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Improved human greenspace exposure
equality during 21st century urbanization

Shengbiao Wu 1, Bin Chen 1,2,3 , Chris Webster 2,3,4, Bing Xu5 &
Peng Gong 2,6,7

Greenspace plays a crucial role in urban ecosystems and has been recognized
as a key factor in promoting sustainable and healthy city development. Recent
studies have revealed a growing concern about urban greenspace exposure
inequality; however, the extent to which urbanization affects human exposure
to greenspace and associated inequalities over time remains unclear. Here, we
incorporate a Landsat-based 30-meter time-series greenspace mapping and a
population-weighted exposure framework to quantify the changes in human
exposure to greenspace and associated equality (rather than equity) for 1028
global cities from 2000 to 2018. Results show a substantial increase in physical
greenspace coverage and an improvement in human exposure to urban
greenspace, leading to a reduction in greenspace exposure inequality over the
past two decades. Nevertheless, we observe a contrast in the rate of reduction
in greenspace exposure inequality between cities in the Global South and
North, with a faster rate of reduction in theGlobal South, nearly four times that
of theGlobal North. Thesefindings provide valuable insights into the impact of
urbanization on urban nature and environmental inequality change and can
help inform future city greening efforts.

Urban areas are the hub of human society, characterized by agglom-
eration, industrialization, and modernization1. Currently, over half of
the world’s population resides in urban areas and this number is
expected to increase to 68% by 20502. While urbanization has
brought about many social and economic benefits, such as improved
access to public infrastructure, sanitation, and education services3, it
has also resulted in severe environmental degradation, including
deforestation4, habitat loss5, air and noise pollution6, and increased
fossil fuel consumption and CO2 emissions7. This has led to environ-
mental injustice, with some communities bearing a disproportionate
share of the negative impact of urbanization8,9. Achieving equality
in urban environmental sustainability is crucial, as it will help address
the imbalance between social, environmental, and economic

developments and reduce society’s vulnerability to risks10. This is the
focus of the 11th Sustainable Development Goal of creating inclusive,
resilient, and sustainable cities and human settlements11.

Greenspace, as a key component of urban nature, offers a wide
range of ecosystem services and health benefits, making it a useful
proxy for evaluating urban environmental sustainability12. Providing
universal access to green and public space has been acknowledged as
an important pathway in the pursuit of sustainable and healthy
development goals. Using greenspace supply metrics such as green-
space total or per capita supply, previous studies have measured the
greenspace supply at both the city and global scales13,14. Human
exposure to greenspace, measured as the averaged amount of green-
space coverage within people’s nearby environment expressed as a

Received: 28 February 2023

Accepted: 11 September 2023

Check for updates

1Future Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The
University ofHongKong,HongKongSAR,China. 2UrbanSystems Institute, TheUniversityofHongKong,HongKongSAR,China. 3HKUMusketeers Foundation
Institute of Data Science, The University of Hong Kong, Hong Kong SAR, China. 4HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong
Kong SAR, China. 5Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds, and Institute for Global
Change Studies, Tsinghua University, Beijing 100084, China. 6Department of Geography, and Department of Earth Sciences, The University of Hong Kong,
Hong Kong SAR, China. 7Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China. e-mail: binley.chen@hku.hk

Nature Communications |         (2023) 14:6460 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-4569-6366
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0003-3496-2876
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0002-2171-7495
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://orcid.org/0000-0003-1513-3765
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41620-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41620-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41620-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41620-z&domain=pdf
mailto:binley.chen@hku.hk


percentage15,16, has also been quantified in sampled cities17–19. Recent
research has used high-resolution satellite imagery and population
data, combined with environmental exposure models, to reveal the
disparities in greenspace exposure between cities in the Global North
and Global South. Urban residents in Global South cities (i.e., cities
of developing countries, such as the Chinese, Indian, and Middle
Eastern cities) have only one-third the exposure to greenspace com-
pared to those inGlobal North cities (i.e., cities of developed countries,
such as United States, European, and Australian cities), but experience
twice the level of inequality17. However, existing studies on greenspace
exposure and inequality are constrained to data from individual
baseline years that cannot capture the impacts of long-term urban
development20,21 and the gradual temporal evolution of human-nature
interactions such as urban warming and greenspace management
strategies22,23, limiting our understanding of the impact of urban
development on greenspace supply, human exposure, and inequality
over time.

