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Chromatin accessibility landscape of
relapsed pediatric B-lineage acute
lymphoblastic leukemia

Han Wang1,4, Huiying Sun1,4, Bilin Liang1, Fang Zhang2, Fan Yang1, Bowen Cui 1,
Lixia Ding2, Xiang Wang2, Ronghua Wang1, Jiaoyang Cai2, Yanjing Tang2,
Jianan Rao1, Wenting Hu2, Shuang Zhao1, Wenyan Wu1, Xiaoxiao Chen2,
Kefei Wu 2, Junchen Lai2, Yangyang Xie2, Benshang Li2, Jingyan Tang2,
Shuhong Shen 2,3 & Yu Liu 1,2,3

For around half of the pediatric B-lineage acute lymphoblastic leukemia (B-
ALL) patients, themolecular mechanism of relapse remains unclear. To fill this
gap in knowledge, here we characterize the chromatin accessibility landscape
in pediatric relapsed B-ALL. We observe rewired accessible chromatin regions
(ACRs) associated with transcription dysregulation in leukemia cells as com-
paredwith normal B-cell progenitors. We show that over a quarter of the ACRs
in B-ALL are in quiescent regions with high heterogeneity among B-ALLs. We
identify subtype-specific and allele-imbalanced chromatin accessibility by
integrating multi-omics data. By characterizing the differential ACRs between
diagnosis and relapse in B-ALL, we identify alterations in chromatin accessi-
bility during drug treatment. Further analysis of ACRs associated with relapse
free survival leads to the identification of a subgroup of B-ALL which show
early relapse. These data provide an advanced and integrative portrait of the
importance of chromatin accessibility alterations in tumorigenesis and drug
responses.

Acute lymphoblastic leukemia (ALL) is the most common childhood
cancer. B-lineage ALL (B-ALL) accounts for about 80% of pediatric ALL
cases. Genomic analyses of large cohorts have identifiedmore than 20
B-ALL subtypes with distinct genetic alterations1, which has enabled
risk stratification and precision treatment. This, in combination with
other treatment advances, has increased the patient survival rate to
over 90%2. However, patients with refractory and relapsed B-ALL show
a dismal prognosis, with 5-year survival rate <50%3,4. Genomic analyses
of relapsed ALL patients have revealed several somatic mutations
acquired during chemotherapy that could cause drug resistance of
leukemia cells. These include mutations in NT5C2 5,6, which increases

cell resistance to purine analogs, PRPS1/PRPS27, FPGS8, NR3C1/NR3C29,
and CREBBP 10, among others. However, these genomic aberrations
could only be detected in a subset of relapsed tumors, and the
mechanismsof drug resistance and relapse remain unknown for nearly
half of such patients. Moreover, most of these studies focused on
analysis of coding genes in the genome, leaving the noncoding geno-
mic counterpart largely unexplored.

Epigenomics analysis is one important way to interpret the func-
tion of the noncoding genome. Recently studies have unveiled epige-
nomics features as an essential characterization of tumor cells, with
implications in pathogenesis, clinical behavior, and therapy11,12. Among
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all epigenomic marks, histone modifications and DNA methylation
have been the most widely studied to gain insight into epigenomic
dysregulation13,14. Chromatin accessibility is a hallmark of DNA reg-
ulatory elements15, and emerging evidence shows that it plays a sig-
nificant role in cancer16,17. The advent and optimization of the assay for
transposase-accessible chromatin using sequencing (ATAC-seq) have
made it possible to profile chromatin accessibility genome-wide in
primary cancers18,19. Using this technology, a recent study showed that
lymphocyte-specific open chromatin regions pre-determine gluco-
corticoid resistance in ALL20, suggesting the potential role of chro-
matin accessibility features in B-ALL drug resistance and relapse.
However, knowledge about the chromatin accessibility profiles in
primary pediatric B-ALL and the changes in accessibility that occur
during relapse is still lacking.

In this study, we present the chromatin accessibility profiles of 61
relapsed pediatric B-ALL patients. The chromatin accessibility features
are interpreted by incorporating multiple genome-wide sequencing
data, namely whole genome sequencing (WGS), transcriptome
sequencing (RNA-seq), and chromatin immunoprecipitation sequen-
cing (ChIP-seq) with antibodies against H3K27ac, which is an indicator
of active enhancers. BycomparingwithB-cell progenitors,weshow the
rewired chromatin accessibility in B-ALL, which is associated with
leukemogenesis. Further comparison between diagnosis and relapse
unveils alterations in chromatin accessibility in response to drug
treatment in B-ALL. Moreover, a chromatin-accessible signature is
identified distinguishing B-ALL patients with inferior prognoses.

Results
Chromatin accessibility landscape of pediatric B-ALL
A total of 144 chromatin accessibility profiles were generated from 79
pediatric B-ALL tumors collected from 61 relapsed B-ALL patients
treated at Shanghai Children’sMedical Center (Supplementary Data 1).
Multiple genomics sequencing data were also generated or available
from a previous study5, namely WGS data for the diagnosis-remission-
relapse trios from 32 patients, RNA-seq data for 89 tumors derived
from 57 B-ALL patients, andH3K27ac ChIP-seq data for 12 tumors from
11 B-ALL patients (Fig. 1a and Supplementary Fig. 1a). The molecular
subtype for each B-ALL patient was determined by integrating the
driver genomic translocations fromWGS, fusions and gene expression
signatures from RNA-seq, and karyotype and FISH results from clinical
testing (Methods and Supplementary Data 1). The following 11 B-ALL
subtypes were included in this analysis, namely hyperdiploidy (n = 20),
ETV6::RUNX1 (n = 11), TCF3::PBX1 (n = 5), KMT2A rearranged (n = 5),
BCR::ABL1 (n = 3), BCR::ABL1-like (n = 4), ZNF384 (n = 3), PAX5alt
(n = 2), TCF3::HLF (n = 1), hypodiploidy (n = 1), MEF2D (n = 1), and five
cases with unclassified subtype, which were designated B-other. Living
tumor cells were purified with flow cytometry against tumor-specific
antigens to reduce the noise from normal cells (Methods, Supple-
mentary Fig. 1b and Supplementary Data 2). High reproducibility was
observed between technical replicates (130 profiles for 65 samples
with adequate material, Supplementary Data 3) across different
molecular subtypes, with a median correlation coefficient of 0.9604
(Pearson correlation, ranging from 0.8850 to 0.9748, Supplementary
Fig. 1c, d). Thenucleosomal periodicity of fragment size, enrichmentof
ACRs signal at the transcription start site (TSS), and clear signals on
representative genes (Supplementary Fig. 1e–g) showed the high
quality of the chromatin accessibility profiles generated from primary
tumors in this study.

Seventy-five high quality ATAC-seq profiles of 59 patients were
obtained after quality control and combine of replicates (Methods).
The median number of ACRs identified in each B-ALL sample was
138,366, ranging from 57,941 to 204,563. These ACRs were further
combined into 758,738 ACRs representing pediatric B-ALL cohort
ACRs (c-ACRs, Supplementary Fig. 2a and Supplementary Data 4).
We annotated the ACRs to eight functional genomic regions

according to the Epigenomic Roadmap Project21. The functional
partitioning of B-ALL genome was obtained by analyzing genome-
wide histone modifications collected from primary B-ALL cell in
Blueprint Epigenomic Consortiumwith ChromHMM21 (Methods and
Supplementary Fig. 2b). We observed comparable functional dis-
tributions for ACRs across B-ALL tumor genomes (Fig. 1b). Genomic
regions associated with active gene transcription showed higher
chromatin accessibility, in terms of both number and openness of
ACRs (Fig. 1b and Supplementary Fig. 2c). ACRs associated with
enhancer regions (Enh) accounted for a median of 31.30% of all
ACRs in the genome, followed by active transcription site (TssA,
20.38%), transcription-associated regions (Tx, 6.38%), and bivalent
Tss/Enh (BivR, 4.24%) (Fig. 1b). On the other hand, transcription
repression-related regions showed less accessibility, including
PolyComb regions (ReprPC, 8.00%), heterochromatin (Het, 0.87%),
and ZNF genes & repeats (ZNF/Rpts, 0.03%) (Fig. 1b). In addition,
ACRs in repressive regions were more heterogeneous compared
with those in actively transcribed regions (Supplementary Fig. 2d).
Surprisingly, Quies regions, which represent genomic regions
without well-established histone modifications, also showed chro-
matin accessibility in B-ALL, accounting for amedian of 27.95% of all
ACRs (Fig. 1b). This pattern of functional genomic ACRs was also
observed at the cohort level when annotating c-ACRs (Supplemen-
tary Fig. 2e). Over half (54.94%) of the c-ACRs were found to overlap
with Quies regions. To further characterize the Quies regions, we
performed H3K27ac ChIP-seq analysis in 12 B-ALL tumor samples
(Methods). Results showed that 64.83% of Quies ACRs were located
in gene regions (±5% gene length) (Supplementary Fig. 2f). Among
these genes, a median of 70.59% also showed H3K27ac signals
(Supplementary Fig. 2g) with increased gene transcription (Sup-
plementary Fig. 2h). These data suggested that the ACRs in Quies
regions were involved in regulation of active transcription.

