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Inferring bacterial transmission dynamics
using deep sequencing genomic
surveillance data

Madikay Senghore 1,9 , Hannah Read 2,9, Priyali Oza 2, Sarah Johnson2,
Hemanoel Passarelli-Araujo1,3, Bradford P. Taylor1, Stephen Ashley2,
Alex Grey 2, Alanna Callendrello1, Robyn Lee1,4, Matthew R. Goddard 5,6,
Thomas Lumley7, William P. Hanage 1,10 & Siouxsie Wiles 2,8,10

Identifying and interrupting transmission chains is important for controlling
infectious diseases. One way to identify transmission pairs – two hosts in which
infection was transmitted from one to the other – is using the variation of the
pathogen within each single host (within-host variation). However, the role of
such variation in transmission is understudied due to a lack of experimental and
clinical datasets that capture pathogen diversity in both donor and recipient
hosts. In thiswork, we assess the utility of deep-sequenced genomic surveillance
(where genomic regions are sequenced hundreds to thousands of times) using a
mouse transmission model involving controlled spread of the pathogenic bac-
terium Citrobacter rodentium from infected to naïve female animals.We observe
that within-host single nucleotide variants (iSNVs) are maintained over multiple
transmission steps and present a model for inferring the likelihood that a given
pair of sequenced samples are linked by transmission. In this workwe show that,
beyond the presence and absence of within-host variants, differences arising in
the relative abundance of iSNVs (allelic frequency) can infer transmission pairs
moreprecisely.Our approach further highlights the critical role bottlenecksplay
in reserving the within-host diversity during transmission.

The control and/or elimination of infectious diseases depend on
identifying and interrupting transmission chains, particularly during
acute epidemics1–3. While classical epidemiological techniques such as
contact tracing remain integral to the epidemic control toolkit, they
can be supported and strengthened by modern technological
approaches4. For example, genomic analysis can shed light on the
emergence of variants to reconstruct transmission chains in an

epidemic5–9. The increased resolution provided by genomics has
allowed epidemiologists to guide both reactive measures through
retracing the transmission routes in outbreaks6 and proactive mea-
sures after discovering environmental reservoirs10.

Whole genome sequencing is also an essential tool to identify
novel routes of host-to-host transmission11. Using genomics to infer
transmission is limited by the diversity of the circulating pathogen
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population; two genetically similar bacteria may indicate genuine
transmission between hosts, may be a result of different introductions
from a third host, or arise from independent lineages with the samede
novo mutational events (but with increasing numbers of unique dif-
ferences this become extremely improbable). This limit is especially
acute during a rapidly spreading epidemic where transmission occurs
faster than fixed mutations are accumulated.

The next frontier in genomic surveillance ismoving beyond single
nucleotide variants (SNVs) based on consensus sequences to include
further variation uncovered through deep sequencing. This allows the
identification of within-host single nucleotide variants (iSNVs) present
at frequencies lower than the threshold set to define a fixed mutation.
The sharing of iSNVs in two closely related isolates provides extra
information to aid the inference of transmission chains7,12,13. One such
application has been the use of shared iSNVs among cases in a large US
outbreak early in the Delta wave of the SARS-CoV-2 pandemic, which
were used to infer transmission from a vaccinated individual and
resulted in a shift in public health guidance14.

Developing theuseof iSNVs as a complement to existing outbreak
investigation requires us to better understand factors such as the rates
of de novomutation supply, sequencing errors, or artefacts (which can
give rise to spurious signal) and the transmission bottleneck6,8,15 which
modulates how SNVs and iSNVs are passed on from the donor to the
recipient15–17. In practice, it is rarely possible to evaluate these because
we do not directly observe transmission events.

Existing tools such as Quentin18, TransPhylo19 and
Phyloscanner20 can incorporate within-host diversity when inferring
transmission routes, however, they have drawbacks. For example,
TransPhylo uses a time-dated phylogeny that can include multiple
consensus genomes from the same host. However, in an emerging
outbreak, the short timescale may preclude the ability to generate a
time signal. Quentin and Phyloscanner attempt to reconstruct the
within-host network prior to inferring transmission chains: while
Quentin implements graph and network theories, Phyloscanner sub-
samples sequenced reads or bam files to reconstruct sub-
populations within the host. This process of reconstructing the
within-host network can introduce bias that distorts the true dis-
tribution of sub-populations in the host.Moreover, Quentin assumes
that transmission networks are social networks with specific prop-
erties such as power law degree distribution, small diameter, and
presence of hubs. These assumptions can be erroneous in some
cases such as a star like outbreak from a common source. There is a
need for a standard approach that quantifies within host diversity
and leverages this to infer transmission chains and uncover chains of
transmission.