The impacts of urbanization on greenspace exposure are of two
kinds:24,25 the replacement of green land cover with built land cover,
and the enrichment of built land cover with designed green land. This
replacement often occurs during early-stage urban development via
rapid urban expansion, transforming naturally vegetated areas into
artificial impervious surfaces and ultimately resulting in a subsequent
decrease in greenspace coverage. Historically, there is typically a
process of greenspace destruction as agricultural and natural green
land is replaced by impervious surfaces and then a later process of re-
greening via environmental improvements. Urban expansion through
comprehensive spatial planning (as opposed to incremental unplan-
ned sprawl), tends to ‘reprovision’ greenspace by design from the
outset, but these spaces themselves tend to evolve (decrease and
increase in quantity and quality) over time according to income, land
value and environmental preferences26,27. In later periods, a highly
urbanized city generates its own ecology, with factors such as urban
warming and CO2 fertilization leading to an extension of the growing
season and increased greenspace growth24,28,29. City management
practices, such as planting street trees and creating vertical gardens,
can also increase the overall greenspace supply in an urban environ-
ment developed over time under a legal environmental planning
regime30,31. The growth of the urban population modifies the interac-
tions between the population and the urban green environment,
leading to changes in human exposure to greenspace16–18,32. Green-
space is a ‘superior good’, with demand increasing as the prosperity of
citizens increases33. In contrast to a crowding effect of population
growth, leading to reduced greenspace exposure, an income effect
tends to increase greenspace supply, diversity, and aesthetics in
wealthier cities. The two effects (destruction and construction of
greenspace) can also occur periodically and are not always strictly
chronological. Different parts of cities developed under different
political and economic conditions often display different patterns of
greenspace, for example, highly planned systems of public local parks
in the post-WorldWar II cities; intensive street-tree planting during the
first half of the 20th century; private greenspaces in ancient city quar-
ters, very little greenspace in a period of informal urban expansion34–37.

While both destructive and constructive processes are well
understood in the context of particular cities and professional urban
management activities38,39, limited studies have investigated the net
change in greenspace supply and human exposure to greenspace
across a global sample of cities for a comparable time, to identify
general trends. Such trends are the net outcomes of the destructive
and constructive processes often at work simultaneously in the evo-
lution of city fabric. Inequality in greenspace exposure is an increasing
concern as it can be translated into adverse effects in mental and
physical health18,19. Individual studies show how greenspace provision
and the joint effects of greenspace provision and spatial configuration
control greenspace exposure inequality17. However, the drivers of

changing greenspace exposure inequality over time remain unclear
and limit our understanding of the relationship between greenspace
and population distributions in determining and attempting to pro-
mote greenspace exposure equality in the future projection.

Here we generate a global urban greenspace dataset for 1028
large cities (i.e., urban area > 100 km2) using 30-m-resolution Landsat
satellite data from 2000 to 2018, and validate its accuracy using the 1-
m-resolution National Agriculture Imagery Program (NAIP) aerial data
and 10-m Sentinel-2 satellite observations. Specifically, we adopted a
broad definition of greenspace to refer to land that is partly or com-
pletely covered with grass, trees, shrubs, and other vegetation32. That
is, green-covered landwithin the curtilage of an urban boundary, since
we are focusing on cities in this study. We further leveraged the 30-m-
resolution satellite-derived greenspace coverage map (i.e., the vertical
projection area of greenspace within a 30 × 30 m2 pixel) and 100-m
population data, together with the population-weighted exposure
model, to assess the spatiotemporal trends of urban greenspace
exposure, inequality, and the associated drivers over the first two
decades of 21st century. The equality term in this study is to quantify
whether individual people share the even greenspace resource40. To
this end, we included cities with different urban development stages,
classified as Global North and Global South cities, by answering the
following four questions. (1) What has been the fate of urban green-
space supply under global urbanization during the first twodecades of
the current century? (2) Has human exposure to greenspace and the
inequality issue improved or worsened in this period? (3) What are the
relative contributions of greenspace provision and population growth
to changes in exposure and the associated inequality? (4) What can be
learned from the start of the century to guide city greening in the
decades ahead?

