtained with pyGenomeTracks (v 3.7). We
downloaded aligned bam files of PBMCscATAC-seq fromArrayExpress
(accession ID: E-MTAB-10382). For scRNA-seqdata and scATAC-seq,we
use bamCoverage from deepTools to convert the alignment file of
reads (bam file) to the coverage track (bigWig file). The inputs to
pyGenomeTracks are bigWigfiles of scRNA-seq, scATAC-seq, RNAPOL2
and other histone markers. The interval of TSS (bed file) detected by
CamoTSS was used for highlight and the GENCODE GTF file (hg38)
only containing the needed transcript was used for annotation.

Analysis of genomic feature of TSS
We inputted the hg38 annotation file to gencode_env package (https://
github.com/saketkc/gencode_regions) to obtain the genomic interval
of 5' UTR, 3' UTR, intron and exon and then selected the start site of the
TSS clusters as the symbol of them to count genomic feature dis-
tribution of TSS.

Identification of differential TSS and CTSS on cell type, disease
and development stage
Preprocessing of data was done by scanpy (v 1.9.3)61. For the raw TSS
h5ad files (containing cell-by-TSS) of all three datasets, we filter cells
according to the expressionh5adfile (containing cell-by-genes). Thecell
annotation information and UMAP or tSNE visualization coordinates
from the expression h5ad file weremapped to cells in the TSS h5ad file.
For the 15 organ dataset, we normalized each cell by total counts (tar-
get_sum=1e4) over all genes. For NPC and thymic dataset, the TSS UMI
reads counts were divided by the total number of reads in the same cell
and then multiple with 1e6 to normalize to counts per million (CPM).
Then all of these count matrices were transformed with log1p.

For detection of cell-type specific TSS masked at the gene level
in the 15 organ dataset, we first filter cell types whose cell number is
<100. For the remaining cell clusters, a t-test was performed and the

difference inexpressionmeanwas calculated for eachTSSbetween the
cluster and its complement on the log1p count. We picked up TSS
clusters thatwere significantly upregulated in the cluster relative to the
complement of the cluster. In addition, the alternative TSS within the
same gene cannot display the same pattern. In other words, if the
alternative TSS was upregulated compared with the remaining cell
clusters, then the degree of upregulation cannot be significant. All t-
tests used a significance level of FDR <0.01 (Bonferroni corrected).

ForNPCand thymicdataset, BRIE2 (v 2.2.0)25wasutilized to identify
differential disease-associated or development-associated TSS or CTSS
at single-cell resolution. We built an h5ad file for each cell type con-
taining two layers for the expression of two alternative TSSs with the
highest expression (or two alternative CTSSs with the farthest distance)
of the correspondinggene.Ofnote,we selected themost upstreamTSS/
CTSS along the transcription direction as the TSS1. The file containing
cell detection rate and cell state information for each cell type was also
created to input to BRIE2 as a design matrix. Detecting differential TSS
was performed using the brie-quant module for all pairwise compar-
isons [options: –batchSize 1000000 –minCell 10 –interceptMode gene
–testBase full–LRTindex0] andgeneswithdifferential TSS between two
diseases or development states were defined as FDR<0.01. The BRIE2
model leverages a statistic ELBO_gain (the difference between the full
model and reduced model on Evidence Lower Bound) for model
selection, which approximates the difference of expected log-likelihood
and is related to the likelihood ratio test. The output coefficient indi-
cates the effect size on the logit scale of the PSI value.

SCENIC gene regulation network analysis
To examine the regulation activity of transcription factors, we applied
the single-cell regulatory network inference andclustering (pySCENIC62,
v0.12.1) by using normalized expression matrices of muscle30. The
pipeline comprises three main steps: infer gene regulatory network
(GRN) based on coexpression patterns, predict regulon based onmotif
discovery (cisTarget) and quantify the predicted regulon activity with
AUCell scores62.

