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CSTF2 mediated mRNA N6-methyladenosine
modification drives pancreatic ductal
adenocarcinoma m6A subtypes

Yanfen Zheng1,11, Xingyang Li1,11, Shuang Deng1,11, Hongzhe Zhao1,11, Ying Ye1,
Shaoping Zhang1, XudongHuang1, Ruihong Bai1, Lisha Zhuang1, Quanbo Zhou 2,
Mei Li3, Jiachun Su 1, Rui Li1, Xiaoqiong Bao1, Lingxing Zeng 1, Rufu Chen4,
Jian Zheng 1,5,6, Dongxin Lin1,5,7 , Chuan He 8,9,10 , Jialiang Zhang 1 &
Zhixiang Zuo 1

N6-methyladenosine (m6A) modification of gene transcripts plays critical roles
in cancer. Here we report transcriptomic m6A profiling in 98 tissue samples
from 65 individuals with pancreatic ductal adenocarcinoma (PDAC). We
identify 17,996m6A peaks with 195 hyper-methylated and 93 hypo-methylated
in PDAC compared with adjacent normal tissues. The differential m6A mod-
ifications distinguish two PDAC subtypes with different prognosis outcomes.
The formationof the two subtypes is drivenby anewly identifiedm6A regulator
CSTF2 that co-transcriptionally regulates m6A installation through slowing the
RNA Pol II elongation rate during gene transcription. We find that most of the
CSTF2-regulatedm6As havepositive effects on theRNA level of host genes, and
CSTF2-regulated m6As are mainly recognized by IGF2BP2, an m6A reader that
stabilizes mRNAs. These results provide a promising PDAC subtyping strategy
and potential therapeutic targets for precision medicine of PDAC.

Pancreatic ductal adenocarcinoma (PDAC), ranking the fourth leading
cause of cancer-related death in the world1, is often diagnosed at an
advanced stage. The improvement in the outcome of PDAC is lagging
behind many other malignancies, due to the lack of effective approa-
ches in early diagnosis, treatment, and difficulties for therapeutic
agents to access tumor sites2,3. Chemotherapy is still the main treat-
ment strategy for most advanced PDAC, though only benefits a subset
of patients4. Therefore, it is of urgent need to develop superior

markers and therapeutic targets based on better understanding of the
biology of PDAC.

Molecular subtyping has been used to guide clinical treatment in
many cancer types, such as breast cancer and colon cancer, but has yet
to be effective in PDAC5. Genome-wide association studies and whole-
genome sequencing studies on PDAC have provided many potential
molecular biomarkers for PDAC subtyping6,7. Based on transcriptomic
data, several studies have classified PDAC into distinct molecular
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subtypes8–10. Law et al.11 have classified PDAC into four subtypes with
distinct microenvironment based on proteomic analysis. Although
none of these studies have been implicated in clinical practice, these
studies suggested that molecular subtyping could be a promising
feature in guiding clinical PDAC treatment.

The RNA modifications are a new epigenetics layer of post-
transcriptional regulation of genes. N6-adenosine methylation
(m6A), as one of the most prevalent RNA modifications, plays an
important role in a variety of biological processes, such as cell fate
determination12–14, circadian clock regulation15, adipogenesis16, cell
cycle arrest, and apoptosis17. Accumulating evidence has suggested
that the aberrant RNA m6A modifications are important events in
human cancer development and progression18–21. Recently, we have
demonstrated that m6A modifications stimulated by cigarette
smoke can promote excessive miR-25-3p maturation, which
enhances pancreatic cancer progression18. We hypothesized that
m6A in RNA might hold great promise as molecular markers for
PDAC subtyping.

In the present study, we have performed transcriptome-wide
m6A-sequencing on ribosomal RNA (rRNA)-depleted RNAs of 98 pan-
creatic tissue samples from 65 individuals with PDAC. We have iden-
tified m6A profiles in PDAC distinct from the adjacent normal tissues,
based on which defining PDAC subtypes. Further study uncovered
CSTF2 as an m6A deposition mediator, driving the formation of two
PDAC subtypes. Furthermore, we found that the CSTF2-regulatedm6A
methylation program can be recognized mostly by IGF2BP2, the m6A
stabilized reader, promoting oncogenic pathways, suggesting that the
CSTF2-associated PDAC m6A subtyping can serve as a promising
therapeutic strategy.

Results
Transcriptome-wide m6A mapping in PDAC
Weperformedm6A-sequencing (m6A-seq) on rRNA-depleted RNAs of
98 pancreatic samples from 65 individuals, including 33 pairs of
PDAC and corresponding normal tissue and another 32 PDAC sam-
ples (Supplementary Table 1 and Supplementary Data 1), and iden-
tified 26,684 m6A peaks by using MACS222 and MeTPeak23. After
removing 462 (1.7%) peaks at the “A” of the transcription start site
(TSS) and BCA motifs, which may be N6,2’-O-dimethyladenosine
(m6Am) that can also be captured by the m6A antibody24, and those
m6As that were not detected in at least 5 different samples, 17,996
m6A peaks were used in further analysis (Fig. 1a and Supplementary
Data 2). Among these m6A peaks, 15,708 (87.3%) have been recorded
in the RMBASE25 with many transcripts that are well-known to be
m6A-modified (Supplementary Fig. 1a). Moreover, the identified m6A
sites were enriched in the classical GGACH motif (Fig. 1b) and the
regions near the start- and stop-codons (Fig. 1c). These results are in
line with previous findings26,27.

These 17,996 m6A peaks were mainly located in genetic regions
coding for messenger RNAs (mRNAs, 95.9%) (Supplementary Fig. 1b),
consistent with results from polyA+ RNA m6A-seq28. However, because
we employed rRNA-depleted RNA m6A-seq, there were 24.5% of the
identified m6A peak located in the intron regions which show a pro-
portion of GGACH motif comparable to the exon regions with m6A
(Supplementary Fig. 1c), and the m6As-modified intron regions were
usually close to the splicing sites (Supplementary Fig. 1d), implying
that the intron regions can also be modified by m6A, which may alter
mRNA splicing as suggested previously16,29.

Distinguishing two PDAC subtypes by differential m6A
modifications
Among the 17,996 m6A sites, 195 were hypermethylated while 93 were
hypo-methylated in 33 tumors compared with those in 33 paired
normal tissues (Supplementary Data 3). Most of these differentially
methylatedm6As (265/288) were validated by PDACs by comparing an

independent dataset with 32 unpaired PDACs to the 33 normal pan-
creatic tissues (Fig. 1d). Permutation analysis of tumor and normal
sample labels (1000 times) yielded an average of 17 differential m6A
sites that were far less than observed 288 differential m6A sites (Sup-
plementary Fig. 1e), indicating that the identified aberrantm6A sites are
not random. 96.6% (28/29) of the randomly selected aberrantm6A sites
were validated by MeRIP-qPCR (Supplementary Table 2), supporting
the reliability of our m6A-seq data (r = 0.867, P < 0.0001; Fig. 1e).
Moreover, by using the RADAR program30, a recently developed ana-
lytical tool for detecting differentially methylated loci in MeRIP-seq
data, we found that most differentially methylated m6As (175/288)
were also identified by RADAR, indicating the high confidence of our
results.

Most of the differential m6A sites are within mRNAs and are
enriched around the stop-codons and in 3’UTR regions (Supplemen-
tary Fig. 1f). The 288 dysregulated m6A sites were enriched in genes
related to cancer pathways such as cell cycle and epithelial-
mesenchymal transition (Fig. 1f). For example, previously reported
oncogenes such as CENPF31,32,WNT7B33–35 and NTSR136,37 were found to
be hyper-m6A methylated in tumor versus adjacent normal tissues
(Fig. 1g, h).

