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Predicting discrete-time bifurcations with
deep learning

Thomas M. Bury 1 , Daniel Dylewsky2, Chris T. Bauch 2, Madhur Anand3,
Leon Glass1, Alvin Shrier1,4 & Gil Bub1,4

Many natural and man-made systems are prone to critical transitions—abrupt
and potentially devastating changes in dynamics. Deep learning classifiers can
provide an early warning signal for critical transitions by learning generic
features of bifurcations from large simulated training data sets. So far, classi-
fiers have only been trained to predict continuous-time bifurcations, ignoring
rich dynamics unique to discrete-time bifurcations. Here, we train a deep
learning classifier to provide an early warning signal for the five local discrete-
time bifurcations of codimension-one.We test the classifier on simulation data
fromdiscrete-timemodels used in physiology, economics and ecology, as well
as experimental data of spontaneously beating chick-heart aggregates that
undergo a period-doubling bifurcation. The classifier shows higher sensitivity
and specificity than commonly used early warning signals under a wide range
of noise intensities and rates of approach to the bifurcation. It also predicts the
correct bifurcation in most cases, with particularly high accuracy for the per-
iod-doubling, Neimark-Sacker and fold bifurcations. Deep learning as a tool for
bifurcation prediction is still in its nascence and has the potential to transform
the way we monitor systems for critical transitions.

Many systems in nature and society possess critical thresholds at
which the system undergoes an abrupt and significant change in
dynamics1,2. In physiology, the heart can spontaneously transition from
a healthy to a dangerous rhythm3; in economics, financial markets can
form a ‘bubble’ and crash into a recession4; and in ecology, ecosystems
can collapse as a result of their interplay with human behaviour5,6.
These events, characterised by a sudden switch to a different dyna-
mical regime, are referred to as critical transitions.

Critical transitions can be better understood with bifurcation
theory7,8, a branch ofmathematics that studies howdynamical systems
can undergo sudden qualitative changes as a parameter crosses a
threshold (a bifurcation). Many bifurcations are accompanied by cri-
tical slowing down—a diminishing of the local stability of the system—

which results in systematic changes toproperties of a noisy timeseries,
such as its variance, autocorrelation and power spectrum9–11. These
properties can be approximated analytically in the presence of

different bifurcations10,12–14, and a corresponding observation in data
can be used as an early warning signal (EWS) for the bifurcation11.
Systematic changes in variance and lag-1 autocorrelation have been
observed prior to transitions in climate15–17, geological18, ecological19,20

and cardiac21 systems, suggesting the presence of a bifurcation. How-
ever, these EWS have limited ability to predict the type of
bifurcation14,22 and can fail in systems with nonsmooth potentials23 or
noise-induced transitions24.

More recently, deep learning techniques have been employed to
provide EWS for bifurcations25–27. This involves training a neural net-
work to classify a time series based on the type of bifurcation it is
approaching, as well as appropriate controls25–27. Unlike many appli-
cations of deep learning, this approachdoes not require abundant data
from the study system, which, in the context of critical transitions, is
often unavailable. (Unfortunately we do not have data from thousands
ormoreecosystemsor climate systems thatwent throughbifurcation).
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Instead, the approach generates a massive library of simulation data
from generic models that possess each type of bifurcation. The neural
network then learns generic features associated with each type of
bifurcation, that can be recognised in an unseen time series of the
study system. This is enabled by the existence of universal properties
of bifurcations that aremanifested in time series as a dynamical system
gets close to a bifurcation7,9. In our previous work, we trained a deep
learning classifier to provide an EWS for continuous-time bifurcations,
and found it was effective at predicting transitions for real thermo-
acoustic, climate and geological transitions25.

Bifurcations can be partitioned according to whether they occur
in continuous or discrete-time dynamical systems7,8. This distinction is
important, since discrete-time dynamical systems (difference equa-
tions) can display very different behaviour to their continuous-time
counterparts (differential equations). As an example, consider the
logistic model for population growth. When set up in continuous time
(appropriate for populations with overlapping generations e.g.
humans), the population grows smoothly as the reproduction rate
increases. Whereas, when set up in discrete time (appropriate for
populations with non-overlapping generations, e.g. insects), the
population displays a spectrum of dynamics across parameter values,
including stable points, stable cycles, and chaos28. It is therefore
important to develop EWS suitable for both continuous and discrete-
time bifurcations. While indicators like variance and lag-1 auto-
correlation can provide EWS for discrete-time bifurcations, the ability
of a deep learning classifier at this task has not been investigated.