Hierarchical clustering analysis
To investigate the similarity of TSS profiles across different organs and
cell types, we first normalized the combined TSS profile of 15 organs
(i.e. combined at bamfile level and then runCamoTSS). Specifically,we
divided theUMI counts for eachTSS by the total UMI counts for all TSS
in each cell type. The Pearson correlation coefficient was calculated by
using normalized TSS expression of each cell type in each organ and
then used to perform a hierarchical clustering analysis.

Functional enrichment and motif enrichment analysis
We utilized the Metascape online web server (v3.5.20230101)63 to
perform GO enrichment analysis [options: Expression Analysis] and
selected the top 20 enriched terms to do enrichment network visua-
lization. Then we used Cytoscape (v 3.9.1) to modify and visualize the
network of enriched terms.

For 15 organs dataset, we selected the top 1000 highly expressed
TSSs for S4 (cells in R7) and S9 clusters and extracted sequence of the
+500bp/-100bp around these TSSs respectively. Then findMotifs.pl
in Homer (v4.11)32 was applied for de novo motif discovery with
responding the another sequence as background.

We used bedtools getfasta to extract the sequence of NPC- and
NLH-elevated TSSs (proportional) and then downloaded 727 human TF
motifs from JASPARCORE202264. FIMO (v 4.11.2MEME-suite)47was used
to search TF motif occurrences within the TSS sequence of different
conditions. Significant occurrences were defined by a q-value threshold
of 0.05. Then we counted the occurrence frequency of each TFmotif in
the TSS sets in each disease state and calculated statistical significance
by using Fisher’s exact test: p-value <0.01. Then each patient’s average
expression of these significant TFs was used to perform hierarchical
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clustering. Weblogo (CLI)65 was used to generate sequence logo of
FIMO-searched and database-downloaded sequences [options: -F pdf -A
dna –color-scheme classic –fineprint “" –errorbars No].

Statistics and reproducibility
Unless explicitly stated otherwise, the central line, box boundaries,
and whiskers of all box plots in this study represent the median, the
first and third quartiles, and 1.5 times the interquartile range, respec-
tively. Unless otherwise noted, p-values comparing distributions
between groups across box or bar plots were calculated using
unpaired two-sidedWilcoxon rank sum test, with Benjamini-Hochberg
correction for multiple comparisons where appropriate.

We did not employ any statistical methods to predefine the
sample size for analysis. Instead, we utilized all available samples as
described and provided in the literature for each study. We ensure the
reproducibility of the computational analysis in this manuscript
through providing both the datasets and analysis code in the github
and data availability, which is publicly accessible.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 5’ scRNA-seq and bulk ATAC-seq of iPSC and Human dermal
fibroblasts used to do training dataset were downloaded from
ArrayExpress under the accessions “E-MTAB-10385 [https://www.ebi.
ac.uk/biostudies/arrayexpress/studies/E-MTAB-10385?accession=E-
MTAB-10385]" and “E-MTAB-10381 [https://www.ebi.ac.uk/biostudies/
arrayexpress/studies/E-MTAB-10381?accession=E-MTAB-10381]"24.
The matched PBMC datasets used to check the performance of
CamoTSSwere also download fromArrayExpress under the accessions
“E-MTAB-10378 [https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-10378?accession=E-MTAB-10378]" (5' scRNA-seq)
and “E-MTAB-10382 [https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-10382?accession=E-MTAB-10382]" (scATAC-seq)24.
Previously published 5' scRNA-seq data that were reanalyzed here are
available in the GEO, ArrayExpress or GSA under the primary accession
code “GSE159929 [https://www.ncbi.nlm.nih.gov/Traces/study/?acc=
SRP292721&o=acc_s%3Aa]" (15 organs)30, “GSE150825 [https://www.
ncbi.nlm.nih.gov/Traces/study/?acc=SRP262300&o=acc_s%3Aa]" (naso-
pharyngeal carcinoma)36, “E-MTAB-8581 [https://www.ebi.ac.uk/
biostudies/arrayexpress/studies/E-MTAB-8581?query=E-MTAB-8581]"
(human thymicdevelopment)66, “HRA000704 [https://ngdc.cncb.ac.cn/
gsa-human/browse/HRA000704]" (gastric cancer)44. The cell type
annotation is availablewithin thearticle and its supplementaryfiles,with
a copy in the reproducibility GitHub repository (https://github.com/
StatBiomed/CamoTSS). JASPAR database (2022) can be accessed by
https://jaspar.genereg.net/. All data supporting the findings of the study
are availablewithin the article. Source data are providedwith this paper.