Unsupervised consensus clustering of the PDAC patients
according to these differential m6A peaks further characterizes two
PDAC subtypes (designated as S1 and S2, respectively, Fig. 2a). The S2
PDAC showed an m6A pattern that was distinct from the S1 PDAC
(Fig. 2b), but not different in the adjacent normal tissues of two PDAC
subtypes (Supplementary Fig. 2a), suggesting that the subtype pat-
terns are tumor-specific. Moreover, the differentiallymethylatedm6As
between the S1 and S2 PDAC samples showednodifference between S1
PDAC samples and adjacent normal tissue samples (Fig. 2b), and had a
large overlap with the differentially methylated m6As between adja-
cent normal and tumor tissues (Fig. 2c), indicating a S2 PDAC-specific
m6A dysregulation. The m6As of the genes in cancer pathways such as
cell cycle and epithelial-mesenchymal transition were hypermethy-
lated in S2 PDAC samples compared to S1 PDAC samples (Supple-
mentaryFig. 2b). For instances, differentiallymethylatedm6As in genes
such as CENPF, WNT7B and NTSR1 between tumor and normal tissues
were hypermethylated in S2 PDAC samples compared to S1 PDAC
samples (Supplementary Fig. 2c, d).

We analyzed the correlations of the two subtypes with known
clinical factors such as sex, age, smoking status, drinking status, tumor
stage, differentiation, vascular invasion, and lymph node metastasis.
The results were all negative except for neural invasion (Fig. 2d). The
stromal content is not significantly different between the two subtypes
in tumor tissues used for m6A sequencing (Fig. 2d and Supplementary
Table 1), indicating that these subtype patterns are PDAC intrinsic
features. We further examined whether the m6A subtypes of PDAC are
correlated with previously reported transcriptional subtypes8–10. We
found that the frequencies of Bailey’s squamous subtype and Col-
lisson’s classical subtypewere significantlyhigher in S2PDAC than in S1
PDAC (Fig. 2d).

Survival analysis revealed that the S2 PDAC had a median
progress-free survival (PFS) time and overall survival (OS) time that
were significantly shorter than the S1 PDAC (6.6 versus 11.2 months,
log-rank P <0.0001 and 11.4 versus 13.3 months, log-rank P = 0.041,
respectively; Fig. 2e), with the HRs being 4.28 (95% CI = 1.53−11.96) and
3.31 (95% CI = 1.12−8.78), respectively, adjusted for clinical features,
mutations of KRAS/TP53 and transcriptional subtypes reported
previously8,10. However, we did not find a significant association
between survival and known transcriptional subtypes (Supplementary
Fig. 2e), suggesting our m6A subtypes are independent of other tran-
scriptional subtypes. Interestingly, we found that the T-cell and B-cell
markers were comparatively lower in S2 subtype than S1 subtype
(Supplementary Fig. 2f), suggesting a different immune phenotype
between the two subtypes.
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CSTF2 drives the PDAC m6A subtype formation
We next explored the mechanism underlying the formation of PDAC
subtypes. First, we applied random forest analysis and spearman
correlation analysis to examine the correlation of hypermethylated
m6A in the S2 PDAC with RNA binding proteins (RBPs) that have the
binding sites supported by CLIP sequencing data in POSTAR2

database38 overlappedwith them6A peaks or with knownm6Awriters
and erasers (Supplementary Fig. 3a). We found that Cleavage Stimu-
lation Factor 2 (CSTF2) RNA levels were most significantly correlated
with the levels of hypermethylated m6A sites in S2 PDAC (Fig. 3a).
Both CSTF2 RNA and protein level were significantly higher in PDAC
than in adjacent normal tissues (Supplementary Fig. 3b−d) and in the
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having the m6A. The red dashed circle indicates the cutoff (set as five) for sample
number having the m6A. b Sequence logo representing the enriched sequence
motif in m6As analyzed by the MEME tool. c Location distribution for m6As in
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normal samples and 32 unpaired PDAC tumor samples (FDR<0.1 of paired Wil-
coxon test). Each row represents a differentially methylated m6A and each column

represents a sample. e Spearman correlation of fold changes of 29 aberrant m6As
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RNAs in tumor tissues and adjacent normal tissues bym6A-seq. Number represents
the range of the m6A signals. h The abundance of indicated RNAs that are qualified
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S2 PDAC than the S1 PDAC (Fig. 3b and Supplementary Fig. 3e), while
another two candidates, U2AF2 and CAPRIN1, showed little differ-
ence on RNA levels between the S2 and S1 PDAC (Supplementary
Fig. 3f). PDAC cell lines (PANC-1 and SW1990) with moderate
expression level of CSTF2were chosen for experiments subsequently
(Supplementary Fig. 3g). We found that when the CSTF2was knocked
down in PANC-1 and SW1990 cells, methylation levels were sub-
stantially decreased in 86% (14,342/16,628) and88% (11,544/13,051) of
differential m6A sites, respectively (Fig. 3c, d and Supplementary
Fig. 3h). The effect of CSTF2 onm6A were further verified bym6A-LC-
MS (Supplementary Fig. 3i) and m6A-ELISA (Supplementary Fig. 3j),
while knockdown of U2AF2 and CAPRIN1 showed minute effect of
global m6A level (Supplementary Fig. 3k−m). Moreover, when CSTF2
was ectopically overexpressed in the same cell lines, 8804 and 8554
of m6A sites were hypermethylated (Fig. 3e, f), with 72.8% (6411/
8804) and 61.7% (5275/8854) overlapping of hypo-methylatedm6A in
the two examined cell types with CSTF2 knockdown (Fig. 3g). Sig-
nificantly dysregulated m6As (Fig. 3h) upon CSTF2-knockdown were
further verified byMeRIP-qPCR (Supplementary Fig. 3n), which could
be rescued by forced-expressed CSTF2 (Supplementary Fig. 3o, p),
but not affected by U2AF2 or CAPRIN1 knockdown (Supplementary
Fig. 3q). Moreover, 64.9% (122/188) hypermethylated in the S2 PDAC
are hypo-methylated in cells with CSTF2 knockdown (Fig. 3i). Toge-
ther, these results suggest that CSTF2 may regulate mRNA m6A for-
mation in PDAC.

CSTF2 promotes the malignant phenotypes of PDAC cells
We then explored the effects of CSTF2 on malignant phenotypes of
PDAC cells. In vitro experiments showed that the knockdown of CSTF2
substantially suppressed the abilities of cell proliferation, colony for-
mation, cell cycle, migration, and invasion of PDAC cells (Fig. 4a−d,
Supplementary Fig. 4a−c). By using mouse subcutaneous xenograft
models, we also found that CSTF2 overexpression significantly
enhanced but silence markedly suppressed the growth rates of PDAC
tumor (Fig. 4e). Furthermore, forced expression of CSTF2 promoted
lung metastasis of PDAC cells while CSTF2 knockdown showed oppo-
site effects (Fig. 4f). Additionally, the CSTF2 knockdown induced
inhibition of malignant phenotypes can be rescued by forced-
expressed CSTF2, implying the on-target effect of CSTF2 knockdown
(Supplementary Fig. 4d−f). Notably, the malignant phenotypes pro-
moted by forced-expressed CSTF2 could be partially alleviated by
knockdown of CENPF, WNT7B, or NTSR1 (Supplementary Fig. 4g, h),
implying that CSTF2 may function via modulating m6A of spe-
cific genes.

CSTF2 mediates m6A deposition by retarding elongation
We next investigated how CSTF2 mediated m6A deposition. We found
that neither the expressions nor the subcellular localizations of the
known m6A writers or erasers were affected by CSTF2 knockdown in
PDAC cells (Supplementary Fig. 5a−c). The intact methyltransferase
complex was not affected by CSTF2 knockdown in PDAC cells
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(Supplementary Fig. 5d). Depletion of CSTF2 has relatively small effect
on global APA profiling (Supplementary Fig. 5e), which is similar with
previous studies reporting that CSTF2T plays a redundant role in
regulating APA with CSTF2T could be upregulated upon CSTF2
knockdown (Supplementary Fig. 5f) and only co-depletion of CSTF2
and CSTF2T leads to obvious APA changes39,40. Moreover, genes with
significant APA changes hold little overlap with hypo-methylated

genes upon CSTF2 knockdown (38/7426). The results above indicate
that the phenotypes observed upon CSTF2 knockdown were unlikely
mediated through APA.

