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Immunological and clinicopathological
features predict HER2-positive breast cancer
prognosis in the neoadjuvantNeoALTTOand
CALGB 40601 randomized trials
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Katherine A. Hoadley 2, Joel S. Parker 2, Baljit Singh3, Jordan D. Campbell4,
Karla V. Ballman5, David W. Hillman 4, Eric P. Winer6, Sarra El-Abed7,
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Ian E. Krop6, Roberto Salgado 11,12, Sherene Loi 12, Lajos Pusztai 13,
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The identification of prognostic markers in patients receiving neoadjuvant
therapy is crucial for treatment optimization in HER2-positive breast cancer,
with the immune microenvironment being a key factor. Here, we investigate
the complexity of B and T cell receptor (BCR and TCR) repertoires in the
context of two phase III trials, NeoALTTO and CALGB 40601, evaluating
neoadjuvant paclitaxel with trastuzumab and/or lapatinib in women with
HER2-positive breast cancer. BCR features, particularly the number of reads
and clones, evenness and Gini index, are heterogeneous according to hor-
mone receptor status and PAM50 subtypes. Moreover, BCR measures
describing clonal expansion, namely evenness andGini index, are independent
prognostic factors.Wepresent amodel developed inNeoALTTOand validated
in CALGB 40601 that can predict event-free survival (EFS) by integrating
hormone receptor and clinical nodal status, breast pathological complete
response (pCR), stromal tumor-infiltrating lymphocyte levels (%) and BCR
repertoire evenness. A prognostic score derived from themodel and including
those variables, HER2-EveNT, allows the identification of patients with 5-year
EFS > 90%, and, in those not achieving pCR, of a subgroupof immune-enriched
tumors with an excellent outcome despite residual disease.

Neoadjuvant treatment escalation approaches with dual anti-human
epidermal growth factor receptor 2 (HER2) blockadehavebeenproven
effective in early-stage HER2-positive breast cancer, leading to an
increase in pathological complete response (pCR) rates1,2. In the
neoadjuvant lapatinib and/or trastuzumab treatment optimization
(NeoALTTO) trial, dual anti-HER2 blockade with the tyrosine kinase
inhibitor lapatinib and the monoclonal antibody trastuzumab

improved pCR rates in comparison to each targeted agent alone, and a
survival benefit was demonstrated for patients achieving pCR1,3,4.
Moreover, the cancer and leukemia group B (CALGB) 40601 trial
reported a significant survival benefit for dual HER2-targeting with
lapatinib and trastuzumab compared to the single anti-HER2 agents5,6.

HER2-positive breast cancer is considered an immunogenic
tumor, and the host immune response in this breast cancer subtype
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has been extensively explored due to its known role inmodulating the
activity of anti-HER2 agents [e.g., through antibody-dependent cellular
cytotoxicity (ADCC)]7,8. Therefore, understanding the immune micro-
environment in HER2-positive breast cancer represents a key element
for biomarker research in this disease. In the NeoALTTO trial, higher
levels (expressed in%) of stromal tumor-infiltrating lymphocytes (TILs)
predicted improved responsiveness and prognosis9, while immune
gene signatures10 and usage of specific T cell receptor (TCR) β chain
variable genes11 were positively associated with response in the com-
bination arm. A prominent role of immune gene signatures (particu-
larly related to B cell response) in predicting both pCR and prognosis
has also been described in the CALGB 40601 study, even out-
performing TILs in multivariable analyses5,6,12, opening questions
regarding the need to integrate morphology with a more specific
characterization of immune cell subtypes. An association with TIL
frequencies has also been described for PAM50 subtypes13,14 and hor-
mone receptor status9.

Of note, increased diversity and clonal expansion of B cell
receptor (BCR) and TCR repertoires, which can be described with
different metrics (Supplementary Fig. 1) are characteristics of the
immune response15,16. Interestingly, several studies have recently
focused their efforts on characterizing the role of B cells in different
tumor types, including breast cancer16–26. These works have linked B
cell infiltration and clonal diversity with improved outcomes as well as
responsiveness to immunotherapy, and have depicted the role of B
cells in orchestrating the immune response in tumors.

Moreover, the achievement of pCR after neoadjuvant treatments
is a robust prognostic indicator27,28. However, many patients with
residual disease (RD) never experience recurrence, whereas disease
relapse can still be observed in a subgroup of patients achieving pCR.

In this retrospective study, we further dissect the heterogeneity of
HER2-positive breast cancer by evaluating the characteristics of the BCR
and TCR repertoires in the context of two phase III clinical trials, namely
NeoALTTO and CALGB 40601, evaluating neoadjuvant paclitaxel with
trastuzumab and/or lapatinib in women with HER2-positive breast can-
cer. Moreover, we explore the impact of BCR and TCR repertoires and
diversity measures on treatment response and long-term clinical out-
comes. We present a prognostic model integrating baseline immuno-
logical and clinical features, as well as treatment response, aimed at
identifying distinct prognostic groups in HER2-positive breast cancer
patients treated with neoadjuvant therapies. The prognostic stratifica-
tion of patients and the biological characterization of determinants of
prognosis can open the avenue for the implementation of optimized
neoadjuvant/post-operative treatment strategies.

Results
Characteristics of the RNA sequencing cohorts in theNeoALTTO
and CALGB 40601 trials
The characteristics of the population with baseline pre-treatment RNA
sequencing data in NeoALTTO (N = 254) and CALGB 40601 (N = 264)
have been previously described6,10. When comparing the two cohorts,
relevant differences were noted (Table 1). In particular, the CALGB
40601 cohort included a population characterized by more favorable
clinical features (fewer ≥ cT3 tumors, more patients with clinically
negative lymph nodes, higher TIL levels) compared to the NeoALTTO
one. Higher pCR rates were also observed in CALGB 40601 compared
to NeoALTTO (Table 1). Median follow-up for the NeoALTTO RNA
sequencing cohort was 6.7 years, while for CALGB 40601, it was 9.1
years. Consort diagrams showing the number of patients included for
the subsequent analyses are available in Supplementary Fig. 2.

BCR and TCR repertoires in the NeoALTTO and CALGB
40601 trials
Aiming at investigating the complexity of the immune response in
HER2-positive breast cancer, we explored the diversity of BCR andTCR

repertoires in pre-treatment baseline tumor samples. The MiXCR
tool29,30 was used to identify BCR and TCR clones from RNA sequen-
cing data, with some differences noted between NeoALTTO and
CALGB 40601.

In NeoALTTO, all samples had at least one read mapping to BCR,
while one sample did not have any readmapping to TCR. In the CALGB

Table 1 | Baseline patients’ characteristics and pathological
complete response rates of theNeoALTTOandCALGB40601
RNA sequencing cohorts

NeoALTTO (N = 254) CALGB 40601 (N = 264) P value

Age 0.735a

- Median (Q1, Q3) 49.0 (41.2, 56.8) 49.0 (41, 56)

Racial or ethnic group 1.11 × 10−12b

- Asian 69 (27.2%) 16 (6.1%)

- Black 4 (1.6%) 21 (8.0%)

- White 158 (62.2%) 213 (80.7%)

- Other 23 (9.1%) 14 (5.3%)

Tumor size 1.75 × 10–9b

- Not available 0 16

- cT1 0 (0.0%) 24 (9.7%)

- cT2 151 (59.4%) 161 (64.9%)

- ≥ cT3 103 (40.6%) 63 (25.4%)

Nodal stage 9.05 × 10−8b

- cN0 67 (26.4%) 113 (42.8%)

- cN1 149 (58.7%) 110 (41.7%)

- cN2 24 (9.4%) 23 (8.7%)

- cN3 13 (5.1%) 3 (1.1%)

- cNx 1 (0.4%) 15 (5.7%)

HR status 0.331b

- Negative 117 (46.1%) 110 (41.7%)

- Positive 137 (53.9%) 154 (58.3%)

ER status 0.113b

- Negative 128 (50.4%) 114 (43.2%)

- Positive 126 (49.6%) 150 (56.8%)

pCR breast (ypT0/is) 0.007b

- No 166 (65.4%) 141 (53.4%)

- Yes 88 (34.6%) 123 (46.6%)

pCR breast + axilla
(ypT0/is ypN0)

0.008b

- Not available 10 0

- No 169 (69.3%) 152 (57.6%)

- Yes 75 (30.7%) 112 (42.4%)

Treatment Arm 0.003b

- Lapatinib (L) 89 (35.0%) 57 (21.6%)

- Trastuzumab (T) 79 (31.1%) 104 (39.4%)

- T + L 86 (33.9%) 103 (39.0%)

TILs (%)c 6.79 × 10−10a

- Median (Q1, Q3) 12.5 (5, 32.5) 20 (13.125, 45)

PAM50 0.302b

- HER2-Enriched 151 (59.4%) 146 (55.3%)

- Basal-like 21 (8.3%) 22 (8.3%)

- Luminal B 41 (16.1%) 35 (13.3%)

- Luminal A 22 (8.7%) 28 (10.6%)

- Normal-like 19 (7.5%) 33 (12.5%)

P values are two-sided.
BCR B cell receptor, ER estrogen receptor, HR hormone receptor, pCR pathological complete
response, Q1 quartile 1, Q3 quartile 3, TILs tumor-infiltrating lymphocytes.
aWilcoxon rank sum test.
bFisher’s Exact Test.
cTILs data were available for 233 patients in NeoALTTO and 230 patients in CALGB 40601.
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40601 study, all samples showed readsmapping to both BCR and TCR.
As the library size can impact the number of BCR/TCR reads, for the
subsequent analyses we normalized the number of BCR/TCR reads by
the total number of reads mapping to genes in each sample. The
number of reads mapping to TCR was significantly lower than BCR in
both studies, and the number of normalized reads and clones were
significantly higher in NeoALTTO compared to CALGB 40601 (Sup-
plementary data 1). In this regard, differences in the RNA sequencing
between the two studies, namely the read length [50-base pairs (bp) in
CALGB 40601 and 100-bp in NeoALTTO] have to be considered.
Indeed,while different read lengths canbe used inMiXCR, 100-bp read
libraries allowdetection of higher numbers of clonotypes compared to
shorter read lengths31, potentially leading to the identification of a
lower number of clones in CALGB 40601. This was further confirmed
when testing MiXCR in NeoALTTO after trimming reads at 50-bp
(details in METHODS), comparing the read and clone counts obtained
with the original NeoALTTO data used for the analyses (Supplemen-
tary data 1).