As well as in ecology, discrete-time bifurcations arise naturally in
physiology3, epidemiology29, and economics30, where events can take
place on a discrete timeline. To illustrate our approach, we will use
model simulations fromecology, physiology and economics, aswell as
experimental data from spontaneously beating chick heart
aggregates21,31. Following administration of a drug, in some aggregates
the time interval between two heart beats begins to alternate i.e. there
is a period doubling bifurcation (Fig. 1). Such transitions can also occur
for the human heart in the form of T-wave alternans, which increases a
patient’s risk for sudden cardiac death32. The period-doubling

bifurcation is accompanied by critical slowing down, so systematic
changes in variance and lag-1 autocorrelation are expected and have
been shown to provide an EWS in this system21. The chick heart
aggregates serve as a good study system to test the performance of
EWS since we have multiple recordings, not all of which underwent a
transition, allowing us to test for false positives.

Among discrete-time bifurcations, there are many types, each
with an associated change in dynamics7. For this study, we focus on the
five local bifurcations of codimension-one (Supplementary Note 1). In
being ‘local’, these bifurcations are accompanied by critical slowing
down, so systematic changes and variance and autocorrelation are
expected. However, not all of these bifurcations result in a critical
transition22. They can instead involve a smooth transition to an inter-
secting steady state (transcritical) or to oscillations with gradually
increasing amplitude (supercritical Neimark–Sacker). Predicting the
typeof bifurcationprovides informationon thenature of the dynamics
following the bifurcation, something variance and autocorrelation
alone do not provide.

Here, we train a deep learning classifier to provide a specific EWS
for bifurcations of discrete-time dynamical systems. We train the
classifier using simulation data of normal form equations appended
with higher-order terms and noise. We then test the classifier on
simulation runs of five discrete-time models used in cardiology, ecol-
ogy and economics, and assess its performance relative to variance
and lag-1 autocorrelation. We vary the noise amplitude and rate of
forcing in model simulations to assess robustness of the EWS. Finally,
we test the classifier on experimental data of spontaneously beating
chick-heart aggregates that go through a period-doubling bifurcation.
A reproducible run of all analyses may be performed on Code Ocean
(https://codeocean.com/capsule/2209652/tree/v2) where the code is
accompanied by the necessary software environment.

Results
Performance of classifiers on withheld test data
We train two different types of classifiers and use their ensemble
average to make predictions. Classifier 1 is trained to recognise bifur-
cation trajectories based on middle portions of the time series,
whereas Classifier 2 is trained on end portions (see Methods). In this
way, Classifier 1 provides an earlier signal of a bifurcation andClassifier
2 provides a more specific signal, as more information is revealed
closer to the bifurcation. To quantify performance of the classifiers,we
use the F1 score, which is a combinedmeasureof sensitivity (howmany
of the true positives were predicted correctly) and specificity (how
many of the positive predictions were actually true positives). On the
withheld test data, Classifier 1 and 2 achieved an F1 score of 0.66 and
0.85, respectively. On the simpler, binary classification problem of
predicting whether or not there will be any bifurcation, the classifiers
achieved an F1 score of 0.79 and 0.97, respectively. Classifier 2 has a
higher performance as it has the easier taskof classifying data closer to
the bifurcationwhere fluctuations aremorepronounced. Performance
on individual bifurcation classes is shown by confusion matrices
(Supplementary Fig. 1). The period-doubling, Neimark–Sacker and fold
bifurcations are correctly classified with high sensitivity and specifi-
city. On the other hand, the transcritical and pitchfork bifurcations are
often mistaken for one another, likely due to having very similar nor-
mal forms (identical linear terms). Despite this, Classifier 2 can dis-
tinguish them at better than random, suggesting it is capable of
recognising the different higher order terms in the data. From here
onward, we report results using the ensemble prediction of the two
classifiers, referred to collectively as the deep learning classifier.

Performance of EWS on theoretical models
We monitor variance, lag-1 autocorrelation and the deep learning
classifier as progressively more of the time series is revealed. Variance
and lag-1 autocorrelation are considered to provide an EWS if they

Fig. 1 | Period-doubling bifurcation in a spontaneously beating aggregate of
embryonic chick heart cells following treatment with a potassium channel
blocker (E-4031, 1.5 μmol). a Interbeat intervals (IBI) for consecutive beats. A
period-doubling bifurcation occurs at approximately beat 230. Arrows mark
intervals plotted in lower panels.b–dNormalised signal fromoptical imaging of the
aggregate’s motion. Traces are from a section well before (b), just before (c), and
after (d) the period-doubling bifurcation.
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display a strong trend, which we quantify using the Kendall tau sta-
tistic. For each of the five theoretical models (Fig. 2(a–e)), we observe
an increasing trend in variance (Fig. 2f–j), and an increasing or
decreasing trend in lag-1 autocorrelation (Fig. 2k–o). The direction of
the trend in lag-1 autocorrelation prior to a bifurcation depends on the
frequency of oscillations (θ) at the bifurcation—equivalently the angle
of the dominant eigenvalue in the complex plane (Supplementary
Note 1). For θ∈ [0,π/2) lag-1 autocorrelation increases, whereas for
θ 2 π=2,π

� �
it decreases—insights that can be obtained from analytical

expressions of the autocorrelation function10,14. The period-doubling
bifurcation is characterised by θ =π, and the Neimark–Sacker bifur-
cation shown here has θ ≈π/4. The trends in variance and lag-1 auto-
correlation therefore behave as expected and can be used as an EWS.