Code availability
CamoTSS is a publicly available Python package at https://github.com/
StatBiomed/CamoTSSand https://doi.org/10.5281/zenodo.834361667.
Detailed documentation and analysis procedures to reproduce results
in this paper are also uploaded to this repository.

References
1. Reyes, A. & Huber, W. Alternative start and termination sites of

transcription drive most transcript isoform differences across
human tissues. Nucleic Acids Res. 46, 582–592 (2018).

2. Shiozawa, Y. et al. Aberrant splicing and defective mRNA produc-
tion induced by somatic spliceosomemutations inmyelodysplasia.
Nat. Commun. 9, 1–16 (2018).

3. Smart, A. C. et al. Intron retention is a source of neoepitopes in
cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

4. Horning, A.M. et al. Single-Cell RNA-seq reveals a subpopulation of
prostate cancer cells with enhanced cell-cycle–related transcrip-
tion and attenuated androgen responseheterogeneous androgen
responses of prostate cancer cells. Cancer Res. 78, 853–864
(2018).

5. Wen,W.X.,Mead, A. J. & Thongjuea, S. Technological advances and
computational approaches for alternative splicing analysis in single
cells. J. Comput. Struct. Biotechnol. 18, 332–343 (2020).

6. Huang, Y. & Sanguinetti, G. BRIE: transcriptome-wide splicing
quantification in single cells. Genome Biol. 18, 1–11 (2017).

7. Song, Y. et al. Single-cell alternative splicing analysis with expedi-
tion reveals splicing dynamics during neuron differentiation. Mol.
Cell 67, 148–161 (2017).

8. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design
of RNA sequencing experiments for identifying isoform regulation.
Nat. Protoc. 7, 1009–1015 (2010).

9. Olivieri, J. E., Dehghannasiri, R. & Salzman, J. The SpliZ generalizes
‘Percent Spliced In’to reveal regulated splicing at single-cell reso-
lution. Nat. Protoc. 19, 307–310 (2022).

10. Hu, Y., Wang, K. & Li, M. Detecting differential alternative splicing
events in scRNA-seq with or without unique molecular identifiers.
PLoS Computat. Biol. 16, e1007925 (2020).

11. Patrick, R. et al. Sierra: discovery of differential transcript usage
from polyA-captured single-cell RNA-seq data. Genome Biol. 21,
1–27 (2020).

12. Li, G.-W. et al. SCAPTURE: a deep learning-embedded pipeline that
captures polyadenylation information from3’ tag-basedRNA-seqof
single cells. Genome Biol. 22, 1–24 (2021).

13. Fu, R. et al. scraps: an end-to-end pipeline formeasuring alternative
polyadenylation at high resolution using single-cell RNA-seq.
bioRxiv https://doi.org/10.1101/2022.08.22.504859 (2022).

14. Shiraki, T. et al. Cap analysis gene expression for high-
throughput analysis of transcriptional starting point and identifi-
cation of promoter usage. Proc. Natl Acad. Sci. 100, 15776–15781
(2003).

15. Consortium, T. F., the RIKEN PMI & DGT, C. A promoter-level
mammalian expression atlas. Nature 507, 462–470 (2014).

16. Haberle, V. et al. Two independent transcription initiation codes
overlap on vertebrate core promoters. Nature 507, 381–385
(2014).

17. Moore, J. E. et al. Integration of high-resolution promoter profiling
assays reveals novel, cell type-specific transcription start sites
across 115 human cell and tissue types. Genome Res. 32,
389–402 (2022).

18. Demircioğlu, D. et al. A pan-cancer transcriptome analysis reveals
pervasive regulation through alternative promoters. Cell 178,
1465–1477 (2019).

