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A standardized metric to enhance clinical
trial design and outcome interpretation in
type 1 diabetes

Alyssa Ylescupidez 1, Henry T. Bahnson1, Colin O’Rourke1, Sandra Lord1,
Cate Speake 1,2 & Carla J. Greenbaum 1,2

Theuseof a standardizedoutcomemetric enhances clinical trial interpretation
and cross-trial comparison. If a disease course is predictable, comparing
modeled predictions with outcome data affords the precision and confidence
needed to accelerate precision medicine. We demonstrate this approach in
type 1 diabetes (T1D) trials aiming to preserve endogenous insulin secretion
measured by C-peptide. C-peptide is predictable given an individual’s age and
baseline value; quantitative response (QR) adjusts for these variables and
represents the difference between the observed and predicted outcome.
Validated across 13 trials, the QR metric reduces each trial’s variance and
increases statistical power. As smaller studies are especially subject to random
sampling variability, using QR as the outcome introduces alternative inter-
pretations of previous clinical trial results. QR can provide model-based esti-
mates that quantify whether individuals or groups did better or worse than
expected. QR also provides a purer metric to associate with biomarker mea-
surements. Using data frommore than 1300 participants, we demonstrate the
value of QR in advancing disease-modifying therapy in T1D. QR applies to any
disease where outcome is predictable by pre-specified baseline covariates,
rendering it useful for defining responders to therapy, comparing therapeutic
efficacy, and understanding causal pathways in disease.

Ideally, a metric for studying disease should be clinically and scienti-
fically meaningful, objective, predictable, and able to be standardized
across individuals and cohorts. When applied in the context of clinical
trials for any disease, such a standardized metric may enable accel-
eration of trials through increased statistical power and aid in inter-
pretation of clinical trial data by regulators, clinicians, investigators,
translational scientists, and study participants.

If a disease course or outcome is predictable usingbaseline factors,
analysis should adjust for these factors as long as they are specified in
advance1. This approach is advantageous over traditional unadjusted
analysis, which essentially compares the average of the group of treated
individuals to the average of the group of control individuals. Baseline

covariate adjustment improves precision for estimating treatment
effects of drugs and biological products, and “covariate adjustment
leads to efficiency gains when the covariates are prognostic for the
outcome of interest in the trial” and are pre-specified in the statistical
analysis plan2. In unadjusted analysis, results may be more strongly
impacted by chance covariate imbalances at baseline, especially when
there is evidence that the covariate is associated with the outcome,
obscuring the effect of treatment. Despite the known benefits of
baseline-adjusted analyses, reviews have found that only 24–34% of
trials use covariate adjustment for the primary analysis3.

A standardized quantitative response (QR) metric that adjusts for
baseline covariates can be developed for any reproducible outcome
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measure for which the natural history is known and predictable. This is
the case for trials of disease-modifying therapy (DMT) in type 1 dia-
betes (T1D) aiming to preserve endogenous pancreatic beta cell
function, as there is a wealth of natural history data on the loss of
insulin secretion over time measured by the C-peptide response to a
mixed meal tolerance test (MMTT)4–18. Moreover, though it is note-
worthy that a therapy to delay onset of clinically apparent disease was
recently approved for clinical use19, there are still no DMTs that pre-
serve endogenous insulin secretion in individuals recently diagnosed
with T1D andonly one in the prevention setting. Preservation of insulin
secretion after diagnosis is associated with improved clinical
outcomes20–24. To date, there have been a few dozen randomized
controlled trials (RCT) of immune therapy in recently (<3 months)
diagnosed T1D and almost all are phase 2 trials led by academic
investigators. Further, the time to conduct such studies is long, given
that trials are challenging to enroll and study endpoints are at least 1
year from randomization. While C-peptide response to a MMTT is
accepted as the appropriate measure of endogenous insulin
secretion20,25, regulatory ambiguity for potential indications exists
since there isnoestablished clinical therapeutic thresholdofC-peptide
that definitively qualifies therapies or interventions as successes or
failures26. In addition, by design, published trials of immune therapy
express the average effect of therapy on the randomized cohort and,
though multiple definitions have been proposed, there is no accepted
standardized criteria to define a responder to therapy. Together, these
issues create limitations in understanding mechanisms of disease and
response to therapy, hindering the ability to develop a precision
medicine approach to DMT in T1D and other immune-associated
diseases.

The QR, originally developed by Bundy and Krischer27, leverages
the well-known statistical property that model adjustment with prog-
nostic baseline covariates increases precision and confidence by way
of controlling for outcome heterogeneity3. Bundy and Krischer used
data from five trials6–8,11,12 in similar populations to develop an analysis
of covariance (ANCOVA) model to predict the C-peptide area under
the curve (AUC) mean value by adjusting for baseline C-peptide AUC
mean and age. The resulting QR metric is a standardized measure of
the difference between an individual’s observed and predicted
C-peptide AUC mean one year after study entry. Values above zero
indicate a better-than-expected outcome and values below zero indi-
cate a worse-than-expected outcome27.

Using data from 13 RCTs testing 14 different therapies aiming to
preserve beta cell function in those with T1D, we demonstrate how the
QR metric increases the precision and confidence of clinical trial
results, thus enhancing interpretation of these studies while suggest-
ing new concepts for future trial designs. We found that the QRmetric
reduced variance and standardized C-peptide outcomes across trials,
leading to re-evaluation and new interpretations of both clinical and
mechanistic results. In addition, we illustrate how the QR metric may
be useful for design of future trials. Together, these findings represent
a significant step towards precision medicine.