Results
Spatiotemporal pattern of physical greenspace coverage
We used the 30-m-resolution Landsat-derived fractional greenspace
mapping to quantify the temporal change of physical greenspace
coverage for 1028 global cities from 2000 to 2018 (see Methods).
Results reveal a contrasting pattern in the direction of temporal
change in greenspace coverage between Global North and South
(Fig. 1a). Global North cities show a prominently increasing trend in
greenspace coverage, including Europe, North America, Russia, Aus-
tralia, and a fewcities of EastAsia. Global South cities have adecreasing
trend,most ofwhich are spatially clustered in East Asia, SoutheastAsia,
Africa, and Latin America. Global North cities experienced a higher
trend in the absolute magnitude of greenspace exposure level
(2.58 × 0.001 yr−1) thanGlobal South cities (−2.51 × 0.001 yr−1), resulting
in an overall slightly positive change trend for all global cities
(0.22 × 0.001 yr−1) (Table 1). By continent, European cities have the
largest level of change trend for greenspace exposure (4.41 ×
0.001 yr−1), which is twice that of Asian (−2.11 × 0.001 yr−1) and Aus-
tralian and Oceanian (2.16 × 0.001 yr−1) cities. Cities in South America
(−0.44 × 0.001 yr−1) and Africa (0.51 × 0.001 yr−1) experience the lowest
temporal trend level, which is approximately half of that of the North
American cities (0.95 × 0.001 yr−1). Interestingly, we find a turning
point around the year 2011 in the temporal trajectory of annual
greenspace coverage for Global North andGlobal South cities (Fig. 1b).
Before this turning point, Global North cities have a slight reduction in
annual greenspace coverage, while Global South cities are sharply
losing greenspace coverage in this period. After 2011, both Global
North and Global South cities experienced an increasing annual
greenspace coverage, with a larger magnitude observed for Global
North cities. Continents show different directions and magnitudes in
the temporal trajectories of annual greenspace coverage (Supple-
mentary Fig. 1a). Our sensitivity analysis regarding the greenspace
mapping with the spectral unmixing-based threshold classifications
(see Methods) show very similar temporal evolution patterns of
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greenspace coverage (Supplementary Figs. 2 and 3, and Supplemen-
tary Tables 1–3).

Spatiotemporal patterns of greenspace exposure and asso-
ciated inequality
To adjust gross greenspace supply to reflect assumed demand, we
used population distribution maps and a population-weighted expo-
sure framework to quantify the temporal change of humangreenspace
exposure and inequality. Like greenspace coverage, human exposure

to greenspace shows contrasting temporal change trends between
Global North and Global South cities (Fig. 1c). While the global cities
have an increasing greenspace exposure (1.79 × 0.001 yr−1) (Table 1),
Global North cities experience a much higher temporal change mag-
nitude (3.10 × 0.001 yr−1) than Global South cities (0.44 × 0.001 yr−1). In
North American, European, African, Australian, and Oceanian cities,
population distribution amplifies the share of greenspace coverage,
with a greater temporal change magnitude in human greenspace
exposure compared to physical greenspace coverage. An important

Table 1 | Statistics of temporal trends of city-level greenspace coverage, human exposure to greenspace, and greenspace
exposure inequality across regions

Region (# of cities) Greenspace coverage
(×0.001 yr−1)

Greenspace exposure
(×0.001 yr−1)

Gini of greenspace exposure
(×0.001 yr−1)

