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Reactivity of complex communities can be
more important than stability

Yuguang Yang1, Katharine Z. Coyte 2, Kevin R. Foster 3,4 & Aming Li 1,5

Understanding stability—whether a community will eventually return to its
original state after a perturbation—is a major focus in the study of various
complex systems, particularly complex ecosystems. Here, we challenge this
focus, showing that short-term dynamics can be a better predictor of out-
comes for complex ecosystems. Using random matrix theory, we study how
complex ecosystems behave immediately after small perturbations. Our ana-
lyses show that many communities are expected to be ‘reactive’, whereby
some perturbations will be amplified initially and generate a response that is
directly opposite to that predicted by typical stability measures. In particular,
we find reactivity is prevalent for complex communities of mixed interactions
and for structured communities, which are both expected to be common in
nature. Finally, we show that reactivity can be a better predictor of extinction
risk than stability, particularly when communities face frequent perturbations,
as is increasingly common. Our results suggest that, alongside stability, reac-
tivity is a fundamental measure for assessing ecosystem health.

A central topic in complex ecosystems is the study of community
stability1–19, which is typically defined as the ability of a system to
return to its previous equilibrium after perturbations. This char-
acteristic is considered central for the longevity of ecosystems,
and for the persistence of species facing the threat of extinction.
Beginning with the seminal work of May1, a large body of theo-
retical work has been developed that seeks to understand the
causes and consequences of community stability3,5–19. Stability is a
general and important property of many real-world systems and
is not limited to ecology. In evolutionary biology20–22, for exam-
ple, stability analysis can be used to predict the outcomes of
natural selection in diverse settings, including social networks21,22.
In engineering23,24, stability is a key concept in the control theory
of many systems, including power grids24. Starting in physics and
bifurcation analysis, the concept of tipping points has proved
useful in multiple disciplines where a loss of stability can be
indicative of regime shifts and phase transitions in real-world
systems25–28. As such, the study of stability can play an important
role in predicting the occurrence of critical transitions, which is a

priority in a range of contexts from financial markets to climate
change25–28.

However, an important limitation ofmost stability analyses is that
they focus overwhelmingly on the long-term response of a system to
external perturbations29–31. That is, stability informs on whether a sys-
tem will return, but not how this return will happen in practice. This
distinction can be critical because the short-term behaviour of a sys-
tem after perturbation can be opposite to its long-term behaviour,
especially when the system exhibits non-normality29–39.

To better understand such short-term behaviour, the concept of
reactivity was introduced30,31,33–38. Reactive systems are those that can
initially amplify small perturbations, which can lead to large fluc-
tuations in population sizes (Fig. 1). Such large-scale fluctuations in
abundances can put species at risk, even though a system is formally
stable. It is important, therefore, that we understand both reactivity
and stability if we are to predict the responses of ecosystems to
perturbations. The importance of reactivity has been recognised in
epidemiology40,41, food security42 and other networked systems38,39,
where short-term responses can also be critical to outcomes. In
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theoretical ecology, the majority of work on reactivity to date has
focusedonpredator-prey systems and small communities containing
a few species34,43,44. The potential for reactivity in large communities
has been demonstrated by Tang and Allesina31, who found that
complex communities can also become reactive before losing sta-
bility. However, complex communities come in many forms, with
different interaction types and distributions and, across this diver-
sity, we currently lack theory to predict if and when reactivity will be
important.

Basedon recent progress in randommatrix theory5,7,9,12,14,45–47, here
we develop theory to predict when reactivity is expected in complex
communities and how this relates to their stability. Our theory allows
us to vary the types and strengths of complex interactions in the
communities and ask, across a vast diversity of community types,
where reactivity is expected. We then apply our modelling to struc-
tured foodwebs and show that reactivity is expected, anddemonstrate
how reactivity can be a better predictor of species extinctions than
typical stability metrics under frequent perturbations.

Results
Modelling framework
Typically, an ecosystem composed of S interacting species can be
modelled as a continuous-time dynamical system2,4

dXðtÞ
dt

=diag X tð Þð Þf XðtÞð Þ, ð1Þ

where XðtÞ= X 1ðtÞ,X2ðtÞ, � � � ,XSðtÞ
� �T 2 RS is an S-dimensional vector

with Xi tð Þ representing the abundance of species i at time t. f XðtÞð Þ
encodes the underlying ecological network and interactions among
species. For a specific form of f XðtÞð Þ, namely the generalised Lotka-
Volterra model, see Fig. 1a. The dynamical behaviour around a feasible
equilibrium X* (i.e., all components of X* are positive) can be captured
by the following linearised equation:

dxðtÞ
d t

=MxðtÞ, ð2Þ
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Fig. 1 | Reactivity captures immediate responses. a Illustration of a two-species
generalised Lotka-Volterra (gLV) community. In this figure, we focus on a case in
which species 2 interacts with species 1 unidirectionally (i.e., A12≠0 and A21 = 0).
b Changes of species abundance over time after four different external perturba-
tions for the two-species system. Blue lines are the responses of species 1, and red
lines are the responses of species 2. When the interaction strength is relatively low
(s1 = s2 = 1,A12 = 0.3, left panel) or enlarged (A12 = 3, right panel), the system can
recover from these perturbations, suggesting the system is stable in both cases.
cThe corresponding responses in thephase planeof species abundance. Black dots
represent the equilibrium state, and dots of different colours represent immediate
states after different perturbations shown in (b). Grey circles represent thedistance

between the equilibrium state and perturbed states in the phase plane of species
abundance, suggesting that all perturbed states share the same distance. Trajec-
tories with different colours are responses after different perturbations. When the
interaction strength is relatively low (leftpanel), all perturbationsdecay initially and
all trajectories remain in the grey circle. When the interaction strength is enlarged
(right panel), some perturbations increase initially (such as the blue trajectory).
Given that the system is stable in both cases, stability cannot describe the instan-
taneous responses after perturbations. This situation is where the concept of sys-
tem reactivity is important. If all perturbations decay initially, the system is non-
reactive (left panel). If some perturbations are amplified initially, the system is
reactive (right panel).
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where x tð Þ=X tð Þ � X* is the deviation from the feasible equilibrium,
and M is the so-called ‘community matrix’1,5 whose element Mij

captures the effect that species j has on species i near the
equilibrium.