Results
The QR metric reduces variance and standardizes C-peptide
outcomes across trials
We first validated the published QRmetric using data from 13 studies:
five TrialNet RCTs used in the development of QR (referred to as the
development cohort)6–8,11,12, and eight additional RCTs (referred to as
the validation cohort)9,10,13–18. To further evaluate the publishedmodel,
a new ANCOVA model was also fit to the placebo participants in only
the validation cohort. The predicted 1-year C-peptide values from this
new model were then used to compute a new QR metric. These newly
computed QR values were highly correlated with the QR values from
the published model (r =0.996 in validation cohort, 0.992 in devel-
opment cohort), and it was thus determined that the published QR

model is applicable to all 13 RCTs (Supplemental Fig. 1A and B). Table 1
lists the key characteristics of each of the 13 trials, including number of
subjects, median age, and baseline C-peptide AUCmean. As expected,
themeanQR in the development cohort centers around zero, this was
also seen in the validation cohort.We found that themeanQRmatches
closely between the development and validation cohorts, and the
distribution of QR is similar in both cohorts (Fig. 1; p =0.43, two-
sample t-test [t = 0.8, DF = 346]; p =0.62, Kolmogorov-Smirnov two-
sample test [KS =0.04]).

We next updated themodel to include all available data from all 13
studies. This revised ANCOVA model predicted 1-year C-peptide AUC
mean values very similar to those predicted from the published QR
model (Supplemental Fig. 1C, D). Moreover, the predicted values
between the original and revised models were strongly associated
(R2 =0.998; Supplemental Fig. 1E); thus, it was determined that the
original QRmodel applied well to all 13 studies and all results hereafter
use the original QRmodel. In addition, themodel is robust; predictions
were counterintuitive for only eight of the 1306 individuals studied. For
these eight older individuals with low C-peptide, the model predicted a
very minor increase in C-peptide over time (Supplemental Fig. 2).

The use of the QR metric both reduced the variance and stan-
dardized the mean of the C-peptide outcome within each trial. Among
the placebo-treated individuals in the 13 trials, there were noteworthy
variations with respect to both age and baseline C-peptide between
studies (Fig. 2a). The 1-year C-peptide AUC mean value varied (mean
range 0.36–0.69 nmol/L) between trials, and within each trial
demonstrated wide heterogeneity (Fig. 2b). In contrast, by accounting
for baseline C-peptide and age, the mean QR value of placebo-treated
individuals centered around zero for each trial (mean range −0.07 to
0.08) (Fig. 2b). For 12 of these 13 trials, the mean QR value was not
statistically different from zero; the only exception being the TrialNet
ATG/GCSF trial (mean of −0.072, p =0.031; 30 placebo participants).
For each individual trial, the standard deviation of the QR was lower
than the standard deviation using the C-peptide AUC mean (Fig. 2b,
annotated in blue).

We next investigated whether the QR metric would increase sta-
tistical power since covariate adjustment in randomized trials leads to
greater power and better control of type I and type II error3. We chose
to examine this in the Immune Tolerance Network (ITN) AbATE trial of
teplizumab,which hadapositive outcome in demonstrating efficacy of
teplizumab in preserving beta cell function in recently diagnosed
individuals relative to controls13. In the original analysis, the primary
outcome used the difference in 4-h C-peptide AUC mean between
baseline and 2 years, adjusted for baseline C-peptide, with a p-value of
0.002 for the difference between treatment groups. In our re-analysis,
we used the 2-h C-peptide AUC mean at 1 year and found that the
difference inC-peptideAUCmean in control (0.364nmol/L) compared
to teplizumab-treated (0.647 nmol/L) at 1 year was statistically sig-
nificantwith ap-value of 0.009 (t = 2.7, DF = 46.4) using a two-sample t-
test assuming unequal group variances (Fig. 3a). When using the
change from baseline C-peptide AUC mean as in the published trial
report, the effect size and precision increased with a mean change
from baseline of −0.321 nmol/L in the control group and −0.086 nmol/
L in the teplizumab-treated group (p = 0.0002, t = 4.0, DF = 57.0)
(Fig. 3b). Controlling for both baseline C-peptide and age by using QR
as the outcome further increased the statistical significance of the
result (−0.015 nmol/L control vs 0.141 nmol/L teplizumab-treated,
p <0.0001, t = 4.3, DF = 47.3) (Fig. 3c).

We next assessed whether the QR approach could be utilized to
predict trial outcomes beyond 1 year, using varying baseline reference
points and outcome timepoints. The original QR model used baseline
values from individuals within threemonths of diagnosis to predict the
outcome at 12 months after treatment initiation and demonstrated an
R2 value of 53%. Predictions further in the future aremore challenging,
thus it is not surprising that the R2 drops when this same baseline is
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used to predict a 24-month outcome (Fig. 4). However, if individuals
are enrolled at 6, 12, or 18 months from diagnosis, the R2 value for an
outcome at two years is high (74%, 85%, 87%, respectively), suggesting
that QR can be used as an outcome measure for trials enrolling indi-
viduals further from diagnosis. Since most trials evaluating immune
therapies have been conducted in individuals within 3 months of
diagnosis, this suggests the possibility of trials designed to test
therapies with different enrollment windows.