Global North (522) 2.58 ± 3.04 3.10 ± 2.37 −0.94 ± 1.05
Global South (506) −2.51 ± 4.68 0.44 ± 3.70 −3.54 ± 3.53

North America (293) 0.95 ± 2.20 2.25 ± 1.84 −0.99 ± 1.65

South America (60) −0.44 ± 2.51 −0.21 ± 2.07 −0.85 ± 1.77

Europe (180) 4.41 ± 3.78 4.64 ± 2.58 −1.12 ± 0.97

Africa (63) 0.51 ± 3.41 1.64 ± 3.61 −2.09 ± 3.48

Asia (420) −2.11 ± 5.07 0.55 ± 3.77 −3.80± 3.41

Australia/Oceania (12) 2.16 ± 1.66 2.55 ± 1.74 −0.82 ± 0.43

Global (1028) 0.22 ± 4.64 1.79 ± 3.37 −2.22 ± 2.89
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Fig. 1 | Temporal changes of physical greenspace coverage (GC) and green-
space exposure (GE) for global 1028 cities from 2000 to 2018. a City-level
temporal trend of GC changes. b Annual GC dynamics for Global North and Global
South cities. c City-level temporal trend of GE changes. d Annual GE dynamics for
Global North and Global South cities. In a and c, the city-level temporal change
trends are divided into four qualitative levels, where cool (dark and slight green)
and warm colors (yellow and red) refer to increasing and decreasing greenspace

trends, respectively. The non-parametric Theil–Sen slope estimator approach is
used to determine the long-term trends of both GC and GE. The non-parametric
Mann–Kendall is used to evaluate the significance of these detected temporal
trends. Large bubble sizes represent a statistically significant level of 0.05
(p-value < 0.05) and small bubble sizes represent a non-significant trend with
p-value > 0.05. The administrative boundaries data is from the Global Adminis-
trative Areas (GADM) (https://gadm.org/).
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finding is that despite a negative trend of greenspace coverage in
Global South and Asian cities, people in these cities experienced a
slightly positive change in greenspace exposure in the first two dec-
ades of the 21st century. Annual continental-level greenspace exposure
has similar temporal trajectory patterns as greenspace coverage but
shows larger variabilities across continents (Supplementary Fig. 4).
Sensitivity analysis of the spectral unmixing-based threshold classifi-
cations shows that these findings are consistent for different green-
space mapping methods (Supplementary Figs. 5 and 6, and
Supplementary Tables 1–3). Our results show a dominantly decreasing
trend in greenspace exposure inequality (measured by Gini index) for
global cities, regardless of Global North or South, together with a
decreasing annual continental-level average over time (Fig. 2). Global
South cities experienced a higher change level of greenspace exposure
inequality (−3.54 × 0.001 yr−1), almost four times that of Global North
cities (−0.94 × 0.001 yr−1) (Table 1). The changing trends of the Gini
index of greenspace exposure for North American, South American,
European, African, Asian, Australian, and Oceanian cities are in the
range of (−0.85)-(−3.80) × 0.001 yr−1, with a mean value of −2.22 ×

0.001 yr−1 for global cities (Supplementary Fig. 7). These conclusions
are consistent with our sensitivity analysis of different greenspace
mapping approaches (Supplementary Figs. 8 and 9, and Supplemen-
tary Tables 1–3). To further verify theseGini-based results, we adopted
the other two widely used economic inequality metrics (i.e., Atkinson
and Theil) to measure the inequality of greenspace exposure, which
show very consistent results (Supplementary Figs. 10 and 11 and Sup-
plementary Tables 4 and 5).