In this work, we take advantage of a bioluminescent derivative
of the mouse enteropathogen Citrobacter rodentium21,22, which we
have previously used to track the bacterium within infected mice
and the environment23–25. We establish ten transmission chains
where C. rodentium ICC180 is controllably spread during mouse co-
housing—that is, we know with certainty who infects whom at each
transmission event. We deep sequence the bacteria shed from each
infected animal at the point of transmission to test the hypothesis
that within-host diversity can be used to offer a quantitativemeasure
showing which isolate pairs are more likely to be linked by trans-
mission events. Moreover, we introduce further methods to aid
identification of transmission pairs by quantifying differences in the
allelic frequency at iSNVs and SNV loci between sample pairs. We
show that iSNVs are maintained over multiple transmission steps
and that differences arising in their relative abundance can infer
transmission pairs more precisely. An important component of our
approach is that the inference is based solely on sequence data,
without incorporating epidemiological or demographic data for
context. Therefore, it can be adapted and used to complement
existing epidemiologic tools.

Results
Observed dynamics of the transmission model in mice
Throughout this study, 220 mice were infected with/exposed to C.
rodentium ICC180 within 10 transmission chains (Fig. 1, Supple-
mentary Data 1). Using linear mixed models, we observed no statis-
tically significant differences in weight losses or gains between
chains or between treatments (with or without nalidixic acid sup-
plementation) (p value > 0.05, Z-statistic 0.61). We monitored
transmission and infection dynamics by measuring viable bacterial
counts (Fig. 2a–c) and bioluminescence from shed stool and by non-
invasive biophotonic imaging (Fig. 2d). We observed no changes in
the anatomical location of the infecting bacteria (Fig. 2d) or in dis-
ease severity, suggesting that the pathogenicity and disease
dynamics of C. rodentium ICC180 remained unchanged over the
course of the experiment. Of the animals who successfully infected
their cage-mates, infections progressed as expected, with a rapid
increase in bacterial numbers within the first few days, followed by a
peak/plateau, and then a decline (Fig. 2a).

We also observed a large variation in the number of viable C.
rodentium ICC180 shed by each animal around the time of trans-
mission (Fig. 2b, Table 1), ranging from 6.83 × 106 colony forming
units (CFU) g−1 stool (W3) to 5.33 × 109 CFU g−1 stool (W2) (Table 1).
Bacterial numbers were lower in animals without nalidixic acid
supplementation, but with low statistical support (Table 2). How-
ever, the transmission chains differed in both viable counts and
in vivo bioluminescence data, suggesting that each chain behaved
independently (Table 3). Three transmission chains (N1, N4, andW1)
experienced no transmission failures, while 11 animals from the
remaining chains failed to become infected (Fig. 2a, Table 1). These
failures most likely reflect differences in animal grooming and
coprophagic behaviour. However, it is worth noting that three of the
animals came from the same cohort of 10 (M7) and may have been
littermates.

Within host variants were transferred over successive trans-
mission steps until they became fixed mutations
Our first objective was to keep track of the rate at which fixed muta-
tions were being accrued over successive transmission steps. Fixed
mutations were observed at 12 individual loci across the genome; the
consensus sequences based on these 12 loci were used to reconstruct a
phylogenetic tree (Fig. 3a). Out of a total of 205 isolates, 203 had an
identical consensus sequence with at least one other isolate, including
126 isolateswith the index strain’s consensus at thebasal branchon the
phylogeny (Fig. 3a). Among these, 41 isolates at the base of the tree had
identical consensus sequences and did not possess any within-host
variants (Fig. 3a). On average, approximately one new within-host
variant (iSNV) emerged with every transmission step, regardless of
whether it went on to fixation, which translated to roughly 44 new
within-host variants per genome per year (Fig. 3b). On average, it took
31 days for an emergent iSNV to reach fixation, either through genetic
drift or selection (median 14 days, range: 7 to 126 days) (Fig. S1), which
translated to 0.09 SNVs becoming fixed for every transmission step or
approximately 5 SNVs per genome per year (Fig. 3c). Across the entire
dataset, the mean pairwise genetic distance between isolates was 1.05
SNVs (Fig. 3d). There was no significant difference in the SNV distance
of transmission pairs whether themice were treatedwith nalidixic acid
or not (Wilcoxon Test, p value = 0.306,W = 4711), however in mice fed
with water the average number of new variants emerging over a
transmission event was significantly higher (Wilcoxon test, p value >
0.01, W = 2031.5).