B-ALL-specific chromatin accessible regions associated with
leukemogenesis
B-ALL was currently recognized as originating from B-cell
precursors2,22. We compared the c-ACRs identified above with the
chromatin accessibility profiles from previously published pre-pro B
and pro B cells, sorted from fetal bone marrow, representing the
accessible chromatin status in B-cell progenitors22. A down sampling
strategy was applied, as the number of ACRs detected was correlated
with the sequencing depth in eachdataset (Supplementary Fig. 3a).We
found that B-ALL showed no significant differences in the quantity of
chromatin accessibility across the genomeas comparedwith pre-proB
and pro B cells (Supplementary Fig. 3b). And majority of ACRs detec-
ted in pre-pro B cells (98.57%) and pro B cells (98.35%) remained
accessible in B-ALL (Fig. 1c). These data supported B-ALL was origi-
nated frompre-pro/pro B cells2,23. On the other hand, 585,248 (78.39%)
ACRs were B-ALL specific. Further analysis found that the B-ALL spe-
cific ACRs showed significantly higher heterogeneity compared to the
ACRs overlapped between B-ALLs and B-cell progenitors (Fig. 1d,
p < 2.2e−16, Kruskal–Wallis test), consistent with the heterogeneity of
chromatin accessibilities in B-ALL tumor cells described above.

We next compared the differential ACRs between B-ALL andB-cell
progenitors. A total of 252,028 ACRs showed higher accessibility in
B-ALL (Supplementary Data 5). These ACRs were located within the
promoter regions (TSS ±1 kb) of 2332 protein coding genes. Enrich-
ment analysis showed that these genes were associated with tumor-
related biological processes, including proliferation and differentia-
tion, signal transduction, immune process, cellular response and
metabolic process (Supplementary Data 6 and Fig. 1e). Among these
genes, there were 61 potential oncogenes including IL7R, TCL1A, TCF3,
RHOA and ELL. As showed in Fig. 1f, increased chromatin accessibility
was observed in the promoter regions of these oncogenes, indicating a
potential regulatory function of these ACRs. Besides, ACRs with
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increased chromatin accessibility were also observed in distal enhan-
cer regions. One example presented in Fig. 1g was the distal blood
enhancer cluster (BENC), which was reported as a super enhancer that
activate MYC transcription24. Increased chromatin accessibilities were
observed in multiple enhancers in this region, consistent with the
increased MYC activity in B-ALL25. These findings suggested the ACRs
with increased accessibility in B-ALL were involved in disease
development.

Chromatin accessibility is associated with subtype-specific
transcription regulation in B-ALL
In addition to a difference in ACRs between B-ALL and B-cell pro-
genitors (pre-pro B and pro B cells), we also observed distinguishable
differences in chromatin openness among molecular subtypes.
As showed in Fig. 2a, B-ALLs were grouped by subtypes when applying
unsupervised clustering with recurrent c-ACRs (Methods and Supple-
mentary Data 4). This was supported by calculating pairwise
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correlations of ACRs between B-ALL samples (Fig. 2b). Subtype-
associated accessibility was observed for all functional genomic
regions (Fig. 2c and Supplementary Fig. 4); distal regulatory regions
including Enh and BivR showed most significant subtype specificity
(Fig. 2c), which was consistent with the tissue specificity of distal
chromatin open regions reported previously19. We next analyzed the
difference in ACRs across subtypes. Only subtypes with more than
three cases were included in this analysis. Different chromatin acces-
sibilities were observed among subtypes (Supplementary Fig. 5). We
found that ETV6::RUNX1 and ZNF384 B-ALL samples showed sig-
nificantly fewer ACRs comparedwith other B-ALL samples (p = 0.0001,
Kruskal–Wallis test). Of the 625,287 recurrent c-ACRs, 17,981 were
identified as subtype-specific ACRs (Methods and Supplementary
Data 7),with amedianof 3083ACRs ineach subtype (range 708–5288).
A hierarchical clustering heatmap revealed that these ACRs showed
strong subtype-specific accessibility (Fig. 2d).

By combining transcription factor (TF) motif analysis with gene
transcription analysis using RNA-seq data (Methods), we identified 109
TFs associated with these subtype-specific ACRs. These TFs were
grouped into nine clusters based on their enrichment in each subtype
(Fig. 2e). Besides the TFs enriched for a specific B-ALL subtype, we
observed high similarity of TF enrichment between some subtypes.
This included shared TFs in TCF3::PBX1 and ETV6::RUNX1 subtypes,
KMT2A and ZNF384 subtypes, and in BCR::ABL1\BCR::ABL1-like and
hyperdiploidy subtypes. Some of these observations were supported
by previous reports. For example, overlapped between the KMT2A
rearranged and ZNF384 B-ALL subtypes is concordant with the fact
that both subtypes show a tendency of myeloid transcription26–28.
While the mechanisms remained further investigated, the shared
transcription regulation suggested a similarity of cell differentiation
states between subtypes.

To further explore the regulatory role of these TFs, we performed
expression analysis on both the TF and their potential target genes
between tumor samples of the enriched subgroup versus the others.
Fourteen TFs were found with significantly increased transcription in
the enriched subtype (p <0.05 and FC> 1.2) (Fig. 2f), suggesting the
transcription regulation directly associatedwith the TF expression. For
the target gene analysis, we focused on the 53 TFs with the binding
motif in gene promoter regions (TSS ± 1 kb), and these genes were
analyzed as the targets for each transcription factor (Methods). The
results of individual target gene analysis were further combined to
represent the regulatory function of the transcription factor in the
enriched subtype. As showed in Fig. 2g, 13 out of the 53 transcription
factors included in this analysis were found with significantly higher
expression of the target genes (p <0.05 and FC> 1.2), supporting the
increased transcription regulation activity in the enriched subtype.We
noticed that 12 out of 13 TFs in the target gene analysis did not show
expression changes of the TFs themselves, indicating a context
dependent transcription regulation among B-ALL subtypes. Among 13

TFs, E2F6 was identified as specifically enriched in the
ETV6::RUNX1 subtype. This gene plays a crucial role in the control of
the cell cycle and is associated with tumor growth or chemotherapy
sensitivity in a variety of tumors29–31. Concordantly, significantly higher
transcription of both E2F6 and its target genes was observed in the
ETV6::RUNX1 B-ALL subtype comparedwith other subtypes (Fig. 2f, g).
These results provided further insights into the subtype specific
transcription regulation in B-ALL.