Drivers of changing inequality in greenspace exposure
We proposed a Venn conceptual model to examine the drivers of
temporal changing trends in greenspace exposure inequality. Taking
Gini as an example, results reveal that greenspace coverage, as a
measure of greenspace supply, has dominantly promoted the
improvement (i.e., negative magnitude) in the temporal change of
greenspace exposure inequality over first two decades of the 21st

century. The absolute contribution of greenspace coverage to the
reduction in the Gini index is larger in Global South cities than Global
North cities (Fig. 3 and Supplementary Fig. 12). We also find that these
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Fig. 2 | Temporal change of greenspace exposure inequality measured by the
Gini index for global 1028 cities from 2000 to 2018. a City-level temporal trend
of Gini index. b Annual dynamics of the Gini index on average for Global North and
Global South cities. Similarly, large bubble sizes represent a statistically significant

level of 0.05 (p-value < 0.05) and small bubble sizes represent a non-significant
trend with p-value > 0.05. The administrative boundaries data is from the Global
Administrative Areas (GADM) (https://gadm.org/).
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Fig. 3 | Attribution of drivers accounting for temporal change in greenspace
exposure inequality. a The Venn conceptual model of quantifying individual and
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Gini index. Green circle (regions I and II) denotes the Gini index change ΔGinigreen,i
induced by the change of greenspace provision from gi to gi+1 with a fixed popu-
lation pi for year i (i = 2001,…, 2018). Orange circle (regions II and III) denotes the
Gini index changeΔGinipop,i induced by the population change from pi to pi+1with a

fixed greenspace g1 for year i. These two circles (regions I, II, and III) denote the
overall change of Gini index ΔGiniall,i induced by both greenspace and population
change from (gi, pi) to (gi+1, pi+1) for year i. The overlapped region II denotes the
joint effects of greenspace and population changes.b Individual and joint effects of
greenspace and population changes to the temporal dynamics of the Gini index
from 2000 to 2018, grouped by Global North and Global South cities.
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greenspace coverage-induced improvement effects are loosening over
time during this period. Compared to greenspace coverage, the
population distribution and its combined effects with greenspace
coverage, have slighter contributions to the temporal change of Gini.
In addition to results based on the Gini index, our sensitivity analysis
using the Atkinson and Theil metrics also show very similar attribution
results (Supplementary Figs. 13 and 14). We also incorporated the
comparative attribution approach41 to verify the robustness of the
proposed Venn conceptual model, similar results show that the con-
tribution from greenspace dominates the overall change in the Gini
index compared to population growth (Supplementary Fig. S15). To
dive into the controls of greenspace coverage on the temporal change
of the Gini index, we selected two cities with contrasting greenspace
coverage change patterns as pilots, Clermont-Ferrand city, France, in
the Global North and Jining city, China, in the Global South. Clermont-
Ferrand city has a net-balanced greenspace coverage change from
2000 to 2011 but a substantial increase from 2011 to 2018 (Fig. 4a, c).
Greenspace coverage in Jining City shows a notable reduction from
2000 to 2011 and recovers around half of the previous level from 2011
to 2018 (Fig. 4e, g). Results reveal that the regulations of greenspace
coverage on greenspace exposure inequality have different pathways.
When greenspace provision increases, the opportunities of being
exposed to urban greenspace resources will be improved for indivi-
dual urban residents, and thereby reducing the greenspace exposure
inequality (Fig. 4d, h). By contrast, if greenspace provision decreases,
or remains stable in the face of population growth, urban residents
initially being highly exposed to greenspace might lose greenspace
exposure, resulting into a more balanced greenspace share (at a lower
exposure level) (Fig. 4b and f). These regulating pathways are sup-
ported by a reduction in the coefficient of variation (CV) which can
directly measure the relative dispersion of greenspace share among
resident individuals within the city.

Discussion
Global urbanization promotes increasing population growth and
socio-economic prosperity but also enhances environmental degra-
dation, which substantially challenges urban sustainability42,43. The

unequal distribution of greenspace and its exposure is one of the
pressing issues in urban sustainability and public health, especially in
rapidly urbanizing Global South cities44. Greenspace, as a key com-
ponent of urban nature and a direct pathway to achieving the 11th

Sustainable Development Goal, is widely understood to be reduced by
urbanization for individual and even global cities17,32. We note, how-
ever, this is not entirely true, due to greenspace being a superior
economic good (i.e., good beyond the routine part of everyday life),
the demand for which rises with income45,46. This gives rise to different
dynamics between the Global South and North, and differences within
cities of these two broad global regions.

