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Limitations of representation learning in small
molecule property prediction
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Representation learning is making inroads into
drug discovery. A study in Nature Communica-
tions emphasizes multiple limitations in prop-
erty prediction. The results suggest that
continued research and improvements are
required for this specific area that coalesces
machine learning and molecular medicine.

Biological and medicinal chemistry are experiencing an unprece-
dented (r)evolution with the emergence of machine learning (ML)
algorithms, improved hardware, and data storage capabilities. The
prime goal of ML in drug discovery is accelerating research by prior-
itizing the most relevant experiments, mitigating attrition from an
early stage, and thus expediting development pipelines1,2. While of
utmost relevance, the more involved cheminformatics community is
now realizing that advanced deep learning algorithms rarely display
desirable performance in multiple molecular design tasks involving
the prediction of physicochemical and biological endpoints3–5. In fact,
traditional ML algorithms and molecular representations are still the
state-of-the-art, performance-wise, and may remain so as long as
training data is scarce4. This is the case because deep learning algo-
rithms are typically data hungry, i.e., requiring large amounts of high-
quality data to train thousands tomillions of parameters / weights that
lead to an optimal model fit.

Drug discovery is a peculiar and challenging use case for dis-
criminative ML models for several reasons: (1) high-throughput
experimentation is available6 yet data scarcity is still the norm for
real-world problems7,8; (2) sparse coverage of search spaces5, which
impose data distribution shifts over the project timeline and concerns
over the models’ domains of applicability; (3) experimental uncer-
tainty is largely unaccounted for in ML models and a clear solution to
this limitation is currently unavailable9. The latter is particularly con-
cerning since it directly impacts the quality of the available training
datasets, benchmarks, and the attainability of robust decision-making
processes. Moreover, it is also apparent a persisting lack of standar-
dized reporting practices inML studies thatmakemethod comparison
nontrivial and potentially misleading9,10. While we9 and others11,12 have
suggested solutions and guidelines to overcome those issues, said
guidelines are rooted on hands-on experience and are still not widely
adopted. Building on that, Wang and co-workers13 go one step further
and exemplify good ML practice with the widely used MoleculeNet
data. MoleculeNet14 is not free of its own limitations as the dynamic
range in some endpoints is irrelevant in a drug discovery setting. This
suggests that better benchmarks are required. Still, the team exposed
shortcomings of deep learning algorithms that should dampen
unfounded hype around ML with molecular featurization based on
graphs or natural language.

In a thorough methodology survey, the research team studied
different factors that might bias method comparison and perfor-
mance, such as input data, train/test splits, molecular representations,
performance metrics and the random seed. More specifically, random
forests (RF), extreme gradient boosting (XGBoost) and support vector
machines (SVMs) were employed with circular fingerprints, to obtain
relevant baseline models. Those models were pitted against a recur-
rent neural network, different flavors of transformers (e.g., MolBERT,
GROVER), generative and graph-based methods that sieved directly
through SMILES strings to learn a chemical language or graph
descriptors. Despite pre-training routines, it became apparent that
baselinemodels performed competitively or seemingly better in select
bioactivity and physicochemical property datasets. In particular, RFs
displayed the best performance on the BACE, BBBP, ESOL and Lipop
use cases, which can be ascribed not only to the fingerprint descrip-
tors, but also to the performance superiority of this type of algorithm
in the low data regimes. Conversely, deep learning algorithms only
became competitive in the HIV dataset, and in the prediction of
molecular weight and number of atoms when datasets contained
>1000 training examples. Albeit previously reported, the result further
reinforces deficiencies in representation learning as a generally
applicable solution to accelerate molecular medicine. An identical low
performance patternwas observedwhen using scaffold splits to assess
the model generalization on both unseen scaffolds and activity cliff
molecules. In this case, the resultwas not entirely unexpected.One can
speculate the reason lies not only on the customary low abundance of
training data, but also on a data shift issue. In fact, the application of
learning algorithms to previously unseen scaffolds likely imposes a
distribution mismatch and a higher likelihood of mispredictions. This
mismatch is often encountered in real-world drug discovery programs
as molecular design can change dramatically over a project timeline.
Experimentally, testing of chemical entities that significantly differ
from prior knowledge can increase attrition, akin to using models
outside their domain of applicability. It is thus understandable that
learning algorithms underperform with scaffold splits, in comparison
to random splits, where no development timelines are taken into
account in the splitting routine.

When analyzing RFs, it was also found that no descriptor set
works satisfactorily well on all predictive tasks, indicating that feature
engineering and the development ofmolecular representation toolkits
are and will continue being a current topic in computational medicinal
chemistry. Another particularly interesting issue discussed by
Wang and colleagues is the empirical binning of continuous bioactivity
readouts – with enormous loss of information – to obtain classifiers
rather than regressors. Arguably, the latter need more training data,
which is sometimes incompatible with the experimentation costs. In
the case of classifiers, it is also discussed the uneven (or so-called
imbalanced) label distribution and the most appropriate metrics
for model assessment to avoid erroneous or skewed comparisons15.
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As noted, the area under the receiver operating characteristic
curve is commonly used to gauge performance in classifiers. However,
it can be optimistic in imbalanced label distributions. In such scenar-
ios, the precision–recall curve is advisable as it focuses on the
minority class.

Overall, the team highlights numerous methodological short-
comings in ML toolkits and practices that the community as a whole
must strive to change. Further, they speculate that self-supervised
learning can bypass the need for human annotations and expensive
experimentation, and hint that the contrastive type of self-supervised
learning might be applicable to small datasets in drug discovery.
Indeed, the presented data partly counter cycles the current enthu-
siasm in deep learning by showing that tree-based methods with fixed
representations are likely still the best option for property prediction.
Albeit surprising to some, the report byWang and team should further
spur investigations in a quest to make representation learning more
competitive and suited to real-world molecular medicine.
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