Allele-specific open chromatin in B-ALL is associated with
leukemia
A total of 44 samples (including 13 diagnosis samples and 31 relapse
samples) from 32 B-ALL patients with paired ATAC-seq and WGS data
were analyzed for allele-specific open chromatin (ASOC). A median of
3616 ASOC regions were identified per sample (Supplementary
Data 8A). ASOC regions accounted for a median of 14.39% of ACRs
genome wide, which was significantly less than the biallelic open
chromatin (BiOC) regions (median 85.61%, p < 2.2e−16, Wilcoxon test,
Fig. 3a). Moreover, fewer ASOC regions were found in active
transcription-related regions (TssA, Tx, and Enh) comparedwith BiOCs
(p < 2.2e−16, Fisher’s exact test, Fig. 3b). Further analysis showed that
ASOC ACRs tended to be closer together compared with BiOC ACRs
(Supplementary Fig. 6a) and more likely to be grouped into a single
topological associated domain (TAD, Supplementary Fig. 6b). These
data suggested that the regulation of chromatin accessibility between
alleles fitted into the regulation of the three-dimensional genome
architecture.

We next investigated chromatin accessibility using leukemia-
associated single nucleotide polymorphisms (SNPs) from EpiMap32. A
total of 46 leukemia-related SNPs with imbalanced chromatin acces-
sibility between alleles were found in ASOC regions (Supplementary
Data 8B), including 7 SNPs present in at least 5 samples (Fig. 3c, d).
Among these top recurrent SNPswas rs7090445, whichwaspreviously
predicted to reduce the transcription of ARID5B by disrupting RUNX3
binding with the C-allele33. Interestingly, we observed that the chro-
matin accessibility of the T-allele of this locus was significantly higher
than that of the C-allele in 14 out of 21 (66.67%) of B-ALL samples with
heterozygous C/T alleles, consistent with the role of the C-allele in
leukemia. Another recurrent SNP was rs13401811, with G-allele pre-
viously reported as the risk allele in chronic lymphocytic leukemia.
ATAC-seq data showed that the G-allele had significantly higher chro-
matin accessibility than the A-allele in 8 out of 9 (88.89%) B-ALL sam-
ples with the G/A genotype. It is noteworthy that rs13401811 is located
~262 kb upstream of BCL2L11, which encodes a pro-apoptotic protein
that is involved in ALL drug resistance20. These results indicated that
chromatin accessibility is associatedwith the functionof thesedisease-
associated SNPs.

In addition, we identified 556 COSMIC genes in the neighborhood
of these ASOC regions (Methods, Supplementary Data 8C). Notably,

Fig. 1 | The patterns of chromatin accessibility in pediatric B-ALL. aMulti-omics
data for 61 patients analyzed in this study. Diagnosis (D) and relapse (R) samples
from 11 B-ALL subtypes were analyzed, including hyperdiploidy, ETV6::RUNX1,
TCF3::PBX1, KMT2A, BCR::ABL1, BCR::ABL1-like, ZNF384, PAX5alt, TCF3::HLF,
hypodiploidy and MEF2D. Cases with unclassified subtype were grouped into
B-other. NA not available. b The percentages of accessible chromatin regions
(ACRs) located in indicated genome regions of B-ALL samples (n = 75). c Venn
diagram shows the overlap between ACRs detected in B-ALL and B-cell progenitors
(pre-pro B cells and pro B cells). d Violin plot presents the recurrence of ACRs in
B-ALLs. The ACRs were grouped into four groups as showed in (c). Significant
difference was observed among the four groups (p < 2.2e−16, Kruskal–Wallis test).
Box plots show the median number as centers, with upper and lower hinges
represent 75th and 25th percentile, and whiskers extend to largest and smallest
values no more than 1.5*IQR. (B-ALL only: n = 585,248; B-ALL\Pre-pro B overlap:
n = 26,385; B-ALL\ProBoverlap; B-ALL\Pre-proB\ProBoverlap:n = 103,534).eGene

set enrichment analysis shows that 2332protein coding genes regulatedby 252,028
higher accessible ACRs in B-ALL were enriched in tumor associated biological
processes. Only termswith FDR<0.001 are displayed. The node size represents the
enriched FDR values, and the edge represents overlap between two gene sets.
Clusters of functionally related categories were manually grouped and labeled in
different colors. fWiggle plot shows regions with increased chromatin accessibility
in B-ALLs as compared to B-cell progenitors. ACRs with ±1 kb centered the TSS of
representative cosmic genes are showed.Only subtypeswithmore than three cases
are included and two samples are randomly selected and showed for each subtype.
The ACRpresent higher accessible in B-ALL upstreamTSS of IL7R are highlighted in
light-yellow. gWiggle plot shows the chromatin accessibility in the blood enhancer
cluster (BENC) region (chr8:126,712,193–128,412,193). The positions of enhancers
(A–I) are indicated in the BENC track on the top. The tracks showing ACRs in this
region are organized as in (f). Two enhancers from the BENC cluster showing
increased accessibility in B-ALLs are highlighted in light-yellow.
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allele-specific transcription was simultaneously detected in some of
these potential oncogenes, such as MECOM and HOXA9 (Supplemen-
tary Fig. 6c). Broad imbalanced chromatin accessibility between alleles
was observed for both genes, suggesting ASOCwas involved in the cis-
activation of these genes.

Chromatin accessibility changes in response to B-ALL treatment
We analyzed the ACRs with differential accessibility (|log2FC| > 1 and
false discovery rate [FDR] <0.05) between diagnosis and relapse for

each subtype (Supplementary Data 9). Only subtypes with more than
five diagnosis or relapse samples were included in this analysis. A
median of 945 differential ACRs in each subtype were identified, ran-
ging from 268 to 4072 (Fig. 4a). Notably, only 1.54% (91 out of 5911) of
ACRs with higher accessibility in the relapse samples (relapse-high)
and0.14% (2 out of 1423)with lower accessibility in the relapse samples
(relapse-low) were shared between two or more subtypes, indicating
significant heterogeneity in chromatin accessibility changes during
treatment among different subtypes (Fig. 4b).
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Fig. 2 | Subtype-specific chromatin accessibility in B-ALL. a The t-distributed
stochastic neighbor embedding (t-SNE) plot showing the clustering of 75 B-ALL
samples based on recurrent c-ACRs with top 10% highest variance. b Heatmap of
Pearson correlation coefficients shows the inter-sample correlation of chromatin
accessibility based on all recurrent ACRs. c Heatmaps of Pearson correlation
coefficients based on ACRs in Enh regions (left) and ACRs in BivR regions (right)
showing the inter-sample similarity of chromatin accessibility.dThe accessibility of
17,981 subtype-specific ACRs in 64 B-ALL samples is shown in heatmap. The x axis
presents 64 B-ALL samples and y axis displays subtype-specific ACRs.
e Unsupervised clustering of 109 transcription factors (TF) based on their enrich-
ment in each subtype, as labeled on the right of this plot. f Differential expression
analysis of subtype enriched TFs in B-ALL. The TFs are colored according to the
clusters in (e). For each TF, statistical analysis was performed to test the expression

difference between B-ALLs of the enriched subgroup versus the others. Each dot
represents an individual TF. Horizontal dashed line represents p =0.05 and vertical
dashed line represents fold change (FC) = 1.2. Gene symbols of TFs with p <0.05
(one-sided Wilcoxon test) and FC > 1.2 are showed. g Expression analysis of target
genes of subtype enriched TFs. Only TFs with binding motif in gene promoter
region (TSS± 1 kb) were included. Differential expression analysis was performed
for each target gene between B-ALLs grouped upon the enriched subgroups of TF.
The median fold change (FC) of all target genes regulated by the individual TF is
showed on x axes. Each dot represents a group of target genes for an individual TF.
Horizontal dashed line represents p =0.05 and vertical dashed line represents fold
change (FC) = 1.2. Gene symbols of TF with target genes satisfied geometric mean
p <0.05 (one-sided Wilcoxon test for each target gene) and FC > 1.2 are labeled.