Applying the QRmetric to previous published clinical trials can
change the interpretation of both clinical and mechanistic
results
Since the QR metric incorporates historical data from many placebo/
control individuals, it minimizes the random sampling variability often
present in individual studies with small sample sizes. We determined
whether using the QR metric would alter the interpretation of clinical
trial results, compared to the originally published reports. In Fig. 5, we
show the mean QR (±95% confidence intervals) for the active treat-
ments (Fig. 5a) and placebo/control arms (Fig. 5b), as well as the
treatment effect expressed as the difference in QR between arms
(Fig. 5c) for 13 published trials.

Expressing the overall treatment effect and results of each arm
using QR altered the interpretation of some of the published results.
For example, the primary outcome of the alefacept trial was the 2-h C-
peptide AUC at 1 year, and the difference between treatment arms did
not reach statistical significance in the original analysis14. However,
applying the QR metric to the alefacept trial dataset demonstrated a
large effect in the active treatment group (Fig. 5a), strongly suggesting
that alefacept, or drugs working in the same pathway, are worth pur-
suing in future trials.

For the canakinumab trial, assessing the overall trial result by the
difference in treatment arms using the QR metric finds no treatment
effect (Fig. 5c), consistent with the published outcome8. Yet, the QR of
the active arm of the canakinumab trial suggests a positive effect of
this therapy on C-peptide (Fig. 5a). Moreover, the QR of the placebo
armallowedus to further interpret this result, revealing that the lack of
statistical significance between the groups may be driven by higher-

than-expected C-peptide response in the 22 individuals in the placebo
arm of the study (Fig. 5b).

Lastly, applying the QR metric to the two studies testing anti-
thymocyte globulin (ATG) also suggests a different interpretation
than originally published. The TrialNet ATG/GCSF trial reported a
positive outcome9 using lower-dose therapy than the ITNATG study,
which did not meet its primary outcome28, leading to the inter-
pretation that dose level was the key variable in the effectiveness of
the drug. However, the mean QR in the treated participants was
notably similar between studies: mean (95% CI) QR was 0.08
(0.02–0.13) in the higher-dose ITN ATG trial, 0.09 (0.03–0.15) in the
lower-dose TrialNet ATG/GCSF trial. This suggests that the reported
difference in treatment effect between the studies was driven by the
placebo participants: those in the TrialNet ATG/GCSF study had a
fairly low mean QR (−0.07) while those in the ITN ATG study had a
higher mean QR (0.05). Of note, across the 13 studies, only the
TrialNet ATG/GCSF control arm was statistically significantly dif-
ferent from zero. This analysis suggests that rather than drug dos-
ing, the differing behavior of the placebo groups could alternatively
explain differences in reported trial outcomes. This further
demonstrates how random sampling variability in smaller studies
can complicate interpretation of RCT results.

We also looked at the applicability of the QR model to timepoints
prior to 1 year. If the mean QR±95% CI were used as an outcome
at 6months, we found no treatments that showed a false positive result
—that is, all trials positive at 6 months were still positive at 12 months.
However, the converse is not true;we show that three therapies positive
at 12 months could have been missed using this method (Fig. 6).

Next, we investigated whether using the QR metric would
impact the results of immune marker studies aiming to explore
mechanisms of response to therapy. Using C-peptide and mechan-
istic results obtained from the ITN AbATE trial of teplizumab, we
confirmed previous reports of the positive association between the
frequency of treatment-induced KLRG1 + TIGIT + CD8 + T cells, a
known signature of T cell exhaustion, and C-peptide outcome
(Fig. 7a)29. Adjusting for baseline C-peptide and age by using the QR
metric showed a weaker association between treatment-induced

Table 1 | Characteristics of trials used in analysis

Trial Start
Year

N Treat-
ment Arm(s)

N Con-
trol Arm

Age, med-
ian (range)

Baseline C-peptide AUC
Mean (nmol/L), mean (SD)

Primary outcome/ time point Primary Study
Result

Diamyd Therapeutics AB:
GAD-Alum Phase 2

2005 35 35 13.9
(10.1, 18.4)

0.66 (0.37) Fasting C-peptide at 15 months Negative

Diamyd Therapeutics AB:
GAD-Alum Phase 3

2008 107 (2 doses),
109 (4 doses)

111 13.2
(10, 19.3)

0.66 (0.32) 2-h MMTT AUC C-peptide at 15 months Negative

Immune Tolerance Network (ITN):
Anti-thymocyte globulin (ATG)

2007 38 20 17.5
(12, 35)

0.88 (0.42) 2-h MMTT AUC C-peptide at 1 year Negative

Immune Tolerance Network (ITN):
Alefacept

2011 33 16 18 (12, 34) 0.78 (0.38) 2-h MMTT AUC C-peptide at 1 year (sec-
ondary 4-h MMTT AUC C-peptide at 1 year)

Negative primary;
Positive secondary

Immune Tolerance Network (ITN):
Teplizumab

2005 52 25 12
(8.3, 29.6)

0.7 (0.3) 4-h MMTT AUC C-peptide at 2 years Positive

Immune Tolerance Network (ITN):
Tocilizumab

2015 88 47 14 (6, 45) 0.76 (0.43) 2-h MMTT AUC C-peptide at 1 year Negative

JDRF: Imatinib 2014 43 21 24.5
(18.3, 45)

0.84 (0.4) 2-h MMTT AUC C-peptide at 1 year Positive

TrialNet: Abatacept 2008 76 35 12.9
(6.4, 36.8)