The proportions of reads mapping to the different immunoglo-
bulin and TCR chains are shown in Supplementary Fig. 3a–d. In both
studies, themajority of the readsweregenerated from the κ light chain
for BCR repertoires, and from both the α and the β chain for TCR. To
describe the characteristics of the BCR/TCR repertoires, we computed
diversity indices derived from economics32 and ecology studies33,34

previously applied to BCR/TCR repertoires characterization17,35,
including Gini index, Gini-Simpson index and species evenness
(defined in the METHODS). The proportion of the most frequent (top)
and the second clone, and the length in nucleotides of the com-
plementarity determining region 3 (CDR3) were also calculated (Sup-
plementary data 2, 3). Illustrative examples are depicted in
Supplementary Fig. 1. Correlations between measures computed on
the single-chain types and the total BCR/TCR measures (calculated
considering all reads mapping to any BCR or TCR gene) are shown in
Supplementary Fig. 4 for NeoALTTO and Supplementary Fig. 5 for
CALGB 40601 (values reported in Supplementary data 4, 5). Except for
the CDR3 length, which differed in the various chains (Supplementary
data 1), and TCR gamma and delta chains, presenting a low number of
reads,we observedmoderate to high correlations (rho > 0.50)with the
total BCR/TCR metrics for the majority of the single-chain features in
both trials.

From here on, we refer to BCR/TCR repertoire characteristics as
the global metrics calculated on all reads mapping to chains forming
either the BCR or TCR, with clones defined separately for each chain as
detailed in the METHODS, representing the whole clonal repertoire.

The correlation among different BCR/TCRmeasures is also shown
in Supplementary Figs. 4 and 5. BCR/TCR read counts were positively
correlated to the number of clones and Gini index, while inverse cor-
relations were noted with evenness, top and second top clone pro-
portions, showing that the presence of a higher number of reads
mapping to BCR/TCR was also associated to the detection of a more
diverse repertoire.

Isotypes (IgG, IgA, IgM, IgD, IgE) from BCR heavy chains were also
computed (details in METHODS). In both studies, the majority of the
BCR heavy chain reads were from IgG, followed by IgA and IgM (Sup-
plementary Fig 3e–f). As shown in Supplementary Fig. 6, positive
correlations (the highest being for IgG) were observed between
selected isotypes diversity measures and the corresponding global
BCR measures (values reported in Supplementary data 6, 7).

BCR and TCR repertoires are heterogeneous according to
hormone receptor status and PAM50 subtypes, and correlate
with TIL levels
We next explored the association of BCR and TCR repertoires with
hormone receptor status, PAM50 subtypes, and TIL levels, scored as
% of the intratumoral stroma area following the International TILs

Working Group guidelines36, in order to depict the heterogeneity of
the immune response within HER2-positive breast cancer and eval-
uate whether BCR/TCR measures could add additional information
to TILs.

As shown in Fig. 1 and Supplementary Figs. 7 and 8, we observed
differences between hormone receptor-negative (HR-) and hormone
receptor-positive (HR+) tumors (full results in Supplementary data 8).
In particular, HR- tumors had significantly higher BCR read counts and
number of clones compared to HR+ tumors in both NeoALTTO and
CALGB 40601, suggesting higher levels of B cell infiltration in line with
a higher immunogenicity attributed to HR- tumors8.

We then compared BCR and TCRmeasures according to PAM50
subtypes. For this purpose, in order to have uniformity in the PAM50
analyses, we adopted in NeoALTTO the method described in
Fernandez-Martinez et al. 6. NeoALTTO and CALGB 40601 presented
similar populations in terms of PAM50 classification (Table 1, Sup-
plementary data 9). The proportion of the PAM50 subtypes was also
similar in HR+ and HR- tumors in the two trials (Supplementary
Fig 9a–f). Rates of pCR (ypT0/is) in NeoALTTO according to the
PAM50 subtypes are shown in Supplementary Fig. 9g, with HER2-
enriched (HER2-E) tumors having the highest pCR rate (43.7%).
Differently from what has been demonstrated in CALGB 406016,
event-free survival (EFS) in NeoALTTO did not differ significantly
among PAM50 subtypes (Supplementary Fig 9h–j), nor did HER2-E
tumors have a worse prognosis compared to the other
PAM50 subtypes amongst those with RD.

Of interest, we observed heterogeneity in terms of BCR repertoire
across PAM50 subtypes for both trials, with different distributions
(Kruskal-Wallis FDR<0.05) for read counts, evenness, Gini index, Gini-
Simpson, as well as top and second clone proportions (Fig. 1 and
Supplementary Fig. 10). TCR measures were overall more homo-
geneous (Supplementary Fig. 11), although some differences could be
noted (e.g., differences in the number of reads in both studies). Overall,
HER2-E, basal-like, and luminal B tumors showed features in linewith an
activation of the B-cell mediated immune response and clonal expan-
sion, as described by higher BCR Gini index and lower BCR evenness,
compared to luminal A and normal-like samples. Detailed results for
the comparisons are also shown in Supplementary data 10, 11.

TIL levels at baseline were available for 233 patients out of the 254
(91.73%) with pre-treatment RNA sequencing data in the NeoALTTO
study and 230 out of 264 (87.12%) in the CALGB 40601 cohort. As
shown in Supplementary Figs. 4, 5, a moderate positive correlation
(rho = 0.33 to 0.58) with TIL levels was noted for the BCR and TCR
normalized number of reads (similar to the moderate correlation
between TIL levels and immune-related gene expression signatures
recently reported12), the number of clones aswell as for BCRGini index.
In contrast, a negative correlation with TIL levels (rho = −0.29 to −0.41)
was noted for BCR evenness, as well as TCR top and second clone
proportions. As top and second top clone proportions are also nega-
tively correlated with the number of clones, higher values may repre-
sent populations with low levels of both immune infiltration and
number of clones. Since correlations between TIL levels and BCR/TCR
diversity measures were moderate, the information brought by TILs
quantification and BCR/TCR characterization may be complementary,
with diversity measures potentially providing a “qualitative” informa-
tion in terms of immune response compared to the quantification
of TILs.

BCR/TCR repertoire metrics can predict pCR and EFS
To assess whether baseline BCR and TCR measures could predict pCR
(Supplementary Figs. 12, 13) and EFS (Fig. 2), we performed univariable
and multivariable analyses in the NeoALTTO and CALGB 40601
cohorts, demonstrating a potential prognostic role for BCR diversity.

When controlling for clinicopathological characteristics, higher
TCR evenness and lower Gini index, top and second clone proportions
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were associated with higher pCR (ypT0/is) rates in NeoALTTO, while
higher BCR number of reads, number of clones, and Gini index were
positively associated with pCR in CALGB 40601. When evaluating
breast + axilla pCR, only BCR reads, and clone numbers in CALGB
40601 were significant after controlling for clinicopathological
characteristics.

BCR/TCR featureswere not significantly associatedwith EFS at the
univariable analysis in NeoALTTO and CALGB 40601 after adjusting
the P values for multiple testing (Fig. 2a, b). When controlling for
clinicopathological characteristics, BCR evenness [hazard ratio
(HR) = 1.5; FDR =0.021] and Gini index (HR =0.69; FDR =0.021) were
significantly associatedwith EFS inNeoALTTO (Fig. 2c),while BCR read

count (HR =0.51; FDR = 1.9 × 10−4), number of clones (HR =0.58;
FDR =0.0013), evenness (HR = 1.7; FDR =0.025) and Gini index (HR =
0.6; FDR =0.015) were associated with EFS in CALGB 40601 (Fig. 2d).

Multivariable EFS analyses for immunoglobulin chains and iso-
types (IgG, IgM, IgA only, due to the low proportions of IgD and IgE
detected) are shown in Supplementary Fig. 14. While the directions of
the association are in line with the described BCR results, focusing on
single chains (e.g., heavy chain) or isotype (e.g., IgG) may provide less
prognostic information compared to measures on the global BCR
repertoire.

These results suggest a positive prognostic role of B cell clonal
expansion, depicted by lower BCR evenness and higher Gini index.