Defined as the maximum instantaneous amplification rate of
perturbations30, reactivity R is given as follows:

R � max
x0j jj j2≠0

1
x tð Þ
�� ���� ��

2

d x tð Þ
�� ���� ��

2

dt

 !�����
t =0

 !
: ð3Þ

Here x0 is the external perturbation imposed to the system, and �j jj j2 is
the 2-norm operator. Mathematically,R is quantitatively calculated as
max λH

� �
, where λH is the eigenvalue of matrixH= ðM +MTÞ=2. IfR>0,

the system is reactive, indicating that some perturbations can be
amplified initially. IfR<0, the system is non-reactive, suggesting that
all perturbations decay initially. Thus, the core of reactivity analysis is
to identifymax λH

� �
. It isworth noticing that sinceH is a real symmetric

matrix, all eigenvalues are real, meaning that all eigenvalues locate on
the real axis of the complex plane.

Reactivity criteria for large complex ecosystems
Our model allows us to calculate the reactivity criteria for different
community types. In particular, species can interact in a range of ways
in a given community—including mutualistic (+/+), exploitative (+/−)
and competitive (−/−) interactions—and we can ask how these

interactions influence reactivity by identifying the corresponding
eigenvalue distribution of H. Following the canonical framework in
studying system stability1–12,14,15,17–19, our analyses are focussed on the
properties of the community matrix, which allows us to provide gen-
eral results that do not rest on particular assumptions of the popula-
tion dynamics of species. However, we also provide examples where
we illustrate dynamics based upon the standard Lotka-Volterra model
(e.g., Fig. 1a).

Random interaction distribution: The typical community type
studied in theoretical ecology is a ‘random’ community1,5—that is, one
where two species i and j interact with probability C, and the interac-
tion strengths Mij and Mji take the value of a random variable Z with
mean 0 and variance σ2 respectively and independently. The diagonal
terms, representing self-regulation, are all set to −d. For large random
systems, the eigenvalues of H are contained in a line segment with
length 2σ

ffiffiffiffiffiffiffiffiffi
2SC

p
centred at �d,0ð Þ (Fig. S1, see Supplementary Note 1

for detailed derivation). This brings R= max λH
� �

= �d + σ
ffiffiffiffiffiffiffiffiffi
2SC

p
.

Reactivity requires that R>0, which leads to the reactivity criterion:
σ
ffiffiffiffiffiffiffiffiffi
2SC

p
>d (Fig. 2a).

Exploitative interactions: In a community with exploitative inter-
actions (e.g., predator-prey, or host-parasite), two species i and j also
interact with probability C, but interaction strengths have opposite
signs: one interaction strength takes the value of Zj j while the other is
sampled from � Zj j. For large exploitative communities, the eigenva-
lues of H are distributed in a line segment with length
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Fig. 2 | Reactivity criteria for large complex ecosystems. a Predicting the
eigenvalue distribution of H and corresponding reactivity profiles. In the first row,
the maximum (grey circles) and minimum eigenvalues (grey diamonds) of 50
randomly generated communities are plotted. Blue and red lines are theoretical
predictions of maximum and minimum eigenvalues, respectively. In the second
row, we systematically vary C to obtain σ

ffiffiffiffiffiffi
SC

p
spanning 0,1:5½ �. Orange dots

represent the percentage of reactive communities out of 100 samples from
numerical simulations. Blue lines are the corresponding theoretical predictions for
the numerical percentage. Grey regions show unstable communities. In all cases,
phase transitions from non-reactivity to reactivity are well predicted by our theory.
b Reactivity criteria for different types of communities. Curves with different

colours are critical C–S curves for different communities, and combinations of S
and C below each curve lead to non-reactive communities. Different types of
communities form a strict hierarchy from exploitative communities (most likely to
be non-reactive) to mutualistic communities (most likely to be reactive).
c Extension of our theory to communities withmixed interaction types. Left part of
this panel gives theoretical predictions and right part of this panel shows results
from numerical simulations. Each data point in the right part is an average of 50
randomly generated communities with the same set of parameters. In this figure,
we have d = 1. In the first row of (a), we have S = 150,C =0.25, σ =0.25. In the second
row of (a), we have S = 250, σ =0.1. In (b), we have σ =0.1. In (c), we have
S = 150,C =0.1, σ =0.05.
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SCðσ2 �E2ðjZ jÞÞ

q
. The centre of this line segment is �d,0ð Þ (Fig. S1,

see Supplementary Note 1 for detailed derivation). Thus, we have

R= maxðλHÞ= � d +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SCðσ2 �E2ðjZ jÞÞ

q
and the reactivity criterion

becomes:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SCðσ2 �E2ðjZ jÞÞ

q
>d (Fig. 2a).

Competition and mutualism: In a competitive (or mutualistic)
community, pairwise interaction strengths have the same sign:
negative for competition and positive for mutualism. For competi-
tive communities, interaction strengths are sampled from � Zj j,
while for mutualistic communities, interaction strengths are sam-
pled from Zj j. In both cases, all λH except an outlier (which is
approximately equal to the row sum of H) are contained in a line
segment when the community size is large (Fig. S1, see Supplemen-
tary Note 1 for detailed derivation). For large competitive commu-
nities, this outlier is on the left side of the line segment and reactivity
is thus determined by the right endpoint of the line segment.