The deep learning classifier assigns a probability to each of
the six possible outcomes (null, period-doubling, fold,
Neimark–Sacker, transcritical and pitchfork). It is considered to
provide an EWS when there is a heightening in the sum of the
bifurcation probabilities (blue line, Fig. 2p–t). The type of bifurca-
tion predicted is then taken as the highest individual bifurcation
probability. For each simulation, the classifier becomes more con-
fident of an approaching bifurcation as time goes on, and its
assigned bifurcation probability for the true bifurcation increases.
The period-doubling, Neimark–Sacker and fold bifurcations are
identified with high confidence well before the transition. The
transcritical and pitchfork bifurcations are assigned roughly equal
probability on their respective time series, suggesting they are
difficult to tell apart—an observation consistent with the classifier’s
performance on its within-sample test data.

To obtain a measure of performance for the EWS, we need to test
their predictions on both ‘forced’ time series (where a bifurcation is
approached) and ‘null’ time series (where no bifurcation is approa-
ched). For the theoretical models, we generate null time series by

keeping the bifurcation parameter fixed. Sample null time series and
their EWS are shown in Supplementary Fig. 3. We also test the
robustness of the EWS to the rate of forcing and the noise amplitude of
the simulations—two factors that have been shown to influence the
performance of variance and lag-1 autocorrelation as an EWS33,34. To
this end, we simulate 100 forced and null time series at five different
values of noise intensity and five different values of rate of forcing,
resulting in a total of 5000 time series for each theoretical model.
Sample trajectories illustrating the different noise amplitudes and
rates of forcing are shown in Supplementary Fig. 4. We compute the
probabilities assigned by the classifier and the Kendall tau values for
variance and lag-1 autocorrelation at 80% of the way through the
pretransition time series, and use these values as discrimination
thresholds to construct ROC curves (Fig. 3a–e).

Using the AUC score (area under the ROC curve) as a measure of
performance, we find that the classifier outperforms variance and lag-1
autocorrelation for each theoretical model. When evaluated for each
combination of noise amplitude and rate of forcing separately, the
classifier has the highest AUC score in 100% of cases for the
Neimark–Sacker, fold, and pitchfork models, 84% of cases for the
period-doubling model, and 80% of cases for the transcritical model
(Supplementary Fig. 5). Similar to variance and lag-1 autocorrelation,
the performance of the classifier is lower at higher rates of forcing.
Noise amplitude affects performance differently depending on the
model. In terms of predicting the correct bifurcation, the classifier
typically performs better at slower rates of forcing (Supplementary
Fig. 6) and was able to classify the period-doubling and
Neimark–Sacker bifurcations to high accuracy at all noise amplitudes
and rates of forcing considered. Finally, we evaluate the EWS for a
range of parameter values in the period-doubling model that yield
period-doubling bifurcations of different locations and morphology
(Supplementary Fig. 7). We find that the deep learning classifier

Fig. 2 | Trends in indicators prior tofivedifferentbifurcations in the theoretical
models. a–eTrajectory (grey) and smoothing (black) of a simulationgoing through
a period-doubling, Neimark–Sacker, fold, transcritical and pitchfork bifurcation,
respectively. f–j Variance of residual dynamics after smoothing, computed over a
rolling window (arrow) of size 0.5 times the length of the pre-transition data.

k–o Lag-1 autocorrelation. p–t Probabilities assigned by the deep learning (DL)
classifier when given all preceding data. Orange shows probability assigned to the
true bifurcation. Grey shows probabilities assigned to the other bifurcations. Blue
shows the sum of the five bifurcation probabilities.

Article https://doi.org/10.1038/s41467-023-42020-z

Nature Communications |         (2023) 14:6331 3



outperforms variance and lag-1 autocorrelation in each case and cor-
rectly identifies the period-doubling bifurcation.