Fig. 1 | Heterogeneity of BCR measures according to hormone receptor status
and PAM50 subtypes. a Comparisons of BCR normalized number of reads (“N
reads”; represented on a log scale), number of clones (“N clones”), evenness and
Gini index in HR- and HR+HER2-positive breast cancer in NeoALTTO (N = 254) and
CALGB 40601 (N = 264). Two-sided P values at the bottom of the panels are from
Wilcoxon rank sum test, and FDRs obtained adjusting P values using Benjamini &
Hochberg method. See also Supplementary Fig. 7 for the other BCR measures and
Supplementary data 8 reporting P values and FDRs. b Comparisons of BCR nor-
malized number of reads (“N reads”; represented on a log scale), number of clones
(“N clones”), evenness and Gini index in PAM50 subtypes in HER2-positive breast
cancer in NeoALTTO (N = 254) and CALGB 40601 (N = 264). Two-sided P values at
the bottomof the panels are fromKruskal-Wallis test, whileWilcoxon rank sum test

was used when comparing each group against each one of the others. FDRs were
then obtained adjusting P values using Benjamini & Hochberg method. See also
Supplementary Fig. 10 for the other BCR measures, Supplementary data 10, 11
reporting P values and FDRs. Source data are available. For Wilcoxon tests,
FDRs < 0.05 are shown. In the panels: * = FDR <0.05 and 0.01; ** = FDR <0.01 and
≥ 0.001; *** = FDR<0.001. The number of reads is normalized by the total number
of reads mapping to the transcriptome in each sample, and multiplied by 1000. In
boxplots, the boxes are defined by the upper and lower quartile; the median is
shown as a bold colored horizontal line; whiskers extend to themost extreme data
point which is no more than 1.5 times the interquartile range from the box. BCR B
cell receptor, FDR false discovery rate, HER2-E HER2-Enriched, HR hormone
receptor, LumA luminal A, LumB luminal B.
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Development and validation of an integrated prognostic model
Considering the previous results, we testedwhether amodel including
baseline clinicopathological, immune-related features, and treatment-
related information including response could predict EFS in
NeoALTTO. BCR and TCR measures (details in METHODS) were
included in the variable selection process, together with pCR infor-
mation, clinicopathological variables and a set of gene signatures. The
model was developed on a training cohort of 221 patients from the
NeoALTTO trial with all included data available, using a forward step-
wise approach with Akaike Information Criteria (AIC) to select the best
model (Supplementary data 12).

The variables selected in the final model included BCR evenness,
TIL levels, pCR status (ypT0/is), clinical nodal status and hormone
receptor status (the final Cox regression model is shown in Supple-
mentary data 12). A score, named HER2-EveNT for hormone receptor
status, pCR, BCR evenness, nodal status, and TILs, was then calculated
as the sum of the values assigned to each variable multiplied by the
estimated coefficient derived from the Cox model (details in
METHODS).

In NeoALTTO, the C-index calculated on the training cohort
(N = 221) was 0.689, while the C-index on the group of patients with
available data for the variables selected in the prognostic model

(N = 233, used for the subsequent analyses) was 0.6979 (score range:
−3.3176 to 0.3665,median −1.0113, with a lower score being associated
with better outcome).

The score was then divided into tertiles (cutoffs at −1.3763 and
−0.8143), and Kaplan–Meier analysis was performed to estimate EFS in
the groups identified (Supplementary Fig. 15a). Five-year EFS rates
were 92% (95% CI = 86–98%), 75% (95% CI = 66–86%) and 55% (95%
CI = 44–68%) for the first, second and third tertile, respectively. The
second and third tertiles, presenting 5-year EFS rates < 90%, were
merged into a single group, defining two final prognostic groups with
good (N = 78) and poor (N = 155) prognosis (Fig. 3a). Five-year EFS rate
for the poor prognosis group was 65%, with HR =0.2 for good vs. poor
prognosis (log-rank P = 1.21 × 10−5).

Furthermore, by separating the patients according to breast pCR
(ypT0/is) status, we were able to identify subgroups of patients with
distinct prognosis regardless of treatment response (Fig. 3b–c) due to
the impact of the other variables in these subgroups. In particular,
patientswith breast pCRhad 5-year EFS rates of 97% and 72% in the two
prognostic groups (log-rank P =0.00057; HR =0.12). In patients not
achieving pCR in the breast, 5-year EFS rates were 85% in the good
prognosis group and 62% in the poor prognosis group (log-rank
P =0.012; HR =0.32).

BCR N reads

BCR N clones

BCR CDR3 length

BCR evenness

BCR Gini

BCR Gini Simpson

BCR top clone

BCR second top clone

TCR N reads

TCR N clones

TCR CDR3 length

TCR evenness

TCR Gini

TCR Gini Simpson

TCR top clone

TCR second top clone

HR

0.82

0.95

0.86

1.4

0.74

1.5

0.87

0.87

0.92

0.82

1.0

0.85

1.1

0.95

1.1

1.3

95% CI

0.64 to 1

0.75 to 1.2

0.68 to 1.1

1.1 to 1.9

0.59 to 0.91

0.93 to 2.3

0.68 to 1.1

0.68 to 1.1

0.73 to 1.2

0.66 to 1

0.79 to 1.3

0.68 to 1.1
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Fig. 2 | Association of BCR and TCR measures with EFS in the NeoALTTO and
CALGB 40601 cohorts. a Forest plot for EFS in the NeoALTTO cohort, univariable
analysis. b Forest plot for EFS in the CALGB 40601 cohort, univariable analysis.
c Forest plot for EFS in the NeoALTTO cohort, correcting for clinicopathological
parameters (age, hormone receptor status, tumor size, nodal status,
PAM50 subtypes, and treatment arm). d Forest plot for EFS in the CALGB 40601
cohort, correcting for clinicopathological parameters (age, hormone receptor
status, tumor size, nodal status, PAM50 subtypes, and treatment arm). For uni-
variable analysis, P values are from likelihood ratio test. When correcting for clin-
icopathological characteristics, P values were obtained with an ANOVA on nested

Cox models. P values are two-sided. Non-significant values (FDR >0.05) are shown
in dark gray, significant values are shown in red (HR > 1) and blue (HR< 1). Circles
indicate HR, and error bars the 95% confidence interval (95% CI). Analyses were
performed including patientswith available data. In NeoALTTO,N = 254 for all BCR/
TCRmetrics, except TCR CDR3 length, TCR Gini, TCR Gini-Simpson, TCR top clone
(N = 253) and TCR evenness, TCR second top clone (N = 251). In CALGB 40601, for
all BCR/TCR measures N = 264 in univariable, N = 248 in multivariable. 95% CI 95%
confidence interval, BCR B cell receptor, CDR3 complementarity-determining
region 3, EFS event-free survival, FDR false discovery rate, HR hazard ratio, N reads
number of normalized reads, N clones number of clones, TCR T cell receptor.
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We then proceeded to validate the prognostic model by com-
puting the HER2-EveNT score in the CALGB 40601 set (N = 230) and
applying the pre-defined cutoffs from NeoALTTO (Supplementary
Figs. 15b, 4, details in METHODS). In CALGB 40601, 119/230 patients
(51.96%) were included in the good prognosis group (score ≤ −1.3763),
in line with the favorable clinical features previously described com-
pared to NeoALTTO. The C-index in CALGB 40601 cohort was 0.6396
(score range: −3.8219 to 0.2597, median −1.42). HER2-EveNT scores are
available in Supplementary data 13, 14.

Five-year EFS rates were 93% and 75% for the good and poor
prognostic group, respectively (log-rank P = 8.44 × 10−5; HR =0.25). The

difference in the pCR group (Fig. 4b) was not statistically significant,
although a trend similar to the one observed in NeoALTTO was noted
(log-rank P =0.19; HR=0.43), with 5-year RFS rates of 93% for the good
prognosis and85% for the poor prognosis groups. Indeed, thepower to
detect significant differences in survival among patients who achieved
pCR is hindered by the good prognosis of those patients. Nevertheless,
a difference of 8% in the 5-year EFS rateswas observed between the two
prognostic groups. Confirming the findings in NeoALTTO, groups with
distinct prognosis were identified in patients not achieving breast pCR
(Fig. 4c), with 5-year EFS rates of 93% and 72% for the good and poor
prognosis group, respectively (log-rank P =0.009; HR=0.27).
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Fig. 3 | Event-free survival outcomes based on the groups identified by the
prognostic HER2-EveNT score in the NeoALTTO dataset. a Kaplan–Meier plot
showing EFS in the NeoALTTO population (N = 233) with information available for
all variables included in the model (breast pCR, hormone receptor status, clinical
nodal status, TILs, BCR evenness). b Kaplan–Meier plot showing EFS in the
NeoALTTO subgroup with all variables in the model available and breast pCR
(ypT0/is) at surgery (N = 82). c Kaplan–Meier plot showing EFS in the NeoALTTO
subgroup with all variables in the model available and without pCR in the breast at

surgery (N = 151). Patients are stratified according to low risk (good prognosis
group, first tertile) and high risk (poor prognosis group, tertiles 2 and 3 combined),
based on the HER2-EveNT score derived from the prognostic model. Tables show
5-year EFS rates and HRs with respective 95% CI. P values are from log-rank test, HR
describes the risk of an event as defined by EFS in the good prognosis group
compared to the one with poor prognosis. 95% CI 95% confidence interval, BCR B
cell receptor, EFS event-free survival, HR hazard ratio, pCR pathological complete
response, TILs tumor-infiltrating lymphocytes.
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In addition, similar results and differences in terms of survival
were observed when dividing the NeoALTTO and CALGB 40601
cohorts according to pCR defined as ypT0/is ypN0 (Supplemen-
tary Fig. 16).

As expected, when considering the score as a continuous variable,
the prognostic score was associated to EFS at the univariable analysis
in NeoALTTO (HR = 2.2; 95% CI = 1.6–3; P = 5.2 × 10−8), as well as after
adjusting for treatment arm, tumor size, PAM50 subtypes and age
(HR = 2.2; 95%CI = 1.6–2.9; P = 9.3 × 10−8). These resultswere confirmed
in CALGB 40601 (univariable analysis: HR = 1.6; 95% CI = 1.1–2.2;

P =0.0066; multivariable analysis: HR = 1.8; 95% CI = 1.3– 2.5;
P = 7.4 × 10−4).