Fig. 3 | The allele-specific open chromatin (ASOC) regions in B-ALL. a Violin plot
showing the percentage of ASOC regions and biallelic open chromatin (BiOC)
regions in each B-ALL sample. (32 samples, one sample per patient, p < 2.2e−16,
two-sidedWilcoxon test). Box plots show themedian number as centers, the upper
and lower hinges represent 75th and 25th percentile, andwhiskers extend to largest
and smallest values no more than 1.5*IQR. b Bar plot showing the proportion of
ASOC and BiOC regions that are found in different genomic regions. Data are
presented asmean values ± SD. (32 samples, one sample per patient). c Scatter plot
presenting the recurrent ASOCs linked to leukemia-associated SNPs. Each dot

represents oneASOC-SNPpair in an individual B-ALL sample, and the size of the dot
represents the number of samples carrying the ASOC-SNP. The significance of
different chromatin accessibility between two alleles is shown on the y axes as
−log10(p value) (Methods) with dashed line represent a p value of 0.05. The dif-
ferenceof chromatin accessibility between twoalleles is shown as absolute valueon
x axes, with dashed line represent a difference of 0.2 (Methods). Different SNPs are
represented by different colors. (44 samples of 32 patients). d The table displays
detailed information about the seven SNPs shown in (c).
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Fig. 4 | Chromatin accessibility alterations in relapsed B-ALL patients. a The
number of differential ACRs between tumors from relapsed and diagnosed B-ALL
patients (|log2FC| > 1 and FDR<0.05). Relapse-high ACRs and Relapse-low ACRs
represent ACRs with increased and decreased accessibility in relapse tumor cells,
respectively. b Heterogeneity of diagnosis-relapse differential ACRs among B-ALL
subtypes. The heatmap in the middle shows the number of ACRs shared between
subtypes, with the number of relapse-high ACRs shown on the upper right and
number of relapse-low ACRs on the bottom left. The bar plots present the per-
centageof subtype-specific relapse-lowACRs (left) and relapse-highACRs (right) in
each subtype. c Pie chart showing the percentage of shared and subtype-specific

target genes regulated by diagnosis-relapse differential ACRs predicted by ACR-to-
gene links. d Upset plot showing the target genes shared across subtypes.
e Enrichment analysis shows that target genes of differential ACRs are enriched for
cell adhesion-related biological process terms. The top six terms with the most
significant FDR are listed. f Target genes of diagnosis-relapse differential ACRs are
enriched in drug-response genes. Significant enrichment (p <0.05) was deter-
mined by two-sided Fisher exact test. The horizontal axis shows the enrichment
analysis results for target genes associatedwith diagnosis-relapse differential ACRs
for all subtypes combined. The vertical axis displays the enrichment analysis
results for individual subtypes.
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To obtain the target genes of these differential ACRs that are
dysregulated during relapse, we performed ACR-to-gene predictions
on a total of 52 B-ALL samples with paired ATAC-seq and RNA-seq data
(Methods) and defined 116,307ACR-gene correlations (Supplementary
Data 10). With this, a total of 1259 genes were identified as being
potentially targeted by the ACRs dysregulated during relapse (Sup-
plementary Data 11). As expected, significant heterogeneity was
observed, with only 13.98% (176 out of 1259) of target genes shared
between any two subtypes (Fig. 4c, d). Enrichment analysis suggested
that these target genes were associated with cell adhesion-related
biological processes (Fig. 4e), suggesting potential dysregulated
interaction of leukemia cells and mesenchymal stromal cells in the
bone marrow microenvironment, which was previously shown to be
associated with chemoresistance of leukemia cells34,35.

On this basis, we integrated the drug susceptibility data from
CTD^236 to investigate whether the observed dysregulation of genes in
relapsed B-ALL patients was associated with clinical treatment. Firstly,
we determined the association between gene transcription data from
11 B-ALL cell lines (collected from the CCLE project) with the cell
response to 8 drugs commonly used in B-ALL treatment, including
Cytarabine andMethotrexate. This analysis resulted in a total of 14,680
drug-gene pairs representing the transcriptional alterations associated
with drug response (Methods and Supplementary Data 12). Interest-
ingly, the potential target genes regulated by the relapse associated
ACRs were significantly correlated with drug treatments, including
Imatinib (p =0.0029, Fisher’s exact test) and Etoposide (p = 0.0184,
Fisher’s exact test) (Fig. 4f). Similar results were observed when we
performed the analysis for drug-gene pairs identified within individual
B-ALL subtypes. Target genes of differential ACRs of BCR::ABL1\B-
CR::ABL1-like subtype were significantly correlated with Imatinib
(p = 0.0047, Fisher’s exact test) and Dasatinib (p = 0.0178, Fisher’s
exact test) (Fig. 4f), both of which are tyrosine kinase inhibitors used in
BCR::ABL1\BCR::ABL1-like B-ALL treatment, whereas a significant
association with Doxorubicin was observed for the ETV6::
RUNX1 subtype (p =0.0167, Fisher’s exact test) (Fig. 4f). These results
indicated that the treatment could reshape chromatin accessibility to
impact gene transcription regulation during B-ALL relapse.

Chromatin accessibility features affect patient outcomes
We analyzed relapse-free survival (RFS) to investigate how chromatin
accessibility correlates with B-ALL prognosis. ATAC-seq data for 42
patients with relapsed B-ALL treated with CCCG-ALL-2009 (n = 37) and
CCCG-ALL-2015 (n = 5) protocols were analyzed. No significant differ-
ence of patients’ prognosis was observed between the two protocols
(Supplementary Fig. 7a). A total of 70,573 (11.29%) RFS-related ACRs
(FDR<0.05) out of 625,287 recurrent c-ACRs were identified (Supple-
mentary Data 13). Potential targets of these RFS-related ACRs as pre-
dicted from ACR-to-gene links were enriched in cell cycle and
leukocyte differentiation-associated biological processes (Fig. 5a),
suggesting the regulation of these ACRs on the proliferation and dif-
ferentiation of B-ALL blasts. Unsupervised clustering of the 42 relapse
B-ALLpatients using theRFS-relatedACRs resulted in twoB-ALLgroups
(Group A and Group B) with distinct times to relapse and prognoses
(Fig. 5b, c). Concordant results were observed with different clustering
methods (Supplementary Fig. 7b). Interestingly, a similar pattern was
observed for the matched diagnosis samples (Supplementary Fig. 7c).
To validate this observation,we analyzeddata fromtheTherapeutically
Applicable Research to Generate Effective Treatments (TARGET)
project37. We focused on the RFS-associated ACRs with higher acces-
sibility in B-ALLs from Group B (n = 10,975, |log2FC| > 1 and FDR <0.05)
and found 1827 potential target genes from ACR-to-gene association
analysis (Supplementary Data 14). With these genes, 252 B-ALL samples
from TARGET project with prognosis information (48 patients were
diagnosis-relapse paired) were analyzed and grouped into 3 clusters
(Supplementary Fig. 7d and Supplementary Data 15). Survival analysis

showed significant differences in both event-free survival (EFS) and
overall survival (OS) between the clusters (Supplementary Fig. 7e).
Patients showed the highest expression of the target genes showed the
worst prognosis (Cluster 3). This result served as independent valida-
tion that aberrations in chromatin accessibility reflected patient
prognosis.