Our CLIP sequencing data showed that the CSTF2 RNA binding
sites are well overlapped with m6A sites in RNA (Fig. 5a and Supple-
mentary Fig. 5g−j), consistent with reported public CLIP sequencing
data (Fig. 5b). Previous studies reported that CSTF2 can directly
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interactwith RNApolymerase II (RNA Pol II)41,42 that is known to recruit
the m6A methyltransferase complex (MTC) co-transcriptionally43,
suggesting that CSTF2 might affect m6A deposition through MTC and
RNA Pol II. We thus performed CUT&Tag sequencing of CSTF2 and
RNA Pol II, and the results showed a good overlap of genomic binding
positions of CSTF2 and RNA Pol II (Fig. 5c). We observed that m6A
peaks with Pol II occupancy showed a significantly greater reduction in
m6A levels upon CSTF2 knockdown than those peaks without Pol II
occupancy (Fig. 5d). Furthermore, we found that genes exhibiting
substantial changes in Pol II occupancy also displayed a greater
reduction inm6A levels uponCSTF2 knockdown (Fig. 5e). These results
suggest thatm6A sites whose formation ismore reliant on Pol IImaybe
particularly vulnerable to the effects of CSTF2 knockdown. Moreover,
we found that CSTF2-binding sites in DNA were co-localized with
CSTF2 binding sites and m6A sites in RNA, and the co-localization was
associated with RNA Pol II (Fig. 5f, g). These results implied that RNA
Pol II may indeed play a role in mediating m6A depositions regulated
by CSTF2.

Previous study reported that CSTF2 may function as a rate-
limiting factor in the elongation of RNA Pol II44, and a recent study
showed that prolonged elongation rate may help RNA Pol II to recruit
m6A writer METTL343. We further performed CUT&Tag sequencing of
Pol II and Pol II-Ser2P upon CSTF2 knockdown. Significant decreases in
RNA Pol II and Pol II-Ser2P density were observed in those genes with
hypomethylated-m6A upon CSTF2 knockdown, while the RNA Pol II
density of CSTF2 non-targets was not affected (Fig. 5h and Supple-
mentary Fig. 5k). We also observed a slight increase in H3K79me2 and
H3K36me3, but no significant changes in the enrichment of Pol II-ser5P
(Supplementary Fig. 5k). This was illustrated by the representative
genomic tracks of CSTF2 targets such as CENPF, WNT7B and NTSR1
genes (Fig. 5i and Supplementary Fig. 5l). These findings are in line
with the fact that faster elongation leads to lower RNA Pol II density
in the gene body45. Moreover, using 5,6-dichlorobenzimidazole
1-beta-D-ribofuranoside (DRB) in combination with global nuclear run-
on followed by sequencing (GRO-seq) (Supplementary Fig. 5m), we
found that knockdown of CSTF2 moderately increased the elongation
rate of target RNAs (Supplementary Fig. 5n), which was validated by
elongation rate experiments subsequently (Supplementary Fig. 6a−c).
We also found that CSTF2 knockdown facilitated but ectopic over-
expression of CSTF2 attenuated the synthesis of nascent RNA in PDAC
cells (Fig. 5j, k and Supplementary Fig. 6d, e), confirming that CSTF2
action decreased the elongation rate of Pol II. We therefore hypothe-
sized that CSTF2 might facilitate the METTL3 recruitment via
prolonging elongation rate of RNA Pol II, thus promoting m6A
deposition. We found that forced CSTF2 expression changes in PDAC
cells resulted in substantial variations of the RNA Pol II and METTL3
interaction (Fig. 5l, m and Supplementary Fig. 7a, b). Similar results
were also observed between the activated elongating form of Pol II,
phosphorylation of the C-terminal domain (Pol II-Ser2P) and METTL3
upon forced CSTF2 expression changes (Supplementary Fig. 7c, d),
whereas global Pol II-Ser2P was not affected, suggesting that CSTF2-
retarded Pol II recruited more METTL3.

Notably, knockdown of CSTF2 caused comparable decrease of
global m6A level with that by METTL3 knockdown (Supplementary

Fig. 7e, f), and the hypomethylated-m6A in cells with METTL3 knock-
down overlapped with 69% (1850 of 2676) of m6A produced by CSTF2
(Fig. 5n). CSTF2 knockdown caused less METTL3 binding around the
m6A region of the target transcript but ectopic overexpression of
CSTF2 strengthened the interaction (Fig. 5o, p and Supplementary
Fig. 7g). It is reported that CSTF2 effects on the binding of elongation
factors on transcripts co-transcriptionally44. Notably, we found that
knocked down or inhibited the elongation factors AFF1/4 in HEK293T
cells markedly attenuated the elongation rate of CSTF2 target genes,
while effects on CSTF2 non-target genes tended to be weaker (Sup-
plementary Fig. 7h−j). CSTF2 knockdown in PDAC cells promoted the
recruitment of AFF1/4, ensuring efficient elongation but ectopic
overexpression of CSTF2 attenuated the recruitment, leading to
slowing elongation (Supplementary Fig. 7k, l). These results strongly
support that CSTF2 promotes m6A depositions by slowing down the
Pol II elongation, therefore facilitating the recruitment of METTL3 co-
transcriptionally.

CSTF2-regulated m6As enhance RNA stability
We then explored the effects of m6As on their host RNA levels in PDAC
and found that 205 m6As (148 RNAs) out of the 254 differentially
methylated m6As between S1 and S2 PDAC subtype had impacts on
their host RNA levels (Fig. 6a and Supplementary Data 4). For example,
both the m6A level and RNA level of some genes in cancer-related
pathways such as cell cycle and epithelial-mesenchymal transition
were significantly different between S1 and S2 (Supplementary Fig. 8a).
Among the 148 RNAs, the m6A levels and RNA levels of 115 RNAs were
both upregulated in S2 PDAC compared to S1 PDAC, while the m6A
levels and RNA levels of 33 RNAs were both downregulated (Fig. 6a).
We also found higher RNA levels of CSTF2 target genes in PDAC tissues
comparing with that in normal tissues (Supplementary Fig. 8b). The
positive correlation between m6A level and RNA level was also
observed in PDAC cells, where RNA level downregulation of many
RNAs (805/5222) upon CSTF2 knockdown will show hypomethylation
of m6A levels, but only few RNAs (9/5222) will show lengthened 3’UTR
(Fig. 6b and Supplementary Fig. 8c), indicating that the CSTF2-
regulated m6As but not CSTF2-regulated APAs may contribute to the
increased RNA levels. IGF2BP family is reported to be an m6A reader
stabilized transcripts46. Since the expression of IGF2BP2 was positively
correlated with most of the 254 differentially methylated m6As
between S1 and S2 PDAC subtype (Supplementary Fig. 8d), we next
investigated the role of IGF2BP2 in the CSTF2-regulated m6As. We
found that the expression of IGF2BP2 was not altered by CSTF2
knockdown (Supplementary Fig. 8e). However, both CSTF2 knock-
down and IGF2BP2 knockdown caused similar changes in expression
levels of CENPF, WNT7B, NTSR1 (Supplementary Fig. 8f−h). CSTF2
knockdowndampened thebindingof IGF2BP2 to them6A regionof the
target transcript (Supplementary Fig. 8i), without altering the binding
enrichment of YTHDF1/2/3 on these RNAs (Supplementary Fig. 8j). The
effect of CSTF2 knockdown on transcripts can be rescued by ectopic
expression of CSTF2 implying that the effect is on-target (Supple-
mentary Fig. 8k). Both CSTF2 knockdown and IGF2BP2 knockdown
caused similar change on stabilities of CENPF, WNT7B, NTSR1 tran-
scripts (Supplementary Fig. 8l). Furthermore, we conducted dCas13