Results for overall survival (OS) are shown in Supplementary
Figs. 17, 18. In both studies, OS results had the same trend compared to
EFS; however, in NeoALTTO a statistically significant difference was
observed only in the whole population and not in the pCR/no-pCR
subgroups, while in CALGB 40601 statistically significant differences
were observed in the pCR/no-pCR subgroups as well.

The characteristics of the prognostic groups are shown in Sup-
plementary Tables 1, 2. Interestingly, the proportions of patients
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Fig. 4 | Event-free survival outcomes based on the groups identified by the
prognostic HER2-EveNT score in the CALGB 40601 independent validation
dataset. a Kaplan–Meier plot showing EFS in the CALGB 40601 population
(N = 230) with information available for all variables included in the model (breast
pCR, hormone receptor status, clinical nodal status, TILs, BCR evenness).
b Kaplan–Meier plot showing EFS in the CALGB 40601 subgroup with all variables
in the model available and breast pCR (ypT0/is) at surgery (N = 105).
cKaplan–Meierplot showing EFS in theCALGB40601 subgroupwith all variables in
the model available and without pCR in the breast at surgery (N = 125). Patients are

stratified according to low risk (good prognosis group) and high risk (poor prog-
nosis), based on the HER2-EveNT score derived from the prognostic model. The
cutoff to identify the prognostic groups is derived fromNeoALTTO (patients with a
score≤ −1.3763 were assigned to the good prognosis group). Tables show 5-year
EFS rates and HRs with respective 95% CI. P values are from log-rank test, HR
describes the risk of an event as defined by EFS in the good prognosis group
compared to the one with poor prognosis. 95% CI 95% confidence interval, BCR B
cell receptor, EFS event-free survival, HR hazard ratio, pCR pathological complete
response, TILs tumor-infiltrating lymphocytes.
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without pCR (ypT0/is) in the good prognosis group were 46.2% and
34.5% in the NeoALTTO and CALGB 40601 trials, respectively. There
were no significant differences in terms of anti-HER2 treatment
received, and the difference in EFS outcome between the two prog-
nostic groups could be observed across all treatment arms (Supple-
mentary Fig. 19). Furthermore, in each treatment arm the prognostic
information associated to the HER2-EveNT groups in the pCR/no-pCR
subsets seems to maintain the same trends observed in the whole
cohort (Supplementary Fig. 20), although these results require caution
in the interpretation due to the small number of patients in eachoneof
these comparisons.

When comparing EFS in patients belonging to the good prognosis
group with and without pCR (ypT0/is), we did not find significant
differences neither in NeoALTTO (log-rank P = 0.13638; HR =0.31; 95%
CI = 0.06–1.59), nor in CALGB 40601 (log-rank P =0.557; HR =0.68;
95% CI = 0.18–2.52).

Similar variables (i.e., TILs, BCR evenness, nodal status, and
estrogen receptor status) where selected when removing the pCR and
treatment information from the pool of variables tested, although this
version of the EFSmodel presented a reduced performance compared
to the original one, both in NeoALTTO (C-index 0.6787 vs. 0.6979 of
the original model) and CALGB 40601 (C-index 0.6029 vs. 0.6396).

Overall, a multi-modal approach integrating clinicopathological
characteristics, response information and immunological features is
important to predict patients’ outcomes.

Tumor microenvironment characteristics are associated with
BCR/TCR repertoire metrics and the prognostic score
To explore the relationship of BCR/TCR characteristics, TILs and
prognosis with the tumor microenvironment composition in the
NeoALTTO and CALGB 40601 cohorts, we applied the microenviron-
ment cell populations (MCP)-counter tool37, which allows to estimate
the abundance scores of different immune and stromal cells (Supple-
mentary data 15, 16). Indeed, differences in the microenvironment
composition were associated to BCR/TCR measures and TIL levels, as
well as to the HER2-EveNT prognostic score.

We first evaluated the correlations of the abundance scores for
each cell type were with the BCR/TCR measures, TIL levels and the
HER2-EveNT score (Supplementary Fig. 21, Supplementary data 17, 18).
In both trials, BCR andTCR read countswerehighly correlatedwith the
B cell lineage scores (rho =0.95–0.97) and the T cell subtypes (rho ≥
0.8), respectively. Instead, lower correlations between MCP-counter
results and TIL levels were noted, with the highest value belonging to
theB cell lineage in both studies (rho =0.54 and0.56 inNeoALTTOand
CALGB 40601, respectively). These results are reassuring in that BCR/
TCR measures highly correlate with B/T cells measured by MCP-
counter, which may be expected as both are derived from RNA
sequencing data, and suggest that MCP-counter fits better with BCR/
TCR normalized reads than with TILs. BCR evenness was negatively
correlated to the B cell lineage score, monocytic cells, as well as
cytotoxic T cells (rho = −0.2 to−0.52), while aweakpositive correlation
(rho = 0.2 to 0.35) was found with neutrophils and endothelial cells in
both studies. Therefore, we can hypothesize a relationship between
the network of different cell types in the tumormicroenvironment and
B cell clonal expansion. In line with their suggested immunosuppres-
sive role38–40, neutrophils, endothelial cells and fibroblasts were posi-
tively correlated with the HER2-EvenNT score, while negative
correlations with TILs were noted for endothelial cells and fibroblasts.

We next compared cell subtypes according to both pCR (ypT0/is
ypN0) status and prognostic group (Supplementary Fig. 22, Supple-
mentary data 19, 20) in NeoALTTO (N = 224 patients with prognostic
score and breast + axilla pCR information available) and CALGB 40601
(N = 230). Patients in the same prognostic group and either pCR or RD
showed similar profiles. In particular, remarkable differences were
noted in both studieswithin theRDsubgroup, where levels of different

immune cells were significantly higher in the good prognosis group,
highlighting the importance of immune variables in patients with RD.

Gene expression profiling highlights biological differences in
the prognostic groups
We next aimed to better characterize the gene expression features
associated with the HER2-EveNT score by evaluating correlations with
known signatures and performing comparisons between the prog-
nostic groups. This in-depth characterization allowed us to identify the
most relevant features captured by the score, including mostly pro-
cesses associated to immune activation and suppression.

First, we evaluated the correlation between theHER2-EveNT score
as a continuous variable and hallmark biological processes41 scores
computed with the gene set variation analysis (GSVA) tool42 in the two
studies (Fig. 5, Supplementary data 21, 23). Immune-related pathways,
PI3K/AKT/mTOR signaling and proliferation (e.g., MYC targets, E2F
targets) showed the highest negative correlation with the HER2-EveNT
score. These results potentially describes the association of prolifera-
tion and HER2 downstream signaling with pCR (enriched in the good
prognosis group with lower HER2-EveNT score), as previously sug-
gested in NeoALTTO10. In addition, Notch and TGF beta signaling, as
well as myogenesis, EMT and angiogenesis, which have been pre-
viously linked to immune evasion mechanisms and tumor
progression39,43–46, were positively correlated with the risk score and,
thus, worse prognosis.

Furthermore, we performed differential gene expression analysis
comparing the good and the poor prognostic groups in NeoALTTO
and CALGB 40601 (Supplementary data 24, 25). Gene set enrichment
analysis for hallmark biological processes performed on ranked genes
fromdifferential expression analysis showed comparable results to the
GSVA analysis (Supplementary Fig. 23, Supplementary data 26). A gene
ontology (GO) analysis on genes presenting a log2(fold change) > 0.58
or < −0.58 also revealed similar results, with immune-related GO pro-
cesses associated with good prognosis (Supplementary data 27, 28).
The top 30 biological processes associated with poor prognosis were
more heterogeneous (Supplementary data 29, 30) and included,
among others, neural biological processes (e.g., neuropeptide signal-
ing pathway, nervous system process, nerve growth factor signaling
pathway). Interestingly, neural processes have been recently found to
be associated with lack of pCR and higher RD burden47.

Among the differentially expressed genes with a log2(fold
change) > 0.58 or < −0.58, 408 genes associated with good prognosis
were in common in the two studies (Supplementary data 31). Shared
immune-related genes with potential therapeutic relevance included
CD274 [encoding programmed death-ligand 1 (PD-L1)], PDCD1
[encoding programmed cell death protein 1 (PD1)], CTLA4, CD38
(encoding an ectoenzyme involved in the extracellular adenosine
production), IDO1 and ICOS, several genes coding for HLA class II
proteins, and chemokines (i.e., CXCL9, CXCL10, associated to proin-
flammatory macrophages18 and response to immunotherapy48).

Overall, these analyses show an immune-enriched phenotype for
the good prognosis group and an enrichment in biological processes
associated with a more aggressive phenotype and immune evasion in
the poor prognosis group.

We next evaluated the relationship between the HER2-EvenNT
score and known gene expression signatures. A pool of 709 gene
expression signatures derived from the literature and single genes was
computed on merged gene expression data after correction for study
effect (Supplementary data 32, 33), allowing amore direct comparison
between the two studies.