Consistent with a previous report38, Group A patients were enri-
ched in the ETV6::RUNX1 and hyperdiploidy subtypes and showed
relatively good prognoses, while Group B patients were mostly
KMT2A and BCR::ABL1\BCR:ABL1-like subtypes and showed inferior
prognoses (Fig. 5b, c). Notably, although TCF3::PBX1 B-ALL patients
are generally considered low risk39, all four TCF3::PBX1 cases in
this analysiswere groupedwith theKMT2A andBCR::ABL1\BCR::ABL1-
like cases in Group B and relapsed within 22 months from diagnosis
(Fig. 5b). Concordantly, 19 out of 21 TCF3::PBX1 B-ALLs of TARGET
project were grouped into Cluster3 with worst prognosis in above-
mentioned analysis (Supplementary Data 15). Interestingly,
hyperdiploidy B-ALL cases were separated into two different groups
(Fig. 5b). Three relapsed hyperdiploidy cases (A118R, A174R, and
A233R) were clustered in Group B with KMT2A and BCR-
ABL1\BCR::ABL1-like and showed inferior RFS (Fig. 5b, c). A total of
7566 differential ACRswere identified between the two hyperdiploidy
subgroups (|log2FC| > 1 and FDR < 0.05) (Fig. 5d and Supplementary
Data 16). Among these 3156 ACRs showed increased chromatin
accessibility in hyperdiploidy cases with inferior RFS in Group B. We
obtained 603 potential target genes of these ACRs from the results of
ACR-to-gene links. Further analysis showed that these target genes
mimic an expression feature of stem cells and myeloid progenitors,
including megakaryocyte-erythrocyte progenitors and granulocyte-
macrophage progenitors (Fig. 5e). Functionally, the target genes were
found to be enriched in migration/adhesion/locomotion-related
categories, which are associatedwith drug resistance34. This indicated
that the three hyperdiploidy B-ALL patients showed increased lineage
plasticity with more myeloid-like and inferior treatment responses
compared with other hyperdiploidy B-ALL patients. We further ana-
lyzed this ACR pattern associated with inferior prognosis of hyper-
diploidy B-ALLs from TARGET cohort. Forty-three hyperdiploidy
samples (7 patients were diagnosis-relapse paired) were clustered
into 3 clusters based on the 603 target genes as described above
(Fig. 5f). Cluster 3, which consisted of five samples collected from
three patients, showed the highest expression of the target genes
representing the high-risk group. Accordingly, patients of Cluster 3
had the worst prognosis in terms of both EFS and OS (Fig. 5g), sup-
porting our observations. However, the number of patients in this
analysis was limited and the aberrant ACRs remained further inves-
tigation with a large cohort.

Discussion
Although the regulatory elements in human genome are well-
recognized to play important roles in gene transcription
regulation15,40, the understanding of their function and aberrations
in diseases are lagging genome sequencing analysis. Transcription
dysregulation is one of the key aberrations in pediatric leukemia
given that ancestral fusions in tumor cells usually involve core TF
genes in hematopoiesis41,42. Analysis of chromatin accessibility in
primary tumors using ATAC-seq has provided important information
linking transcription dysregulation to the genome and expanding the
understanding of genomic and epigenomic evolution in cancer19,43. In
the present study, we depicted the landscape of chromatin accessi-
bility in 61 B-ALL patients using ATAC-seq. By comparing to B-cell
progenitors, we identified a group of ACRswith increased accessibility
in B-ALL with target genes enriched for tumor associated processes
(Fig. 1e), supporting the hypothesis that chromatin accessibility
involved in transcription dysregulation and plays an important role in
this disease.
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We constructed the functional partitioning of genome by ana-
lyzing the public available histone modification data from primary
B-ALL cells (Supplementary Fig. 2b) and use this information to
annotate the accessible chromatin regions in B-ALL. Surprisingly, a
median of 27.95% of ACRs in each individual B-ALL sample were in
Quies regions (Fig. 1b) which were without well-established histone
modifications to date21. Since the functional partitioning of genome
used as reference in this analysis was constructed from only one B-ALL

patient, this observation raised the possibility that histone modifica-
tions were acquired de novo in these regions in individual B-ALL. This
was verified by using H3K27ac ChIP-seq data profiling active enhan-
cers. We showed that H3K27ac modifications indeed overlapped with
Quies ACRs, suggesting the potential regulatory function of these
Quies ACRs in B-ALL. These observations provided evidence of chro-
matin accessibility rewiring in tumorigenesis. However, many Quies
ACRs do not overlap with actively histone modification. The function
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of these regions in B-ALL remains unknown. Recently, novel histone
modifications have been identified, including histone lactylation44 and
serotonylation7 among others. Further investigation of Quies ACRs for
the presence of these emerging histone modifications might provide
more insights into the rewiring of the transcriptional regulatory
landscape in cancer.

Previous studies have identified somatic mutations in a group of
12 genes that are involved in drug-resistant relapse of leukemia5.
However, only 13 out of 32 patients with WGS data in current study
(40.63%) were found to carry these mutations, leaving the molecular
cause unclear for over half of the relapsed B-ALL patients. We inves-
tigated the genome-wide chromatin accessibility of 29 diagnosis and
46 relapse B-ALL cases to tackle this question. Genome-widely, we did
not observe a large proportion of chromatin accessibility changes
between diagnosis and relapse tumor cells, with only 5911 relapse-high
ACRs (0.95% of B-ALL recurrent ACRs) and 1423 relapse-low ACRs
(0.23%) identified. The small number of ACR changed might partially
be due to the high heterogeneity of chromatin accessibility among
B-ALL subtypes, which we showed in this study. Meanwhile, drug
treatment signatures were observed within these differential ACRs.
The genes potentially targeted by these ACRs were significantly asso-
ciated to genes involved in the response to drugs commonly used in
B-ALL treatment, including Doxorubicin and Etoposide (Fig. 4f).
Interestingly, our data showed an association between chromatin
accessibility changes and targeted therapy with tyrosine kinase inhi-
bitors. Significant associations between ACR changes and Dasatinib/
Imatinibwere observed particularly in BCR::ABL1\BCR::ABL1-like B-ALL
samples, in line with the fact that these drugs are widely used for
treating BCR::ABL1\BCR::ABL1-like B-ALL patients in clinic45. In addi-
tion, enrichment of genes involved in the response to Doxorubicin was
only observed for the ETV6::RUNX1 subtype, indicating subtype-
specific response. These data suggest that drug treatment might
reshape the chromatin accessibility landscape of tumor cells. As clonal
evolution is common during leukemia treatment, experiment simul-
taneously analyze the chromatin accessibility and gene mutations at
single cell level for paired diagnosis and relapsed tumors would pro-
vide further information regarding the association between chromatin
accessibility changes during treatment and clonal evolution.

Survival analysis discovered over 70,000 ACRs significantly
associated with RFS. A particularly notable finding was that using RFS-
associated ACRs, B-ALL patients could be clustered into two groups
withdistinctprognoses, indicating the effectof chromatin accessibility
regulation on tumor progression (Fig. 5b, c and Supplementary
Fig. 7b). Surprisingly, B-ALL patients of hyperdiploidy subtype, which
is usually associated with good prognosis46, were split into two groups
and showed distinct prognoses (Fig. 5b, c). This observation was fur-
ther validated independently in the TARGETB-ALL cohort by analyzing
the potential target genes dysregulated by these RFS-associated ACRs
(Fig. 5f, g). As hyperdiploidy B-ALL accounts for over 30% of B-ALL
cases, these findings might lead to the identification of a number of
high-risk B-ALL patients in a relatively low-risk subgroup. Precise risk

classification taking this chromatin accessibility pattern into account
would ensure that patients receive proper treatment and further
improve the prognosis of B-ALL patients.

The genes potentially targeted by the differential ACRs with
increased accessibility in the hyperdiploidy B-ALL patients with infer-
ior prognoses showed stem cell and myeloid progenitor-like sig-
natures. These data indicated an increased potential of lineage
plasticity for hyperdiploidy B-ALL patients in this group. Lineage
plasticity in cancer refers to the lineage transition of cancer cells under
selective pressure such as clinical treatment. This phenomenon has
been described in several recent studies and is associated with drug
resistance47,48, including prostate cancer49 and lung cancer50 among
others. Our data here suggested that lineage plasticity also exists in
B-ALL and is associated with treatment resistance. The leukemia cells
underwent a transition toward being more stem-cell like under the
pressure of treatment and resulted with alternated extracellular bone
marrow microenvironment dependencies and intracellular transcrip-
tion regulatory circuit as showed in Fig. 5e, leading to treatment
resistance and relapse. Importantly, this transitionwas sharedbetween
diagnosis and relapse tumor cells, providing the opportunity to pre-
dict early relapse by analyzing diagnosis samples and develop alter-
native therapeutic strategies accordingly.