0.75 (0.38) 2-h MMTT AUC C-peptide at 2 years Positive

TrialNet: Canakinumab 2010 48 22 11 (6, 31.9) 0.64 (0.33) 2-h MMTT AUC C-peptide at 1 year Negative

TrialNet: GAD-Alum 2009 49 (2 doses), 48
(3 doses)

48 15.1
(3.5, 45.7)

0.73 (0.32) 2-h MMTT AUC C-peptide at 1 year Negative

TrialNet: Low Dose ATG/GCSF 2014 29 (ATG only),
28 (ATG/GCSF)

31 16
(12, 42.5)

0.89 (0.44) 2-h MMTT AUC C-peptide at 1 year Positive

TrialNet: MMF/DZB 2004 31 (MMF only),
41 (MMF/DZB)

42 14.9
(8.7, 46.1)

0.69 (0.32) 2-h MMTT AUC C-peptide at 1 year Negative

TrialNet: Rituximab 2005 55 30 16
(8.3, 40.4)

0.75 (0.39) 2-h MMTT AUC C-peptide at 1 year Positive
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KLRG1 + TIGIT + CD8 + T cells and outcome (Fig. 7b). This observa-
tion is likely accounted for in part by an association between
treatment-induced exhausted T cells and age (Fig. 7c). As previously
noted, age is one of two key variables in the QR metric; age is also
known to be important in defining setpoints and responsiveness for
many immune cell populations (recently reviewed in refs. 30–33).
This analysis implies that therapy-induced exhaustion of T cells
unveils mechanistic insights about age itself, which may or may not
be causally related to a particular therapy, but is important to our
understanding of the role age plays in disease progression and
response to therapy. Supplemental Fig. 3 graphically illustrates why
QR is amore powerful metric for identification of a biomarker that is
causally related to therapy.

The QR metric better quantifies responders to therapy
As in other diseases, not all individuals recently diagnosed with T1D
will respond to a given therapy. Although continuous measurements
are preferred to minimize loss of statistical power, historically, ana-
lyses of clinical trial results across many diseases frequently stratify
treated individuals as responders and non-responders to therapy. In
T1D trials, varying definitions of response to therapy using C-peptide
have been used13,34,35. Reasoning that previously published responder
definitions may be associated with baseline variables, we investigated
whether the standardized QRmetric could better quantify responders
to therapy.

We first explored the relationship between baseline C-peptide,
age, and the previouslypublished categories of a C-peptide responder/
non-responder13,34,35. As shown in Fig. 8, among placebo/control par-
ticipants, the probability of meeting each of the four responder defi-
nitions is strongly associatedwith age (Fig. 8 panels a [LikelihoodRatio
(LR) = 11.5, p = 0.0007], b [LR = 11.3, p = 0.0008], c [LR = 19.8,
p <0.0001], d [LR = 11.5, p =0.0007]); two of these definitions are also
associated with baseline C-peptide (Fig. 8a [LR= 5.1, p = 0.02] and c
[LR = 5.4, p = 0.02]). In contrast, the probability of being a responder
using the QR-based definition of above or below zero, is, as expected,
not associated with either age (LR = 1.8, p =0.18) or baseline C-peptide
(LR = 0.2, p =0.62) (Fig. 8e).

To further illustrate the consequences of not accounting for
baseline variables in classifying responders, we benchmarked the
probability of being a responder for each definition. The average
age (16.4 years) and average baseline C-peptide AUC mean for
treated individuals across all 13 studies was determined, yielding a
QR value of 0.039. However, the probability that an individual with
these characteristics is defined as a treatment responder varies
widely using different responder definitions (Fig. 8b, c). Most
importantly, the probability of being a treatment responder is
strongly associated with age, baseline C-peptide, or both of these
metrics for all non-QR definitions. Since the QR metric adjusts for
age and baseline C-peptide, the probability of being a responder is
not conditional on these factors, as can also be seen from the
annotated p-values (Fig. 8e).

Given that the probability of being a treatment responder is not
conditional on age and baseline C-peptide, we asked how the QR
metric could be used to select a threshold for classifying responders
and non-responders to therapy. In selecting a threshold for a con-
tinuousmeasure suchasQR, it is useful to understand the variability or
confidence intervals around a given QR value, reflecting the prob-
ability that a given QR value represents a true treatment responder.
Here, weobserved that the distribution of theQR scores of all placebo/
control individuals is symmetrical (Fig. 9a), leading to quantile statis-
tics whereby the QR value can be assigned to a percentile (e.g., a QR of
0.10 corresponds to the 75th percentile of the distribution). Figure 9a
also illustrates thatwhile there is a symmetricaldistribution around the
mean, heterogeneity is also apparent; a placebo-treated individualmay
have aQRvalue ranging from−0.58 to0.45. Similarly, though themean

QR value among all individuals in the treatment arms of the positive
studies is above zero, there is also a wide range of values in each
treated group (Fig. 9b), many of which overlap with the distribution of
placebo-treated individuals.