Typically, loci emerged as iSNVs and fixed over multiple trans-
mission steps, while other iSNVs drifted and eventually faded away
(Fig. 3e). Allelic frequency of loci changed throughout transmission
chains including sweeps by subpopulations, signs of competing sub-
populations and potential linkage between two mutations (Fig. 3e).
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Both stochastic and selective processes will be operating on the var-
ious bacterial lineages, but we cannot disentangle these. We classified
the SNV and iSNVs and there was no statistically significant difference
in the distribution of intergenic region mutations, synonymous
mutations, and non-synonymous mutations between iSNVs and SNVs
(Fisher’s exact testp value = 0.98. SupplementaryData 2). Additionally,
none of the iSNV or SNV loci bore mutations in two publicly available
Citrobacter genomes: EX33 (Accession number: SAMEA782617) and
DBS100 (AccessionPRJNA527323 [https://www.ebi.ac.uk/ena/browser/
view/CP038008]).

Quantifying changes in the allelic frequency can improve iden-
tification of transmission pairs
To distinguish strains beyond the consensus sequence, we recorded
the allelic frequency of each iSNV and SNV and quantified the magni-
tudeof thedifferenceat these sites. The sumof all changes in the allelic
frequency was divided by the number of sites where there was a dif-
ference, and this metric was referred to as the mean change in allelic
frequency (per variable site). We noted that over successive trans-
mission steps, the mean difference in allelic frequency increased with
the number of transmission steps (Fig. 4a).Moreover, linear regression
showed that the mean difference in allelic frequency increases by
~0.02 units per transmission step (p value < 0.001, adjusted
R2 =0.98) (Fig. 4b).

We also explored how predictable transmission pairs were based
on the allelic frequency change and the likelihood of transmission. The
likelihood was obtained by using a Bayesian framework (see Methods
for details). We plotted area under curves (AUC) for three different
metrics (mean allelic frequency change, total allelic frequency change,
and likelihood of transmission) to test how well they performed on
distinguishing transmission pairs from non-transmission pairs when
the cut off was varied. All these three metrics achieved an excellent
performance on distinguishing transmission pairs (AUC >0.89)
(Fig. 4c). Moreover, the mean and total changes in allelic ratio were
lower in transmission pairs (Wilcoxon rank sum test, p value < 0.05,
W = 3536962) (Fig. 4d, e). However, when genome artefacts were not
excluded from the analysis, the model performed significantly worse,
with the AUC decreasing from 0.89 to 0.56.

For each isolate, the inferred transmission likelihoods were used to
identify the isolatesmost likely tobe linkedby transmission. Isolatepairs
within the same transmission chain had a significantly higher transmis-
sion likelihood than isolates from different transmission chains (Wil-
coxon rank sum test, p value <0.05, W=9536430) (Fig. 4f). In addition
to investigating the potential of transmission likelihoods to discriminate
transmission pairs, we also evaluated howwell this metric discriminates
transmission chains, by considering potential donors in transmission
steps before the recipient. For example, when considering mouse M4 in
chain W5, we only considered mice from three prior transmission steps

Fig. 1 | Experimental schematic summarising the establishment of ten mouse-
to-mouse Citrobacter rodentium ICC180 transmission chains. Seed mice were
split into two treatment groups (with nalidixic acid added to the drinking water
every 2–3 days [N] or without [W]) and orally gavaged with ICC180. Seven days
post-gavage, donor animals were transferred to individual cages (N1-5/W1-5) and
cohoused with an uninfected cage-mate (recipient). After 7 days, the donor was

humanely euthanized. The recipient then became the donor for the next step in the
transmission chain by being transferred to a clean cage and cohoused with an
uninfected cage-mate. This cycle was repeated until the end of the experiment.
Infection and transmission dynamics were monitored by measuring luminescence
and viable bacterial counts from stool samples and in vivo by biophotonic imaging.
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across all chains. By using only this assumption, we observed a bimodal
distribution of likelihoodof transmission for individuals within the same
chain and a right-skewed distribution for those on different chains
(Fig. 4g). Therefore, high likelihood values indicate a greater propensity
to detect isolates recovered from the same chain. Moreover, by
restricting to three prior transmission steps, we observed that both
distributions become oppositely asymmetric, increasing the ability to
correctly predict the transmission chain only with the likelihood value
(Fig. 4h). Finally, the smaller the number of transmission steps (time
since infection), the more left-skewed the distribution is (Fig. 4i).

We also explored the potential of using inferred likelihood to
reconstruct transmission chains (Fig. 5) and to identify when the bac-
terium failed to transmit from mouse to mouse (Fig. 5a). The recon-
struction of the network based on likelihood had an excellent
performance at detecting transmission clusters (Fig. 5b). Interestingly,
our model is also capable of identifying transmission at failure points

such as in chain W3 where mouse M4 received the C. rodentium
inoculum by oral gavage (see the break in the W3 strand in Fig. 5, as;
highlighted in Fig. 5b).