We then have R= �d +CE Zj jð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2SC +2E2 Zj jð ÞSC 1� 2Cð Þ

q
,

and the corresponding reactivity criterion is CE Zj jð Þ+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2SC +2E2 Zj jð ÞSC 1� 2Cð Þ

q
>d. For large mutualistic communities,

this outlier is on the right side of the line segment and thus deter-
mines reactivity: R= �d + S� 1ð ÞCE Zj jð Þ. The reactivity criterion
now becomes: S� 1ð ÞCE Zj jð Þ>d (Fig. 2a).

These reactivity criteria allow us to compare how interaction
types influence the reactivity of a community. This analysis reveals
that, as for stability, reactivity is strongly dependent on the nature of
the interactions within a community. Focussing on reactivity alone,
we observe a strict hierarchy from mutualistic communities, which
are the most likely to be reactive, through to exploitative commu-
nities, which are the least likely (Fig. 2b). Further extension of our
theory to communities in which different interactions aremixedwith
arbitrary proportions (see Methods and Supplementary Note 1) also
validates this finding (Fig. 2c, Fig. S2). This result follows the intuition
that exploitative interactions, such as predator-prey interactions,
introduce negative feedbacks between pairwise species, which will
limit the potential for amplification of a perturbation. By contrast,
competitive and mutualistic interactions introduce positive feed-
backs, which will tend to amplify perturbations. However, note that
these positive feedbacks also tend to destabilise communities. As we
discuss further below, this effect means that reactive competitive
communities and reactive mutualistic communities also tend to be
unstable.

The impact of weak interactions on reactivity
In addition to interaction type, interaction strength is considered
central to the behaviour of communities and their stability1,2,4,5,7,9,48,49.
In particular, previous studies suggest that weak interactions are
common in natural ecological networks, where they have been hypo-
thesised to be important for ecosystem persistence because they can
help to promote ecological stability in some contexts5,48. Next we seek
to study the influence of weak interactions on reactivity. Using the
criteria derived above, we can systematically assess the influence of
weak interactions on reactivity. If weak interactions are common in a
community5, we would have a relatively small E Zj jð Þ. In contrast, if
weak interactions are rare5, we have a relatively large E Zj jð Þ. As with
linear stability5, this analysis predicts that weak interactions will make
competitive communities and mutualistic communities less reactive,
have no influence on random communities, and make exploitative
communities more reactive. Importantly, we can confirm these key
predictions both theoretically and numerically by generating example
communities with interspecies interaction strengths drawn from a
Gammadistribution, which allowsus to control the prevalenceofweak
interactions, and explicitly calculating their reactivity (see

Supplementary Note 2). Moreover, there is again an intuition to this
result: weakening exploitative interactions drives higher reactivity
because these interactions are negative feedbacks that tend to help
protect against amplification of perturbations. By contrast, weakening
mutualistic or competitive interactions lowers reactivity, because
these interaction types are reactive.

The importance of stable but reactive communities
Our analyses have so far focused on what promotes reactivity in
complex communities. However, the reactivity is not equally impor-
tant for all communities. If a community is unstable, then reactivity is
of less interest, for the simple reason that the community is unlikely to
exist at all. In contrast, determining the reactivity of a stable commu-
nity may be vital, as doing so can reveal communities that are at first
sight robust, but in fact may be very vulnerable to future perturba-
tions. A key goal, therefore, is to identify when stable reactive com-
munities will occur.

The fact that reactivity and stability are determined by the same
set of parameters allows us to directly relate these two key properties
of ecological communities. We find that as diversity (i.e., number of
species, S) and complexity (i.e., connectance, C) increase, non-reactive
stable communities first become reactive stable and then reactive
unstable, indicating that the reactive stable state is an intermediate
state between non-reactivity and instability (Fig. 3a). This finding is
consistent with previous work31,50, but we also find that this inter-
mediate state is not equally likely for all community types. This result
can be seen by plotting both stability criteria and reactivity criteria
together for different community types (Fig. 3a). While competitive
and mutualistic interactions both promote reactivity, they also pro-
mote instability in similar measure with the result that there is limited
scope for stable reactive communities. In these cases, therefore,
reactivity is not expected to play an important role in the dynamics of
stable communities. By contrast, exploitative communities and ran-
dom communities have larger regions of parameter space where
communities are both stable and reactive. Here, reactivity has the
potential to play a critical role in community dynamics.

We can quantify the importance of reactivity in stable commu-
nities by calculating the area ratio of the reactive stable region (Fig. 3a,
red region) to the stable region (Fig. 3a, blue region and red region).
This area ratio can be interpreted as the normalised distance between
the transition to reactivity and the transition to instability (see Meth-
ods and Supplementary Note 3). A low area ratio, as seen for compe-
titive and mutualistic communities, means that these two transitions
are close. For such communities, the observation of a reactive state
suggests that the corresponding community is close to an unstable
state, or is even transitioning into an unstable state. From an ecosys-
tem management perspective, therefore, reactivity would be an early
warningof thepotential lossof stability. Bycontrast, the high area ratio
seen for random and exploitative communities means that the dis-
tance between reactivity and instability is relatively large. Here, reac-
tive states can be far away from unstable states, such that there is less
threat to ecosystem stability. However, as we show below, even for
these relatively stable communities, there is a threat of extinction
when perturbations are frequent.

We also calculate this area ratio for communities of any propor-
tion of the different interaction types (Fig. 3c). Consistent with the
findings for the four community types, increasing the proportion of
mutualistic interactions or competitive interactions reduces the scope
for stable reactive systems (Fig. 3c). By contrast, increasing the pro-
portion of exploitative interactions increases the propensity for stable
communities that are also reactive. Moreover, for communities with
mixed interaction types, which are expected to be common in nature,
there is ample potential for a reactive stable state.

