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The promise of data science for health
research in Africa

Clement A. Adebamowo 1,2 , Shawneequa Callier 3,4,
Simisola Akintola 2,5,6, Oluchi Maduka 2, Ayodele Jegede2,6,7,
Christopher Arima8, Temidayo Ogundiran 2,6,9, Sally N. Adebamowo 1,2 &
BridgELSI Project as part of the DS-I Africa Consortium*

Data science health research promises tremendous benefits for African
populations, but its implementation is fraught with substantial ethical gov-
ernance risks that could thwart the delivery of these anticipated benefits. We
discuss emerging efforts to build ethical governance frameworks for data
science health research in Africa and the opportunities to advance these
through investments by African governments and institutions, international
funding organizations and collaborations for research and capacity
development.

Data science is poised to revolutionize healthcare and research by
enabling the development of novel interventions and groundbreaking
strategies derived from high-quality and efficient analyses of the huge
datasets derived from the activities of our multifaceted lives. Data
science applications use high-performance computational infra-
structure to process massive datasets from personal, public, and
commercial sources including healthcare systems, smartphones,
shopping records, social media postings, and wearable devices. Using
novel, complex, and occasionally opaque algorithms, data scientists
generate new insights and generalizable knowledge. Examples of data
science applications include combination of diverse data streams to
develop bio-preparedness, monitoring, and response strategies for
infectious diseases outbreaks in human health and in agriculture1.
Other examples include the use of Geographical Information System
(GIS) data to map spatial variations in the determinants, incidence,
prevalence, and outcomes of disease, and the response of healthcare
systems2,3. Several countries also utilize data science to monitor and
evaluate multi-sectoral progress towards meeting the UN Sustainable
Development Goals (SDG), reduce fraud and corruption, identify fake
pharmaceutical products, and improve supply chain management to
prevent stock-outs4–11. More recently, Large Language Models (LLM)

have captured public imagination with the release of tools like GPT-4.
LLMs are rapidly being used to transform multiple industries and
disciplines12–17. With these capabilities, data science is rapidly trans-
forming the landscape and touching vast areas of human endeavors.

Data science health research is the novel application of data sci-
ence methods and technologies for systematic generation, collection,
processing, storage, management, analyses, visualization, interpreta-
tion, and communication of health-related data to develop general-
izable knowledge and generate actionable insights. Examples of data
science health research include integration of data from multiple
omics technologies to generate insights about biological mechanisms
and diseases’ pathways, and identify novel therapeutic and preventive
opportunities18. Other examples include mining electronic health
records for precision medicine19 and analysis of medical images for
computational histopathology and radiology to improve diagnoses,
among other uses20,21. In public health, data scientists are transforming
practice through the application of high-level computational methods
to population-level datasets typically used in public health to advance
precision public health practice and research22. Examples of public
health data science research includemining social media data for early
detection, analyses of trends, education, planning and implementation
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of health systems responses to infectious and non-communicable
diseases8,9,11,23, and application of myriad novel technologies and
algorithms for precision public health22. Data science health research
therefore presents huge opportunities for the application of novel
methods and transformative technologies that would solve many
healthcare challenges facing African people today and enable wider
availability of high quality and cost-efficient health services.

Africa, potentially, has the most to gain from implementation of
data science for health care and research. With a population expected
to reach 2.5 billion people or ~25% of the world’s population by 2050,
data science technologies would enable African countries to leapfrog
legacy healthcare systems and technologies, and dramatically trans-
form lives on the continent24,25. Even though Africa currently con-
stitutes 17% of the world’s population, it bears 25% of the world’s
disease burden, has only 3% of the world’s healthcare workers, and 2%
of global health research output26. This is due to limited infrastructure,
lack of trained personnel, poor funding, economic and social
instability which hinder access to clinical and preventive services26.
Global public health emergencies such as emerging and re-emerging
infectious diseases epidemics and climate change pose more chal-
lenges toAfrican countries than the rest of theworld. African countries
would therefore require innovative data science tools and strategies to
overcome these challenges.

Substantial gaps exist in the representation of people from Africa
in the datasets currently used to build data science models and
applications27. This underrepresentation renders data science models
and algorithms unstable and potentially inaccurate in African
populations27. Without dedicated and focused efforts at remediation,
persistence of this data science equity gap would worsen and this
portends dire consequences for data sciencehealth research inAfrican
populations.