To provide added context, we compared the effectiveness of
measuring allelic frequency change versus reporting shared within-
host variants (allelic frequency >0.025) and SNVdistance in predicting
whether two isolates belonged to a transmission pair or the same
transmission cluster. The mean change in allelic frequency out-
performed SNV distance and the number of shared variants in pre-
dicting transmission pairs (AUC: 0.89 vs 0.75 and 0.80, respectively).
Similarly, the mean change in allelic frequency was more effective in
predicting transmission clusters (AUC: 0.82) compared to shared
variants (AUC: 0.76) and SNV distance (AUC: 0.75) when the clusters
were within five transmission steps. However, all threemetrics had low
performance in predicting whether isolates belonged to the same
transmission chain (AUC<0.75).
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Fig. 2 | In vivo infection and transmission dynamics of 10 mouse-to-mouse
Citrobacter rodentium ICC180 transmission chains. a Bacterial shedding in stool
of each animal (as colony forming units [CFU] g−1 stool over 14 days) with alter-
nating colours for each subsequent transmission event (green and grey for animals
in the nalidixic acid treated transmission chains; blue and grey for animals in the
water transmission chains). Animals infected by oral gavage (OG) are shown in
purple, while those who failed to be infected by natural transmission (TF, trans-
mission failure) are shown inpink.bBoxplot of bacterial shedding (asCFUg-1 stool)
at transmission summarised by transmission chain (n = 19-21 biologically indepen-
dent mice per chain). Box plot indicates median (middle line), 25th and 75th

percentile (box), 5th and 95th percentile (whiskers) as well as outliers (single
points); green boxes are from nalidixic acid treated transmission chains and blue
boxes are fromwater transmission chains. cBox plot of the area under curve values
of bacterial shedding (as CFU g−1 stool × time) by transmission chain (n = 20 bio-
logically independentmiceper chain). Boxplot indicatesmedian (middle line), 25th
and 75th percentile (box), 5th and 95th percentile (whiskers) as well as outliers
(single points); green boxes are from nalidixic acid treated transmission chains and
blue boxes are from water transmission chains. d In vivo location of C. rodentium
ICC180 within donor mice (M21) at the time of transmission compared to ancestral
ICC180. EP, effective passage. Source data are provided as a Source Data file.
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Estimating bottleneck sizes and their impact on transmission
inference
To study whether the observed mean changes in allelic frequency
reflected actual differences arising over a transmission step, the bot-
tleneck sizes were estimated using the beta-binomial model for all
transmission steps where the donor had at least two sites with allelic
frequency above the variant calling threshold (0.025). The inferred
bottleneck estimates are consistent with a small bottleneck size (0–50)

(Fig. 6a). Larger bottleneck estimates were associated with wider
confidence intervals and occurred among transmission pairs that had
small changes in allelic frequency between pairs. The range of bottle-
neck estimates varied across transmission chains: chains like W5 and
W4 that had larger mean changes in allelic frequency typically had
smaller bottleneck sizes with shorter confidence intervals (Fig. 6b, c).

Finally, we sought to examine how the size of a transmission
bottleneck affects the accuracy of inferring transmission using chan-
ges in allele frequency by simulating the transmission chains using a
simplified model. Our findings indicated that the change in allelic
frequency performed consistently well when the bottleneck size
exceeded 10, while its effectiveness decreased as the bottleneck size
decreased. Conversely, SNP distanceproved to be a better predictor of
transmission pairs at lower bottleneck sizes, even outperforming
allelic frequency in caseswhere the bottleneck sizewas 1. However, the
accuracy of SNP distance decreased significantly as the bottleneck size
increased (Supplementary Fig. 3). As the rate of de novo emergence of
iSNVs increased, the change in allelic frequency became less effective
at lower bottleneck sizes. Conversely, under strong selection for iSNVs
to become fixed, SNP distance as well as, or outperformed the change
in allelic frequency in certain cases (Supplementary Fig. 3).

Discussion
In investigations of disease outbreaks, there are three levels of linkage
between cases that increase in resolution. The strictest level aims to
identify exact transmission pairs, but it is also important and often
valuable to distinguish between transmission chains. In fact, deter-
mining whether two isolates belong to the same outbreak is essential
to the fundamental principles of outbreak investigation. It should be
noted that achieving the highest level of resolution is likely feasible
with genome sequencing in all cases except for those that have
recently emerged (e.g., early stages of a pandemic). Our research
demonstrates that even among closely related isolates, we can achieve
substantial additional resolution down to the level of transmission
clusters and even individual transmission links. Our method success-
fully established connections between isolates that originated from

Table 1 | Summary of changes in animal weight, bacterial shedding prior to housing, and transmission failures by
transmission chain

Treatment Transmission chain Weight change (%) Viable counts prior to co-housing
(CFUa g−1 stool)

Transmission failures

At peak of infection (Med-
ian [range])

At recovery (Med-
ian [range])