In summary, our theory predicts that reactivity is most important
for the dynamics of communities with mixed and exploitative
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interactions, where there are large regions of parameter space where
communities are both reactive and stable. It is these types of com-
munities, therefore, whereone ismost likely to see a stable community
that, after perturbation, behaves in a manner not predicted by typical
stability measures. This said, if one does observe reactivity in a
mutualistic or competitive network of species, this may be an early
warning sign that the set of species in question are on the brink of a
transition to an unstable state.

Our work suggests that reactivity is common in nature. To eval-
uate this key prediction, we sought data from microbial communities
that allow reactivity to be estimated.We identified seven communities,
two found within the mammalian gut51,52, four isolated from the soil53,
and one arbitrarily and artificially assembled in vitro using amixture of
gut and soil-associated microbes49 (see Supplementary Note 4). We
note that these communities are of low diversity (4 or 5 taxa) as
compared to those studied with our theory, which is designed for
diverse communities. Nevertheless, in linewith our key prediction that
reactivity is important, we find evidence of reactivity in all of the nat-
ural communities (Fig. 3d). Moreover, these natural communities also

display a mixture of interaction types, which is associated with stable
reactive communities in the theory (Fig. 3d). By contrast, the one
artificial community that contains only mutualistic and competitive
interactions is non-reactive, which is again consistent with our pre-
diction that these interaction types are less likely to lead to stable
reactive systems (Fig. 3d).

Reactivity in structured food webs
So farwehave considered the reactivity of communitieswith a random
interaction network structure (i.e., unstructured interaction network).
However, interaction networks of real ecological communities often
contain structures, including trophic levels and the potential for
groupings of species within a community that interact more strongly
than average5–8,11,12,43,54–58. We, therefore, want to explore how such
structuring influences the potential for reactivity.

To study the impacts of network structure, we implement two
widely-used community structure models in our framework: the cas-
cade foodweb5,8,12,43,57,58 and the niche foodweb5,8,56,57 (seeMethods). In
the cascademodel, species are assumed to form a strict hierarchy, and
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instability. Yellow bars are theoretical results, while green dots are numerical
results. Each green dot is obtained by measuring the corresponding area ratio in a
simulated phase transition diagram (i.e., simulated version of (a)). c Distance
between reactivity and instability for communities with mixed types of interaction
(i.e., exploitative interactions, mutualistic interactions, and competitive interac-
tions). When the connectance (or community size) is fixed, the distance is

measuredby the critical ratioof the numberof species (or the ratioof connectance)
based on that in (a). One can calculate the distance metric, therefore, by either
varying community size or connectance to move from the stable non-reactive
region, blue line in (a), to the unstable reactive region, red line in (a). Here we plot
this distance for three cases, two of these have fixed community size (left panel and
middle panel) while the other one has fixed connectance (right panel). As the
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the proportion of mutualistic interactions (P+/+) or competitive interactions (P−/−)
increases, the distance decreases. And these are consistent with the results given in
(b). d Reactivity analysis of empirical microbial communities. Left part shows the
reactivity calculated directly from experimental data, and right part shows pro-
portions of different types of interactions in these communities. Here communities
1 and 2 aremousemicrobial communities51,52, communities 3 to 6 are soil microbial
communities53, and community 7 is an artificially assembled community49. In
(a)–(c), we set d = 1, σ =0.2.
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species with higher rank predate species with lower rank with a fixed
probability (Fig. 4a). In the niche model, species predate all species
within their predation range (Fig. 4a). Importantly, despite the intro-
duction of network structure, we still observe large regions of para-
meter space where communities are stable and reactive (Fig. 4b).
Indeed, the introduction of structure in the niche model even makes
communities more reactive, i.e., reactive communities occur for
weaker levels of interspecies interaction than in the equivalent
unstructured communities (recall that these communities are based
on exploitative interactions which tend to limit reactivity, above). Put
anotherway, it takes lower interspecies interaction strengths to render
a community reactive with niche structuring than without.

Our work shows that, as compared with an unstructured equiva-
lent, cascade food webs do not influence system reactivity, while a
niche foodweb structuremakes the systemmore reactive (Fig. 4b).We
find that this difference between the two food web types is explained
by the different structural features introduced by each. The cascade
model introduces trophic levels, whichonly influence the arrangement

of pairwise positive and negative elements in the communitymatrixM
(the non-zero negative elements are in the upper-triangular part, while
thenon-zeropositive elements are in the lower-triangularpart, Fig. 4a).
This single feature is mitigated inH= M+MT

� �
=2, and, as a result, the

cascademodel and its unstructured counterpart yield the sameH, and
therefore the same reactivity. The niche model is different in that it
introduces intervality (that is, each predator consumes preys that are
adjacent in the hierarchy) and a broader degree distribution (Fig. 4c,
degree of a species is the number of its interacting species) alongside
introducing trophic levels8. These properties not only change the
arrangement of pairwise positive and negative elements in the com-
munity matrix but also the topological structure of the underlying
interaction network. This change of topological structure influences
matrix H. Thus, Hniche is different from Hunstructured, which leads to a
more reactive community. Further analysis of somevariants of cascade
model (interval cascade model, cascade model with broad degree
distribution, and interval cascade model with broad degree distribu-
tion, see Supplementary Note 5 and Figs. S5–S7) suggests that the
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broader degree distribution is the key structural feature that drives
increased reactivity.