Performance of EWS on chick heart data
In the chick heart data, we mostly observe an increasing trend in
variance and a decreasing trend in lag-1 autocorrelation prior to the
period-doubling bifurcation, as previously reported21. This is con-
sistent with analytical approximations for variance and lag-1 auto-
correlation prior to a period-doubling bifurcation in a noisy
dynamical system10,14. The 46 records and their EWS are shown in
Supplementary Figs. 8–11, and a sample of five period-doubling
records are shown in Fig. 4. The classifier correctly predicts a period-
doubling bifurcation in 16 of the 23 period-doubling records. In other
cases, it incorrectly predicts a Neimark–Sacker bifurcation (e.g.
Fig. 4e). This seems to be linked to an early increase in lag-1 auto-
correlation, perhaps caused by a non-monotonic approach to the
period-doubling bifurcation. For predictionsmade at 60–100%of the
way through the chick heart data, the classifier obtains the highest
AUC score (Fig. 3f), a slight improvement on variance, with the
advantage of also providing the bifurcation type.We find this result is
robust to smoothing method (Gaussian or Lowess), a range of dif-
ferent smoothing parameters, different rolling window sizes for
variance and lag-1 autocorrelation, and sample error in the

experimental data (Supplementary Figs. 12–15). However, smoothing
with a bandwidth that is too small diminishes the ability of the clas-
sifier to identify a period-doubling bifurcation, presumably since
fluctuations that enable identification of the bifurcation type are
being removed.

Discussion
Many systems that evolve on a discrete timeline can undergo a sudden
change in dynamics via a discrete-time bifurcation.We have found that
a deep learning classifier is an effective tool for predicting discrete-
time bifurcations in systems with a range of noise levels and rates of
approach to the bifurcation. The classifier provides higher sensitivity
and specificity than variance and lag-1 autocorrelation—two commonly
used EWS for bifurcations. Moreover, the classifier provides early
indication of the type of bifurcation—an important piece of informa-
tion given the qualitatively different dynamics associated with each
bifurcation. A reliable early warning signal that specifies the type of
bifurcation will help us prevent harmful bifurcations (e.g. dangerous
heart rhythms3) and promote favourable transitions (e.g. ecosystem
recovery35).

Itmaybepossible todesign adeep learning classifier that achieves
a higher performance on our test data. First, there are many neural
network architectures that could be investigated. For example,

Fig. 3 | ROC curves for predictions of an upcoming transition in model and
experimental data. ROC curves compare the performance of the deep learning
classifier (DL, blue), variance (Var, red) and lag-1 autocorrelation (AC, green). For
models (a–e), performance is assessed on 2500 forced and 2500 null simulations
with different noise amplitudes and rates of forcing, with predictions made 80% of
the way through the pretransition data. For experimental data (f), performance is
assessed on 46 experimental runs, with 10 equally spaced predictions made
between 60 and 100% of the way through the pre-transition data. The area under
the curve (AUC), abbreviated to A, is a measure of performance. Insets show box
plots for the probabilities assigned by the classifier to each type of bifurcation

(orange being the true bifurcation) among the trajectories approaching a transi-
tion. Box centre line is themedian, box limits are the upper and lower quartiles, and
whiskers capture the range up to 1.5 times the interquartile range. a Fox model
going through a period-doubling bifurcation49. bWesterhoff model going through
a Neimark–Sacker bifurcation30. c Ricker model going through a fold bifurcation50.
d Lotka–Volterra model going through a transcritical bifurcation51. e Lorenz model
going through a pitchfork bifurcation53. f Chick heart aggregates going through a
period-doubling bifurcation31. PD: period-doubling. NS: Neimark–Sacker. TC:
transcritical. PF: pitchfork.
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transformers, which are the current state-of-the-art for language
models like GPT36, may also be useful for time series classification37.
Second, the hyperparameters of the classifier could be systematically
tuned to optimise performance. Third, there may be benefit to
reframing bifurcation prediction as a hierarchical classification
problem38. One classifier could address the binary problem of flagging
an approaching bifurcation, and a second classifier could address the
multi-class problem of classifying the type of bifurcation given that a
bifurcation is approaching. (The same way one might want to distin-
guish images of dogs and cats before attempting to classify dog
breeds). Finally, performance could be improved by training a larger
ensemble of classifiers39.

For a classifier to be effective, it must be trained on sufficiently
diverse training data. As such, the method by which training data is
obtained needs careful consideration. Our previous work on
continuous-time bifurcations obtained training data from randomly
generated dynamical systemswith polynomial terms25 and labelled the
data using the bifurcation continuation software AUTO. This approach
is appealing as it imposes relatively few restrictions on themodels that
are generated, and may include features associated with higher-order
terms. Here, we opted for amore restricted approach that uses normal
form models to generate the training data. This method has the
advantage of being faster computationally, since the location and type
of bifurcation in the model is known a priori. It also alleviates the need
to detrend the training data, which can make the classifier reliant on
receiving data that has been detrended using a specific method40. We
have found that evenwith thismore restricted training data, a classifier
can generalise to detecting bifurcations in more complex model and
empirical systems.