Fig. 4 | Knockdown of CSTF2 inhibits proliferation and metastasis of PDAC
cells. a, b CSTF2 KD repressed PDAC cell proliferation gauged by electrical impe-
dance expressed as decreasing cell index (a) ormeasured byCCK-8 assays (b). Data
of a, b are means ± S.D. (n = 3). c CSTF2 KD inhibited PDAC cell colony formation.
Upper panels are representative pictures of colony formation; lower panels show
quantitative statistics of relative colony formation activity (means ± S.E.M., n = 3).
d CSTF2 KD repressed PDAC cell migration and invasion determined by transwell
assays. Upper panels are representative pictures showing different abilities of cell
migration and invasion; Lower panels show quantitative statistics of migration and
invasion abilities. Data are means ± S.E.M. in (n = 3) of three independent

experiments. Scale bars, 200μm. e Effects of CSTF2 on the growth of xenograft
tumors derived from PDAC cells in vivo in nude mice. Shown were the sub-
cutaneous xenografts obtained at the end of experiments (left panel) and the
curves of xenograft growth (right panel). f Effects of CSTF2 on lung localization of
PDAC cells in nude mice (n = 5) with injection of cells via tail-vein. Left panels show
representative bioluminescence imaging at day 42 after injection of cells, and right
panel shows quantitative luminal intensities. Data represent means ± S.E.M. from
five mice of each group. Data of a−d were from three independent experiments. *,
P <0.05; **, P <0.01 and ***, P <0.001 of Student’s t tests compared with each
control.
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based m6A editing and gRNA to specifically manipulate the m6A site
(Fig. 6c and Supplementary Fig. 9a). The downregulation of m6A level
were verified (Fig. 6d) which dampened the binding of IGF2BP2
(Fig. 6e), leading to downregulation of both the mRNA levels (Fig. 6f)
and half-lives of transcripts (Fig. 6g), specifically (Supplementary

Fig. 9b−g). Forced-expressed IGF2BP2 failed to rescue the effect of
downregulation of m6A level on both the mRNA levels and half-lives of
transcripts (Fig. 6h, i and Supplementary Fig. 9h). Taken together, the
above results demonstrated that CSTF2-regulated m6As enhance the
RNA stability via IGF2BP2.
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Discussion
Increasing evidence has shown that m6A modifications are important
in the pathogenesis of various types of cancer20,21,47–49. However, their
global function and regulation in cancer are still largely unknown,
mainly due to the lack of m6A-seq data from larger sample sizes of
cancer patients. In the present study, we have performed a
transcriptome-wide m6A-seq and mapping of m6A modifications in a
large set of PDAC samples from 65 patients. To the best of our
knowledge, this is the most comprehensive study on mRNA m6A
methylome landscape in PDAC to date. We have demonstrated that
PDAC has obviously different mRNAm6Amodification compared with
adjacent normal tissues, with 68% ofm6A sites being hypermethylated
and 32% of m6A sites being hypo-methylated.

Recent high-throughput sequencing studies have revealed a great
diversity of PDAC at multi-omics levels, such as genomics, tran-
scriptomics, proteomics, and epigenomics8–11,50,51. However, the cur-
rent data is far more than enough to reveal the complex mechanism
underlying the heterogenous disease, let alone guide the clinical
treatment based on molecular subtyping in PDAC. In this study, we
have innovatively defined two PDAC subtypes using distinct m6A
modification profiling, which is related to patients’ survival, offering
alternative insight into PDAC and informing the development of
superior markers or therapeutic regimens based on this finding.

Another important finding is the discovery of CSTF2 as an m6A
deposition mediator that regulates mRNA m6A modification. We have
demonstrated that the depletion of CSTF2 in PDAC cells substantially
reduced global m6A levels but did not change the expression levels of
the m6A writers and erasers. CSTF2 is well known as a member of the
cleavage stimulation factor complex regulating the 3’ end cleavage and
alternative polyadenylation (APA)52. Our data showed that the knock-
downofCSTF2 alonehas a limited effect on globalAPA, consistentwith
a previous study, as CSTF2T, the paralog of CSTF2 functioning as an
APA regulator similarly, can be upregulated accompanied with CSTF2
knockdown39,40. Pol II termination defect is only observed when CSTF2
and CSTF2T are co-depleted, but not in CSTF2-knockdown cells53.
These data suggest that it is unlikely that the effect of CSTF2 knock-
down on m6A levels may be due to its APA-modulating effect. Fur-
thermore, CLIP sequencing shows that CSTF2 binding sites enrich
significantly around the m6A sites, suggesting that CSTF2 influences
m6A modifications in a m6A site-dependent manner. Recent studies
have proposed that themRNAm6Amodification is a co-transcriptional
process depending on slowing or pausing of transcribing RNA Pol II29,43

and CSTF complex can directly interact with RNA Pol II and slow down
its elongation rate during Pol II elongation41,42,44. Our results together
with previous findings indicate that the CSTF2 effect on m6A deposi-
tion is likely through the mechanism of slowing RNA Pol II
elongation rate.

In conclusion, we have comprehensively deciphered the land-
scape of transcriptome-wide m6A mRNA modification in PDAC. We

have identified CSTF2 promoting the m6A modification in mRNAs and
IGF2BP2 enhancing the stability of mRNAs with hypermethylated
m6As,which formsaCSTF2-m6A-IGF2BP2 axis (Fig. 7). The aberrancy of
this m6Amodification-related axis may contribute to the development
and progression of PDAC and thus has the potential clinical applica-
tions in PDAC precision medicine.

Methods
Patients and tissue specimens
This studywas performed according to theDeclaration of Helsinki and
approved by the Institutional Review Board of Sun Yat-sen University.
Written informed consent was obtained from each participant, and all
data were anonymously analyzed.

For high-throughput m6A-sequencing and disease-relevant
molecule analyzing, 65 patients with PDAC were recruited and the
distributions of select characteristics are shown in Supplementary
Table 1. All patients were recruited at Sun Yat-sen University Sun
Yat-sen Memorial Hospital (Guangzhou, China) between 2010 and
2018 and they underwent pancreatectomy and received no treat-
ment before surgery. The diagnosis of PDAC was histopathologi-
cally confirmed and tumor stage was classified according to the 7th
edition of AJCC Cancer Staging System54. The PDAC tumor and non-
tumor tissue (≥5 cm away from tumor) samples were collected at
surgery from each patient and immediately placed in liquid
nitrogen.

Tissue RNA isolation
Total RNA was isolated from tumor and normal samples with TRIzol
reagent (Invitrogen). The tumor and stromal contents were evaluated
from the continuous tissue section slides stained with H&E by three
board-certified pathologists who were blinded to the patients’ clin-
icopathological status and only the samples containing ≥60% tumor
cells were used. The resultant RNA samples were quantified by mea-
suring absorbance at 260 nm with a UV spectrophotometer and then
determined via theRNA6000Nano assay (Agilent) for anRNA Integrity
Number (RIN), and only the samples with RIN ≥ 7.0 were included for
further analysis.

High-throughput m6A-sequencing
Total RNA from tissue was digested with DNase I and then subjected
to RiboMinus (Illumina) treatment to eliminate ribosomal RNAs
(rRNAs). An amount of 1.5 μg RNAwas used as input.We usedMagna
MeRIP m6A Kit (Millipore) for m6A immunoprecipitation (m6A-IP)55.
Briefly, 20 μg of rRNA-depleted RNA was sheared to about 100
nucleotides in length by metal-ion-induced fragmentation and then
purified and incubated with 10 μg of anti-m6A antibody (Synaptic
Systems, 202003). Sequencing libraries for m6A-IP and input were
prepared and sequenced using Illumina HiSeq2500 SE50 and Illu-
mina HiSeqX Ten PE150, respectively.