As shown in Supplementary Fig. 24, signatures negatively corre-
lated with the risk score were mainly immune-related (Supplementary
Data 34, 35). Of interest, among the signatures correlated (rho >0.2)
with a higher risk score, several were shared in the two studies,
including signatures related to stemness, a lobular “reactive-like”
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Fig. 5 | Heatmap of GSVA scores for hallmark gene sets and correlations with
theHER2-EveNTscore in theNeoALTTOandCALGB40601datasets. aHeatmap
showing the GSVA scores for 42 hallmark gene sets in the NeoALTTO HER2-EveNT
cohort (N = 233). bHeatmap showing the GSVA scores for 42 hallmark gene sets in
the CALGB 40601HER2-EveNT cohort (N = 230). Annotations on the top section of
the heatmap include the HER2-EveNT score, the prognostic groups, presence or
absence of EFS events, pCR, hormone receptor and clinical nodal status, TIL levels
(%), BCR evenness (values as used in the model), and PAM50 subtypes. Cutoff

represents the value todivide the twoprognostic groups (−1.3763). On the left side,
Spearman correlations values between the GSVA scores and the prognostic score
are shown if P <0.05 (two-sided). The red line divides positive and negative cor-
relations. See also Supplementary data 23 and Source data. Basal basal-like, BCR B
cell receptor, EFS event-free survival, GSVA gene set variation analysis, Her2 HER2-
Enriched,HRhormone receptor, LumA luminal A, LumB luminal B,Normal normal-
like, pCR pathological complete response.
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signature49, as well as a signature previously associated to lack of
response to immune-checkpoint inhibitors19.

Finally, we compared signature levels in patients categorized
according to prognosis as defined by HER2-EveNT and pCR (ypT0/is
ypN0) status (Supplementary Fig. 25, Supplementary data 36, 37),
selecting 98 representative signatures/single genes describing
immune processes, proliferation, as well as HER2 and estrogen/pro-
gesterone signaling. Both pCR and RD groups with good prognosis
presented a clear enrichment in immune features. The poor prognosis
samples, particularly thosewith RD, presented a lower immune-related
signal instead. In addition, tumors achieving pCR, regardless of the
prognosis, showed higher ERBB2 and lower ESR1 expression levels, and
PIK3CA pathway activation signatures were more elevated in tumors
with pCR and a good prognosis.

These findings suggest that intrinsic biological properties of the
tumor (such as ERBB2 and ESR1 expression, in line with previous
findings5,6,10,50,51) seem to be the primary driver of response to neoad-
juvant treatments as measured by pCR in tumors belonging to the
same prognostic group according to our model. In contrast, immune-
related features are predominantly associated with prognosis,
regardless of pCR status.

Discussion
HER2-positive breast cancer represents a heterogeneous entity, as
shown by PAM50 molecular subtypes5,10. From a therapeutic point of
view, the interplay between the immune response and the activity of
anti-HER2 agents is of crucial importance, as highlighted by evidence
pointing to ADCC as a primary mechanism for the effect of
trastuzumab8. Indeed, several studies have demonstrated an associa-
tion between immune response (as describedbyTIL levels and/or gene
expression signatures), pCR and prognosis in HER2-positive breast
cancer5,6,9–12,14,52–54. However, the determinants of relapse after either
pCR or RD have not been fully understood yet. In the present retro-
spective study, we adopted an approach aimed at describing both the
“quantity” and “quality” of immune response in early-stage HER2-
positive breast cancer by exploring the characteristics of baseline BCR
and TCR repertoires in the NeoALTTO and CALGB 40601 phase III
neoadjuvant clinical trials. We showed heterogeneity in BCR and, to a
lesser extent, TCR measures according to hormone receptor status
and PAM50 subtypes. Furthermore, we demonstrated the association
between BCR repertoire measures describing clonal expansion sug-
gestive of an antigen-specific response, namely lower evenness and
higher Gini index, and better EFS in both NeoALTTO and CALGB
40601. We then built a model aimed at predicting EFS integrating
clinicopathological characteristics, treatment response and immune-
related features (i.e., TILs and BCR evenness). Of utmost importance,
our model was developed in the NeoALTTO trial and independently
validated in the CALGB 40601 study. By deriving the prognostic HER2-
EveNT score from themodel, we identified twogroups of patients with
distinct prognosis after neoadjuvant therapy, demonstrating an asso-
ciationwith long-termEFS in the overall population aswell as in the RD
subgroup in both studies.

While pCR achievement is a strong prognostic factor in HER2-
positive breast cancers after neoadjuvant therapy27,28, the selection
of further variables in the model suggests the importance of addi-
tional processes/features in determining prognosis. In fact, the risk
of relapse is influenced by the interaction of several variables, par-
ticularly in the absence of pCR where the other biomarkers play a
crucial role. The neoadjuvant setting presents some peculiar chal-
lenges in terms of biomarker discovery, as the relationship between
prognostic features (related to survival/relapse risk) and predictive
markers (related to pCR) may be complex. Indeed, some features
such as proliferation, HER2 signaling or luminal phenotype may
provide discordant information for pCR and survival (e.g., lower pCR
rates and improved outcomes for luminal features)6,55. As additional

factors such as treatment administered could impact response to
neoadjuvant therapies, pCR achievement may not be, still, fully
captured by pre-treatment biomarkers, though progresses in this
regard are being made55.

Other predictive/prognostic models have been developed in
early-stage HER2-positive breast cancer. For example, a combined
score of TILs and tumor cellularity (CelTIL) measured at week 2 after
starting neoadjuvant anti-HER2 therapy (without chemotherapy) pro-
vided predictive information in the PAMELA study56 and was recently
evaluated for long-term outcome prediction in the NeoALTTO trial57.
Furthermore, a model including clinicopathological variables, TIL
levels, PAM50 subtypes and genes was used to calculate a prognostic
score (HER2DX) in the adjuvant Short-HER trial and evaluated in four
neoadjuvant studies, including the CHERLOB and PAMELA trials,
showing prognostic value58. More recently, this test has been refined
and adapted to predict also pCR after pre-operative anti-HER2-based
chemotherapy55. Importantly, our score was specifically designed and
validated to predict prognosis in the neoadjuvant setting.

By characterizing the gene expression profiles of the prognostic
groups,we showedanenrichment for immune-relatedprocesses in the
group presenting good prognosis after either pCR or RD, leading us to
hypothesize that tumors presenting an active immune response at
baseline present biological similarities beyond HER2/estrogen recep-
tor pathways activation.

Aswearemoving towardoptimizing treatment strategies, wemay
argue that the lack of pCR in patients with baseline favorable clinical/
immune features may not necessarily require treatment escalation
approaches in all patients. In the seminal trial KATHERINE, post-
operative trastuzumab emtansine (T-DM1) showed remarkable benefit
compared to trastuzumab in patients with RD at surgery; however,
more adverse events were also observed59. Identifying a population in
which treatment escalation with T-DM1 is not beneficial would be very
valuable both from a toxicity and a cost-effectiveness standpoint. In a
biomarker analysis of KATHERINE, the benefit of T-DM1appeared tobe
independent of the biomarkers assessed, including immune-related
gene expression signatures and ERBB2 expression levels computed
essentially from RD samples60. Given evidence of transient gene
expression changes induced by anti-HER2 drugs, it is not clearwhether
the same would be true of analyses performed on samples prior to
drug exposure61. Based on our data, a combination of biomarkers
performed on pre-treatment specimens may help identify a subset of
patients (which according to our model may account for 20–30% of
the patients with RD) with excellent outcomes and for whom post-
operative trastuzumab alone could represent a viable option. Impor-
tantly, these patients can be identified computing the score with only
the baseline features, as not achieving pCR will not have an impact on
the prognostic category based on the HER2-EveNT score.

The role ofB cell infiltration and clonal diversity inmodulating the
immune response in cancer has been described by several works16–25.
The contribution of B cells to the response to immunotherapy is of
interest in HER2-positive breast cancer, as several trials are currently
testing immunotherapeutic strategies in this subtype62. Results in the
advanced disease setting suggested a potential benefit for immu-
notherapy in pre-treated patients with PD-L1 positive tumors63,64.
However, in the neoadjuvant setting, the primary analysis of the
IMpassion050 trial did not show improvement in pCR rates when
adding atezolizumab to standard treatment, and adverse events were
more frequent in the atezolizumab arm65. These results highlight the
necessity of implementing new immune biomarkers, and lead us to
hypothesize that HER2-positive tumors with lower BCR evenness/
higher Gini index and higher TIL levels (which can be related to higher
levels of genes coding for immune checkpoints) could benefit from
immunotherapy, considering that a precise selection of patients is
crucial due to the potential associated toxicities. In addition, con-
sidering the importance of immune-related features and signatures in
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patients with good outcomes regardless of pCR status, we may spec-
ulate that a potential benefit from immunotherapy in the neoadjuvant
setting would translatemainly in longer EFS rather than increased pCR
rates. Of note, the treatment arsenal of HER2-positive breast cancer is
rapidly evolving, with several agents (e.g., antibody–drug conjugates
and novel tyrosine kinase inhibitors) which are being evaluated in the
early-stage setting66 and may reshape the current biomarker
landscape.

In light of all these aspects, our model could be prospectively
tested in studies designed to evaluate approaches involving the use of
immunotherapy-based regimens and/or de-escalation/shorter dura-
tion of post-operative treatments in low risk patients with an excellent
prognosis, as well as alternative therapeutic strategies in those with
poor outcome.

Our study presented several challenges and limitations. In
addition to the already-discussed differences in terms of patient
populations, the NeoALTTO and the CALGB 40601 trials had some
differences in study design, namely in the timing of the start of
neoadjuvant paclitaxel and in the post-operative treatments (details
in the METHODS). We standardized the survival outcome measure
(EFS) used for our analyses across the two trials; however, neither
NeoALTTO nor CALGB 40601 were powered to detect survival
benefits. Moreover, these trials evaluated lapatinib, which is not
currently adopted in early-stage HER2-positive breast cancer.
Therefore, validating these findings in cohorts receiving standard
treatment regimens (e.g., pertuzumab in combination with trastu-
zumab) would be extremely valuable.