An important consideration in building a training library for a
bifurcation predictor is how to define a ‘null’ trajectory.We opted for a

simple approach that uses model simulations with a fixed bifurcation
parameter, where the bifurcation parameter is sampled randomly
fromvalues that yield ∣λ∣ <0.8,where λ is the eigenvalueof the Jacobian
matrix. Larger values of λ result in a significant portion of simulations
going through noise-induced transitions, and therefore not deemed
appropriate. Upon investigating how the classifier performs on null
trajectories specifically, we find that it is more confident in its pre-
diction for null trajectories that are longer, and further away from the
bifurcation (Supplementary Fig. 16), as seems logical. A useful exten-
sion to the training data could be a richer set of null trajectories, where
the bifurcation parameter is allowed to move around, perhaps sto-
chastically, as one would expect in real systems.

We trained a classifier to provide EWS for a subset of bifurcations,
namely local, codimension-one, discrete-time bifurcations. While
these bifurcations are present in many systems of interest, the real
world presents many other classes of bifurcation in both continuous
and discrete-time, including global bifurcations (e.g. homoclinic and
heteroclinic), codimension-two bifurcations (e.g. cusp and Bogdanov-
Takens), and bifurcations of attractors. For systems on attractors that
explore a large portion of their phase space, empirical dynamical
modelling41, reservoir computing42,43 and deep neural networks44 can
be used to make forecasts that may help predict critical transitions. In
cases where spatial information is available, concepts from statistical
physics may be useful45, particularly in combination with deep
learning27.

A limitation of the present classifier is that it is only trained to
predict discrete-time bifurcations. Therefore, one needs to know
ahead of time whether continuous or discrete time is a better
description for the system. In the case of the chick heart cells, we
had prior knowledge that they are well described by a discrete-time
dynamical system46, and therefore appropriate for the classifier. An

Fig. 4 | Trends in indicators prior to a period-doubling bifurcation infive chick
heart aggregates treated with a potassium channel blocker. a–e Inter-beat
interval (IBI) trajectory (gray) and smoothing (black). f–j Variance of residual
dynamics after smoothing, computed over a rolling window (arrow) of size 0.5

times the length of the pre-transition data. k–o Lag-1 autocorrelation.
p–t Probabilities assigned by the deep learning (DL) classifier to the period-
doubling bifurcation (orange) and the other bifurcations (gray). Blue shows the
sum of the five bifurcation probabilities.
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interesting avenue for future research is to build a classifier that
works for both continuous and discrete-time bifurcations. This may
be achieved by generating a training library from models with a
range of discretised timesteps, from very large steps that generate
discrete-time bifurcations, down to the limit of a discrete timestep
of zero, where continuous-time bifurcations occur. With a large
enough training set, one would not need to assume ahead of time
whether continuous or discrete time is a better description for the
system.

Our results demonstrate that combining dynamical system and
deep learning methodologies can provide EWS for critical transitions
that are both more reliable and more descriptive than non-hybrid
approaches. This study has set a baseline for prediction performance
across a variety of popular discrete-time models and an experimental
data set. In providing a code capsule that reproduces this study, we
hope to facilitate the development, testing and comparison of related
methods. In particular, the development of interpretable (as opposed
to ‘black box’) models that achieve a similar performance would be
highly desirable, especially in safety critical domains47, although this
will likely require new analytical and algorithmic insights. Techniques
such as deconvolutional networks48 make it possible to map the
learned space of a deep learning algorithm back onto the original
temporal dataset. This allows one to visualise the features that the
algorithm is using to make its decision, which could serve as a starting
point for an interpretable model. Building a universal predictor for
critical transitions is not a job for a single research team44, and will
benefit fromavariety of approaches andopen source code.Depending
on context, critical transitions can be devastating or highly desirable.
Improved EWS would allow us to better prevent or promote such
transitions.

Methods
Generation of training data for the deep learning classifier
Training data consists of simulation data from a library of 50,000
models. The models are generated at random from five different
model frameworks, each possessing one of the bifurcations studied
(period-doubling, Neimark–Sacker, fold, transcritical, pitchfork). The
models are composed of the normal form of the bifurcation7, higher-
order polynomial terms up to degree 10with coefficients drawn froma
normal distribution, and additive Gaussian white noise (ϵt) with
amplitude (σ) drawn from a uniform distribution. In each case, the
bifurcation occurs at μ =0.