The overlapping QR values between treatment and placebo
groups demonstrate that using a particular QR cutoff will not
necessarily distinguish individuals who received an efficacious
therapy from placebo individuals. We reasoned that these dis-
tributions can be used to understand the probability that a specific
QR value is associated with a successful treatment (Fig. 9c). As
shown in Fig. 9c, the probability of identifying a treatment
responder or non-responder increases at the extremes of the dis-
tribution. For example, the probability that an individual with
QR = 0.4 received an effective therapy exceeds 80% (Fig. 9a). Con-
versely, the probability that an individual with QR = −0.4 received an
effective therapy is only 15%: at this threshold, individuals are more
likely to be placebo participants, and thus we can infer that a treated

Fig. 1 | Validation of QR model: comparison of development and validation
cohorts. Placebo/control participants used for QR development (n = 5 studies) and
validation (n = 8 studies). The published QRmodel (QRi = ln (Cp1year,i + 1) −0.812⋅ln
(Cp0,i + 1) −0.00638⋅Agei +0.191) from the development studies (n = 5)was applied
to the validation studies (n = 8). Since the QR model was derived from the devel-
opment cohort, it was expected that theQR distributionwouldbe centered at zero.
Thus, to assess howwell themodelfit the validation cohort, we compared themean
and distribution to that of the development cohort. No significant difference was
observed between the development and validation cohorts when comparing group
means using a two-tailed t-test (t =0.8, DF = 346, p =0.43); both cohorts have
similar distributions as evaluated by a Kolmogorov-Smirnov test (KS = 0.04,
p =0.62). Mean and SD are indicated by black lines and dark shaded region; violin
plots visualize data distribution.
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individual with this QR value was likely a non-responder to therapy.
Choosing less extreme cut points introduces greater uncertainty.
For example, selecting a threshold of treatment response of QR =
0.2 would yield only a 65% probability that this individual received
an effective therapy.

Discussion
Despite decades of clinical trials of DMT in individuals recently diag-
nosed with T1D, there are no drugs currently in clinical practice. Here,
we have demonstrated that the QR metric may address many chal-
lenges to the field, facilitating the identification of potentially effective

Fig. 2 | Use ofmodel adjusting for baseline C-peptide and age reduces variance
in outcome measure among placebo/control individuals. Distribution across
trials of baseline variables (a) of age and C-peptide AUC mean, and outcome
measures (b) of 1 year C-peptide AUC mean and 1-year QR. Use of QR instead of
1-year C-peptide AUC mean reduces standard deviation (SD; blue) for each trial.
Mean and SDare indicated by black lines anddark shaded region. Dashed reference
lines in panel A indicate average value in combined placebo participants: 16.4 years

and baseline C-peptide of 0.73 nmol/L. Dashed reference line in panel B indicates a
QR of zero to more easily decipher between positive (above reference line) and
negative (below reference line) outcomes. Box plots show the distribution of data,
excluding outliers; whiskers indicate minimum and maximum, box indicates 1st
and 3rd quartiles (interquartile range), and median is represented by thin hor-
izontal line within box. Violin plots visualize data distribution.
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therapies. Importantly, standardization of outcomes enables a uniform
method of analysis across trials, and thus a manner for comparing
therapies and identifying responders to therapies through a consistent
responder definition.

We applied the QR metric, which adjusts for baseline age and
C-peptide AUC mean, to data from 13 clinical trials of DMT in indivi-
dualswith recently diagnosedT1D. Since these 13 trials occurredover a
10-year period, included individuals from 3 to 46 years of age, were
conducted at multiple locations, and included data from both aca-
demic trials and a phase 3 industry-sponsored study, the strength of
the model is sufficiently robust to be considered for regulatory
purposes.

Whereas traditional unadjusted analysis may be impacted by
chance imbalances in covariates at baseline (especially those known to
be associated with outcome), baseline-adjusted analysis can lead to
individual-specific (conditional) estimates which conceptually match
individuals in the intervention group and control group who are
similar with respect to the adjusted variables. Using pre-specified
variables, baseline-adjusted analysis increases statistical power,
allowing for robust comparisons between studies.

In T1D, more than half of the heterogeneity in the natural history
of disease can be explained by age and baseline C-peptide. While
several T1D trials used ANCOVAmodels adjusted for baseline metrics,
this was inconsistent between studies. Computing aQR further utilizes
those ANCOVA predictions27,36 to determine a standardized score,
which enables cross-trial analysis. Analyzing treatment effects in terms
of QR also allows for evaluation of treatment groups in a standardized
manner, with comparisons to a large number of controls. This
approach is particularly powerful in T1D since the baseline covariates
are established predictors of the outcome.

Using data from the ITN trial of teplizumab, we demonstrate that
using the QR metric reduces the variance of the outcome, resulting in
increased power and the potential for reducing sample size. However,
it is not clear that reducing the sample size for a phase 2 RCT is the
optimal approach to select promising therapies, or to identify
responders for T1D or other diseases. Placebo-controlled randomized
trials have clear advantages, as randomization can account for
potential differences in variables that are known to impact outcome.
However, when small sample sizes are used, random sampling varia-
tion can significantly impact inferences about trial outcomes. In the
case of trials of DMT aiming to preserve C-peptide, the known factors
are baseline C-peptide and age; QR adjusts for these factors.