Self-regulation and reactivity of complex ecosystems
A key factor known to influence community stability is the strength of
density dependent regulation exhibited by the populations of each
species in a community4,5,12, also known as self-regulation (i.e., Mii).
Broadly speaking, increased self-regulation is stabilising and, there-
fore, is predicted to shift communities to a more stable state5,9. As
might be expected, therefore, it is also the case that increasing self-
regulation can lead to a less reactive community (since it is clear from
the theoretical expressions that more negative Mii, i.e., larger self-
regulation strength, can bring a smaller reactivity value). However, our
model assumes that all species have identical levels of self-regulation.
In practice, the expectation12,59,60 is that there will be variability in self-
regulation between species with the possibility of some species that
have very limited self-regulation, which are instead regulated by their
interactions with the wider community. We, therefore, sought to
understand thepotential impacts of such self-regulationheterogeneity
on system reactivity, and whether a system can remain non-reactive
when some species do not self-regulate. Here again, we were able to
leverage developments in random matrix theory12,45–47 in order to
incorporate heterogeneous self-regulation strengths and non-self-
regulating species into our theoretical framework of system reactivity
(Methods and Supplementary Note 6).

With this method in place, we can vary the heterogeneity of self-
regulation in unstructured networks as the standard deviation of self-

regulation strength σd, which reveals that increasing self-regulation
heterogeneitymakes the systemmore reactive (Fig. 5a andFig. S10, see
Supplementary Note 6 for theoretical analysis). We next ask whether
the introduction of network structure alters this prediction, using the
case of a cascade food web. Specifically, here we consider three cases.
In the first, the strengths of self-regulation have no relation to trophic
levels (disorganised case). The second assumes that species at higher
trophic levels possess higher self-regulation strengths (positive case).
In the third, species at higher trophic levels possess lower self-
regulation strengths (negative case). We find that all these three cases
yield the same results as unstructured foodwebs (Fig. 5b). Ourfindings
on the importance of heterogeneity in self-regulation for reactivity,
therefore, are robust to these changes in network structure.

Similarly, we can explore the influence of non-self-regulating
species on system reactivity in communities of otherwise homo-
geneous self-regulation strengths. Strikingly, we find that even a single
species without self-regulation can make a non-reactive system reac-
tive, regardless of the self-regulation strength of other community
members (Fig. 5c, Fig. S10, see Supplementary Note 6 for theoretical
analysis). For most community types, this removal of self-regulation
typically also renders communities unstable. However, interestingly,
we find that exploitative systems are able to remain stable even when
multiple species no longer self-regulate, yet become increasingly
reactive as the number of non-self-regulating species increases. This
finding holds in the presence of trophic levels (Fig. S10), and when
those species that do self-regulate do so in a heterogeneous manner
(Fig. S10). Together, these analyses suggest that all species must self-
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Fig. 5 | Influence of self-regulation on system reactivity. a, b Influence of self-
regulation heterogeneity on system reactivity. Self-regulation heterogeneity is
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from numerical simulations. ‘Disorganised’ refers to the case where self-regulation
strengths have no relation to trophic levels, ‘positive’ refers to the case where
species at higher trophic levels have higher self-regulation strengths, and ‘negative’
refers to the case where species at higher trophic levels have lower self-regulation
strengths. Note that in these two panels, all communities concerned are stable.

c Influence of non-self-regulating species on system reactivity. Upper panels show
average community state, with the blue region indicating communities are on
average stable and non-reactive, the red region indicating stable and reactive, and
the grey region indicating unstable and reactive. Lower panel shows the average
reactivity values for each parameter combination. In (a) and (b), the average self-
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0.3,σ =0.1. Each simulation data point is the average of 50 randomly constructed
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regulate with relatively high strengths in order to prevent community
reactivity.

Reactivity can be a better predictor of species extinctions than
stability under frequent perturbations
Finally, to investigate the potential importance of reactivity, we study
the impacts of different perturbation regimes on the structured and
unstructured networks (Fig. 6 and Figs. S11–S14). For single perturba-
tions, as expected, the effects of reactivity are that the return timeafter
perturbation is increased relative to networks that are non-reactive.
This increase in return time is seen across the three types of networks—
unstructured, cascade and niche—and the result is that the systems
return to their original abundancesmuchmore slowly than in the non-
reactive case (Fig. 6a, top). Nevertheless, they do all return in line with
the notion of a reactive but stable state. The introduction of frequent
perturbations, however, results in a qualitative shift in predictions.
Now, the effects of reactivity dominate the dynamics that are observed

and, importantly, reactive communities are more likely to experience
species extinctions than non-reactive ones (Fig. 6a, bottom and
Fig. 6b). Modelling other types of frequent perturbations further
supports this claim (Figs. S11–S14). Under such conditions, therefore,
reactivity becomes more important than stability in predicting the
persistence of species over time.

Frequent perturbations can also be modelled through the theo-
retical framework formodelling ecological variability of Arnoldi et al.61.
This modelling framework is a linearised model and is thus valid for
systems operating near equilibrium. As a result, it is not suited for
studying extinctions directly, as these tend to occur when a system is
far from equilibrium. Nevertheless, one can use variability in abun-
dances over time to capture transient responses to perturbations,
where the magnitude reflects the tendency of a community to change
in time. In this way, variability can be a good indicator of the risk that
an ecosystem will experience species loss and system collapse35,61.
Inspired by this approach61, we constructed a perturbed community
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model and explored the relationship between variability and reactivity
(Supplementary Note 7). This reveals that, as compared with non-
reactive communities, the variability of a stable reactive community is
high, which is consistent with our finding that stable reactive com-
munities are more vulnerable to species loss and system collapse
under frequent perturbations (Figs. S15–S18).

Discussion
The study of community stability is central to ecology. Stability is
considered to be so important becausemost natural communities will
face frequent perturbations, and it is the stable communities that are
expected to maintain species diversity in the face of these perturba-
tions. However, this view neglects the potential for reactivity in stable
communities, which can amplify perturbations and dominate the
short-term responses to perturbations. Here, we have explored the
conditions that lead to reactivity in diverse communities as a function
of the sign and strength of the complex interactions among their
constituent species. By deriving analytical reactivity criteria, we show
that interaction types can be critical for community reactivity.
Mutualistic and competitive communities are typically only reactive
when they are unstable and here, the observation of reactivity is likely
to indicate the potential for community collapse. However, for
exploitative and mixed interaction types, we find large regions where
communities are predicted to be both stable and reactive. This pre-
diction is robust to the introduction of community structure, where
implementing a cascade or nichemodel leads again to large regions of
reactivity within stable communities.