African researchers, institutions, governments, and the private
sector are already using data science for research, discoveries, and
preventive and clinical care28,29. Most of these uses involve novel
applications or extensions of current healthcare expertise and tech-
nologies. Examples of data science applications already in use in Africa
include teleradiology and telepathology, patients’ navigation and
clinical decision support (CDS) tools, integrationof genomicsdata into
public health and clinical care, and cancer screening29–33. However,
most of these applications were designed, developed, tested, and
validatedoutsideAfrica.Theymaynot havebeen adequately evaluated
in African populations and may be insensitive to local contexts and
health priorities28,34,35. They may therefore primarily benefit people
outside the continent. Given the novel opportunities being created by
data science applications, it is critical to develop and implement
technologies that are relevant and adapted to the contexts in which
they would be used in Africa.

Investment in data science health research infra-
structure in Africa
Several initiatives are being implemented in Africa to develop data
science health research capacity, build infrastructure, implement
training programs, organize scientific conferences, and engage in
international collaborations that would empower African institutions
togeneratedatasets, develop and applydata sciencemodels, andclose
the data science gap between Africa and high-income countries (HIC).
In 2022, the NIHCommon Fund awarded 20 grants worth $74.5million
in the “HarnessingData Science forHealthDiscovery and Innovation in
Africa (DS-I Africa)”program to accelerate data sciencehealth research
in Africa. The projects being implemented by the DS-I Africa program
include a Coordinating Center, an Open Data Science platform, seven
training programs, four ethical, legal, and social implications (ELSI)
projects, and seven research projects. (Table 1)36.

The DS-I Africa initiative builds on the infrastructure previously
developed by programs such as the $176 million Wellcome Trust and

NIH-funded Human Heredity & Health in Africa (H3Africa) program37.
H3Africa built new collaborations among scientists, developed geno-
mics research infrastructure, and created publicly available govern-
ance and ethics policies for the African genomics research
ecosystem38–40. Data science conferences and training programs are
also proliferating in Africa including the Data Science Africa—an AI and
Data Science Research Group at Makerere University, Uganda, the
multi-country AfricanML and AI organization— Deep Learning Indaba,
the School for Data Science and Computational Thinking at Stellen-
boschUniversity in South Africa, the African Institute forMathematical
Sciences Centre of Excellence in Cameroon and the African Center of
Excellence in Data Science in the University of Rwanda. These pro-
grams are critical to generating data thatwill close thedata science gap
in Africa and enrich global resources for data science health research.

Developing a comprehensive framework for the
governance of data science health research across
Africa
In contrast with other disciplines where data science is also rapidly
advancing, health research already has established frameworks and
infrastructure for ethical governance. Substantial investments by the
US National Institutes of Health (NIH), UK Wellcome Trust, the Eur-
opean Union through the European-Developing Countries Clinical
Trials Partnership (EDCTP), African governments and institutions have
significantly expanded African health research ethics infrastructure in
the past few decades41–45. Despite these investments, there remain
many unresolved challenges including concerns about quality of
informed consent, data ownership, data sharing, benefit-sharing,
privacy, autonomy, exploitation, and weak governance46–49. Recent
examples of these challenges include controversies about community
benefit and data sharing during COVID-19 pandemic research and
unauthorizeduse ofDNA samples fromAfrican populations todevelop
a DNA genotyping microarray chip38,50. Given the methods and tech-
nologies used in data science health research, its potential to exacer-
bate preexisting health research ethics problems and generate new
ones are quite substantial.

Research consortia like H3Africa developed policies on samples
and data sharing, biorepositories, publications, collaborations, and
commercialization38. They also provided training for researchers and
ethics committees. For example, H3Africa’s publication policy gives
African researchers protected time to analyze and publish before their
data becomes publicly available. This protection, which is designed to
accommodate the infrastructural and personnel challenges faced by
African researchers, enables them to frame the narrative about their
research and advance their research priorities. Other policies require
that the funded studies should focus onAfricanhealth priorities, be led
by African researchers, and that African institutions should be the
primary recipients of the research grants, even when they collaborate
with international institutions. These aremeaningful practices that the
emerging data science health research programs should emulate and
further develop.