Using data from almost 500 control/placebo individuals in the 13
trials studied, we show that untreated individuals’ outcomes are reli-
ably predicted. Utilizing QR as an outcome measure implies compar-
ison of a treatment arm to this large number of historical controls, and
could allow trialists to consider studies without a contemporaneous
control group in early phase trials, for example when use of a placebo
is not feasible. Single- or multiple-active arm phase 2 trials are likely to
conserve resources by eliminating or minimizing placebo participants
while accelerating recruitment (as more participants agree to trials
without a placebo arm). Of course, caution is always needed in inter-
pretation of studies without contemporaneous controls. However, we

Fig. 3 | More statistical precision with use of QR in teplizumab trial. Outcome
data from teplizumab-treated (n = 44) vs control arm (n = 19) using outcome
defined as (a) one-year C-peptide AUCmean (nmol/L) difference, t = 2.7, DF = 46.4,
p =0.009; b change frombaseline C-peptide AUCmean (nmol/L) difference, t = 4.0

DF = 57.0, p =0.0002; or (c) one-year QR difference, t = 4.3, DF = 47.3, p =0.00007.
Mean and SD are indicated by black lines and dark shaded region. P-values deter-
mined using two-tailed t-test. Dashed lines in panel (b) and (c) are reference lines
for unchanged C-peptide (panel b) or QR of 0 (panel c).

Fig. 4 | Relationship between observed and expected outcome according to
time of baseline and time of outcome allows for different trial durations. R2

using baseline C-peptide (within 3 months of diagnosis) and month 12 outcome
from original QRmodel is 53%. Additional ANCOVAmodels were developed, using
different baseline reference points and prediction horizons ranging from 3months
to 2 years. Using C-peptide and age at different time points from diagnosis can also
predict outcome; the R2 decreases the longer from the initial measurement. Using
predictors at later time points has strong association with outcomes illustrated up
to 24 months. Due to differences in visit schedules between studies, n varies at
different timepoints: n = 414 at 3 months, n = 461 at 6 months, n = 280 at 9months,
n = 448 at 1 year, n = 277 at 18months, n = 259 at 24months. Darker blue coloration
indicates stronger correlation.
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suggest thatwith these caveats inmind, data garnered from single arm
trials could inform decisions about whether a therapeutic approach
merits further testing in subsequent gold standard phase 3 placebo-
controlled randomized trials37,38.

Furthermore, using a QR outcome allows for adaptive study
designs of multiple active agents, as we found that a mean QR value
above zero in the treatment arm at six months after randomization
completely predicted the success of all the tested RCTs with a positive
outcome at 1 year. A trial with multiple active agents could drop
ineffective therapeutic arms at six months. Using QR could enable
shorter clinical trials, which would reduce burden on study staff and
participants, reduce cost, and reduce the time that participants in the
active arm are exposed to ineffective therapies. By pre-specifying a QR
threshold of interest at an early timepoint, adaptive re-randomization
designs, such as the sequential parallel comparison design (SPCD;
Supplemental Fig. 4)39, are also feasible. This design identifies placebo
participants with a QR value below zero early in a trial, and re-
randomizes those individuals to treatment or placebo, allowing a lar-
ger number of participants to potentially benefit from therapy. QR can
also enable enrollment of individuals outside the traditionally used
period of 3 months post-diagnosis in new-onset T1D trials, as it can
reliably predict a 2-year outcome when a baseline timepoint is
>6 months from diagnosis.

Assessing treatment effect as the difference in QR between
treatment and control arms may alter interpretation of prior trial
results. In addition, it can aid in prioritizing therapies for further
study. Since there were similarities between the 13 trials with respect
to baseline C-peptide and age, and many of the trials used baseline-
adjusted ANCOVA models, it is not surprising that using QR to
express the trial result is similar to that seen in published reports;
that is, the teplizumab, abatacept, rituximab, and low dose ATG
trials all demonstrate that the QR of the actively treated group is
higher than that of the control group. However, while the published
primary outcome of the ITN alefacept trial was negative, when

considering the outcomes of the active treatment arms for each
trial, teplizumab and alefacept both stand out as therapies with the
greatest QR values, which suggests both therapies (or similar drugs)
are worth pursuing. Furthermore, while the published results of two
trials using ATG differ (ITN higher dose trial being negative and
TrialNet lower dose trial being positive), the QR point estimates of
the active arms in each of these trials are similar, indicating that the
differences in clinical trial outcomes reported were perhaps
impacted by differences in the placebo arms rather than differences
in efficacy between the two doses.

The canakinumab trial exemplifies the risks of comparison to a
small control cohort. The originally reported canakinumab negative
trial result had a detrimental impact on future studies; despite pre-
clinical and mechanistic data suggesting a role of IL-1 in T1D40–43, there
has been reluctance to test this type of therapy further. However, we
show here that the QR of individuals in the canakinumab-treated arm
was positive, suggesting therapeutic effect. Our interpretation of the
data indicates that the negative result in the originally published trial
was due to the small number of placebo participants who performed
much better than expected. Of note, in a retrospective analysis of the
original study, Bundy et al. addressed this issue by comparing
canakinumab-treated individuals to a larger placebo group, and also
concluded that canakinumab may be effective36. While not negating
the results of the original RCT, the integration of large amounts of
historical data here provides added context to robustly interpret
studies.

Perhaps themost powerful use ofQR is its ability to determine the
extent to which an individual responded to therapy. Participants are
typically informed of clinical trial results with information about their
own insulin secretion and the mean values for treatment and control
groups. However, explainingwhat thismeans canbe challenging as the
relationship between a given C-peptide value or change in C-peptide
with long term clinical outcomes is not known. QR, in contrast, allows
for standardized, subject-specific estimates to be provided to each

Fig. 5 | Use of QR to interpret across clinical trials.Mean QR±95% confidence interval (CI) for (a) active treatment, (b) control/placebo group, and (c) the difference
between treatment arms for each trial determined from two-tailed t-test. N for each treatment group is reported in Table 1.
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participant; study staff can describe the probability that the partici-
pant did better or worse than expected while on treatment (i.e., a
responder or non-responder).