Recent satellite-based evidence reveals that at the start of the 21st

century, the positive effects of urbanization on vegetation growth have
been increasing, which may partially counteract the loss of vegetation
causedby land transformation in earlier stagesof urbanization, and lead
to improved human exposure to greenspace24,25. By combining this data
withglobal populationmappings,wewere able toquantify the temporal
trends in greenspace exposure and inequality over the past two dec-
ades. Our results show that greenspace coverage has increased overall
across global cities (Fig. 1a), with 648 (63%) out of 1028 global cities
experiencing positive trends of vegetation increases. This suggests that
greening management activities have surpassed the loss of vegetation
caused by land cover transformation in urban expansion. This finding is
consistent with results from previous studies based on coarse-
resolution satellite observations over global areas47–49 and city-specific
regions25,50. The rate of urban greening varies based on factors such as
climate, urban development intensity, and population density25.

Prominent spatial differences in urban greenspace trends have
been revealed across our sample of global cities, particularly in the
contrast between cities in the Global North and Global South. Global
North cities that are highly urbanized have become greener over the
past two decades, the likely cause of which is more green real estate
building and green urban planning and city management by both
private and public developers and agencies51. On the other hand, cities
with lower levels of urbanization in the Global North are still experi-
encing vegetation cover loss (Fig. 1a). This contrast highlights the
different priorities for greening management policy and action in
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Fig. 4 | City-level illustrative examples of greenspace changes modifying the
variations of greenspace exposure inequality for Clermont-Ferrand, France in
the Global North (a-d) and Jining, China in the Global South (e-h). a and e The
spatial pattern of greenspace coverage (GC) changes from2000 to 2011.b and fGC

change over individual population from 2000 to 2011. c and g Spatial pattern of GC
change from2011 to 2018.d andh. GC change over individual population from2011
to 2018. CV refers to the coefficient of variation for individual exposure to
greenspace.
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Global North and Global South cities. Global North cities might
encourage optimizing greenspace provision configuration and quality
to maximize greening benefits (e.g., climate cooling)52,53 and minimize
risks (e.g., pollen allergy)54,55. Global South cities may need to increase
green planting programs to make up for the reduction in physical
greenspace coverage17. Interestingly, a turning point in the trend of
greenspace provision and exposure was observed around the year
2011, when the world’s urban population exceeded the rural
population56 andnatural and anthropogenic activities plausibly related
to a net global vegetation greening (e.g., CO2 fertilization, climate
change, land-use change, and nitrogen deposition) have been
enhanced47. Prior to this, cities globally, were experiencing a decline in
greenspace coverage, but after 2011, the trend reversed turning to a
positive increase, indicating a net greenspace provision.

Global cities, represented by our 1028 samples experienced a net
increase in exposure to greenspace during the start of this century
(Fig. 1b). With the exception of cities in South America, all regions in
the world, namely, cities in North American, European, African, Asian,
Australian, and Oceanian, experienced increased greenspace (Table 1)
over this period. Compared with greenspace coverage, greenspace
exposure has changed with a larger magnitude due to greenspace-
human interactions. The trend occurred through urbanization-
induced vegetation loss in the outer belts of cities with a much lower
population57 and concurrently, greenspace coverage increases and
population grows in new urban areas16. Our findings show a substantial
difference in greenspace exposure change rates between cities in the
Global North and Global South, with cities in the Global North
experiencing approximately seven times for the increase rate of
greenspace exposure compared to those in the Global South (Table 1).