Fig. 5 | CSTF2 mediates m6A deposition by retarding elongation. a, b Co-
localization of the CSTF2 binding sites and the m6A sites in RNA in PANC-1 (a) or
HEK293 cells (b). The line plot shows distance between the CSTF2 binding sites (left
panel) and the m6A sites in RNA within 2-kb region and the Venn plots show the
corresponding overlapping proportion (right panel). P value for Fisher’s exact test.
c Co-localization of the DNA binding sites of CSTF2 and RNA Pol II in PANC-1 cells.
d, e Genes enriched with Pol II binding (d) or with significant Pol II binding change
(e) experienced more dramatic m6A change upon CSTF2-KD. P value of d, e were
fromWilcoxon rank-sum test. fCo-localizationof theDNA andRNA-binding sites of
CSTF2 in PANC-1 cells. Purple line and blue line represents those CSTF2 CLIP peak
overlapped (purple) or not overlapped (blue) with Pol II CUT&Tag peak, respec-
tively.gCo-localizationof DNA-binding sites of CSTF2 andRNAm6A sites in PANC-1
cells. Purple line and blue line represent those CSTF2-targeted m6A peak over-
lapped (purple) or not overlapped (blue) with Pol II CUT&Tag peak, respectively.
h Comparison of the RNA Pol II density along the CSTF2 target mRNA (left: CSTF2

targetRNAs; right: CSTF2 non-target RNAs) in PANC-1 cells uponCSTF2-KD. i Shown
are representative tracks of transcript experiencing m6A level and Pol II binding
densities change upon CSTF2 KD. j, k Representative images of 5-ethynyluridine
(EU) labeling in PANC-1 cells (left panel) showing the effect of CSTF2 KD (j) or
overexpression (k) of three independent experiments, and quantification analysis
of EU signals from one representative experiment (right panel). Scale bar, 100μm.
Boxplots indicatemedian (middle line), 25th, 75thpercentile (box) and 5thand95th
percentile (whiskers) (Cell number: n = 27, 31 and 29 for KD control, CSTF2-KD#1
and CSTF2-KD#2; n = 29 and 24 for Control and CSTF2 OE, respectively)
l, m Showing the effects of CSTF2 KD (l) or overexpression (m) on the interaction
between Pol II andMETTL3 in PANC-1 cells. n Showing the overlap betweenmRNAs
with hypo-m6AsuponCSTF2KDandMETTL3KD.o,pCLIP-qPCRshowed thatCSTF2
KD impaired (o) but overexpression enhanced (p) METTL3 binding to target
transcripts in PANC-1. Data are themean ± S.E.M. of three independent experiments
in o, p. *P <0.05; **P <0.01 and ***P <0.001 of Student’s t-test.
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Alignment of m6A-sequencing reads
We used STAR56 to align them6A-sequencing reads to human reference
genome (hg38). For m6A-IP reads, the 50 base pairs (bp) single-end
reads were aligned to human genome using STAR with the
following parameters: --twopassMode Basic --chimSegmentMin 20
--outFilterIntronMotifs RemoveNoncanonical --outFilterMultimapNmax
20 --alignIntronMin 20 --algigIntronMax 1000000 --alignMatesGapMax

1000000. For input reads, the 150bp pair-end reads were aligned to
human genome using STAR with parameters like m6A-IP reads.

m6A calling, annotation, and motif analysis
The input reads (150 bp) were trimmed to the length of m6A-IP reads
(50bp) using fastx_trimmer from FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). MACS222 and MeTPeak23 were used to call the
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peaks based on the m6A-IP reads and the trimmed Input reads for all
the normal and tumor samples. The cutoff P value for significant peak
for MACS2 was set at 1.00e-6. The peaks called from the twomethods
were first merged using IntersectBed in BEDTools57. Only those peaks
identified by both two peak-calling methods were retained. We con-
sidered those 5’UTR peaks with transcription start site (TSS) “A” and
“BCA”motif werem6Ampeaks and the other peakswerem6Apeaks. To
avoid false positives, thosem6A peaks occurred in at least five samples
were retained for further analysis. Gencode v25 human annotations
were downloaded from Gencode website for peak annotation58. An ad
hoc perl script was used to annotate the m6A peaks. Firstly, BEDTools’
intersectBed was applied to map the peaks to Gencode v25 human
annotations. To avoid duplicated mapping, only the canonical tran-
script for a gene was used. Canonical transcript was defined as
described in UCSC genome browser. We then compared the peaks to
the curated m6A sites in RMBASE25 using IntersectBed to distinguish
known peaks and novel peaks. MEME59 was used to find the motif
enriched in m6A peaks.

Analysis of RNA level and differential expression
For quantification of RNA level, RSEM60 was performed with the fol-
lowing parameters: -paired-end, -star. R package DESeq261 and edgeR62

were used for differential gene expression analysis between tumor and
normal tissue samples. First, those genes with adjusted P value from
DESeq2 <0.1 were considered significantly differentially expressed. To
reduce false positives, edgeR was further applied. The significantly
differentially expressed genes obtained from DESeq2 were further fil-
tered by edgeR adjusted P value at cutoff 0.1.

Analysis of m6A level and differential methylation
The relative m6A level for each m6A was quantified according to the
procedure described by Schwartz et al.63 Briefly, multicov in bedtools
was used to calculate the read coverage in m6A-IP and Input for each
peak. RPKM (Reads Per Kilobase Million) method was then used to
normalize the read coverage. The relative m6A level was obtained by
calculating the ratio between IP RPKM value and Input RPKM value for
each m6A. Following this procedure, we calculated the relative m6A
levels for all the 17,996 identifiedm6As for all 98 samples. Toobtain the
aberrant m6A modifications in PDAC, we performed paired Wilcoxon
rank-sum test on the quantitative difference in all m6A between the 33
paired tumor and normal samples, which resulted in 1108 hyper-
methylated m6As and 948 hypomethylated m6As at significance
level of P <0.05. To reduce the false positives, we performed FDR
multiple testing correction. Finally, 195 hypermethylated- and 93

Fig. 6 | Aberrant m6A enhances mRNA stability. a Correlations of levels of m6As
with levels of their host RNAs. Hyper-up, increase in levels of both m6As and their
host RNAs in S2 PDAC versus S1 PDAC; hypo-down, decrease in levels of bothm6As
and their host RNA levels in S2 PDAC versus S1 PDAC; hypo-up, decrease in m6A
level but increase in RNA level in S2 PDAC versus S1 PDAC; Non-significant change,
levels of RNA did not significantly change in S2 PDAC versus S1 PDAC. b Waterfall
plot of differentially expressed CSTF2 target RNAs upon CSTF2 knockdown in
PANC-1 cell. c Diagram of dCas13 based m6A editing system. d Relative m6A
enrichment of CENPF, WNT7B, NTSR1 transcript detected by MeRIP-qPCR upon
transfected with dCas13b-ALKBH5 and non-target gRNA or gRNA targeting m6A of

specific RNAs, respectively. e Relative IGF2BP2 enrichment of indicated transcript
detected by CLIP-qPCR upon transfected with dCas13b-ALKBH5 and non-target
gRNA or gRNA targetingm6A of specific RNA, respectively. f, g RelativemRNA level
(f) and half-lives (g) of CENPF, WNT7B, NTSR1 detected by qRT-PCR upon trans-
fected with dCas13b-ALKBH5 and non-target gRNA or gRNA targeting m6A of
indicated RNA, respectively. h, i Relative mRNA level (h) and half-lives (i) of CENPF,
WNT7B, NTSR1 detected by qRT-PCR upon manipulating the m6A site by dCas13
based m6A editing system with or without rescue with forced-expressed IGF2BP2.
Data are the mean ± S.E.M. of three independent experiments in d−i. **P <0.01 and
***P <0.001 of Student’s t test. ns, not significant.
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Fig. 7 | Proposed actionmodel for CSTF2 in RNAm6A deposition and formation
of PDAC subtypes. High expression of CSTF2 in PDAC, an m6A deposition med-
iator, causes the aberrant RNA m6A which drives the formation of PDAC subtypes
by a mechanism of slowing down the transcriptional elongation rate and retention
of more methyltransferase complex (MTC). Pancreatic ductal adenocarcinoma

(PDAC) canbe classified into two subtypes namely subtype 1 (S1) and subtype 2 (S2)
based on aberrant m6A modifications. Compared with S1, S2 is characterized by
high expression of CSTF2 and high m6A level which leads to activation of specific
tumor-related pathways.
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hypomethylated-m6As were obtained upon setting FDR =0.1. For
identification of differentially m6A methylated loci between two
groups using RADAR30, regionwith an adjusted P value < 0.05 and |log2
fold change|> 0.5 was considered as differential m6A peaks.