QR is also an improvement over previously used responder/non-
responder definitions. Incorporating historical data via QR provides a
greater level of certainty when identifying treatment responders.
Standardized estimates based on historical placebo data can be used
to understand the probability of observing a specific QR value in the
absence of a treatment effect. Higher QR values are associated with
increased confidence that an individual’s response is related to treat-

ment. In the absence of a QR framework, we would be less certain
about these predictions at both the individual and group level. In trials
with two or more active treatments with differing mechanisms of
action, the QR can be used as a standardized instrument to dis-
criminate biomarkers hypothesized to be causally related to treatment
with the objective of personalizing immune therapies to specific
endotypes44.

QR is particularly useful for a more principled analysis of
mechanistic data seeking to explain whether a mechanistic mar-
ker lies in the hypothesized causal pathway for the therapy. This
concept is exemplified by analysis of exhausted T cells in indivi-
duals treated with teplizumab. The increase in these cells post-
therapy is associated with C-peptide, and there is also a rela-
tionship between T cell exhaustion and age, consistent with
previous reports45–47. This suggests that understanding the causal
pathway between teplizumab therapy and the induction of
exhausted T cells must consider age as a factor48, while also
helping the field to consider the general phenomenon of why
children may be more likely to respond to therapy.

Using data from 13 clinical trials andmore than 1,300 participants,
we demonstrate the significant value of using QR to advance the field
of DMT in T1D. Our study serves as an example for applying the QR
approach in other diseases that lack clarity in defining responders to
therapy, for comparing the effectiveness of different therapies, and for
understanding causal pathways in disease. Our analysis shows that the
QR metric of insulin secretion measured by C-peptide is clinically and
scientifically meaningful, objective, predictable, and standardized
across individuals and cohorts, thus accelerating and aiding in inter-
pretation of trials and providing a framework for precision medi-
cine in T1D.

Methods
Datasets
De-identified data were obtained from 13 clinical trials of DMT in indi-
viduals with recently diagnosed T1D (Table 1). These include six studies
conducted by Diabetes TrialNet (TrialNet.org), an NIH-sponsored clin-
ical trial network: MMF/DZB (TN02 NCT0010017812), Rituximab (TN05
NCT0027930511), GAD-Alum (TN08 NCT005293997), Abatacept (TN09
NCT005053756), Canakinumab (TN14 NCT009474278), Low Dose ATG/
GCSF (TN19NCT022152009); four studies conducted by theNIH funded
Immune Tolerance Network (ITN; Immunetolerance.org): Teplizumab
(AbATE NCT0206792313), Alefacept (T1DAL NCT0096545814), ATG
(START NCT0051509918), Tocilizumab (EXTEND NCT0229383715); one
investigator-initiated study sponsored by JDRF, Imatinib/Gleevec

Fig. 7 | %KLRG1 + TIGIT+ of CD8 T cells associated with age and outcome of
teplizumab therapy. C-peptide and %KLRG1 + TIGIT+ of CD8 T cells (exhausted
T cells) in actively treated individuals (n = 31) from ITN trial of teplizumab. Dashed
line and shaded region indicate linear regression line and 95% confidence intervals.
a Relationship between increase of exhausted T cells and one-year C-peptide;

Pearson correlation (r) of 0.38, p =0.06. b Relationship between exhausted T cells
andQR; r =0.27, p =0.20. cCorrelationbetween exhaustedT cells and age; r =0.47,
p =0.007. T cell exhaustion was quantified as the maximum change from baseline
at any point during the one year time period after treatment initiation.

Fig. 6 | Effect of therapy determined at 6 months after randomization. Mean
QR± 95% confidence interval (CI) at (a) 6 months and (b) 12 months. All treatment
arms withmean QR± 95%CI above 0 at 6months were also above 0 at 1 year. Since
the QR metric is based on a linear model, where baseline is predictive of 1 year C-
peptide, QR at interim timepoints was computed by deriving the expected
C-peptide values at specified timepoints from the original QR equation, and
determining the difference between the expected and observed values. At
6 months: teplizumab n = 51, alefacept n = 31, rituximab n = 52, 2 dose GAD-Alum
(Diamyd Ph2) n = 35, abatacept n = 67, low-dose ATG n = 29, ATG/GCSF n = 28,
imatinib n = 43, 4 dose GAD-Alum (Diamyd Ph3)n = 109, 2 dose GAD-Alum (Diamyd
Ph3)n = 107,MMF/DZBn = 39,MMFn = 28, canakinumabn = 47, tocilizumabn = 87,
3 dose GAD-Alum (TrialNet) n = 44, 2 dose GAD-Alum (TrialNet) n = 46, high-dose
ATG n = 36. Reference Table 1 for n at 12 months.
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(NCT0178197510); and two industry led studies, Diamyd Therapeutics
AB: Phase 2 (NCT0043598117) and Phase 3 (NCT0072341116) GAD-Alum.

Statistical methods
The ANCOVA model developed by Bundy and Krischer27, using data
from recently diagnosed T1D individuals, QRi = ln(Cp1year,i + 1) –

0.812⋅ln(Cp0,i + 1) – 0.00638⋅Agei + 0.191, was used to compute the
individual’s QR, where Cp0,i and Cp1year,i represent 2-hour C-peptide
AUCmean (AUCdivided by 120min, in nanomoles per liter) at baseline
and one year post treatment, respectively; Agei is the age at study
entry, in years. Since the model assumes a linear relationship between
baseline and 1 year C-peptide, we additionally computed QR at 3, 6,
and 9months post-randomization by deriving the expected C-peptide
values at these timepoints from the original QR equation, and deter-
mining the difference between the expected and observed values at
each timepoint. Other variables were considered for inclusion in the
original model and were found not to improve model fit27,36.