The model for the period-doubling bifurcation is

xt + 1 = � ð1 +μÞxt ± x
3
t +
X10
i =4

αix
i
t + σϵt , ð1Þ

where αi ∼N ð0, 1Þ. The positive (negative) cubic term yields a super-
critical (subcritical) bifurcation, and is chosen at random. The model
for the Neimark–Sacker bifurcation is

xt + 1

yt + 1

� �
= ð1 +μÞRðθÞ xt

yt

� �
± ðx2

t + y
2
t ÞRðθÞ

xt

yt

� �

+
X10
i=4

Xi
j =0

αij

βij

 !
xi�j
t yjt + σ

ϵð1Þt
ϵð2Þt

 ! ð2Þ

where αij, βij ∼N ð0, 1Þ, R(θ) is the rotation matrix

RðθÞ= cosθ � sinθ

sinθ cosθ

� �
, ð3Þ

and θ∼U½0,π� is the angular frequency of oscillations at the bifurca-
tion. The positive (negative) cubic term yields a subcritical (super-
critical) bifurcation, and is chosen at random. The model for the fold

bifurcation is

xt + 1 = �μ+ xt � x2
t +
X10
i = 3

αiðxt �
ffiffiffiffiffiffiffi�μ

p Þi + σϵt , ð4Þ

where αi ∼N ð0, 1Þ. The model for the transcritical bifurcation is

xt + 1 = ð1 +μÞxt � x2t +
X10
i = 3

αix
i
t + σϵt , ð5Þ

where αi ∼N ð0, 1Þ. Finally, the model for the pitchfork bifurcation is

xt + 1 = ð1 +μÞxt ± x3
t +
X10
i =4

αix
i
t + σϵt , ð6Þ

where αi ∼N ð0, 1Þ. The positive (negative) cubic term yields a sub-
critical (supercritical) bifurcation, and is chosen at random.

The library is composed of 10,000models from each framework.
For each model, we run a ‘forced’ simulation where the bifurcation
parameter μ is increased linearly across the interval [μ0, 0], and a ‘null’
simulation where μ is fixed at μ0. The initial value for the bifurcation
parameter μ0 is drawn from a uniform distribution across all values
that correspond to ∣λ∣ <0.8, where λ is the eigenvalue of the Jacobian
matrix in the model. This ensures that the training data contains
simulations that start close to and far from a bifurcation. For the per-
iod-doubling, Neimark–Sacker, transcritical and pitchforkmodels, this
means drawing μ0 from U½�1:8,� 0:2�. For the fold bifurcation, this
means drawing μ0 from U½�0:9,� 0:1�. After a burn-in period of 100
iterations, we simulate eachmodel for 600 iterations and keep the last
500 data points, or the 500 data points immediately preceding a
transition if one occurs. We define a transition as a time when the
deviation from equilibrium exceeds ten times the noise amplitude σ.
We simulate one forced and one null simulation from each model,
resulting in 50, 000 forced and 50, 000 null trajectories. To balance
the number of entries for each class, we take 10, 000 null simulations
at random, resulting in a total of 60, 000 entries in the training data
set. Example trajectories for each class are shown in Supplemen-
tary Fig. 2.

Architecture and training of the deep learning classifier
We use a neural network with a CNN-LSTM architecture and hyper-
parameters as in ref. 25. This consists of a single convolutional layer
with max pooling followed by two LSTM layers with dropout followed
by a dense layer that maps to a vector of probabilities over the six
possible classes. For training, we use Adam optimisation with a learn-
ing rate of 0.0005, a batch size of 1024, and sparse categorical cross
entropy as the loss function. We use a training/validation/test split of
0.95/0.025/0.025. We found 200 epochs was sufficient to obtain
optimal accuracy on the validation set.

To expose the classifier to time series of different lengths, we
censor each time series in the training data. We train two classifiers
independently using different censoring techniques. Classifier 1 is
trained on time series censored at the beginning and the end, forcing it
to learn fromdata in themiddleof the time series. Classifier 2 is trained
on time series only censored at the beginning, allowing it to learn from
data right up to the bifurcation. The length for each censored time
series L is drawn from U½50,500�. Then, for Classifier 1, the start time of
the censored time series t0 ~U[0, 500 − L] and for Classifier 2,
t0 = 500 − L. The censored time series are then normalised by their
mean absolute value and prepended with zeros to make them 500
points in length. We report results using the average prediction of the
two classifiers.
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Theoretical models
To test the deep learning classifier on out-of-sample data, we simulate
a variety of nonlinear, discrete-timemodels, each containingoneof the
studied bifurcations. To account for stochasticity, we include additive
Gaussian white noise. We run forced simulations, where the bifurca-
tion parameter is increased linearly up to the bifurcation point, and
null simulations, where the bifurcation parameter remains fixed. To
create a diverse set of test data, we vary the noise amplitude (σ) and
rate of forcing (rate of change of the bifurcation parameter). We run
100 forced and null simulations at five different noise amplitudes and
five different rates of forcing, resulting in 5000 simulations of each
model. Values for the noise amplitude are on a logarithmic scale and
values for the rate of forcing result in time series of length 100, 200,
300, 400, and 500. Sample simulations for each model at different
noise amplitude and rate of forcing are shown in Supplementary Fig. 4.
The transition time for each forced simulation is taken as the moment
when the bifurcation parameter crosses the bifurcation, or the
moment when the state variable crosses a threshold, if specified.