The link between reactivity and short-term dynamics can be les-
sened in somecontexts. The initial amplification rate strongly depends
on perturbation direction, and thus being reactive does not imply that
all perturbations are amplified initially37. Another context in which
reactivity can be decoupled from short-termdynamics is when there is
a wide distribution of species abundances. Arnoldi et al. studied the
influence of rare species and found that rare species tend to influence
the measure of system stability even though they do not greatly affect
system dynamics in practice37. In the same vein, we explored the
influence of rare species on our measure of system reactivity within a
range of different community types (see Supplementary Note 8 and
Fig. S19). This work shows that regardless of community type, rare
species can again influence system reactivity values, even though again
these species would not in practice have a large impact on system
dynamics (Fig. S20). To analyse such cases and gain a comprehensive
view on short-term system dynamics after perturbations, one should
consider other measures, such as median return rate proposed by
Arnoldi et al., along with system reactivity and stability37. However,
because our main analyses did not include such rare species, the
measureof reactivitywehave employedhere shouldmapwell to short-
term dynamics.

Rather than focussing on the case of rare (low abundance) spe-
cies, one can instead ask more generally how differences in species
abundances influence community ecology. Recent work by Gibbs
et al. extending classic work on system stability revealed that species
abundances do not qualitatively affect stability in a Lotka-Volterra
framework14. That is, as long as an interaction matrix A is stable, the
community matrixM= diag X*

� �
A will also be stable for any feasible

equilibrium X*. This result led us to wonder whether similar rules
might apply to reactivity. To investigate the potential role of species
abundances on reactivity, we conducted additional theoretical ana-
lyses and numerical calculations (Supplementary Note 8,
Figs. S21–S23). While our theory is only an approximation (Supple-
mentary Note 8), it fits well with our numerics (Figs. S21, S22) and
suggests that the reactivity of A implies the reactivity of corre-
sponding M but the non-reactivity of A cannot guarantee the non-
reactivity of correspondingM (Supplementary Note 8, Fig. S23). This
result is important in that it implies that accounting for variability in

species abundanceswill only increase the scope for reactivity beyond
that which we have predicted here.

We also find that the degree of self-regulation by individual spe-
cies in a community can be important for system reactivity. Self-
regulation has long been known to have the potential to promote
system stability, with some studies suggesting that the majority of
species need to have strong self-regulation strengths to maintain
stability12. Our work suggests that to prevent reactivity the require-
ments for self-regulation are even stricter, with a requirement that all
species must self-regulate with relatively high strengths. Given we also
find conditions where reactivity drives species extinctions, this finding
suggests that self-regulation may play a more important role in eco-
system health than previously appreciated.

Our work shows that communities with mixed interactions and
trophic structure have ample potential for reactivity, suggesting that
reactive states can exist in many naturally-occurring systems. In sup-
port of this conclusion, previousworkhas highlighted the potential for
reactivity through analysis of ecological data, including in planktonic
lake communities62 and insect populations63. When perturbations are
rare, these dynamics are transient and stability becomes a reasonable
predictor of the state of a given community. In other cases, however,
the observation of reactivity will be an early warning sign of extinction
risk, one that can potentially be assessed more quickly than stability
property in ecological data. Indeed, for many ecosystems, the expec-
tation is that perturbations will be frequent, something that may
increase with the impacts of climate change and other anthropogenic
factors64–67. Here, short-term responses can dominate and it is reac-
tivity, rather than stability, that is the key to both ecological dynamics
and extinction risk.Ourwork suggests that reactivity and stability need
to be considered side-by-side if we are to understand, and predict,
complex systems.

Methods
Constructing community matrices for communities with mixed
interaction types
For communities with mixed interaction types, two species still inter-
act with probability C. With probability P+/+, two species interact in
mutualistic manner, and the interaction strengths Mij and Mji take the
value of Zj j respectively and independently. With probability P−/−, two
species interact in competitive manner, and the interaction strengths
Mij andMji take the value of� Zj j respectively and independently. With
probability P+/−, two species interact in exploitative manner, and the
interaction strengths Mij and Mji have opposite signs: one takes the
value of Zj jwhile the other takes the value of� Zj j. The diagonal terms
Mii are all set to −d. Note that P+/+ = 1 leads to amutualistic community,
P−/− = 1 leads to a competitive community, and P+/− = 1 leads to an
exploitative community. The statistics of the community matrix for
communities with mixed interaction types can be extracted as

E Mij

� �
i≠j

=CE Zj jð Þ P + =+ � P�=�
� �

,

Var Mij

� �
i≠j

=Cσ2 � E Mij

� �
i≠j

� 	2

,

E MijMji

� �
i≠j

=CE2 Zj jð Þ P + =+ +P�=� � P + =�
� �

:

8>>>>>><
>>>>>>:

ð4Þ

Reactivity criterion for communities with mixed
interaction types
For simplicity, we denote EðMijÞi≠j = E, Var ðMijÞi≠j =V , and

EðMijMjiÞi≠j =ρ. Based on these statistics, we have EðHijÞi≠j =
E, Var ðHijÞi≠j = ðV +ρ� E2Þ=2, and EðHijHjiÞi≠j = ðV +ρ+ E2Þ=2. Accord-
ing to random matrix theory and low-rank perturbation
theorem5,7,12,45,46, the eigenvalues of H are contained in a line segment
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with length 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðV + ρ� E2Þ

q
centred at �d � E,0ð Þ when

jEj≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV +ρ� E2Þ=ð2SÞ

q
. In this case, reactivity is

R= � d � E +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðV + ρ� E2Þ

q
: ð5Þ

When jEj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV + ρ� E2Þ=ð2SÞ

q
, all but one eigenvalues are still dis-

tributed in this line segment, and the outlier is approximated as
λ
H,outlier = �d + S� 1ð ÞE. In this case, reactivity is

R= max �d � E +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðV + ρ� E2Þ

q
,� d + S� 1ð ÞE

� 	
: ð6Þ

See Supplementary Note 1 for detailed derivation.