Characterizing the BCR and TCR repertoires from bulk RNA
sequencing data represents a challenge in itself15,67. In line with pre-
vious reports17,68, the number of readsmapping toBCRwas higher than
TCR, suggesting higher transcription of immunoglobulin mRNA
compared to TCRmRNA, as well as a lower sensitivity in retrieving full
TCRCDR3 sequences. Importantly, bulk RNA sequencing analysis does
not allow to pair BCR/TCR chains (i.e., to identify the combination of
heavy/light chains or alpha/beta chains forming a single BCR or TCR),
contrary to single-cell sequencing technologies which enable to a
better BCR/TCR as well as B and T cell characterization. In addition,
RNA sequencing-based methods to describe BCR/TCR may provide a
partial picture of the repertoires compared to more sensitive tech-
nologies for BCR/TCR sequencing69. These aspects may contribute to
explain the moderate correlation of BCR/TCR read counts with TILs,
although similar correlations have also been reported for other RNA
sequencing-derived data such as immune-related gene expression
signatures12 and, as we showed, MCP-counter results. Differences in
RNA sequencing pipelines between the two studies were also present,
and we acknowledge that standardization of the methodology would
be necessary to strengthen our findings further.

In addition, more reliable cutoffs may need to be defined for the
HER2-EveNT score. Moreover, the inclusion of the residual cancer
burden, given its prognostic value in patients with RD70,71, aswell as the
integration of RD biological features, which may add an essential layer
of information to the baseline characteristics, could further improve
our model.

Despite these considerations, findings from NeoALTTO were
confirmed in CALGB 40601, suggesting the robustness of the results,
which first and foremost provide the rationale for interrogating more
extensively the role of B cells in this disease.

In conclusion, we demonstrated the heterogeneity of BCR reper-
toire measures and immune response within HER2-positive breast
cancer and the potential of BCR diversity as a prognostic biomarker.
Our model identified a group of patients with immune-enriched
tumors who may be eligible for treatment de-escalation approaches,
even after RD, and highlighted the importance of integrating clin-
icopathological characteristics, treatment response information, and
immune-related features to define the clinical risk in the neoadjuvant

setting. Further validationofour findings andexplorationof the roleof
BCR/TCR repertoire measures in HER2-positive as well as other breast
cancer subtypes is warranted.

Methods
NeoALTTO and CALGB 40601 study designs and patient
populations
The NeoALTTO phase III trial randomized 455 HER2-positive early-
stage BCpatients to receive neoadjuvant trastuzumab (T), lapatinib (L)
or T + L1,3,4. After 6weeks of anti-HER2 treatment, weekly paclitaxel was
added for further 12weeks before surgery. Lapatinib dosewas reduced
during the paclitaxel administration after a protocol amendment due
to toxicity. In the adjuvant phase, anthracycline-based chemotherapy
(fluorouracil, epirubicin and cyclophosphamide) for three cycles was
administered, followed by the same anti-HER2 therapy received in the
neoadjuvant phase for a total duration of 52 weeks. Eligible patients
had HER2-positive primary breast cancer with a minimum tumor size
of 2 cm and adequate cardiac function. Patients were recruited
between January 2008 and May 2010.

The primary endpoint of the trial was pCR defined as either
absenceof invasive tumor cells in thebreast (ypT0/is) asdefinedby the
National Surgical Adjuvant Breast and Bowel Project criteria, later
amended to the absenceof invasive tumor cells in the breast and in the
axillary lymph nodes (ypT0/is ypN0) according to the Food and Drug
Administration criteria. Themain secondary endpointwas EFS, defined
as the time fromrandomization tofirst event, i.e., breast cancer relapse
after surgery, second primary malignant neoplasm, or death without
recurrence for women who received surgery for breast cancer, or, for
those who did not undergo surgery, death during clinical follow-up or
non-completion of any neoadjuvant investigational drugs due to pro-
gressive disease. OS was defined as the time from randomization to
death from any cause.

In the phase III CALGB 40601 trial, 305 eligible patients with newly
diagnosed, histologically confirmed, untreated clinical stage II to III
HER2-positive diseasewere randomized to receive neoadjuvantweekly
paclitaxel in combination with either T, L, or T + L for 16 weeks5,6. After
surgery, treatment with dose-dense doxorubicin and cyclopho-
sphamide, as well as completing 1 year of trastuzumab were recom-
mended for all patients. Patients were recruited between December
2008 and February 2012. Based on non-inferiority reports and higher
toxicity, the L arm was closed early. Pathological complete response
(defined asypT0/is)was the study’s primaryendpoint,while secondary
endpoints included relapse-free survival and OS. To make survival
outcomes comparable between the two studies, EFS was also assessed
in the CALGB 40601 using the same definition adopted in the
NeoALTTO study. Patient characteristics, designs and results of the
two trials have been previously published1,3–6. The cohorts with RNA
sequencing data analyzed in the present work have also been pre-
viously described5,6,10.

Ethics committee and relevant health authorities at each partici-
pating site approved the NeoALTTO and CALGB 40601 studies and all
patients provided written informed consent including future bio-
marker research. For NeoALTTO, the sites which run the trial are listed
in Supplementary data 38. For the CALGB 40601 trial, the protocol was
central IRB approved, being the University of North Carolina the lead
Institution and Dr. Lisa Carey the study chair. The current combined
analysis has been approved by the TransALTTO scientific committee
and Alliance Publications Committee, and was conducted in accor-
dance with the Declaration of Helsinki.

The NeoALTTO trial is registered at www.clinicaltrials.gov as
NCT00553358, while the CALGB 40601 trial is registered as
NCT00770809.

In NeoALTTO, clinical data were collected at Institut Jules Bordet
and Frontier Science Scotland; analyses are based on the on the clinical
study database frozen on May 26, 2016. In CALGB 40601, clinical data
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were collected at the CALGB (Alliance) Statistics and Data Center;
analyses are based on the on the clinical study database frozen on
October 06, 2021.

Samples collection and processing, TILs evaluation
Out of the 455 patients enrolled in the NeoALTTO trial, baseline frozen
tumor biopsies were available for 423 patients. RNA was successfully
sequenced from frozen tumor samples in 254 patients as previously
described10.

In the CALGB 40601 trial, RNA sequencing data from baseline
frozen tumor samples were available for 264 patients, as previously
reported5,6.

Stromal TILs were scored as % following the International TILs
Working Group guidelines36 in both studies, with % referring to the
area occupied by mononuclear inflammatory cells over the
total intratumoral stromal area. Results for TIL levels in the NeoALTTO
trials have been previously published9. In CALGB 40601, TILs were
scored by a pathologist (B.S.), and the average of the TIL scores was
considered whenmore than 1 slide/sample was available, as previously
described12.

RNA sequencing data processing
RNA sequencing processing for baseline frozen biopsy samples in the
two trials has been previously described6,10. RNA sequencing was per-
formed at the BRIGHTcore sequencing facility of the Université Libre
de Bruxelles for NeoALTTO, and at the University of North Carolina
High-Throughput Sequencing Facility for CALGB 40601. For BCR/TCR
analyses, immune-deconvolution, differential gene expression, and
gene set enrichment analyses (i.e., all analysis specifically conducted in
each study separately) starting from BAM files obtained in the
NeoALTTO and CALGB 40601 studies, read pairs were trimmed using
Trimmomatic v0.3972, and Salmon v1.5.173 was used for alignment to
the human referenceGRCh38/hg38 (patch 13), usingGENCODE v38 for
the gene positions. Reads in NeoALTTO were 100-bp long, while in
CALGB 40601 reads were 50-bp long. There weremore readsmapping
to genes in CALGB 40601 (51.8 million reads/sample on average) than
in NeoALTTO (15.4 million on average).

When evaluating the potential technical differences between
NeoALTTO and CALGB 40601 in terms of number of normalized BCR
and TCR reads and clones, we considered the difference in read length
as potential cause of such differences, and explored whether and how
BCR/TCR read/clone counts would be impacted in NeoALTTO by
trimming reads from 100-bp to 50-bp (Supplementary data 1). Since
the RNA sequencing was paired-end, the in-silico trimming from 100-
bp to 50-bp was done from the middle of the fragment, representing
what would be obtained by sequencing at 50-bp.

The “tximport” R package (v1.16.1)74 was used to obtain gene-level
estimates and transcript per million (TPM) normalized gene expres-
sion levels.

Intrinsic subtypes were obtained from RNAseq gene expression
data in both studies by applying a HER2/estrogen receptor subgroup-
specific gene normalization method6,75 followed by the PAM50
predictor13. For this objective, aiming to ensure uniformity in the
PAM50 analyses we followed the workflow described in Fernandez-
Martinez et al. 6 and performed a study effect corrected analysis of the
RNA sequencing data. In detail, purity-filtered reads were aligned to
the human reference GRCh38/hg38 genome using STAR v2.4.2a76.
Transcript (GENCODE v22) abundance estimates were generated by
Salmon v0.6.073 in ‘-quant’mode, based on the STAR alignments. Raw
read counts for all the RNA sequencing samples were normalized to a
fixed upper quartile77. Normalized gene counts were then log2 trans-
formed (zeros were unchanged), and genes were filtered for those
expressed in 70% of samples in both studies. The gene expression data
was then median-centered by study and ultimately, all the gene
expression values were standardized.