Analysis of the correlation between RBPs and m6A modification
The correlations between the levels of RBPs and m6As were calculated
by both random forest and Spearman correlation analyses. The
detailed procedures of random forest analysis were as follows: we set
the RBPs and clinical factors (sex, age, smoking status, drinking status,
tumor stage, differentiation, neural invasion, vascular invasion, and
lymph node metastasis) as independent variables (X) and the m6As as
dependent variables (Y), as shown in Eq. (1) and Eq. (2), where the n
means the number of RBPs and the m means the number of samples.

X =

x11 x12 � � �
x21 x22 � � �
� � � � � � � � �

x1n
x2n

� � �
xm1 xm2 � � � xmn

2
6664

3
7775 ð1Þ

Y= ½y1,y2, . . . ym� ð2Þ

Then we used random forest algorithm to construct the regres-
sion model between the RBPs (X) and m6As (Y), yielding the con-
tributions of all RBPs to each m6A from Eq. (3), where c is the

yi = c+
XK

k = 1

contribðx,kÞ ð3Þ

value corresponding to the root node in the regression tree, k is
the feature number in the regression route and contrib (x, k) represents
the contribution of independent variable x to dependent variable y at
the kth feature. For the regression model with multiple random forest
trees, the contribution of each RBP was the average of the contribu-
tions from all the trees.

Spearman correlation between each RBP and each m6A was cal-
culated for hypermethylated, hypo-methylated, and unchanged m6As,
respectively. The RBP-m6A pairs with |correlation|> 0.25 and P <0.05
were considered to be significant. We performed Fisher’s exact test to
evaluate the significance of the differences in the number of these
significantly correlated RBP-m6Apairs. The P values fromFisher’s exact
test were corrected for multiple comparisons. The contribution score
from random forest analysis and FDR from Spearman correlation
analysis were finally combined to evaluate the correlations between
RBPs and m6As.

Identification and characterization of PDAC subtypes based on
aberrant m6As
We used R package ConsensusClusterPlus64 to perform consensus
clustering of the aberrant m6As in 65 PDAC tumor samples. The
number of bootstraps was 1,000 and the sub-sampling proportion was
0.8. We performed a two-sided Wilcoxon rank-sum test to identify
significant m6A between S1 and S2 PDAC and used R package
ClusterProfiler65 for pathway enrichment.

Methylated RNA immunoprecipitation-coupled quantitative
real-time PCR (MeRIP qRT-PCR)
Total RNA isolated from each tissue was fragmented and immuno-
precipitated by anti-m6A antibody as described above. Purified
m6A-containing RNA was reversely transcribed and amplified18. The
enrichment of m6A was quantified by quantitative PCR with the gene-
specific primers shown in Supplementary Table 3.

Global RNA m6A quantification
Total RNA from cells was extracted using TRIzol as described above.
PolyA+ RNA was purified using Dynabeads mRNA purification kit
(Invitrogen). Global RNA m6A quantification in polyA+ RNA was con-
ducted by m6A RNAMethylation Quantification Kit (Catalog # P-9005,
EpiQuik™). PolyA+ RNA (200 ng) of each sample was used for analysis
performed in triplicate.

Liquid chromatography coupled with tandem mass spectro-
metry (LC-MS/MS)
RNA samples were digested with digestion buffer containing phos-
phodiesterase I (0.01 U), nuclease S1 (180U), 1mM zinc sulfate,
280mM sodium chloride, and 30mM sodium acetate at pH 6.8 for 4 h
at 37 °C, and dephosphorylated with bacterial alkaline phosphatase
(30U) for 2 h at 37 °C. After enzymes removal, the nucleosides samples
were then subjected to LC-MS/MS and analyzed on a TripleTOF 6600
mass spectrometer (SCIEX, Framingham, MA, USA). Nucleosides were
quantified using the nucleoside-to-base ion mass transitions of
268.1–136.1 for A, 245.1–113.0 for U, 244.1–112.1 for C, 184.1–152.1 for G,
282.1–150.1 for RNA m6A. Quantification was performed by compar-
ison with the standard curves obtained from their nucleoside stan-
dards. The ratio of m6A to A was analyzed based on the calculated
concentrations.

Quantitative real-time PCR (qRT-PCR)
Total RNA from tissue and cell lines was extracted with TRIzol reagent.
First-strand cDNA was synthesized using the PrimeScript 1st Strand
cDNA Synthesis Kit (Takara). Relative RNA level determined by qRT-
PCR was measured in triplicate on a Roche LightCycler 480 using the
SYBRGreenmethod66. Beta-ACTINwasemployed as an internal control
for mRNA quantification. The primer sequences are shown in Supple-
mentary Table 3. All experiments were performed in three biological
replicates.

Cell lines and cell culture
Human PDAC cell lines PANC-1 and SW1990 and embryonic kidney
cells 293 T were purchased from the Cell Bank of Type Culture Col-
lection of the Chinese Academy of Sciences Shanghai Institute of
Biochemistry andCell Biology. All cell lineswere authenticated byDNA
fingerprinting analysis and tested for free frommycoplasma infection.
PANC-1 and 293 T cells were maintained in DMEM medium while
SW1990 was maintained in RPMI-1640 medium and both media were
supplemented with 10% fetal bovine serum. All cell lines were grown
without antibiotics in an atmosphere of 5% CO2 and 99% relative
humidity at 37 °C.

Plasmid, RNA interference, and stable cell line generation
The hairpin-of pLKD-vectors containing short hairpin RNA (shRNA)
sequence targeting CSTF2 and the plenti-CSTF2-puro and pcDNA3.1-
IGF2BP2 plasmid was commercially constructed. The shCSTF2-
resistant WT (CSTF2-res) was generated by introducing point muta-
tions. Small interfering RNA (siRNA) targeting the METTL3, IGF2BP2,
U1AF2, CAPRIN1, BUD13, CENPF, WNT7B, NSTR1 or scramble knock-
down control (KD control) was purchased from GenePharma. Trans-
fectionwith siRNAor plasmidwasperformedwith lipofectamine 2000
(Life Technologies). Lentivirus was produced in 293 T cells by
cotransfection of the pLKD-constructs alongwith psPAX2 and pMD2.G
vectors, and subsequent virus-containing media were collected for
lentiviral infection. 48 hours after transduction, cells were harvested
(RNAi) or subjected topuromycin selection (2μg/ml). RNAknockdown
sequences were listed in Supplementary Table 4. The PspCas13b-
ALKBH5 (dCas13b-ALKBH5) plasmid, gRNA plasmid, and nontargeting
gRNA plasmid were kind gifts fromDr. Hongsheng Wang (Sun Yat-sen
University, Guangzhou). Specifically demethylated the m6A of target
RNAs were conducted by cotransfection of dCas13b-ALKBH5 and
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corresponding gRNA plasmid. The sequence of gRNA is listed in Sup-
plementary Table 4.