Foxmodel. To test the detection of a period-doubling bifurcation, we
use a model of cardiac alternans49 with additive Gaussian white noise.
This is given by

Dn+ 1 = ð1� αMn+ 1Þ A+
B

1 + e�ðIn�CÞ=D

� �
+ σϵn, ð7Þ

Mn+ 1 = e
�In=τ ½1 + ðMn � 1Þe�Dn=τ �, ð8Þ

In =T � Dn, ð9Þ

where Dn is the action potential duration of the nth beat, Mn is a
memory variable, In is the rest duration following the action poten-
tial, T is the stimulation period, τ is the time constant of accumulation
and dissipation of memory, α is the influence of memory on the
action potential duration, and A, B, C andD are parameters governing
the shape of the restitution curve. Following49, we takeA = 88,B = 122,
C = 40, D = 28, τ = 180, α = 0.2, which give dynamics in good agree-
ment with a complex ionic model. This yields a period-doubling
bifurcation at approximately T = 200. Forced simulations are run
with T decreasing linearly on the interval [300, 150] and null
simulations are run with T = 300. Values for noise amplitude are
0.1 × {20, 2−1, 2−2, 2−3, 2−4}.

To test the robustness of EWS to different model parameter
values, we simulate trajectories with different values of α and a mul-
tiplicative scaling factor ofA,B,C andD (Supplementary Fig. 7). In each
case, we simulate 100 forced and null trajectories for 300 time steps
and a noise amplitude of 0.1. Forced simulations are run with T
decreasing linearly from 300 to the bifurcation point and null simu-
lations are run with T = 300.

Westerhoffmodel. To test detection of a Neimark–Sacker bifurcation,
we use a simple model of business cycles based on consumer
sentiment30 with additive Gaussian noise. This is given by

Y t =a+ ðb� dÞY t�1 +dY t�2 +
cY t�1

1 + Exp �ðY t�1 � Y t�2Þ
� � + σϵt , ð10Þ

where Yt is the national income at time step t, a is the level of auton-
omous expenditures of agents, b and c govern a curve that determines
the fraction of income consumed by the agents, and d is the policy-
maker’s control parameter to offset income trends. We take b =0.45,
c =0.1, and d =0.2, which yields a Neimark–Sacker bifurcation at a = 24
corresponding to the onset of business cycles. Forced simulations are
run with a increasing linearly on the interval [10, 27] and null

simulations are run with a = 10. Values for noise amplitude are
0.1 × {20, 2−1, 2−2, 2−3, 2−4}.

Rickermodel. To test detection of a fold bifurcation,weuse theRicker
model50 with a sigmoidal harvesting term and additive Gaussian noise.
This is given by

xt + 1 = xte
rð1�xt=kÞ � F

x2t
x2
t +h

2 + σϵt , ð11Þ

where xt is the population size at time step t, r is the intrinsic growth
rate, k is the carrying capacity, F is the harvesting rate, and h governs
the steepnessof the sigmoidal harvesting term.We take r =0.75, k = 10,
h = 0.75, which yields a fold bifurcation at F = 2.36. Forced simulations
are run with F increasing linearly on the interval [0, 3.54] and null
simulations are runwith F =0.We define a transitions as the timewhen
xt drops below 0.45. Values for noise amplitude are
0.2 × {20, 2−1, 2−2, 2−3, 2−4}.

Lotka–Volterra model. To test detection of a transcritical bifurcation,
we use the discrete-time analogue of the Lotka-Volterra model, first
studied by Maynard Smith51. This system is especially relevant to
arthropod predator-prey and host-parasitoid interactions. The
rescaled equations52 are

xt + 1 = ðr + 1Þxt � rx2
t � cxtyt + σϵ

ð1Þ
t , ð12Þ

yt + 1 = cxtyt + σϵ
ð2Þ
t , ð13Þ

r relates to the growth rate of the prey (xt), and c relates to the foraging
efficiency of the predator (yt). We take r =0.5, which yields a tran-
scritical bifurcation at c = 1, the critical foraging efficiency beyond
which the predator population can sustain themselves. Forced simu-
lations are run with c increasing linearly on the interval [0.5, 1.25] and
null simulations are run with c =0.5. We look for early warning signals
in the prey population. Values for noise amplitude are
0.01 × {20, 2−1, 2−2, 2−3, 2−4}.