Our analysis also reveals a trend toward equality in human expo-
sure to greenspace, as reflected by a decline in inequality indices such
as the Gini, Atkinson, and Theil coefficients (Fig. 2). Based on the Venn
conceptual attribution model, we identify that the primary driver
behind this reduction in inequality is the provision of greenspace
(Fig. 3), which operates through two different pathways. In early
stages, greenspace loss caused by urban expansion tends to dis-
proportionately affect populations with high levels of greenspace
exposure, reducing disparities in exposure among the population.
However, as urbanization continues, the increase of greenspace is
typically muchmore equally spread over the population, which shares
a city’s particular level of greenspace exposure and thus narrows the
gap in greenspace exposure across population (Fig. 4). Our results
provide evidence and offer valuable insights to help government
agencies, city planners, and private developers adopt holistic urban
development strategies to improve the amount and quality of green-
space supply to achieve sustainable development goals. The study tells
a broadly positive story of the opening decades of the ‘urban century’,
and our analysis of trends, and subsequent studies of positive outliers
in those trends, will help cities achieve better net outcomes when
planning for balanced changes in urban greenspace loss and con-
struction by incorporating multidimensional contexts of greening
history, greenspace supply status quo, prioritized vulnerable hotspots
and the underlying socio-economic factors. The power of big-picture
global narrative studies to influence policy-makers, national debates,
and lobbyists, should also not be underestimated. Consistent with our
net-effects analysis, we encourage cities to take a greenspace exposure
balance-sheet approach to target SDGs for their populations, using a
high-resolution sensing technique as we used.

There are also some levels of limitations that should be
acknowledged in this study. First, although the integration of 30-m-
resolution Landsat satellite with a spectral unmixing approach can
help resolve the sub-pixel greenspace mapping, our method is still
unable to explicitly identify certain greenspace types in small and
fragmented patches at the Landsat’s resolution, such as street plan-
tation, lawns, and pocket gardens and parks, given the heterogeneous

landscape of cities. Therefore, satellites with a higher spatial resolution
such as 10-m Sentinel-2, 3-m PlanetScope, and sub-meter WorldView
imageries can be incorporated to offer advanced observational
opportunities for urban greenspace mapping, but one of the key
challenges is how to develop robust spatiotemporal reconstruction
algorithms for generating high-quality historical archives. Second, the
spatial distributions of greenspace and population footprints within
each year of this study are static without modeling spatiotemporal
interactions between greenspace and humans dynamically. On the one
hand, people living in cities are spatiallymoving in their daily routines,
being exposed to different nearby green environments beyond those
near to their placeof residence.On theother hand, seasonal changes in
urban greenspace that reflect different phenological phases will
influence the greenspace availability over time. Therefore, a promising
open topic for follow-up research is to integrate a human mobility
dataset with dynamic greenspace observations to enable a spatially
and temporally explicit human-greenspace interaction framework and
move toward real-time greenspace exposure assessment. Third, a
global sample of 1028 cities is adopted to investigate urban greening
and greenspace exposure inequality across a large geographical
spectrum, allowing us to make conclusions that transcend the local
observations that limit many greenspace studies. We acknowledge,
however, that the area criterion of 100 km2 excludes small and
medium-sized cities, which are home tomillions of people. It will be of
interest to compare our results for spatially large cities with a repli-
cated study of smaller cities, since cities of different sizes use space
distinctly andhavedifferent socio-economic functions andgreenspace
scales with city size in predictable ways58. These unique processes, in
turn, influence the greenspace supply-demand relationship and asso-
ciated temporal development trajectory, further underscoring the
importance of this analysis. One future research direction is to explore
the associations of awider spectrumof urban characteristics (e.g., size,
shape, density, function, and socio-economic structure) with green-
space, andmeasure specific human-centric exposures. Clearly, another
important factor in assessing the degree and distribution of access or
exposure to greenspace is demographic structure such as gender, age,
income, and race. In the present study, greenspace exposure differ-
ences across population groups are not considered, since their mea-
surement and a technical consideration of between-group equity is
beyond the scope of our methods in this study. We therefore talk in
terms of equality, rather than equity of exposure and our measure-
ments relate to human population counts abstracted from specific
population sub-groups. A deeper understanding of greenspace expo-
sure and demographic structure is becoming socially and politically
urgent17,59, which will help identify ‘hotspot’ areas with less greenspace
that disproportionately affect certain vulnerable populations, and
potentially help quantify the variations in health outcomes.