The rapid evolution of data science methods, utilization of com-
plex algorithms, and huge datasets obtained from a variety of sources
under uncertain consenting procedures particularly challenges the
current model of ethical review of health research51,52. When data sci-
ence health research projects are conducted within single institutions,
e.g., computational histopathology of diagnostic biopsies, sufficient
ethical oversight can be provided by the institution’s health research
ethics committee. However, even in these situations, institutional
health research ethics committees may lack sufficient knowledge,
expertise, and experience in evaluating the ethical dilemmas that may
accompany these studies and struggle to provide adequate ethical
review and oversight53. In addition, the methods and technologies of
data science often run counter to the established principles and
practices of ethics review of health research thereby creating
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situations that may be beyond the capacity of individual ethics com-
mittees to resolve54–56. In such cases and in others where data science
health research is being conducted in multiple institutions within the
same country, collaborations between the ethics committees or cen-
tralization of ethics review, for example, by national health research
ethics committees may be required to provide ethical oversight57.
National health research ethics committees can constitute standing
review committees that, in addition to chartered members, may also
include local and international experts as ad-hoc members who can
provide ethical oversight for complex data science health research
within national boundaries57. This centralization of ethical review
enables efficient utilization of scarce data science health research
ethics expertise and improves the efficiency of ethical review57,58.
Despite these innovations, even national health research ethics com-
mittees are susceptible to some of the problems affecting institutional
health research ethics committees including lack of resources, lack of
independence, poor funding and lack of efficacy, albeit to a lesser
degree44,45,53.

What shouldbenext on the agenda for data science
health research ethics in Africa?
Improve institutional and national health research ethics gov-
ernance infrastructure
Despite the tremendous investments in recent decades, the capacity,
resources, and infrastructure for ethical oversight of health research in
Africa remains weak and poorly resourced. A surge of data science
health research projects would significantly strain andmay overwhelm
the system. The major responsibility for building and maintaining
national and institutional health research ethics infrastructure rests
with African governments and local institutions. Information showing
how research significantly boosts the intellectual and economic capital
of institutions and countries, and are engines for growing local and
national economies may encourage more investment in research
infrastructure, including ethical review in Africa. Many African insti-
tutions built their current health research ethics programs to support
local investigators involved in collaborative international research
projects. Research sponsors should incentivize development of local
data science health research ethics capacity by linking progress in this
domain with new research funding59. This would be highly impactful
and motivate significant institutional response.

Research ethicists should engage with their local research and
data science communities to better understand data science health
researchmethods andprojects, and jointly developethical governance
frameworks that build on existing research ethics oversight infra-
structure. Well-funded, well-designed, and sufficiently long training
programs that have enabled African countries to avoid widespread
egregious harm to research participants despite recent growth in
the volume and sophistication of health research on the continent, are
also needed for data science health research ethics42. These would
improve the knowledge of research ethicists about data science health
research and that of data scientists about health research ethics, build
local capacity that would enable local ownership and sustainment of
training programs, and support the conduct of research into con-
textual data science health research ethics in Africa while contributing
to the global health research ethics discourse.

Develop culturally and resource-level appropriate national laws,
guidelines, and regulations, and the infrastructure for
enforcement
Many African governments are rushing to enact laws similar to the
European Union’s General Data Protection Regulation (GDPR) and
modifying them for their environments60,61. The major challenges with
GDPR and similar data protection laws include lack of sufficiently
explicit frameworks for enforcement, complexity of certain provi-
sions, a focus that is often insufficient for the nuances of data science

health research62,63. Other suggestions for ethical governance of data
science include giving participants ownership of their digital selves or
using blockchain technologies to protect digital privacy and securely
share data64,65. These approaches are highly technological, expensive
and are not resource-level appropriate in the African health research
setting66.

Research and training consortia are developing novel policies,
ideas, and implementation strategies for ethical regulation of data
science health research67,68. These consortia must engage frontline
stakeholders in different research environments and serve as petri-
dishes for experiments into ethical regulation of data science health
research. Governments and their agencies alsohavemajor roles to play
in engendering and maintaining public trust, accountability, and sup-
port that are required to sustain public engagement in and support for
data science health research.

Existing health research ethics regulations already have the
essential elements for the ethical oversight of all types of health
research. While data science health research includes novel methods
and technologies, these do not abrogate the foundations, principles,
and practices of modern health research ethics. African countries can
quickly introduce sufficient oversight of data science health research
by adding to or modifying existing regulations.