Measuring the distance between the transition to reactivity and
the transition to instability
As stated in the manuscript, the normalised distance (henceforth, ND)
between the transition to reactivity and the transition to instability can
be defined as the area ratio of the reactive stable region to stable

region. For random communities, the stability criterion is σ
ffiffiffiffiffiffi
SC

p
<d,

leading to the function describing the critical S −C curve for instability

S=d2
=ðCσ2Þ. The area of the stable region in S −C plane is obtained as

Astable,random = ðd2
=σ2Þ ln ðC2=C1Þ. Similarly, we can derive the function

depicting the critical S −C curve for reactivity S=d2
=ð2Cσ2Þ, and the

area of the non-reactive region in S −C plane

Anon�reactive,random = ðd2
= 2σ2
� �Þ ln ðC2=C1Þ. The normalised distance

between the transition to reactivity and the transition to instability
(i.e., the area ratio of reactive stable region to stable region) is then
NDrandom = 1 −Anon−reactive,random/Astable,random = 1/2 (Fig. 3b). When
mutualistic interactions are preponderant, the stability criterion and
reactivity criterion are S� 1ð ÞE <d and S� 1ð ÞE >d, respectively. Thus,
the critical S −C curves for instability and reactivity are the same,
meaning that a reactive mutualistic community is always unstable
(Fig. 3b). Otherwise, the stability criterion and reactivity criterion

are �E +
ffiffiffiffiffiffi
SV

p
ð1 + ðρ� E2Þ=V Þ<d and �E +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðV + ρ� E2Þ

q
>d,

respectively. The critical S −C curves are S=V ðd + EÞ2=ðV +ρ� E2Þ2
and S= ðd + EÞ2=ð2ðV +ρ� E2ÞÞ respectively, leading to the distance
between the transition to reactivity and the transition to instability

NDmixed = 1� ð1 + rðMij ,MjiÞi≠jÞ=2, where rðMij ,MjiÞi≠j = ðρ� E2Þ=V (note

that here thedistance is obtainedbyfixing systemconnectance). Clearly,
a positive rðMij ,MjiÞi≠j (i.e., competitive and mutualistic interactions are

preponderant) leads to a relatively low distance (lower than 1/2, Fig. 3b,
c), and a negative rðMij ,MjiÞi≠j (i.e., exploitative interactions are pre-

ponderant) leads to a relatively large distance (larger than 1/2, Fig. 3b, c).
For detailed derivation and analysis, see Supplementary Note 4.

In simulations, critical values for phase transitions (e.g., the
boundaries between regions with different colours in Fig. 4b) are
determined as follows, taking the transition fromanon-reactive state to
a reactive state as an example. First, we identify the average interspecies
interaction strength value σ1, at which all simulated communities are
non-reactive, such that when σ > σ1, not all simulated communities are
non-reactive. Next, we identify the average interspecies interactions
strength value σ2, at which all simulated communities are reactive, such
thatwhen σ < σ2, not all simulated communities are reactive. The critical
σr is then estimated as σr = σ1 + σ2

� �
=2. Similarly, we can estimate the

critical σ for transition from a stable state to an unstable state.

Reactivity analysis of empirical microbial communities
Weanalyse the reactivity of sevendifferentmicrobial communities49,51–53

from previous empirical studies. For these communities, the research-
ers have already inferred the true interaction networks (Aij) and intrinsic
growth rates (ri). For a given community, we thenperform the following
steps: 1) Using the empirically derived Aij and ri parameters, we identify
the underlying equilibrium abundances of each species within the
community, then determine the empirical community matrix Me. 2)
The true reactivity can be drawn directly from Me, via calculating the
eigenvalues of He = ðMe +M

T
e Þ=2 (blue bars, left part of Fig. 3d). For

detailed information, please see Supplementary Note 4.

Constructing community matrices for cascade food web and
niche food web
The construction algorithm5 for a cascade foodweb is: i) For each entry
in the lower-triangular part ofM (i.e.,Mij,i>j), we draw a random value p
from a unfirom distribution U 0,1½ �. ii) If p ≤ C, we draw Mij,i>j from an
half-normal distribution N 0,σ2

� ��� �� and Mji,i>j from a negative half-
normal distribution � N 0,σ2

� ��� ��. C is the desired level of connectance.
iii) If p >C, we set 0 to both Mij,i>j and Mji,i>j. iv) Set all diagonal terms
to − d (i.e.,Mii = − d). The construction algorithm5 for a niche food web
is: i) Set a niche valueηi for each species andorder species according to
an increasing niche value order.ηi is drawn fromauniformdistribution
U 0,1½ �. ii) Set a niche radius ri =ηiB for each species.B is sampled from
a beta distribution Be 1,1=C � 1

� �
. C is the desired level of connectivity.

iii) Set a niche centre ci for each species. ci is sampled from a uniform
distribution U ri=2,min ηi,1� ri=2

� �
 �
. iv) Construct an adjacency

matrixA. If species i is a prey of species j (i.e., ηi 2 cj � rj=2,cj + rj=2
h i

),
set Aij= 1. Otherwise, set Aij =0. v) Construct a sign matrix P = −A +AT.
vi) Each element Mij of the community matrix is obtained by multi-
plying Pij and Zij. Zij is sampled from an half-normal distribution
N 0,σ2
� ��� ��. vii) Set all diagonal terms to − d (i.e., Mii = − d). See Supple-

mentary Note 5 for additional information.