We showed that there is high heterogeneity in chromatin acces-
sibility in B-ALL patients, which requires the investigation of more
cases in the future. In addition, all the cases investigated here were
relapsed cases resulting in the chromatin accessibility profiles being
biased toward high-risk B-ALL. Recently, there was one pre-published
study profiling the chromatin accessibility of B-ALL51. A more com-
prehensive analysis that combines these data and includes more
standard risk B-ALL patients would provide further evidence of the
chromatin accessibility aberration in B-ALL. Nevertheless, we have
presented the landscape of chromatin accessibility in pediatric B-ALL
and characterized ACRs specifically enriched in B-ALL patients and in
different molecular subtypes. More importantly, we showed the
occurrence of chromatin remodeling under drug treatments and
identified the chromatin accessibility signatures associated with early
relapse. These results expand our understanding of genomic aberra-
tions behind B-ALL and highlight the importance of epigenomic fea-
tures for risk stratification of this malignancy.

Methods
Patient samples
Bone marrow samples were obtained from 61 relapsed B-ALL patients
treated through 2007–2019 in Shanghai Children’s Medical Center
(SCMC). Patients were treated under ALL-SCMC-2005 protocol (n = 4),
ALL-SCMC-2009 protocol (n = 46) and ALL-SCMC-2015 protocol
(n = 11, Supplementary Data 1). Among the patients, 17 were diagnosed
under the age of 3 years, 30 were between the ages of 3–10 years, and
the remaining 14 patients were 10–15 years. This study was approved
by the Shanghai Children’s Medical Center Institutional Review Board.
Informedwritten consents were obtained fromparents for all patients.

Fig. 5 | Chromatin accessibility features associated with B-ALL prognosis.
a Gene set enrichment analysis shows that 3976 target genes regulated by 70,573
RFS-related ACRs are enriched for hematopoietic development and cell cycle-
associated biological process terms. The categories with the most significant FDR
values are listed and are sorted by FDR values in reverse order. b T-SNE plot
showing the unsupervised clustering of 42 relapse B-ALL samples based on the top
10%most significant RFS-related ACRs. B-ALL samples were clustered into Group A
and Group B. c The relapse-free survival rate (RFS, n = 42) and overall survival rate
(OS, n = 26) estimates for B-ALL samples of Group A and Group B. (Log-rank test,
p = 3.778e−10 for RFS and p = 5.585e−7 for OS, the error bands indicate 95% con-
fidence intervals, and the dash line indicate the median survival time).
d Unsupervised clustering based on the CPM of differential ACRs between three
hyperdiploidy cases inGroupB andnine hyperdiploidy cases inGroupA.eGene set

enrichment analysis indicates that 603 target genes regulated by 3156 ACRs up-
regulated in the hyperdiploidy cases in Group B were enriched for stem cell- and
myeloid progenitor-associated gene expression signatures (left panel) and cell
adhesion/migration-associated biological process terms (right panel). The top
categorieswith themost significant FDRvalues are listed. fUnsupervised clustering
analysis of 43 hyperdiploidy cases from the TARGET project based on the expres-
sion of 603 target genes regulated by 3156 ACRs up-regulated in Group B. g Event-
free survival rate (EFS, n = 35) and overall survival rate (OS, n = 36) estimates for
hyperdiploidy B-ALL samples from the TARGETproject. Cases in Cluster3with high
expression of the target genes and mimicking the hyperdiploidy B-ALL cases in
GroupBhadworse outcomes. (Log-rank test, EFSp =0.0012 andOSp =0.0002, the
error bands indicate 95% confidence intervals, and the dash line indicate the
median survival time).
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Subtype classification
The molecular subtypes of B-ALLs were classified by combining the
results of following analysis: (1) gene expression pattern-based sub-
type classification byour in-housedeveloped recurrent neural network
(RNN) based model (Cui B., Sun H., Wang H., Zhao S., Rao J., Wu W.,
Wang R., Fan R., Li B., Shen S., Liu Y., manuscript in preparation), (2)
fusions, structure variations and drivermutations detected in RNA-seq
and/orwhole genome sequencing data, (3) the CNV results fromwhole
genome sequencing and RNA-seq analysis, (4) karyotyping from clin-
ical test. For each individual case, results from all above-mentioned
analyses were collected and manually curated for subtype classifica-
tion. The resulted molecular subtype will be cross validated for the
cases with both diagnosis and relapsed samples analyzed.

Enrichment of high viability leukemia cells with FACS
The cryopreserved leukemia cells were thawed in 37 °Cwater bath and
transferred to RPMI 1640 culture medium. Cell clumps after cen-
trifugation were treated with DNaseI (Sigma, DN25) to digest the DNA
released by dead cells. The LIVE/DEAD™ Fixable Dead Cell Stain Kits
(Invitrogen, L23101) was used to distinguish living cells, and lineage-
associated antibodies anti-human CD19 conjugated with APC
(Bioscience,17-0199-42), anti-human CD10 conjugated with PECY7
(Biolegend, 312214) and anti-human CD45 conjugated with APC-CY7
(Biolegend, 304014) were selected to enrich tumor cells according to
the immunophenotyping reports of each patient at diagnosis (Sup-
plementary Data 2). After staining for 30min in dark at 4 °C, living
leukemia cells were sorted by FACS (Beckman, MoFlo XDP) for
downstream experiments.

ATAC-seq
ATAC-seq was performed according to the methods as previously
reported18. To prepare nuclei, wewashed 50,000 sorted cells with cold
1x PBS and centrifugation at 500 × g for 5min. The cells were resus-
pended with 50μl cold ATAC-resuspension buffer (RSB) (10mM Tris-
HCl PH 7.4, 10mM NaCl, 3mM MgCl2 in nuclease free water) con-
taining 0.1% NP40, 0.1% Tween-20 and 0.01% Digitonin, followed by
lysis on ice for 10min. After lysis, we added 1ml RSB containing 0.1%
Tween-20, spunnuclei at 500 × g for 10min. Immediately following the
nuclei prep, the nuclei pellet was resuspended in the transposase
reaction mix [10μl TruePrep Tagment Buffer L (Vazyme, TD501), 5μl
TruePrep Tagment Enzyme (Vazyme, TD501), 16.5μl PBS, 0.5μl 1%
digitonin, 0.5μl 10% Tween-20 and 17.5μl nuclease free water]. The
transposition was incubated at 37 °C for 30min in a thermomixer with
1000 RPM mixing. DNA from transposition reaction was purified with
DNA Clean and Concentrator-5 Kit (Zymo, D4014) and eluted in 21μl
elution buffer. The eluted DNA was amplified with TruePrep DNA
Library Prep Kit V2 for Illumina (Vazyme, TD501) and TruePrep Index
Kit V2 for Illumina (Vazyme, TD202). SPRI size selectionwasperformed
with VAHTS DNA Clean Beads (Vazyme, N411) to exclude fragments
larger than 1200 bp. All libraries were sequenced using paired-end,
dual-index sequencing on Illumina NovaSeq 6000.

RNA-seq
Total RNA was extracted from fresh frozen tumor cells with TRIzol.
RNA integrity was assessed using Agilent Bioanalyzer 2100 system and
RIN value (>6) was request for library construction. Ribo-Zero strand-
specific library was adopted for samples with a total mass greater than
2μg, and mRNA-seq library was adopted for other samples (Supple-
mentary Data 1). For strand-specific library construction, ribosome
RNA was removed from total RNA by NEBNext rRNA Depletion Kit
(NEB, #E6310). For mRNA-seq library, poly-A mRNA was purified from
total RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module
(NEB #E7490). Sequencing libraries were generated using NEBNext®
UltraTM RNA Library Prep Kit for Illumina (NEB, #E7530) following
manufacturer’s recommendations and index codes were added to

attribute sequences to each sample. The purified cDNA libraries were
sequenced on the Illumina NovaSeq 6000 system with PE-150 bp.