Western blot assays
Total protein extract from PDAC tissues or cells was prepared using a
detergent-containing lysis buffer. For cytoplasmic and nuclear frac-
tionation, lysis was obtained using the NE-PER Nuclear and Cyto-
plasmic Extraction Reagents (Thermo) following the manufacturer’s
instructions. Protein sample (50μg) was subjected to SDS-PAGE and
transferred to the PVDF membrane (Millipore). Antibody against
CSTF2 (ab200837), CSTF2T (ab138486),METTL3 (ab195352),METTL14
(ab252562), WTAP (ab195380), FTO (ab126605), ALKBH5 (ab195377),
IGF2BP2 (ab128175),WNT7B (ab227607), RNApolymerase II C-terminal
domain (CTD) Ser2 (ab193468) or β-ACTIN (ab8227) was from Abcam.
Antibody against RNA polymerase II C-terminal domain (CTD) (#05-
623) and were from Millipore. Antibody against U2AF2 (68166-1-Ig),
CAPRIN1 (15112-1-AP), RBM15 (10587-1-AP), RBM15B (67506-1-Ig), Lamin
B1 (12987-1-AP), GAPDH (60004-1-lg), AFF4 (14662-1-AP) or CENPF
(28568-1-AP) were from Proteintech. Antibody against BUD13 (A303-
321A-1) and AFF1 (A302-345A-1) were from Invitrogen and antibody
against NTSR1 (sc-374492) was from Santa Cruz Bio. The membrane
was incubated overnight at 4 °C with primary antibody and visualized
with a Phototope Horseradish Peroxidase Western Blot Detection kit
(Thermo Fisher).

Analysis of cell malignant phenotypes
PANC-1 and SW1990 cells were seeded in 96-well plates (2000 cells
per well) for culture. Cell viability was measured using Cell Counting
Kit-8 (CCK-8, Dojindo) at 24, 48, 72, and 96 h, respectively. For real-
time impedance measurement (Xcelligence)67, cells (4000) were
seeded in E-plates and placed into the Real-Time Cell Analyzer
(RTCA) station and incubated at 37 °C for 96 h, with impedance
measured every 30min. Cell index values were calculated by the
apparatus software (RTCA software 2.0). For colony formation
assays, 1000 cells were seeded in six-well plate and allowed to grow
until visible colonies formed in complete growth medium (2 weeks).
Colonies were fixed with methanol, and stained with crystal violet.
For migration assays, 5 × 104 cells in 200 μl of serum-free medium
were added into the upper chamber. For invasion assays, cells were
added after coating filters with 30 μg of matrigel (Corning). A 500μl
of medium with 20% FBS was used as a chemoattractant in the lower
chamber. After 12-h incubation in 5% CO2 at 37oC, cells were fixed
with methanol and stained with 0.5% crystal violet before
measurement.

RNA stability assays
Cells with or without CSTF2 or IGF2BP2 knockdown were treated with
actinomycin D at a final concentration of 2 μM for 20, 40 or 60min
before trypsinization and collection. Total RNA was then extracted
with TRIzol reagent. Gene expression level was determined by RT-
qPCR and the mRNA half-life time was calculated as previously
described46.

5-Ethynyluridine incorporation and quantification
5-Ethynyluridine (EU) incorporationwas performed byusing Cell-Light
EU Apollo488 RNA Imaging Kit (RiboBio). Briefly, cells were incubated
in complete culture medium containing 500 μM EU for 1 hour before
washing with PBS and fixed. The cells were stained with 0.5μg/ml 4’,6-
diamidino-2-phenylindole (DAPI) for 5min and mounted in anti-fade
solution. Image stacks were obtained by using the fluorescence
microscopy (Olympus). Nucleoplasm regions were identified based on
DNA (DAPI) staining. The median of each cell’s mean intensity of the
extracted nuclear signals after background subtraction (the signals
outside nuclei) were plotted and calculated by applying the Image J
software.

Protein co-immunoprecipitation assays
Cells grown in 15-cm dishes at 70−80% confluency were lysed with
500μl of immunoprecipitation buffer. Proteins were immunoprecipi-
tated from 500μg of cell lysates with 5μg of antibody againstMETTL3
(ab195352), RNA Polymerase II (CTD) (#05-623, Millipore), RNA poly-
merase II C-terminal domain (CTD) Ser2P (ab193468) or IgG. After
applying a magnet, proteins associated with Protein A/G Magnetic
Beads were washed three times and analyzed by western blotting.

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation (ChIP) assays were performed using
the EZ-Magna ChIPTM A/G Kit (17-10086, Millipore). In brief, after
cross-linking with 1% formaldehyde, cells were lysed and sonicated on
ice to generate DNA fragments with an average length of 200−500bp.
Pre-cleared DNA of each sample was saved as an input fraction. Frag-
mentedDNAwas thenused for immunoprecipitationwith 5μgofChIP-
grade antibody against AFF1, AFF4, or IgG as control. Bound DNA was
eluted and purified, followed by qRT-PCR using the primers shown in
Supplementary Table 3.

Cross-linking-immunoprecipitation (CLIP)
CLIP was performed as previously reported18 with somemodifications.
Briefly, thewhole cell lysate from cross-linked (twice by 150mJ per cm2

of 365 nmUV light) PANC-1 cells were isolated and sonicated, followed
by treatment with DNase I (0.5 U/μl, 37 °C for 5min) and RNase TI
(0.2 U/μl, 22 °C for 15min). Pre-washed Dynabeads protein A/G (Milli-
pore) conjugated with 10μg antibodies against CSTF2, METTL3, or
IGF2BP2 were then incubated with the extraction at 4 °C overnight
with rotating. After substantial washing of beads, end repair was per-
formedbyusingT4PNK (NEB). RNAwas then treatedwithproteinaseK
(37 °C for 30min), acidic phenol/chloroform extraction, and ethanol
precipitation, and was subsequently used for library construction by
using NEBNext small RNA library prep kit (E7330S) and sequenced on
Illumina Hiseq4000. For CLIP-qPCR, the input and immunoprecipi-
tated RNA samples were recovered as described above. cDNA was
synthesized with SuperScript III RT (Invitrogen) and random hexamer
primers (Invitrogen) and subject to qRT-PCR using specific primers
shown in Supplementary Table 3.

miCLIP sequencing
m6A individual-nucleotide-resolution cross-linking and immunopreci-
pitation (miCLIP) sequencing was performed as previously reported18.
In brief, total RNA from PANC-1 cells was digested by DNase I and
subjected to two rounds of RiboMinus treatment to eliminate rRNAs.
Ribo-off RNA (20μg)was then fragmented and incubatedwith 10μgof
anti-m6A antibody (Synaptic Systems, 202003) in IP buffer supple-
mented with 0.2 U/μl RNase inhibitor (NEB) for 2 h at 4 °C. The RNA-
antibody mixture was cross-linked and incubated with 100μl of pre-
washed protein A/G beads (Millipore) overnight at 4 °C with rotating.
The Beads were substantially washed, and end repair was performed
by using T4 PNK. After recovering via proteinase K, acidic phenol/
chloroform extraction, and ethanol precipitation treatment, RNA was
subsequently used for library construction with NEB Next small RNA
library prep kit (E7330S) and sequenced on Illumina Hiseq4000.

Analysis of iCLIP-sequencing data
Read preprocessing was performed essentially68. Adaptors and low-
quality bases were trimmed by Cutadapt (v1.16) and reads shorter than
20 nucleotides were discarded. Reads were demultiplexed based on
their experimental barcode using the pyBarcodeFilter.py script of the
pyCRAC tool suite. Sequence-based removal of PCR duplicates was
then performed with the pyFastqDuplicateRemover.py script. The
reverse reads were reversely complemented and processed in the
same way as the forward counterparts. Reads were then mapped to
human genome (hg38) with BWA (v0.7.15), with parameter bwa aln -n

Article https://doi.org/10.1038/s41467-023-41861-y

Nature Communications |         (2023) 14:6334 13



0.06 -q 20 as recommended by the online CTK Documentation (see
URLs). We detected cross-linking-induced mutation sites (CIMS) in
iCLIP data of m6A, CSTF2, and using CLIP Tool Kit (CTK). To identify
them6A locus, themode ofmutation callingwasperformed69. For each
mutation position, the coverage of unique tag (k) and mutations (m)
were determined by CIMS.pl script of CLIP Tool Kit. First, the known
SNPs (dbSNP 147)were removed fromall themutationpositions. Then,
the C > T mutation positions within m/k ≤ 50% and only mutation
positions at the +1 position of adenosines were identified as CIMS-
based m6A residues.