BCR and TCR repertoire diversity measures
BCR/TCR repertoires were extracted from bulk RNA sequencing data
using the MiXCR tool29,30 (v3.0.13) with default parameters, specifying
the option “OallowPartialAlignments = true”, and including all immu-
noglobulin and TCR chains. Briefly, we aligned sequencing reads to
referenceV, D, J andCgenes of T- or B- cell receptors. Clonotypes were
assembled using aligned reads to extract the CDR3, which is the region
conferring the antigen recognition capability15. The option “Oallow-
PartialAlignments” allowed to rescue incomplete alignments related to
the absence of V or J CDR3 part, as the tool builds contigs from dif-
ferent initial alignments while avoiding artificial diversity generation30.
Indeed, this enables to assemble alignments only partially covering the
CDR3 region, which is a possible occurrence due to the random cov-
erage of BCR/TCR segments by fragmented reads in RNA sequencing.
In particular, clones were defined as having the same CDR3 nucleotide
sequence. Moreover, we tried to assign each clone to a specific type of
BCR (kappa, lambda or heavy) or TCR (alpha, beta, gamma, delta)
chain, based on the V, D, and J genes. For some clones MiXCR gives
multiplematches for someor all genes. If all genes pointed to the same
chain type, the clone was assigned to that type. In the case of a clone
with a gene with discordant chain types (e.g., V genes TRAV17 and
TRBV5), the other geneof the clonewas checked, and its chain typewas
used if it was univocal and compatible with the other gene (e.g.,
TRAJ50). In the cases where discordant chains were found between the
genes (e.g., TRAV24 for V gene and TRBJ2-5 for J gene) or where it was
impossible to determine univocally the chain type, the clone was kept
and considered as either BCR or TCR, but its chain type was left as
missing.

Isotypes (IgG, IgA, IgM, IgD, IgE) for the BCR heavy chain were
determined based on the constant region (C region) information,
whenever present. In particular, the isotype could not be determined
in 23% of the IGH clones in NeoALTTO and 19% in CALGB 40601. For
the remaining IGH clones, isotype proportions are shown in Supple-
mentary Fig 3e–f.

The following BCR and TCR repertoire metrics were calculated:
readcounts, number of clones, lengthof theCDR3, top and second top
clone proportions. Diversity indices including Gini index, Gini-
Simpson index and species evenness were calculated as well. Those
measures were computed for each BCR/TCR chain separately, as well
as “global”measures considering all clones belonging to either BCR or
TCR (Supplementary data 2, 3).

Evenness and second top clone were calculated if at least two
different clones were present. Gini and Gini-Simpson indices were
calculated when at least 1 clone was present, assigning a value of 0
when only one clone was present. CDR3 length was calculated when at
least one clone was present. We defined BCR/TCR metrics (illustrative
examples in Supplementary Fig. 1) as follow: read count reflects the
number of reads mapping to CDR3 regions of BCR or TCR, and was
normalized (i.e., divided) by the total number of reads mapping to the
transcriptome in each sample and multiplied by a factor of 1000; the
number of clones is defined as the total number of different clones in
the sample; the CDR3 length is calculated as mean of the number of
nucleotides included in that region; top and second top clone pro-
portions measure the proportion of reads mapping to the first and
second most expressed clone in the BCR/TCR population for that
sample; Gini index describes the degree of inequality among values
within the BCR/TCR population and was calculated using the function
“gini” from the “reldist” R package (v1.6-6)78; Gini-Simpson index is
determined by the total number of clonotypes and their relative
abundance, and describes the probability that two entities are from
different types; evenness is Shannon entropy normalized by the
number of clones and describes the uniformity of the clonotypes,
measuring distribution equality. Gini-Simpson index was calculated as
1�P

p2
i , while evennesswas calculated as�P

pilogNclones pi

� �
, with pi

being the fraction of each clone.
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From the MiXCR output, we calculated these measures for each
chain forming BCR and TCR (IGH/K/L and TRA/B/D/G, respectively), as
well as global values from the total reads mapping to BCR and TCR,
thus representing the whole BCR and TCR repertoires.

For univariable and multivariable analyses, the Shapiro-Francia
test was used to evaluate normality of the BCR and TCR measures
separately in NeoALTTO and CALGB 40601. In details, when a BCR/
TCR feature had no values equal to 0 in the cohort, a log transforma-
tion (log10) was applied, while if 0 s were present we log transformed
the value after adding a small constant defined as the 10% quantile of
the value divided by 10. The distribution of the newly obtained values
was compared to the original distribution, and if a P value > 0.05
(Shapiro-Francia test) was obtained, the variable was not log trans-
formed as normality was not improved. Furthermore, for this analysis,
centering and scalingwere applied independently in the two studies to
the BCR and TCR measures, first removing their mean and then
dividing by their standard deviation.

Development of the prognostic model
A forward stepwise approach was used to build the prognostic model.
In particular, starting from a null Coxmodel for EFS, variables selected
from a pool were added following the AIC method [function “steps”
from the “stats” R package (v4.0.5)79]. BCR and TCR measures were
included in the variable selection process, together with treatment
response [pCR status, includingbothbreast pCR (ypT0/is) andbreast +
axilla pCR (ypT0/is ypN0)], hormone receptor and estrogen receptor
status, stromal TIL levels (as continuous variable), PAM50 subtypes
(HER2-E vs. others), tumor size (cT2 vs. ≥ cT3), clinical nodal status
(cN0 vs. cN+/x), treatment arm (single arms vs. combination), and age
(as continuous variable). A set of gene expression signatures which
showed predictive potential in NeoALTTO, particularly in the combi-
nation arm10 (2 immune signatures80,81, 2 stroma signatures80,82, and 2
proliferation signatures—Genomic Grade Index83 and AURKA80; genes
included and coefficients are available in Supplementary data 39), an
IgG signature previously associated with improved outcome in CALGB
406016,84, as well as expression levels of ERBB2 and ESR1 genes were
also included in the variables tested. The list of variables, steps and
corresponding AIC values, as well as the details of the final model are
shown in Supplementary data 12.

Before calculating the signature scores, genes with a total read
count across all samples < 20 were excluded, and normalization was
performed by dividing gene counts by the sample mean gene count
followed by log10 normalization after adding a small constant (0.001).
Then, signature scores were computed as the weighted mean of the
log-expressions of their genes, with gene-specific weights equal to +1
or −1 based on the direction of their association with the phenotype in
the original publication or to specific coefficients for the AURKA
signature.

With regards to BCR and TCR measures, the same procedure
followed for uni- and multi-variate analysis was applied in NeoALTTO
(i.e., transformation according to the Shapiro-Francia test, then cen-
tering and scaling).

The model was developed on a cohort of 221 patients from the
NeoALTTO trial with all data available. Subsequent analysis regarding
the prognostic score in NeoALTTOwere then performed in a cohort of
233 patients with all the variables selected for the model available,
except for the analyses including pCR in breast + axilla (ypT0/is ypN0),
which were performed on 224 patients.

A prognostic score (HER2-EveNT) was computed multiplying the
coefficient obtained for each variable in the final Cox model (Supple-
mentary data 12) for the value of the same variable, and summing up
theobtained values. For categorical variables, a valueof 0or 1wasused
according to their dichotomized status (i.e., pCR = 1, RD =0; HR+ = 1,
HR- = 0; cN0 = 1; cN+/x = 0).

The score was therefore calculated as:

BCR evenness (standardized value) × 0.300436587 + TILs (%) ×
−0.024107504 + pCR (0 or 1) × −0.568111234 +HR status (0 or
1) × −0.525011259+ nodal status (0 or 1) × −0.504914127.

As the coefficients are the natural logarithm of the HRs for each
variable, the score represents a measure of the relative risk of relapse
calculated based on the values of each variable in the single patient,
with a lower score being associated with a better prognosis. Variables
with a negative coefficient were associated with improved EFS, while a
positive coefficient was associated with worse prognosis.

This score was then divided into tertiles. As EFS > 90% was
reached for the first tertile in NeoALTTO, the cutoff between the first
and the intermediate tertiles was used to define the two final prog-
nostic groups. An external independent validation was performed
testing the model in 230 patients from the CALGB 40601 trial with
pCR, hormone receptor, clinical nodal status, TILs, and BCR evenness
data available. As BCR evenness was not log transformed in
NeoALTTO, the BCR evenness values in CALGB 40601 were only cen-
tered by removing the mean of NeoALTTO BCR evenness (0.7917893)
and scaled dividing the obtained values by the NeoALTTO BCR even-
ness standard deviation (0.1004482) before computing the HER2-
EveNT score.

The concordance index (Harrel’s C-index) was assessed to esti-
mate the predictive performance of the model. Cutoffs derived from
NeoALTTO were applied on the score calculated in CALGB 40601 to
identify correspondent prognostic groups.

Immune-deconvolution, gene set enrichment analysis,
differential expression analysis, gene ontology analysis
The MCP-counter tool (v1.2.0)37 was applied on TPM-normalized RNA
sequencing data using the “immunedeconv” R package (v2.0.3)85.
Abundance scores of eight immune populations (CD3 +T cells,
CD8 + T cells, cytotoxic lymphocytes, natural killer cells, B cell lineage,
cells originating from monocytes, myeloid dendritic cells, and neu-
trophils), as well as two stromal cell types (endothelial cells and
fibroblasts) were estimated.