ChIP-seq
In total, 3 × 106 leukemia cells sorted by FACs in 400μl PBS were fixed
with 1% formaldehyde (CST, 12606) at roomtemperature for 10minon
a rotator, and 0.125M Glycine was added to stop the cross-linking
reaction for 5min. The cells were resuspended in cold lysis buffer
(10mM Tris-HCl pH 7.5, 10mM NaCl, 3mM MgCl2 and 0.5% NP-40)
after washing and rotated 10min at 4 °C. Chromatin pellets obtained
by centrifugation at 1700 × g for 5min were washed twice with 300μl
sonication buffer [10mM Tris-HCl pH 8.0, 1mM EDTA pH 8.0, 0.1%
SDS, 3μl Protease/Phosphatase Inhibitor Cocktail (CST, 5872)] and
resuspended with 120μl sonication buffer in microTUBE, followed by
sonicationwith CovarisM220 sonicator for 15min at 7 °C until the size
of most fragments was in the range of 200–700 bp. Sonicated chro-
matin was rotated at 4 °C for 2 h with 5μl of anti-histone H3K27ac
antibody (Abcam, 4729), 2 μl spike-in antibody (Active motif, 61686)
and 5μl spike-in chromatin (Active motif, 53083). Dynabeads
Protein G (Life Technologies, 10003D) was added followed by incu-
bation at 4 °C overnight on a rotator. Beads were washed twice with
cold RIPA buffer (50mM Tris-Cl PH = 7.5, 300mMNaCl, 1.0% Triton X-
100, 0.5% sodium deoxycholate and 0.1% SDS) and additional three
times with cold LiCl washing buffer (100mMTris-HCl pH 7.5, 500mM
LiCl, 1% NP-40 and 1% sodium Deoxycholate). Chromatin precipitated
was then incubated with elution buffer (50mM Tris-Cl PH 7.5, 10mM
EDTA, 0.1% SDS, 200mM NaCl) containing 2mg/ml Proteinase K at
65 °C overnight, to revert formaldehyde cross-linking. Finally, the
ChIPed DNA fragments were purified using a DNA Clean and
Concentrator-5 Kit (Zymo, D4014) and sent for high-throughput
sequencing at Novogene.

ATAC-seq data processing
ATAC-seq data analysis was performed as previous described18. In
brief, FastQ Screen52 (v0.13.0) and FastQC (v0.11.9, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) were used for quality
control of raw sequencing data, and the sequence adapter was trimmed.
Bowtie253 (v2.4.1) was used to remove prealignment reads (the mito-
chondrial genome,humanalpha satellite repeats, humanAlu repeats and
human ribosomalDNA repeats) withparameters “-k 1 -D 20 -R 3 -N 1 -L 20
-I S,1,0.50 -X 2000 --rg-id”. Then, parameters “--very-sensitive -X 2000
--rg-id”wasused toalign reads to the referencegenomeofhuman (hg19).
Uniquelymapped readswere extracted by SAMtools54 (v1.7) andmarked
duplicate with MarkDuplicates in Picard (v2.22.9, http://broadinstitute.
github.io/picard). SAMtools was used to merge bam files of technical
replicates for each sample. MACS255 (v2.2.6) was used to call accessible
chromatin regions (ACRs) with parameters “-f BAM -g hs --nomodel
--shift 100 --extsize 200 -B -q 0.05 --nolambda --SPMR --call-summits”.

ATAC-seq quality control
To ensure high quality of ATAC-seq data, we performedquality control
at each analytical level. Profiles of four samples (A424R, A485R, A429R
and A357R) were not included in analysis as the percentage of living
cells was less than 10% and the percentage of mapping reads was less
than 20,000,000. A total of 140profiles from75 samples of 59 patients
were included for further analysis.

Combination of ACRs on different levels
We extended 250bp upstream and downstream from peak summit to
get the ACR. ACRs were combined as previously reported19 to get the
sample level ACR. Briefly, ACRs were sorted by significance [−log10(p
value)]. For the overlapped ACRs, only the most significant ACR was
kept. ACRs of diagnosis and relapse sample from the same patient
were further combined for the patient level ACRs (p-ACR). Briefly, an
ACR score [−log10(p value)] was calculated for each sample level ACRs
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and normalized by “score permillion” in each sample. Twonormalized
ACR sets were then combined and re-sorted by the normalized ACR
scores. Then for each most significant ACR, any less significant ACRs
that overlapped with it were removed, resulting with the most sig-
nificant ACRs as patient level ACRs. For the 13 diagnosis-only patients
and 30 relapse-only patients, the sample level ACRs were taken as
patient level ACRs. For the cohort level ACRs, the p-ACR of 59 patients
were normalized individually and combined following a same proce-
dure as described above. The final 758,738 ACRs were B-ALL ACRs on
cohort level (c-ACR). In order to estimate the ACR expression in each
sample, bam files were converted to bed files, and the read coverage
for each ACR in each sample were calculated by BEDTools56 (v2.29.2).
The count of final 758,738 ACRs in 75 samples were used to calculate
the CPM (count-per-million) by edgeR package57 (v3.32.1). Only ACRs
with log2(CPM) >0 in at least 2 samples were kept for further analysis
(n = 625,287).

Annotation of accessible chromatin regions
ChIP-seq data of six histone modification markers (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) and cor-
responding input data were downloaded from Blueprint Epigenome
Consortium (http://blueprint-data.bsc.es/#!/, Donor ID: S017E3). FastQ
Screen (v0.13.0) and FastQC (v0.11.9) was used for quality control of
raw sequencing data. Burrows-Wheeler Aligner (v0.7.17-r1188) was
used for mapping the reads to human genome (hg19). Uniquely
mapped reads were extracted and PCR replicates were removed in
bam files by SAMtools54 (v1.7). ChromHMM states21 was used to
annotate whole genome into different states. Firstly, bam files were
used as input for BinarizeBam function with parameters: “-f 2 -t out-
putsignaldir -b 200”. The output signals were then used as input for
LearnModel function, with 18 chromatin states. Finally, the chromatin
states of S017E3 were combined into eight states, including TssA, Enh,
BivR, Tx, Het, ZNF/Rpts, ReprPC and Quies. Accessible chromatin
regions in 75 B-ALL samples were annotated with 8 chromatin states
acquired above by BEDTools56 (v2.29.2).

Analysis of chromatin regions with differential accessibility
in B-ALL
For the analysis for the chromatin regions with higher accessibility in
B-ALL compared to B-progenitor cells, we combined ACRs of 75 B-ALL
samples, 3 pre-pro B cells and 3 pro B cells and got themerged 750,197
ACRs for these 81 samples. A total of 643,274 recurrent ACRs (nor-
malized log2(CPM) >0 in at least two samples)were extracted from the
merged ACRs and used to calculate differential accessible regions
between B-ALL (75 samples) and B progenitor cells (6 cells) by
DEseq258 (v1.30.1).

ChIP-seq data processing
FastQ Screen (v0.13.0) and FastQC (v0.11.9) was used for quality con-
trol of raw sequencing data, and sequence adapter was trimmed.
Burrows-Wheeler Aligner (v0.7.17-r1188) was used for mapping the
clean reads to human genome (hg19). Uniquely mapped reads were
extracted and marked duplicates with MarkDuplicates function in
Picard (v2.22.9, http://broadinstitute.github.io/picard). MACS2
(v2.2.6) was used to call H3K27Ac modified regions of each sample
with parameters “-f BAMPE -g hs -B”.

Analysis of Quies ACRs combining ChIP-seq data
To explore the biological function of Quies ACRsdetected inB-ALL, we
classified Quies ACRs into two groups. ACRs overlapped with genes
(extended 5% of gene length in both upstream and downstream) were
considered as gene regions, and all other ACRs were in distal regions.
For the Quies ACRs within gene regions, we combined H3K27ac ChIP-
seq signal to identify genes overlapped with both Quies ACRs and
H3K27ac modification.

Subtype-specific ACRs identification and transcription factor
motif analysis
Subtype-specific ACRs were defined with following criteria: (1) recur-
rent ACRs with normalized log2(CPM) > 1 in more than 50% samples of
the enriched subtype; (2) normalized log2(CPM) > 1 in less than 10%
samples of all other subtypes. The transcription factor motif analysis
was carried out with 101 bp center around ACR summit. The DNA
sequence was extracted with getfasta function in BEDTools (v2.29.2).
FIMO59 (v 5.0.5) was used to scan for enriched transcription factor
motif (FDR <0.05). Only transcription factors with normalized
log2(FPKM)> 1 in at least 1 sample of enriched subtype was included
for further analysis.