CUT&Tag assays
CUT&Tag assays were carried out following the previous description
with somemodifications70. Briefly, 1 × 105 cell sample was treated with
10μl of Concanavalin A coated magnetic beads (Bangs Laboratories)
for 10min. Bead-bounded cells were then suspended with dig wash
buffer (20mM HEPES pH 7.5; 150mM NaCl; 0.5mM Spermidine; 1×
Protease inhibitor cocktail; 0.05% Digitonin; 2mM EDTA) and a 1:50
dilution of antibody against CSTF2 (ab200837), RNA Polymerase II
(CTD) (#05-623) RNA Polymerase II (CTD Ser2P) (#61083), H3K36me3
(ab9050), H3K79me2 (ab3594), RNA Polymerase II (CTD Ser5P) (MA1-
46093) or IgG and incubated at4 °Covernight. After the removal of the
primary antibody by substantial washing, cells were incubated with
secondary antibody (1:100) for 1 h and then incubated with pA-Tn5
adapter complex for 1 h. After washing with Dig-med buffer, cells were
resuspended in Tagmentation buffer (10mMMgCl2 inDig-medBuffer)
and incubated at 37 °C for 1 h. DNA products were purified using
phenol-chloroform-isoamyl alcohol extraction and ethanol precipita-
tion. Sequencing libraries were prepared according to the manu-
facturer’s instructions and cleaned up using XP beads (Beckman
Counter). Sequencing was performed in the Illumina Novaseq 6000
using PE150.

Analysis of CUT&Tag sequencing data
Raw sequencing reads were examined using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptor and low-
quality bases were removed using Fastp71. Qualified reads were
aligned to hg38 human genome using Bowtie272 with options: -p 6
--local --very-sensitive-local --no-unal --no-mixed --no-discordant
--phred33 -I 10 -X 700. MACS222 was used for peak-calling with para-
meters: macs2 callpeak -t input_file -p 1e-5 -f BAMPE –n out_name. The
annotatePeaks.pl script from the Homer software suite73 was used for
annotation. Visualization of the depositions along genomic regions
was performed with IGV74. Read counts were normalized by RPKM
which was computed in each 10-base pair bin among defined regions
and then used for generating profile plots using Deeptools75.

DRB/GRO-seq
Cells at 80%–90%of confluence in 15 cmdishwere initially treatedwith
DRB for 3.5 h and samples from time points 10 and 25min after release
into the fresh medium were processed. Transcription-competent
nuclei were prepared using the Nuclei Isolation Kit according to the
manufacturer’s recommendations (Sigma). Nuclear Run-On reactions
were carriedoutwith Br-UTPasdescribed76, andBr-UTP run-on labeled
RNA was isolated using beads coupled with Br-UTP-specific antibody
(sc-32323AC, Santa Cruz). The purified RNA was used for the pre-
paration of strand-specific RNA libraries using standard Illumina pro-
tocols and sequenced on NextSeq CN500 using SE75.

GRO-seq data analysis and transcription elongation rate
calculation
GRO sequencing reads were aligned to the hg38 reference genome
using Bowtie2 with standard parameters. To analyze the transcription
elongation rate, we calculated the base pair level coverage of the
region 10 kb upstream to 120 kb downstream of each transcript’s TSS.

Average transcript profiles were generated by taking a trimmed mean
(0.01) of read depth over each base pair. The normalized read depth
was smoothed using the smooth.spline function from Bioconductor’s
stats package (spar = 0.8). We then calculate wave peak for each gene
as the maximum point on the spline and remove any genes that are
lowly expressed, have missing values, have duplicate values, or whose
wave doesn’t advance with time. Select only genes with a wave-peak
after the first 1 kb in the 25min sample. And a linear fit model to the
wave peak positions as a function of time to determine the rate of
elongation in kb/min units. The significance of the difference between
the increased elongation rates in the KD sample relative to WT was
assessed using Kolmogorov–Smirnov test.

Measurement of the Pol II elongation rate
Measurement of the Pol II elongation ratewas conducted as previously
described45. PDAC cells were seeded overnight on 6-cm dishes to
70%−80% confluency before treating with 300μM 5,6-Dichlor-
obenzimidazole 1-β-D-ribofuranoside (DRB; Sigma) in culture medium
for 5 h.Cellswerewashed twicewith PBSand incubated in freshculture
medium for various time periods. Total RNA was isolated from cells
and reversely transcribed with random hexamer primers. Analysis of
pre-mRNAs was accomplished by qRT-PCR with amplicons spanning
the intron-exon junctions. The primer sequences are shown in Sup-
plementary Table 3.

Animal experiments
Aged 4–5 weeks’ female BALB/c nude mice were purchased from the
Beijing Vital River Laboratory Animal Technology. Two million PDAC
cells suspended in 100μl PBS were injected subcutaneously into the
back flank of mice (five in each group). Tumor volume was measured
and calculated according to the formula volume= length ×width2 ×0.5.
The sample size was not predetermined for these experiments. For the
metastasismodel, 0.1ml of cell suspension containing 2 × 106 luciferase-
labeled cells was injected into tail veins. The metastases were detected
using the Living Image® software (Perkin Elmer) after intraperitoneal
injection of luciferin (Promega) before quantifying fluorescence. All
experimenters were blinded to which cells were injected into the mice.
All the mice were observed daily for signs of end-point criteria. Mice
once showed signs of cachexia, >20% weight loss of initial weight,
breathing difficulties, or tumors close to 15mm in diameter, they were
euthanized immediately. No tumors exceeded this limit. All the animal
experiments were approved by the Institutional Animal Care and Use
Committee of Sun Yat-sen University Cancer Center, and the animals
were handled in accordance with institutional guidelines.

Statistics and reproducibility
We used Chi-square test or Fisher’s exact test to examine the differ-
ence between two categorical variables andWilcoxon rank-sum test to
examine the difference between a continuous variable and a binary
categorical variable. Spearman’s rank correlation coefficient was used
to measure the correlation between two continuous variables and
r >0.25 and P <0.05 was considered significant. Student’s t test was
used to examine the difference between the two means. PFS and OS
were estimated by the Kaplan–Meier method and the differences were
examined by the log-rank test. Hazard ratios (HRs) and their 95%
confidence intervals (CI) were calculated with the Cox proportional
hazards model. All statistical tests were two-sided tests and P <0.05
was considered significant unless indicated. R 3.6.1 (https://www.r-
project.org/) was used in our data analysis. Western blots were repe-
ated independently three timeswith similar results, and representative
images were shown.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Public CLIP-seq data of m6A and CSTF2 are accessible under GEO
numbers GSE147440 and GSE37398. The raw sequence data reported
in this paper have been deposited in the Genome Sequence Archive in
BIGData Center, Beijing Institute ofGenomics (BIG), Chinese Academy
of Sciences [http://bigd.big.ac.cn/] under restricted access:
HRA000095, HRA001663, HRA003601, and HRA004744. The
researchers can register and login to the GSA database website
[https://ngdc.cncb.ac.cn/gsa-human/] and follow the guidance of
“Request Data” to request the data step by step [https://ngdc.cncb.ac.
cn/gsa-human/document/GSA-Human_Request_Guide_for_Users_us.
pdf] and/or by contacting zuozhx@sysucc.org.cn or zhangjial@sy-
succ.org.cn. All requests will be reviewed by corresponding authors
and the SYSUCC institutional reviewboard. The approximate response
time for accession requests is about two weeks. The access authority
can be obtained for scientific research and not-for-profit use only.
Once access has been granted, the data will be available to download
for two months. The remaining data supporting the findings of this
study are available within the Article, Supplementary Information, or
Source Data file. Source data are provided in this paper. Source data
are provided with this paper.

Code availability
Custom codes developed for data preprocessing, analysis and visua-
lization are available at GitHub: https://github.com/canceromics/
CSTF2_m6Asubtype_code.
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