Lorenz model. To test detection of a pitchfork bifurcation, we use the
reduced discrete Lorenz system, which was first introduced as a
demonstration of computational chaos53. This is given by

xt + 1 = ð1 +ahÞxt � hxtyt + σϵ
ð1Þ
t ð14Þ

yt + 1 = ð1� hÞyt +hx2
t + σϵ

ð2Þ
t ð15Þ

where state variables and parameters are derived from the full Lorenz
equations53. We take h = 0.5, which yields a pitchfork bifurcation at
a =0. Forced simulations are run with a increasing linearly over the
interval [ − 1, 0.25] and null simulations are run with a = −1. We look for
early warning signals in xt. Values for noise amplitude are
0.01 × {20, 2−1, 2−2, 2−3, 2−4}.

Experiments with embryonic chick heart cell aggregates
Experiments were carried out in accordance with the ethical and
Health and Safety regulations at McGill University. Aggregates were
prepared using themethodproposed byDeHaan54. Ventricles of 7-day-
old White Leghorn chicken embryo hearts were dissected and dis-
sociated into single cells by trypsinization. The cells were then added
to Erlenmeyer flasks containing a culture medium (818A) gassed with
5%CO2, 10%O2, 85%N2 (pH = 7.4), and placed on a gyratory shaker for
24-48 hours at 37 °C. This generated aggregates with a diameter of
approximately 100-200 μm that displayed a beating pattern of period
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approximately 1-2 s. Experiments were conducted 2-6 h after the
aggregates were plated, in dishes maintained at 37 °C.

The aggregates were treated with 0.5-2.5 μmol of E4031, a drug
that blocks the human Ether-à-go-go-Related Gene (hERG) potassium
channel55. The beating of the aggregates was recorded using phase-
contrast imaging sampled at 40Hz using a CCD camera (NeuroCD-SM;
RedShirtImaging, LLC) at an 80 × 80 pixel spatial resolution, focussing
on light-intensity variation at the edge of the aggregate31. There are
periodic stops in the recording (for 2-3min) for data storage purposes.
The light signal for each aggregate is processed through a band-pass
filter (cutoff frequencies: 0.1-6.5 Hz). The timing of each beat is then
determined as the moment when the signal passes a threshold (the
meanof the record plus 0.7 times the standarddeviation)with positive
slope. The interbeat intervals are computed as the time between
consecutive beats, and used in the analysis of this study.

We define the onset of the period-doubling bifurcation as the first
timewhen the slope of a linear regression of the returnmapcomposed
of a sliding window of interbeat intervals is below -0.95 for the next 10
beats. According to this definition, 43 of the 119 aggregates underwent
period-doubling bifurcations. The remaining aggregates either went
through no qualitative change in dynamics (18), or underwent a tran-
sition to more complex dynamics including irregular rhythms and
bursting oscillations (58). Of the period-doubling aggregates, we cap-
tured the onset of the period-doubling bifurcation for 23 of them (Sup.
Figs. 8, 9). The other period-doubling bifurcations weremissed due to
pauses in the recording. From the 18 aggregates that undergo no
qualitative change, we extract 23 segments at random with a random
length between 100 and 500 to serve as null time series (Supplemen-
tary Figs. 10, 11). Predictions aremade at 10 equally spaced time points
between 60–100% of the way through the 23 period-doubling (pre-
bifurcation) and 23 null time series.

Computing and assessing the performance of EWS
EWS are computed using the Python package ewstools56. This involves
first detrending the (pretransition) time series. For the model simula-
tions, we use a Lowess filter with a span of 0.25 the length of the data.
For the heart cell data, we use a Gaussian filter with a bandwidth of 20
beats. Variance and lag-1 autocorrelation are then computed over a
rolling window of 0.5, which had higher performance than a rolling
window of 0.25. The deep learning predictions at a given point in the
time series are obtained by taking the preceding data from the time
series, normalising it, prepending it with zeroes to make it 500 points
in length, and feeding it into the classifier.

To compare performance of variance, lag-1 autocorrelation and
the deep learning classifier, we use the AUC (area under curve) scoreof
the ROC curve. The ROC curve plots the true positive rate vs. the false
positive rate as a discrimination threshold is varied.Weuse the Kendall
τ value as the discrimination threshold for variance and lag-1 auto-
correlation, and the sum of the bifurcation probabilities for the dis-
crimination threshold of the deep learning classifier.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The chick heart data and the simulated data used to train and test the
deep learning classifier have been deposited on Code Ocean https://
codeocean.com/capsule/2209652/tree/v257.

Code availability
Code and instructions to reproduce the analysis are available at the
GitHub repository https://github.com/ThomasMBury/dl_discrete_
bifurcation. A reproducible run can be performed on Code Ocean at

https://codeocean.com/capsule/2209652/tree/v2 where the code is
accompanied by a compatible software environment57.
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