Constructing community matrices for communities with
heterogeneous self-regulation strengths
Thedifferences between the communitymatrices of communitieswith
homogeneous self-regulation strengths and communities with het-
erogeneous self-regulation strengths are the diagonal terms (i.e., Mii),
and the sampling of off-diagonal terms is the same as presented pre-
viously. Thus, here we focus solely on the sampling of diagonal terms.
When self-regulation strengths and trophic levels are not related, all
diagonal terms are sampled from a uniform distribution with mean
dmean and variance σ2

d respectively and independently. Here dmean is
the average self-regulation strength. When self-regulation strengths
and trophic levels are related, we first generate S random values
d1,⋯ , dS from the uniformdistributionU½dmean �

ffiffiffi
3

p
σd ,dmean +

ffiffiffi
3

p
σd �

respectively and independently. When species at higher trophic levels
possess higher self-regulation strengths, sort di in an ascending order
and set Mii = − di (note that here i indicates the trophic level). When
species at higher trophic levels posses lower self-regulation strengths,
sort di in a descending order and set Mii= − di. Note that this con-
struction method can be adapted to cases where self-regulation
strengths are sampled from other distributions.

Constructing community matrices for communities with non-
self-regulating species
Here we still focus on the sampling of Mii. When self-regulation
strengths and trophic levels are not related, we first generate Sn dis-
tinct positive integers less than or equal to S randomly:
Q= fq1, � � � ,qSn

g. For each i∈Q, setMii=0. For each i∉Q, setMii = − d.
When species at higher trophic levels self-regulate, we setMii = 0 for i ≤
Sn andMii = − d for i > Sn (note that i indicates the trophic level). When
species at higher trophic levels do not self-regulate, we setMii = − d for
i ≤ S − Sn and Mii =0 for i > Sn.
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Incorporating heterogeneous self-regulation strengths andnon-
self-regulating species into reactivity analysis
For convenience, we still denote EðMijÞi≠j = E, Var ðMijÞi≠j =V , and

EðMijMjiÞi≠j =ρ, which leads to the statistics of matrix H: EðHijÞi≠j =
E, Var ðHijÞi≠j = ðV +ρ� E2Þ=2 and EðHijHjiÞi≠j = ðV + ρ+ E2Þ=2.

First, we discuss cases of heterogeneous self-regulation
strengths. For the simplicity of theoretical derivation, here we
focus on the case where self-regulation strengths are sampled from
a uniform distribution ½�dmean �

ffiffiffi
3

p
σd ,� dmean +

ffiffiffi
3

p
σd �. For the

classic random community, we have E = 0, V = Cσ2 and ρ = 0. We can
then identify the rightmost eigenvalue of H (see Supplementary
Note 6 for detailed derivation), which leads to the expression of
reactivity

R=

ffiffiffi
2

p

2
σ
ffiffiffiffiffiffi
SC

p d1 +d2

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d1

2

� 	2

+ 1

s0
@

+
2

d2 � d1
tanh�1 d2 � d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 � d1

� �2 + 4q
0
B@

1
CA
1
CA,

ð7Þ

where

d1 = �
ffiffiffi
2

p
dmean �

ffiffiffi
6

p
σd

� �
=σ

ffiffiffiffiffiffi
SC

p
,

d2 = �
ffiffiffi
2

p
dmean +

ffiffiffi
6

p
σd

� �
=σ

ffiffiffiffiffiffi
SC

p
:

8><
>: ð8Þ

For communities with mixed interaction types, when

jEj≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V +ρ� E2
� �

= 2Sð Þ+ σ2
d=S

2
r

, we can approximate the rightmost

eigenvalue of H (see Supplementary Note 6 for detailed derivation),
which leads to the expression of reactivity

R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
S V +ρ� E2
� �r

� d1 +d2

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d1

2

� 	2

+ 1

s
+

2
d2 � d1

tanh�1 d2 � d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d1

� �2 + 4q
0
B@

1
CA

0
B@

1
CA� E,

ð9Þ

where

d1 = �dmean �
ffiffiffi
3

p
σd

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 S V +ρ� E2
� �r

,

d2 = �dmean +
ffiffiffi
3

p
σd

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 S V +ρ� E2
� �r

:

8>>><
>>>:

ð10Þ

When jEj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V +ρ� E2
� �

= 2Sð Þ+ σ2
d=S

2
r

, the expression of reactivity

can be approximated as follows (see Supplementary Note 6 for
detailed derivation)

R= max R1,R2

� �
, ð11Þ

where

R1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
S V +ρ� E2
� �r

� d1 +d2

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d1

2

� 	2

+ 1

s
+

2
d2 � d1

tanh�1 d2 � d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d1

� �2 + 4q
0
B@

1
CA

0
B@

1
CA� E,

ð12Þ

and

R2 = �dmean + S� 1ð ÞE +
1
2E

V +ρ� E2
� �

+
1
SE

σ2
d : ð13Þ

The derivation of incorporating non-self-regulating species is similar
to cases of heterogeneous self-regulation strengths, however, the
expressions of reactivity are a little more complicated, please see
Supplementary Note 6 for detailed derivation and theoretical expres-
sions of reactivity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analysed (except those in Fig. 3d) are simulation data and can
be reproduced by using the codes provided. Data analysed in Fig. 3d
are publicly available and can be found in the corresponding
references49,51–53.

Code availability
All source codes related to our work can be found at68 https://github.
com/Pawn053/Reactivity-of-complex-ecosystems. The codes are writ-
ten using MathWorks MATLAB R-2020b.
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