Median (range) Minimum Maximum

Nalidixic Acid N1 −0.80 (12.78) 1.71 (12.76) 1.10 × 109

(2.61 × 109)
5.83 × 107 2.67 × 109 None

N2 −0.96 (11.82) 2.57 (10.93) 6.84 × 108

(2.92 × 109)
9.00 × 106 2.93 × 109 One failure: M5

N3 0.00 (8.61) 3.43 (15.38) 6.25 × 108

(3.94 × 109)
6.33 × 107 4.00 × 109 One failure: M20

N4 −0.29 (11.19) 3.75 (20.40) 7.67 × 108

(2.98 × 109)
1.58 × 107 3.00 × 109 None

N5 1.11 (19.08) 3.17 (12.38) 4.17 × 108

(2.42 × 109)
8.17 × 107 2.50 × 109 Two failures: M7, M15

Water W1 −0.27 (9.22) 2.87 (11.82) 6.50 × 108

(2.29 × 109)
9.00 × 107 2.38 × 109 None

W2 0.00 (6.61) 4.01 (13.20) 7.00 × 108

(5.13 × 109)
2.00 × 108 5.33 × 109 One failure: M6

W3 −0.26 (7.22) 2.79 (8.30) 4.33 × 108

(2.49 × 109)
6.83 × 106 2.50 × 109 Two failures: M3, M7

W4 0.58 (9.40) 3.28 (7.46) 8.33 × 108

(3.32 × 109)
9.83 × 106 3.33 × 109 Two failures: M7, M18

W5 0.54 (12.77) 3.43 (16.59) 7.83 × 108

(2.50 × 109)
8.50 × 107 2.58 × 109 Two failures: M3, M9

Key: aCFU colony forming units.

Table 2 | Average differences in log bacterial measures
(shedding and in vivo bioluminescence) per passage in a
chain and between conditions (with or without nalidixic acid
supplementation)

Bacterial shedding In vivo biolumi-
nescence (pho-
tons s−1)

CFU
g−1 stool

RLU
g−1 stool

Abdo-
men

Rectu-
m

Step in chain Log ratio −0.093 −0.016 −0.024 −0.001

Standard deviation 0.014 0.010 0.008 0.007

Treatment Log ratio −0.379 −0.379 −0.137 −0.264

Standard deviation 0.317 0.256 0.179 0.173

Table 3 | Estimated standard deviation of each measure, on
the log scale, between transmission chains andbetweenmice
within a chain, and the residual standard deviations

Bacterial shedding In vivo biolumines-
cence (photons s−1)

CFU g−1 stool RLU g−1 stool Abdomen Rectum

Mouse 0.22 0.00 0.00 0.00

Chain 0.44 0.37 0.24 0.24

Residual 3.27 2.40 1.37 1.28
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the same initial infected host, which can aid in the early detection of
outbreaks. For instance, the SARS-CoV-2 pandemic has illustrated how
large numbers of subsequent infections can result from transmission
clusters originating from super-spreader events atmass gatherings26,27.
Detecting these transmission clusters early on can significantly limit
the spread of the disease. The next phase of our work will involve
applying our method to datasets obtained from infections in natural
and/or human populations. We will also integrate temporal, clinical,
and epidemiological data with our results to further differentiate
genuine transmission pairs and clusters from false positives.

When appropriately applied in the right context, our approach
has the potential to aid in the early detection and interruption of
transmission clusters. Even in retrospect, shared genetic variation
among hosts can help confirm or refute an outbreak. For instance,

different transmission chains may have distinct implications for the
allocation of public health resources compared to a single large clus-
ter. This is especially relevantwhen the epidemiological characteristics
differ, necessitating different interventions to (1) halt ongoing trans-
mission chains and (2) prevent future ones in affected populations14.
However, to effectively complement epidemiological tools/processes
such as contact tracing, it is important to consider the transmission
route and bottleneck sizes of the specific pathogen under investiga-
tion. Through simulations, we have determined that our method is
limited by very small transmission bottlenecks e.g., five or below. The
bottleneck size, which refers to the number of individual haplotypes
involved in a transmission event, has an inverse relationship with the
change in allelic frequency and typically follows a beta binomial
distribution16,17. A large bottleneck size results in a small change in
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allelic frequency, while a small bottleneck size can lead to a significant
change in allelic frequency, indicating a smaller effective population
size. Consequently, higher fluctuations in allelic frequency reduce the
effectiveness of our method in inferring transmission.

Using shared variants to infer the transmission link between iso-
lates, either directly or indirectly through intermediary transmission
steps, is well supported7,12,13,15,28–30. However, while shared variants
indicate transmission, they do not provide a quantitative measure of
who is most likely to have infected whom, especially when the variant
is shared across multiple individuals. A unique component of this
study was that it tracked the propagation of within-host variants over
multiple consecutive transmissions until some became fixed SNVs or
were eliminated by a population sweep. We observed that iSNVs were

maintained over multiple transmission steps, which suggests that
despite being small, the bottleneck size is large enough to accom-
modate multiple haplotypes in a transmission event. This may explain
why shared iSNVswerebetter at predictingwhether isolateswere from
the same transmission chain or not.