19. Sundar, R. et al. Epigenetic promoter alterations in GI tumour
immune-editing and resistance to immune checkpoint inhibition.
Gut 71, 1277–1288 (2022).

20. Valcárcel, L. V. et al. Gene expression derived from alternative
promoters improves prognostic stratification in multiple myeloma.
Leukemia 35, 3012–3016 (2021).

21. Chia, M. et al. High-resolution analysis of cell-state transitions in
yeast suggests widespread transcriptional tuning by alternative
starts. Genome Biol. 22, 1–37 (2021).

22. Kouno, T. et al. C1 CAGE detects transcription start sites and
enhancer activity at single-cell resolution. Nat. Commun. 10,
1–12 (2019).

23. Hu, Y. et al. Single-cell RNA cap and tail sequencing (scRCAT-seq)
reveals subtype-specific isoforms differing in transcript demarca-
tion. Nat. Commun. 11, 1–11 (2020).

Article https://doi.org/10.1038/s41467-023-42636-1

Nature Communications |         (2023) 14:7240 14

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10385?accession=E-MTAB-10385
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10385?accession=E-MTAB-10385
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10385?accession=E-MTAB-10385
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10381?accession=E-MTAB-10381
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10381?accession=E-MTAB-10381
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10378?accession=E-MTAB-10378
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10378?accession=E-MTAB-10378
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10382?accession=E-MTAB-10382
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10382?accession=E-MTAB-10382
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP292721&o=acc_s%3Aa
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP292721&o=acc_s%3Aa
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP262300&o=acc_s%3Aa
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP262300&o=acc_s%3Aa
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-8581?query=E-MTAB-8581
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-8581?query=E-MTAB-8581
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA000704
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA000704
https://github.com/StatBiomed/CamoTSS
https://github.com/StatBiomed/CamoTSS
https://jaspar.genereg.net/
https://github.com/StatBiomed/CamoTSS
https://github.com/StatBiomed/CamoTSS
https://doi.org/10.5281/zenodo.8343616
https://doi.org/10.1101/2022.08.22.504859


24. Moody, J. et al. SCAFE: a software suite for analysis of transcribed
cis-regulatory elements in single cells. Bioinformatics 38,
5126–5128 (2022).

25. Huang, Y. & Sanguinetti, G. BRIE2: computational identification of
splicing phenotypes from single-cell transcriptomic experiments.
Genome Biol. 22, 1–15 (2021).

26. Adiconis, X. et al. Comprehensive comparative analysis of 5'-end
RNA-sequencing methods. Nat. Protoc. 15, 505–511 (2018).

27. Cvetesic, N. et al. SLIC-CAGE: high-resolution transcription start
site mapping using nanogram-levels of total RNA.Genome Res. 28,
1943–1956 (2018).

28. Ngo, V. et al. Epigenomic analysis reveals DNA motifs regulating
histone modifications in human and mouse. Proc. Natl Acad. Sci.
USA 116, 3668–3677 (2019).

29. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of tran-
scription initiation by RNA polymerase II.Nat. Rev. Mol. Cell Biol. 16,
129–143 (2015).

30. He, S. et al. Single-cell transcriptome profiling of an adult human
cell atlas of 15 major organs. Genome Biol. 21, 1–34 (2020).

31. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Protoc. 14, 1083–1086 (2017).

32. Heinz, S. et al. Simple combinations of lineage-determining tran-
scription factors prime cis-regulatory elements required for mac-
rophage and B cell identities. Mol. Cell 38, 576–589 (2010).

33. Cheng, P. et al. ZEB2 shapes the epigenetic landscape of athero-
sclerosis. Circulation 145, 469–485 (2022).

34. Massa López, D. et al. The lysosomal transporter MFSD1 is essential
for liver homeostasis and critically depends on its accessory sub-
unit GLMP. Elife 8, e50025 (2019).

35. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for
the visualization of intersecting sets and their properties. Bioinfor-
matics 33, 2938–2940 (2017).