Develop and implement enforceable multinational regulations
Most data science health research sponsors, principal investigators,
and scientists belong to international or commercial organizations
that may not have local offices in Africa and may not be subject to
national laws, guidelines, and regulations58. This poses significant
problems for oversight and accountability. Multilateral agencies
including the United Nations and its organs, governments, advocates,
bioethicists, and researchers have conducted multiple consultations
and stakeholders’ meetings leading to issuance of guidelines on
the use of data science in healthcare, research, and policy69,70. These
guidelines call for development of multinational frameworks for data
science health research to prevent egregious harm andmaximize data
science’s benefits to global populations52. To ensure relevance and
implementation, these multinational agencies should work with Afri-
can institutions to develop the mechanisms for enforcement of these
principles, model laws, guidelines, and regulations for ethical over-
sight of data science health research across national borders. They
should rigorously engage a broad range of stakeholders including
those whose voices are typically drowned out in global discourse.
Innovations in virtual meeting technologies should enable cost-effec-
tive, frequent, and sustained global engagement of stakeholders.

Reduce digital inequity and increase volume and diversity of
African datasets
Data science relies on large repositories of data generated by indivi-
duals as they engage with the healthcare system, during activities of
daily living, and participation in research71. Healthcare datamay derive
from electronic health records, surveillance data, diseases’ registries,
etc., while other datasets may be derived from wearable devices and
other digital footprints. Large-scale genomic, transcriptomic, pro-
teomic, and other omics research projects are also generating huge
amounts of data for data science health research. Despite interven-
tions like H3Africa and DS-I Africa, more of these data are still being
generated in HIC compared to LMIC27,72. The resulting digital data
inequity is pervasive and growing worse73. Digital health innovations
also contribute to the widening inequities because of the “inverse care
law”whichpostulates thatwell-resourced individuals aremore likely to
be aware of and utilize digital health interventions74. Unaddressed,
these inequities will lead to severe and adverse health outcomes for
majority of the world’s population75. Urgent, sustained, large-scale
efforts are required to reverse this trend for the sake of equity and
justice.
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Multi-level interventions guided by frameworks for digital health
equity such as the digital determinants of health (DDOH) would be
useful for identifying the barriers and facilitators, and guidemeaningful
interventions to increase the volume of digital health data generated in
Africa73. General investments in healthcare systems, implementation of
electronic health records, improvements in diseases’ registries, and
broader utilization of digital systems will increase the amount of digital
data generated by African populations. Additional systematic inter-
ventions that are similar to but substantially larger than programs like
H3Africa and DS-I Africa are needed to ensure that African countries, at
aminimum,keepupwith thehighvolumeofomics andotherdata types
being generated in HIC for data science.

Reduce and eliminate algorithmic bias, data colonization, and
extractive research
Data science technologies produce algorithmic bias by replicating and
reinforcing societal biases that benefit or disadvantage certain indivi-
duals or groups.This results in structural, racial and ethnic biases in the
HIC where most data science technologies are developed76. These
algorithmic biases coupled with the lack of equity and diversity in the
foundational datasets used to develop, train, and validate data science
algorithms lead to algorithmic deprivation, discrimination, and
distortion77–81. Other concerns, particularly with respect to data sci-
ence in Africa, are data colonization and extractive research82. Biased
and inequitable algorithms lead to ethically, socially, politically, and
economically undesirable outcomes in health research and health
care, and can negatively affect perceptions of fairness, acceptability,
and trust in applications derived from data science health research.
These have the potential of denying populations that aremost in need,
the benefits of data science health research76. These harms are
unpredictable and may not be remediable post hoc, they therefore
require vigorous and robust attention a priori51,52,76.

Many approaches have been recommended to reduce or elim-
inate algorithmic bias in data science health research79,81,83–85. These
include improving the diversity of data scientists through targeted
capacity building programs, creation and implementation of guide-
lines and policies, implementation of programs to detect and rectify
algorithmic bias, training data scientists on health research
ethics52,85–87. These interventions require long-term commitments that
go beyond the typical duration of many HIC research grant award
mechanisms. They also require strong commitment by national gov-
ernments, local institutions, and research sponsors. Novel strategies
for supporting the development of personnel, resources, and infra-
structure for data science health research in Africa that are aligned
with clear goals and objectives, rather than just utilizing frameworks
developed and used in the substantially different health research eco-
systems of HIC are desperately needed.

Given the scope of data science health research, its potential to
improve health outcomes, engender more equitable research partici-
pation, reduce marginalization, and utilize heterogeneous data types,
all stakeholdersmust be urgently engaged in development of themost
efficacious governance frameworks for it.
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