Previousworks relied on simulated datasets to quantify the role of
shared variants or employed Bayesian phylodynamic models to
account for unsampled hosts7,20,31. The challenge is that thesemethods
are highly technical and do not always provide a quantifiable measure
to informnon-bioinformatician public health officials. Our approach is
unique because it quantifies the likelihood of two isolates being
transmission pairs, prior to incorporating epidemiological and
demographic data. Moreover, our method can differentiate
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transmission pairs among isolates that are either identical or closely
related at the consensus genome level and is particularly effective at
identifying isolates belonging to the same transmission chains.

This work has the following limitations. Firstly, we only sampled a
single snapshot around the point of transmission. Therefore, we were
unable to distinguish between diversity that arose during transmission
due to a genetic bottleneck versus within host evolution during colo-
nisation. Future work will include extending this approach to datasets
where true transmission pairs and clusters are unknown. Moreover,
the cost of deep sequencing remains relatively high and sequencing
isn’t routine in public health, however, ongoing genomic surveillance

is increasingly common and this method can be reserved for investi-
gating suspected transmission clusters to guide rapid infection control
responses (for example, SARS-CoV-214 or Tuberculosis13). Finally, this
work highlights the importance of taking prudent steps to identify and
remove sequencing artefacts during the analysis: we have shown that
genomic artefacts can significantly decrease the specificity and sensi-
tivity of transmission inference. We further acknowledge that this
method was only tested on one pathogen in a controlled laboratory
experiment, and that results from clinical and field isolates may vary.

In conclusion, we established multiple natural infection trans-
mission chains and tracked the emergence and propagation of within-
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host variants until they became fixed SNVs or were eliminated by a
population sweep. Beyond the presence and absence of within-host
variants, we show that differences arising in the relative abundance of
iSNVs can infer transmission clusters with high precision. Our results
are an encouraging step towards higher precision contact tracing and
early detection of transmission clusters. Our model can be incorpo-
rated into existing real-time sequencing frameworks and offer public
health officials a quantifiable and actionable metric that can reliably
infer transmission clusters.

Methods
Study design
Experiments were performed in accordance with the New Zealand
AnimalWelfare Act (1999) and institutional guidelines provided by the
University of Auckland Animal Ethics Committee, which reviewed and
approved these experiments under application R1003. We did not use
any specific randomisation process to allocate animals to a particular
transmission chain or any specific strategies to minimize any con-
founding factors. All authors were also aware of the group allocation.

Animals and husbandry conditions
In this studywe used female 6–7-week-old C57BL/6Elitemice provided
by the Vernon Jansen Unit (University of Auckland) from specific-

pathogen-free (SPF) stocks. Male mice are more aggressive than
females and if not housed together from a young agewill fight, leading
to stress and injury. As these experiments involved co-housing of
animals from different litters, we used femalemice only. Animals were
housed in individually HEPA-filtered Tecniplast cages (Blue line 1284 L,
Tecniplast Australia Ltd, Lane Cove, New South Wales, Australia) with
sterile beddingmaterials (Grit-ology 1/8” corncob [Corn-cob-ology,Mt
Kuring gai, New South Wales, Australia]. Enrichment was provided in
the form of EnviroDri [Biological Associates, Gladesville, New South
Wales, Australia]), a mouse house (Tecniplast Australia Ltd, Lane Cove,
New South Wales, Australia), and autoclaved cardboard tube. Animals
were provided with free access to sterile food (Teklad global 18%
protein [Biological Associates, Gladesville, New South Wales, Aus-
tralia]) and autoclaved water. Conditions in the Vernon Jansen Unit are
controlled at 20–24 °C, 45–65% relative humidity, and a 12-h dark-light
cycle. Lights turn on at 6:30 amand off at 6:30 pmwith a 30min dawn/
dusk period starting at 6 am and 6pm, respectively.