36. Gong, L. et al. Comprehensive single-cell sequencing reveals the
stromal dynamics and tumor-specific characteristics in the micro-
environment of nasopharyngeal carcinoma. Nat. Commun. 12,
1540 (2021).

37. Pernodet, N. et al. High expression of QSOX1 reduces tumorogen-
esis, and is associated with a better outcome for breast cancer
patients. Breast Cancer Res. 14, 1–15 (2012).

38. Correa, D. D. et al. COMT, BDNF, and DTNBP1 polymorphisms and
cognitive functions in patients with brain tumors. Neuro. Oncol. 18,
1425–1433 (2016).

39. Guo, J. et al. FAM107B is regulated by S100A4 and mediates the
effect of S100A4 on the proliferation and migration of MGC803
gastric cancer cells. Cell Biol. Int. 41, 1103–1109 (2017).

40. Dieudonné, F.-X. et al. The effect of heterogeneous Transcription
Start Sites (TSS) on the translatome: implications for the mamma-
lian cellular phenotype. BMC Genom. 16, 1–15 (2015).

41. Yamaguchi, K. et al. Splicing QTL analysis focusing on coding
sequences reveals mechanisms for disease susceptibility loci. Nat.
Commun. 13, 4659 (2022).

42. Chow, L. K.-Y. et al. Epigenomic landscape study reveals molecular
subtypes and EBV-associated regulatory epigenome reprogram-
ming in nasopharyngeal carcinoma. EBioMedicine 86,
104357 (2022).

43. Jen, J. & Wang, Y.-C. Zinc finger proteins in cancer progression. J.
Biomed. Sci. 23, 1–9 (2016).

44. Sun, K. et al. scRNA-seq of gastric tumor shows complex inter-
cellular interaction with an alternative T cell exhaustion trajectory.
Nat. Commun. 13, 4943 (2022).

45. Santini, D. et al. Prognostic role of human equilibrative transporter 1
(hENT1) inpatientswith resectedgastric cancer. J. Cell. Physiol.223,
384–388 (2010).

46. Crosas-Molist, E. et al. Rho GTPase signaling in cancer progression
and dissemination. Physiol. Rev. 102, 455–510 (2022).

47. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occur-
rences of a given motif. Bioinformatics 27, 1017–1018 (2011).

48. Xing, M. et al. Genomic and epigenomic EBF1 alterations modulate
TERT expression in gastric cancer. J. Clin. Invest. 130,
3005–3020 (2020).

49. Chun, J. N., Cho,M., So, I. & Jeon, J.-H. et al. Emerging role of E2F8 in
human cancer. Biochim. Biophys. Acta. Mol. Basis Dis. 1869,
166745 (2023).

50. Deng, Q., Yoo, S., Cavnar, P., Green, J. & Huttenlocher, A. Dual roles
for Rac2 in neutrophil motility and active retention in zebrafish
hematopoietic tissue. Dev. Cell 21, 735–745 (2011).

51. Ikeda, K. et al. Slc3a2 mediates branched-chain amino-acid-
dependent maintenance of regulatory T cells. Cell Rep. 21,
1824–1838 (2017).

52. Lyszkiewicz, M. et al. Human FCHO1 deficiency reveals role for
clathrin-mediated endocytosis in development and function of
T cells. Nat. Commun. 11, 1031 (2020).

53. Irons, E. E., Punch, P. R. & Lau, J. T. Blood-borne ST6GAL1 regulates
immunoglobulin production in B cells. Front. Immunol. 11,
617 (2020).

54. Schulz, S. et al. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO
isopeptidase with essential, non-catalytic functions. EMBO Rep. 13,
930–938 (2012).

55. Osipovich, A. B., Gangula, R., Vianna, P. G. &Magnuson,M. A. Setd5
is essential for mammalian development and the co-transcriptional
regulation of histone acetylation. Development 143,
4595–4607 (2016).

56. 10x Genomics. Navigating 10x Genomics Barcoded BAM Files.
https://www.10xgenomics.com/resources/analysis-guides/
tutorial-navigating-10x-barcoded-bam-files (2021).

57. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

58. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841–842
(2010).