In order to evaluate biological pathways at the single-sample level
and their correlation with the prognostic score as a continuous vari-
able, we applied GSVA (v1.36.3)42 (with “method =GSVA”) to the var-
iance stabilized expression value matrices [obtained with the function
“vst” in the “DEseq2” R package (v1.28.1)86, with option blind = FALSE]
in each study separately (patients with HER2-EveNT score available,
N = 233 in NeoALTTO and N = 230 in CALGB 40601), to compute
sample-wise gene set enrichment scores. The objective here was to
evaluate within each cohort the correlation with the prognostic score,
rather than to compare directly the two studies. We selected 42 hall-
mark gene sets41 (version 7.4) downloaded fromMSigDB (https://www.
gsea-msigdb.org/gsea/msigdb/) with the “msigdbr” R package
(v7.4.1)87, excluding the following eight hallmark signatures due to the
lack of association with tumor processes or microenvironment: per-
oxisome, pancreas beta cells, spermatogenesis, bile acid metabolism,
heme metabolism, UV response up, UV response down, xenobiotic
metabolism.We computed the correlation of the GSVA scores with the
prognostic score as continuous value (considering as significant cor-
relations with P <0.05). In Fig. 5, classes of hallmarks are defined
according to the original publication41.

The differential gene expression analysis between good
and poor prognosis groups was performed using DEseq2 on
gene-level abundance estimates from Salmon (functions “DESeq-
DataSetFromTximport” and “DESeq”). These analyses were per-
formed on the NeoALTTO and CALGB 40601 data separately. Genes
with low expression levels (sum of the reads across all samples < 10)
were removed before the analysis. In order to identify genes and
pathways/biological processes associated to prognosis according
to our model, prognostic groups in the whole population (N = 233
in NeoALTTO and N = 230 in CALGB 40601) were compared. Genes
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were considered up- or down-regulated in the good prognosis
group if the fold change was either positive or negative, respec-
tively, specifying “alpha = 0.05” in the function “results”. The
“lfcShrink” function was used to perform log2(fold change)
shrinkage according to the “apeglm” method88. Genes were con-
sidered significantly differentially expressed for FDR < 0.05.

Gene set enrichment analysis comparing the prognostic groups
was performed applying the “fgsea” R package (v1.14.0)89 on the
DEseq2 results, ranking genes by sign[log2(fold change)] × −log10(P
value). The same 42 hallmark gene sets previously mentioned were
evaluated. Gene sets with normalized enrichment score (NES) > 0 and
FDR <0.05 were considered upregulated in the good prognosis
groups, while gene sets with NES < 0 and FDR <0.05 were considered
downregulated.

Gene ontology analysis on the “biological process” domain was
performed on all the identified differentially expressed genes with
FDR <0.05 and log2(fold change) of > 0.58 or < −0.58 (i.e., fold
change > 1.5 or < 0.67) using the “topGO” R package (v2.40.0) (with
nodeSize = 5)90.

Gene expression signature analysis on integrated RNA
sequencing data
A collection of 709 gene expression signatures derived from the lit-
erature and partially summarized before6,84,91 was computed on
merged gene expression data after batch effect correction by study,
obtained as previously described in the METHODS section when dis-
cussing PAM50 intrinsic subtype harmonization. This analysis allowed
a more direct comparisons between the prognostic groups in
NeoALTTO and CALGB 40601, ensuring the robustness of the findings
described when evaluating each study separately.

The signature scores were computed by calculating the median
expression of all the geneswithin a signature.Multiple immune-related
biomarkers were included in this gene-signature collection, most of
them initially extracted by comparing the gene expression pattern of
different immune cell sub-populations92,93. Other immune signatures
were obtained by an unsupervised cluster of different breast cancer
samples as previously described26,84. The list of gene expression sig-
natures with the PMID of the reference and the genes included in each
signature is available in Supplementary data 40.

Signature scores were then centered removing their mean and
scaled dividing themby their standarddeviation in the two studies.We
next computed the correlation of the signature scores with the prog-
nostic score as continuous value (considering as significant correla-
tions with P < 0.05). We then selected 98 signature scores/single gene
expression levels to compare four groups created based on the
prognostic score and pCR status (ypT0/is ypN0), i.e., “pCR, good
prognosis”, “pCR, poor prognosis”, “RD, good prognosis”, “RD, poor
prognosis”. The effect size was obtained by applying a linear regres-
sion model and the P value derived from a Wilcoxon rank sum test,
comparing each group against the rest.

Statistical analysis
The Reporting Recommendations for Tumor Marker Prognostic Stu-
dies criteria were followed for this study94.

Univariable and multivariable [controlling for tumor size (≥ cT3
vs. cT2 in NeoALTTO, ≥ cT3 vs. cT1-2 in CALGB 40601), nodal status
(cN0 vs. cN+/x), hormone receptor status, age as a continuous vari-
able, treatment arm (T or L vs. T + L), PAM50 subtypes (HER2-E vs.
others)] Cox proportional hazard models were used for survival ana-
lysis. Logistic regressions were used to compute P values for pCR. In
univariable analysis for survival, P values were obtained with the like-
lihood ratio test. For multivariable analyses, P values were derived by
an ANOVAonnested logistic andCoxmodels. For each variable tested,
univariable and multivariable analyses were performed including
patients with available data. In CALGB 40601, patients with tumor size

not available (N = 16/264) were not included in the multivariable ana-
lysis controlling for clinicopathological characteristics. In forest plots,
hazard ratios/odds ratios and confidence intervals for continuous
variables were computed after centering the variable by removing its
mean and scaling by dividing the variable by its standard deviation.

Wilcoxon rank sum (for comparisons between two groups) and
Kruskal-Wallis tests (for comparisons between three or more groups)
were used to compare continuous variables according to categorical
variables. Fisher’s test was performed to compare categorical vari-
ables. All correlations were assessed calculating the Spearman’s rank
correlation coefficient (rho) on pairwise complete observations, and
considered significant for P <0.05.

Kaplan–Meier survival curves were used to represent EFS
according to prognostic groups, and P values obtained with log-
rank test.

All P values were two-sided. False discovery rates (FDRs) were
obtained adjusting P values with the Benjamini & Hochberg method,
whenever specified.Whenmultiple comparisonswere performed (e.g.,
BCR/TCR according to hormone receptor status and PAM50, gene
signatures or MCP-counter values in different groups), P values
obtained with Wilcoxon rank sum and Kruskal-Wallis tests were
adjusted on all related comparisons, in the two studies separately. P
values and FDRs were considered significant when < 0.05.

Heatmaps were obtained with the “ComplexHeatmap” R package
(v2.4.3)95. For the boxplots, the boxes are defined by the upper and
lower quartile; the median is shown as a bold colored horizontal line;
whiskers extend to themost extreme data point which is nomore than
1.5 times the interquartile range from the box.

All statistical analyses were performed using the R software
(v4.0.5)79. The analyses in the present manuscript were performed at
the Institut Jules Bordet/Université Libre de Bruxelles and Lineberger
Comprehensive Cancer Center/University of North Carolina.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For reproducibility purposes, the RNA sequencing data (fastq files) at
baseline from NeoALTTO have been deposited to the European
Genome-phenome Archive (EGA) database under accession number
EGAS00001007563. Thedata canbeobtainedupon signature of a data
access agreement between the investigator requesting the access and
Institut Jules Bordet (IJB), subject to applicable laws. For reproduci-
bility purposes, the NeoALTTO clinical data at IJB can be obtained
upon signature of a data transfer agreement between the investigator
and IJB, subject to applicable laws. The access to these data can be
requested by contacting the corresponding Author (christos.sotir-
iou@hubruxelles.be). For investigators aiming to perform original
research, the NeoALTTO RNA sequencing data at baseline and the
clinical data are available upon request after submission of a research
project proposal (RPP) to the RPP’s administrator (alttor-
esearchproposals@frontier-science.co.uk). In detail, access to data for
research will be granted upon review of the RPP and its endorsement
by the study Steering Committee, and after entering into an appro-
priate data access agreement between BIG, IJB, and the investigator,
subject to applicable laws. More details and documents required can
be found at https://bigagainstbreastcancer.org/clinical-trials/neoaltto/
under the section “Translational Research”. The policy for access to
residual biological samples and data in the NeoALTTO study is a fair
scientific review process set up to ensure precious biological samples
or data collected in the studies are accessed appropriately, to avoid
duplicationof efforts and foster collaboration. Thedata from the study
are not anonymized yet, only pseudonymized, therefore they are still
considered identifiable, and cannot be made publicly available at this
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point. In order to ensure that they are shared in a way that preserves
the privacy of patients and complies with the relevant laws and reg-
ulations including the European General Data Protection Regulation
(GDPR), researchers can only access the data after they sign the data
transfer agreementsmentioned above, either for reproducibility or for
original research purposes. Gene expression data from CALGB 40601
is deposited in Gene Expression Omnibus (GEO) under accession code
GSE116335. Fastq files (RNA sequencing) and clinical data, including
TIL levels, from CALGB 40601 are available at the NCBI database of
Genotypes and Phenotypes (dbGaP) repository under accession code
phs001570.v3.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001570.v3.p1). The data are available under
controlled access to ensure that they are shared in amanner consistent
with the research participants’ informed consent, and that the con-
fidentiality of the data and the privacy of participants is protected.
Principal investigators seeking access to dbGaP datasets can request
them through the controlled-access portal. More information can be
found at https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login. Clin-
icopathological data from NeoALTTO and CALGB 40601 can be
obtained as specified above. Other data supporting the findings of this
study are available within the article, supplementary information files
and supplementary data. MSigDB is available at https://www.gsea-
msigdb.org/gsea/msigdb. Source data are provided with this paper.

Code availability
The custom script used to generate to BCR/TCRmeasures fromMiXCR
output is available at https://github.com/BCTL-Bordet/BCR_TCR_
analyses.
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