Establishment of transmission chains
We have published a detailed description of our methods on the
protocol repository website protocols.io32, and a schematic of the
experimental design is provided in Fig. 1. Ten experimental transmis-
sion chains were established in female 6–7-week-old SPF C57BL/6Elite
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mice using the bioluminescent C. rodentium strain ICC180. We grew C.
rodentium ICC180 overnight at 37 °C with shaking at 200 revolutions
per minute in LB-Lennox broth (Fort Richard Laboratories Ltd., Auck-
land, New Zealand) supplemented with kanamycin (50 μgmL−1)
(Sigma-Aldrich New Zealand Co., Auckland, New Zealand). Initially,
twelve seed mice were split into two groups and orally gavaged with
ICC180 (200 µL, ~108 CFU) using a straight 4 cm Instech stainless steel
feeding needle (Harvard Apparatus, Holliston,MA, USA). One group of
animals was given drinking water supplemented with nalidixic acid
(10μgmL−1), which was refreshed every 2–3 days. Seven days post-
gavage, the five animals with the highest ICC180 burden from each
group (with nalidixic acid in the drinking water [N] or without [W])
were transferred to individual cages and designated transmission
chain N1-5 orW1-5 andmouse (M)1/Effective Passage (EP)1. EachM1/EP1
animal was housed with an uninfected cage-mate, designated M2/EP2,
for 7 days to allow for transmission to occur via grooming and
coprophagia. After 7 days, theM1 animalswere removed andhumanely
euthanized; each M2 animal was transferred to a clean cage and
rehoused with an uninfected cage-mate, designated M3/EP3. We repe-
ated this process until we reachedM22/EP22. All animals in transmission
chains N1-5 continued to receive drinking water supplemented with
nalidixic acid, refreshed every 2–3 days.

Monitoring of infection and transmission dynamics
We monitored mouse-to-mouse transmission of C. rodentium
ICC180 by measuring luminescence and viable bacterial counts
from stool samples recovered aseptically from individual animals.
We homogenised stools at 0.1 gmL−1 in PBS, measured lumines-
cence using a luminometer (Victor X, PerkinElmer, Shelton, CT,
United States) and plated them onto LB-Lennox Agar containing
kanamycin (50 μgmL−1) to determine the number of viable C.
rodentium present per gram of stool. Stool samples were also taken
from infected animals on the day they were comingled with unin-
fected animals, suspended 1:1 in 50% glycerol and frozen at −80 °C
for genomic DNA extraction.

Where C. rodentium ICC180 failed to transmit between animals,
we went back to the relevant frozen stool sample to produce an
inoculum. For example, if C. rodentium failed to transmit during
cohousing of animalsM3/EP3 andM4/EP4, upon cohousing ofM4/EP4
and M5/EP5, we orally gavaged animal M5 with an inoculum pro-
duced from the frozen stools of M3. Animal M4 was then redesig-
natedM4/EPNULL andM5 was redesignatedM5/EP4 to account for the
missed transmission step. Animals remained cohoused for humane
reasons.

We also monitored transmission and infection dynamics using
biphotonic imaging. Twiceweekly we anaesthetisedmicewith gaseous
isoflurane and measured bioluminescence using the IVIS® Kinetic
imaging system (Perkin Elmer).

Statistics & reproducibility
In this studywe aimed to investigate themutational changes thatoccur
between consecutive infections in a transmission chain. To do this, we
used 10 independent transmission chains comprising 200 indepen-
dent transmission events. No statistical method was used to pre-
determine sample size. However, in a pilot experiment comprising a
single transmission chain, genetic changes were detectable within ten
transmission events. We did not replicate the study further. Statistical
analysis of infection and transmission dynamics data was carried out
using the lme4 package (version 1.1–27.1)33 in R (version 4.1). No data
were excluded from the analyses. Linear mixed models were fitted to
natural logarithms of bacterial loadmeasures (CFU, bioluminescence),
with fixed effects for antibiotic treatment, passage step, and time, and
random effects for mouse and transmission chain. Analyses of trans-
mission failure used logistic mixed models with a random effect for
the chain.

Whole-genome sequencing of C. rodentium ICC180 from infec-
ted animals
C. rodentiumwas obtained from frozen stool samples grownovernight
at 37 °C in 10mL LB-Lennox broth supplemented with kanamycin
(50μgml−1).Whole-genomeDNAwas extracted using aQiagenDNeasy
Blood and Tissue kit (Qiagen New Zealand Ltd, Auckland, New Zeal-
and). The entire culture was used to capture diversity in shed stools as
a surrogate for within-host diversity. Libraries were prepared using
Nextera Flex (Illumina, San Diego, CA, USA). Library quality was
checked by TapeStation and QPCR. Samples were sequenced at the
Harvard University Bauer Core using the Illumina NovaSeq.

Bioinformatic handling of sequence reads mapping and variant
calling
We assessed read quality using FASTQC. Trimmomatic (version 0.35)
was employed to remove adaptors and bases with a Phred quality
score of <33. Unpaired reads and sequences less than 50 bases long
were discarded. The reads were mapped to the C. rodentium ICC168
reference genome (Accession Number: NC_013716.1 [https://www.
ncbi.nlm.nih.gov/nuccore/283783779/]) using bwa (version 0.7.17)
with default parameters34. Samtools (version 0.1.19)35 was used to filter
unmapped reads. The GATK (version 4.0.2.1) toolkit preprocessing
steps were applied to recalibrate base scores for mapped reads and
perform joint variant calling36 (Supplementary Fig. 4).