To validate the QR method, we tested the model performance by
applying the published ANCOVAmodel to data from eight new studies
not used for the development of QR (Fig. 1). The Kolmogorov-Smirnov
two-sample test was used to compare QR distributions between the
development (n = 5 studies) and validation (n = 8 studies) cohorts. In
addition, an ANCOVA model was developed using all control partici-
pants to assess the association between actual 1 year C-peptide AUC
mean values and predicted values from both the formula derived from
the ANCOVA developed from our dataset and the published QR
formula.

Participants were classified as either active treatment or pla-
cebo/control. Two-sample, two-sided t-tests were used for com-
parison of means between groups. For responder analyses,
participants were dichotomized based on historical thresholds from
the literature used to define responders and non-responders, and
using a QR responder definition, where responders are individuals
with positive QR and non-responders are individuals with negative

Fig. 8 | Proportion of placebo/control individuals meeting responder defini-
tions across trials. Logit-link binomial generalized linear models fit in placebo/
control (n = 448) participants, where baseline age (years) and baseline C-peptide
(ln(x + 1), nmol/L) are used to predict responder outcomes for QR-based responder
definition and responder definitions reported in the literature. Mutually adjusted
estimates for each predictor on the x-axis correspond to model predictions (mean
shown by black regression line) and 95% confidence intervals on the y-axis (gray
shading with blue bounds). The probability of a responder is benchmarked (indi-
cated by vertical dashed red lines and annotated in red on x-axis) to an individual of
average age (16.4 years) andbaseline C-peptide (ln(Cp0 + 1) of 0.53 or 0.70nmol/L);
QR of 0.039. The probability (horizontal dashed red line) and 95% confidence

interval of a placebo participant with these baseline characteristics being identified
as a responder are annotated where dashed red lines intersect. P-values annotated
for likelihood ratio tests of fixed effects. No multiple comparisons adjustment was
done. a Inter-test SD definition: responders identified as those whose C-peptide
change frombaseline is nonnegative or negative but nomore than 1 inter-test SDof
0.087 nmol/L below baseline (from refs. 25, 35). b 7.5% definition: responders
defined as those with C-peptide decline of no more than 7.5% below baseline34;
c 40% definition: responders are those with <40% loss of baseline C-peptide13; d CV
definition: responders are thosewithnonnegative change frombaselineornegative
but coefficient of variation (CV) < 0.097 (median CV from refs. 25, 35). e QR>0
definition: responder is defined as positive QR.
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QR. Generalized linear models with a binomial distribution and a
logit link were fit among placebo/control participants, to each
responder definition with adjustments for baseline age and baseline
C-peptide. For biomarker analyses, Pearson correlations were com-
puted to examine the association of KLRG1 + TIGIT + CD8 + T cells
with baseline metrics (age and C-peptide), and with outcome
metrics (QR and C-peptide).

Using control group data, additional ANCOVA models were
developed to expand the utility of the QR method to different time
intervals. Specifically, post-baseline predictions ranging from
3 months to 2 years were created using different baseline reference
points and prediction horizons. Analysis was performed using SAS
software version 9.4 (SAS Institute Inc., Cary, NC, USA) and JMP Pro 16
(SAS Institute Inc., Cary, NC, USA).

SAS code utilization
SASand JSL codeareprovidedathttps://github.com/BenaroyaResearch/
qr_t1d_metric/. SAS code computes QR and model-predicted C-peptide
values at various timepoints using the QRmodel27, fits ANCOVAmodels
following the same methodology as the published QR model, and runs
t-tests to determine treatment effect using QR. JSL code fits generalized
linear models to examine the association between QR and treatment
group, and association of baseline metrics (C-peptide and age) with
responder status, where responder status determines QR≥0 as
responder and QR<0 as non-responder. A test dataset (SAS dataset) is
also provided, which is a one record per subject dataset, including
C-peptide AUC mean from 2-h MMTT at all available timepoints (at
minimum, baseline and 1 year required), age at screening in years, and
treatment group and study. An example output dataset of computedQR
and predicted C-peptide values is also provided (SAS and JMP datasets).
These codes have been validated and run by multiple analysts and
applied to other datasets; they have not been submitted to community
commenting.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All clinical trial source data supporting the findings described in this
manuscript are available under controlled access due to data privacy
laws. TrialNet clinical trials data are publicly available and can be
obtained by application to the NIDDK Central Repository at https://
repository.niddk.nih.gov/home/. Immune Tolerance Network clinical
trials data are also publicly available at https://www.itntrialshare.org/.
Data from the Imatinib study are available from Dr. Stephen Gitelman
(stephen.gitelman@ucsf.edu) per data sharing statements from the
original publication10. Data from the DiamydMedical GAD-alum phase
2 and phase 3 trials are available upon reasonable request via a data
transfer agreement. Requests should be addressed to Anton Lindqvist
at anton.lindqvist@diamyd.com.

Code availability
SAS code supporting all analyses are available at GitHubhttps://github.
com/BenaroyaResearch/qr_t1d_metric/. SAS code is also available from
the corresponding author on reasonable request.
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