Analysis of subtype-enriched transcription factor and target
gene expression
Thepercentage of subtype-specificACRswith specific bindingmotif of
each TF were calculated in individual B-ALL subtype to generate the
heatmap in Fig. 2e. The subtype-enriched TFs were classified into nine
groups based on the cluster result. In addition, TFs’ expression were
compared between B-ALLs in classified groups versus all other groups.
For the analysis of target gene expression, genes with TSS within ±1 kb
of subtype-specific ACRs with the TF bindingmotif were considered as
potential target genes of the TF, and target gene expression in B-ALLs
within classified groups versus all other groups were compared. The
geometric average of p values from all target genes were calculated to
present the statistic difference of target genes for the TF. And the final
fold change was median log2(fold change) of all target genes. p values
of TFs expression and target gene expressionwere calculatedwith one
side Wilcox test.

Allele-specific open chromatin analysis
The balanced transcription model was adapted from our previously
published allele-specific expression identification model cis-X60. The
model was optimized for chromatin accessibility analysis by integrat-
ing chromatin accessibility data and whole genome sequencing data.
To estimate the adapted sigma in Gaussian distribution, we re-trained
the parameters using 10 diagnosis samples, and determined the fol-
lowing function to estimate the adapted sigma: σ Nð Þ= 10:8ð1� e�

N
83Þ,

where N denotes the coverage at the tested genomic position. Firstly,
genomic balanced SNP sites from WGS analysis with MAF between
0.3–0.7 were extracted. Secondly, these SNP sites were further filtered
by ATAC-seq data, only SNP sites within ACRs with coverage ≥8 and
alternative reads ≥3 were included. Thirdly, the accessible signal
between two alleles on these SNP sites was calculated to identify
imbalanced SNP sites (p value < 0.05 and absolute delta ≥0.2) in ACRs.
The p values and delta values of all SNPs resided in each ACR were
combined to score each ACR. ACRs satisfied p value < 0.05 and abso-
lute delta ≥0.2 were considered allelic imbalanced open chromatin
regions. Cosmic genes with FPKM ≥ 1 and located within ±200 kb from
peak of allele-specific open chromatin regions were considered as
potential target genes.

RNA-seq data processing
FastQ Screen (v0.13.0) and FastQC (v0.11.9) were used for quality
control of raw sequencing data. STAR61 (v2.7.1a) was used for mapping
the clean reads to human genome (hg19). HTSeq count62 (v0.11.2) was
used to calculate reads located ineachgene. Fragments PerKilobaseof
exon model per Million mapped fragments (FPKM) was calculated for
gene transcription quantification. CICERO63 was used for fusion ana-
lysis. The copy number alterations and gene fusions from RNA-seq
data were analyzed by RNAseqCNV64 and Arriba65 respectively.

Association analysis linking ACRs to the potential target genes
To reveal the potential correlation between chromatin accessibility
and gene expression, we predicted ACR-to-gene links in 52 samples
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with both ATAC-seq and stranded RNA-seq data. For ACRs used for
prediction, recurrent ACRs (log2(CPM) >0 in at least 2 patients) with
top 75% variance were extracted. Batch effect in RNA-seq data was
corrected followed by renormalization across 52 samples, and only
genes with top 75% variance among 52 samples were remained. The R
package Matrix eQTL66 (v2.3) was used to calculate the correlation
between the expression of genes and ACRs from ATAC-seq. Only cis
regulations were calculated in this analysis with ACR and gene located
within 0.5Mb on the same chromosome. ACR-gene associations with |
beta| > 0.2 and FDR <0.05 were kept in further analysis.

Relapse-related ACRs in B-ALL and association with drug
treatments
Differential ACRs between diagnosis and relapsed B-ALLs were calcu-
lated by DESeq258 (v1.30.1). Genes regulated by these relapse-related
ACRs were predicted with ACR-to-gene links. Genes in response to
B-ALL treatments were established by analyzing drug sensitivity (Area
UnderCurve, AUC) andgene expressiondata of 11 B-ALL cell lines (697,
JM1, KASUMI2, MHHCALL3, MHHCALL4, NALM6, RCHACV, REH,
RS4;11, SEM, SUPB15) from theDepMapdatabase (https://depmap.org/
portal/). Pearson correlation was calculated between gene expression
and the AUC values for 8 drugs (Cyclophosphamide, Cytarabine,
Dasatinib, Dexamethasone, Doxorubicin, Etoposide, Imatinib and
Methotrexate). For drug-gene pairs with |correlation coefficient| > 0.5
and p value < 0.05 were collected as drug related gene sets. Genes
regulated by relapse-related ACRs were enriched for drug related gene
sets by Fisher exact test (p value < 0.05).

Survival analysis
For comparison of OS and EFS between two treatment protocols (ALL-
SCMC-2009 protocol and ALL-SCMC-2015 protocol), patients 118, 228,
273 and 284 with incomplete follow-up information and patients 155,
213, 289, 350 treated with ALL-SCMC-2005 protocol were excluded
and the remaining 53 patients were included for analysis. For analysis
of RFS-related ACRs, among all 75 samples of 59 patients, the samples
A155R, A213R, A289R, A350R collected from four patients 155, 213, 289,
350 treated with ALL-SCMC-2005 protocol were excluded and the
remaining 55 patients (29 diagnosis samples and 42 relapse samples)
were analyzed. For each recurrent ACR, we divided these 42 relapse
samples into two groups according to the median CPM. RFS (relapse-
free survival)wasdefined fromdiagnosis to thefirst relapse event. Log-
rank testwas performed to estimate the difference inRFS rate between
the two groups using Survival packages (v3.2-3) in R (v4.0.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All analysis in this study use reference genome of human (hg19)
(https://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/
Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_
requests/). The raw ATAC-seq, RNA-seq and ChIP-seq data gener-
ated in this study have been deposited in the Genome Sequence
Archive for Human (GSA-human) of the National Genomics Data
Center of China under accession number HRA002815. The data are
available for academic use under controlled access in compliance
with the regulation of the Ministry of Science and Technology
(MOST) of China for the deposit and use of human genomic data.
Access can be obtained by contacting members of the Data Access
Committee (DAC) following the application procedure in GSA. For
detailed guidance, see GSA-Human_Request_Guide_for_Users
(https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_
Request_Guide_for_Users_us.pdf). Data will be available immedi-
ately once the application was approved. The access to the

controlled data will be valid for 1 year from the date approved. The
WGS data for 32 B-ALL patients and RNA-seq data for 29 B-ALLs
were collected from previously published data5. Among these
published data, the RNA-seq data were available in GSA-human of
the National Genomics Data Center of China under accession
number HRA000119, the processed genomic aberrations fromWGS
data used in this study were obtained from authors of the published
paper5 with raw data available in GSA-human under accession
number HRA005668. The publicly available ATAC-seq data of 3 pre-
pro B cells and 3 pro B cells were available in the National Center for
Biotechnology Information’s Gene Expression Omnibus with
accession number GSE122989. The hyperdiploidy B-ALL cases of
TARGET dataset were downloaded from Target website (dbGaP
Sub-study ID phs000464) (https://gdc.cancer.gov/about-data/
publications#/?groups=TARGET-ALL-P2&years=&order=desc).
Only 43 samples with definitive molecular evidence for hyperdi-
ploidy subtype were included in this analysis from TARGET dataset.
ChIP-seq data of 6 histone modification markers (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) were
collected from Blueprint Epigenome Consortium (Donor ID:
S017E3) (https://epigenomesportal.ca/ihec/grid.html?build=2020-
10&assembly=4&institutions=3) and corresponding input raw data
were downloaded from EGA database under accession number
EGAD00001002421. The RNA expression data (DepMap Public
21Q1) and drug responses (Drug sensitivity AUC (CTD^2)) of 11
B-ALL cell lines were downloaded from DepMap database (https://
depmap.org/portal/download). The COSMIC genes (release v87)
were download from COSMIC database (https://cancer.sanger.ac.
uk/cosmic/download).
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