Variant filtering and variant calling
We employed bcftools (version 1.9) to filter out variant sites with a
QUAL score <100, as well as sites with indels or multiple alternative
alleles. Bedtools (version 2.29.2)37 was used to mask variants within
prophage regions of the reference genome, as identified byMagaziner
et al. (2019)38. Then, VCFtools (version 0.1.16) was used to remove
consecutive variants within 100 bases window39. A custom Perl script
was implemented to filter out sites that had fewer than 20 reads
mapped. We identified 14 putative genomic artefacts where their
presence in multiple transmission chains and the allelic frequency at
these sites fluctuated between 0.0 and 0.3 across successive pairs of
samples (Supplementary Fig. 5). Consensus SNVs were called based on
allelic frequency (reads mapping to the alternative allele) of at least
90%. iSNVs were designated as loci where the allelic frequency ranged
from 2.5% to 90% of reads mapping to the alternative allele. We gen-
erated an SNV alignment basedon the consensus call for each genome.
Associated code for variant calling is publicly available on GitHub
[https://github.com/msenghore/Citrobacter_manuscript].

Phylogenetic tree reconstruction
The core SNPs were aligned with MAFFT (version 7.467)40. Alignment
was used as input to RAxML (version 8.2.12) to reconstruct the phy-
logenetic tree using the general time-reversible model and gamma
correction41. Since we used only variable sites as input, we used
ASC_GTRGAMMA to correct ascertainment bias with the Paul Lewis
correction. The isolate ICC180 was used as the outgroup. One thou-
sand bootstrap replicates were generated to assess the significance of
internal nodes.

Pairwise comparisons and bottleneck estimates
Statistical analysis of whole genome sequencing data was carried out in
R (version 4.2.1). A pairwise SNV distancematrix based on presence and
absencewascalculated fromall samplesusingMega7 (version7.0.267)42.
For each pairwise comparison, we computed additional metrics to
enhance our ability to distinguish transmission pairs from non-
transmission pairs. First, each transmission step was taken as a single
unit in time, and the sum of transmission steps separating the two iso-
lates was recorded. For isolates in separate transmission chains, this was
the sumof cumulative transmission steps from the index strain up to the
isolate being queried in both chains. Then, we computed the number of
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shared iSNVs and variable sites as the number of siteswhere both strains
had an iSNV and SNV. We defined allelic frequency as the proportion of
reads mapping to the alternative allele. At each variable locus, we
computed the change in the allelic frequency between the two isolates.
We then calculated the mean change in allelic ratio (θ), based on the
number of loci where the isolates had different allelic frequencies.
Finally, we employed the beta-binomialmethod to infer bottleneck sizes
for transmission pairs based on allelic frequencies in the donor and
recipient [https://github.com/weissmanlab/BB_bottleneck]16.

Bayesian framework to infer the likelihood of transmission
We used the mean change allelic frequency to infer the posterior
probability of transmission (which we refer to as likelihood of trans-
mission). Let P(T) be the proportion of comparisons that are trans-
mission pairs, P(θ) be the probability of observing θ and P(θ|Τ) the
probability of observing θ in a transmission pair. The prior probability
density distributions P(θ) and P(θ|Τ) were inferred by fitting distribu-
tion of θ for non-transmission and transmission to a truncated normal
distribution using the fitdist package in R. We then calculated the
posterior probability P(T|θ) of observing a transmission given the
mean change in allelic frequency using Bayes theorem (Eq. (1)).

Equation 1:

P θð Þ= P Tð Þ×P Tð Þ
PðθÞ

The obtained likelihood P(Τ|θ) was used to reconstruct the trans-
mission network (Fig. 5b). At this step,weonly considered transmissions
that were within potential donors within three steps. We then ranked all
comparisonsbasedon transmission likelihood. Thebestpotential donor
was the one with the highest transmission likelihood. We only allowed
donors in transmission steps lower than recipients.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data provided with this paper. The raw and processed mouse
infection data generated in this study have also been deposited to
Figshare43,44. The raw sequence data generated in this study have been
deposited in the NCBI short read archive database under accession
code PRJNA884719. The C. rodentium ICC168 reference genome is
publicly available in the NCBI database under the Accession Number:
NC_013716.1 [https://www.ncbi.nlm.nih.gov/nuccore/283783779/].
Infection and annotated SNV data generated in this study are provided
in the Supplementary Data file. Biological materials are available from
the authors on request though may be subject to a materials transfer
agreement. Source data are provided with this paper.

Code availability
Associated code for variant calling and generating data tables used to
create figures is publicly available on GitHub [https://github.com/
msenghore/Citrobacter_manuscript].
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