59. Ohtake, H., Ohtoko, K., Ishimaru, Y. & Kato, S. Determination of the
capped site sequence of mRNA based on the detection of cap-
dependent nucleotide addition using an anchor ligation method.
DNA Res. 11, 305–309 (2004).

60. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS).Genome
Biol. 9, 1–9 (2008).

61. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 1–5 (2018).

62. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell
gene regulatory network analysis. Nat. Protoc. 15,
2247–2276 (2020).

63. Zhou, Y. et al. Metascape provides a biologist-oriented resource for
the analysis of systems-level datasets. Nat. Commun. 10,
1523 (2019).

64. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the
open-access database of transcription factor binding profiles.
Nucleic Acids Res. 50, D165–D173 (2022).

65. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E.WebLogo: a
sequence logo generator. Genome Res. 14, 1188–1190 (2004).

66. Park, J.-E. et al. A cell atlas of human thymic development defines T
cell repertoire formation. Science 367, eaay3224 (2020).

67. Ruiyan, H. & Yuanhua, H. CamoTSS: analysis of alternative tran-
scription start sites for cellular phenotypes and regulatory patterns
from 5’ scRNA-seq data. Zenodo https://doi.org/10.5281/zenodo.
8343616 (2023).

Acknowledgements
We thank Chen Qiao and Weizhong Zheng for technical help on CNN
model building and troubleshooting.We thankXianjieHuang for helping
make the package efficient and for troubleshooting.We thank Jiaqi Li for

Article https://doi.org/10.1038/s41467-023-42636-1

Nature Communications |         (2023) 14:7240 15

https://www.10xgenomics.com/resources/analysis-guides/tutorial-navigating-10x-barcoded-bam-files
https://www.10xgenomics.com/resources/analysis-guides/tutorial-navigating-10x-barcoded-bam-files
https://doi.org/10.5281/zenodo.8343616
https://doi.org/10.5281/zenodo.8343616


the suggestion on transcription factor detection. We thank Lanqi Gong,
Shuai He and Runda Xu provided the annotation and UMAP/tSNE coor-
dinate for NPC, 15 organ dataset and gastric cancer dataset. We also
thank Lanqi Gong’s discussion on TF trend analysis. This project is sup-
ported by the National Natural Science Foundation of China (No.
62222217), Innovation Technology Commission Funding (Health@In-
noHK) and the University of Hong Kong through a startup fund and a
seed fund (Y.H.). R.H. is supported by the Postgraduate Scholarship of
the University of Hong Kong.

Author contributions
Y.H. conceived and supervised this study. R.H. implemented the
CamoTSS and performed all data analysis. C.C. provided guidance on
CTSS and unencoded G analyses. R.H. and Y.H. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42636-1.

Correspondence and requests for materials should be addressed to
Yuanhua Huang.

Peer review information Nature Communications thanks Xin Gao and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42636-1

Nature Communications |         (2023) 14:7240 16

https://doi.org/10.1038/s41467-023-42636-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	CamoTSS: analysis of alternative transcription start sites for cellular phenotypes and regulatory patterns from�5'�scRNA-seq�data
	Results
	Overview of CamoTSS pipeline
	Performance of CamoTSS in detecting�TSS
	CamoTSS facilitates cell identity analysis
	Altered TSS usages in nasopharyngeal carcinoma micro-environment
	Alternative TSS usage in the tumor cells of gastric�cancer
	Transcription start site shifting during human thymic development

	Discussion
	Methods
	scRNA-seq initial data analysis
	Construnction of CamoTSS�method
	Step1: Cluster for reads start�site
	Step2: Filter false positive cluster
	Step3: Annotate clusters
	Detect CTSS within one cluster
	Analysis of scATAC-seq PBMC dataset
	Evaluation of epigenetic features and RNA POL2 enrichment of detected�TSS
	Analysis of genomic feature�of TSS
	Identification of differential TSS and CTSS on cell type, disease and development�stage
	SCENIC gene regulation network analysis
	Hierarchical clustering analysis
	Functional enrichment and motif enrichment analysis
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