Methods
Research design
We generated two-decade time-series greenspace maps from the 30-
m-resolution satellite data for global large cities using the linear
spectral unmixing approach. We further combined the long-term fine-
scale greenspace and population mappings with a population-
weighted exposure framework to explore temporal changes in
greenspace coverage, humangreenspace exposure, and the associated
inequality. To decipher the drivers controlling the inequality in human
exposure to greenspace over time, we proposed a Venn conceptual
model to quantify the individual and joint contributions from green-
space and population for the past two decades. The full workflow of
the research design is shown in Supplementary Fig. 16.

Global urban areas
We selected 1028 major urban areas globally as our study targets. The
boundaries of these urban areas were extracted from the latest global
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urban boundaries (GUB) product60. As the high-quality year-by-year
GUB datasets are lacking, we chose the GUB data in 2018 with a geo-
graphic area larger than 100 km2 as the urban boundary to allow for 1)
the exploration of the urban expansion impacts on greenness change
and 2) the collection of sufficient samples for measuring human
greenspace exposure and inequality17. It is noted that we refer to these
1028 urban areas as ‘cities’ throughout the manuscript.

Landsat satellite imagery
We used 19-year (2000–2018) Landsat surface reflectance products
from three satellite sensors (i.e., Landsat-5, Landsat-7, and Landsat-8)
with a 30-m spatial solution to quantify the spatial distribution and
temporal dynamics of greenspace. Landsat provides the longest high-
quality temporal record of global surface reflectance data together
with the pixel-level quality assurance (QA) layer indicating cloud, cloud
shadow, snow, and ice conditions61. We used the surface reflectance
products of three visible (i.e., blue, green, and red) and one near-
infrared band. To minimize the uncertainty caused by Landsat-7 scan
line off failure62, we primarily focused on the use of Landsat-5 and
Landsat-8 Collection 2/Tier 1 Level-2 products, with data availabilities
of 12-year Landsat-5 (2000–2011), 2-year Landsat-7 (2012-2013), and
5-year Landsat-8 (2014–2018).

Several data pre-processing steps are conducted to ensure high-
quality inputs for greenspacemapping. We first harmonized Landsat-5
and Landsat-7 data using Landsat-8 data as a baseline to generate
consistent time-series data that removes potential impacts due to the
difference in spectral settings across satellite sensors63. With the QA
bitmask layer, we excluded the pixels thatwere contaminated by cloud
cover, shadow, and snow. We further calculated the normalized dif-
ference vegetation index (NDVI) and normalized difference water
index (NDWI) to quantify the spectral characteristics of green vege-
tation and water bodies, respectively. Finally, we adopted a maximum
value composite approach to generate the annual greenest vegetation
greenmetrics by selecting the pixel-basedmaximumNDVI values from
the cloud-free time series within a one-year cycle. In addition to the
maximum NDVI value, we also recorded the corresponding NDWI and
spectral reflectanceof blue, green, red, and near-infrared bands for the
following fractional greenspace coverage mapping.

Population data
We used the WorldPop dataset from 2000 to 2018 to map the popu-
lation’s spatially explicit distribution and temporal dynamics. World-
Pop provides a global annual update of demographic datasets (e.g.,
populationdensity, age and sex structures, andurbangrowth) at a 100-
m spatial resolution using a random forest regression tree-based
mapping approach64. We chose the WorldPop population density
dataset for its advantages of high spatial resolution, annual update
frequency, and global coverage over alternatives such as Gridded
Population of the World (GPW)65, LandScan66, and High-Resolution
Settlement Layer (HRSL)67.

Greenspace coverage
We adopted the linear spectral unmixing model to map fractional
greenspace coverage from the composited Landsat surface
reflectance-NDVI-NDWI time series, which can capture subpixel
greenspace signals32. The linear spectral unmixingmodel assumes that
one pixel’s spectral signature (including reflectance and its derivative
index) is a linearly weighted sum of a few spectrally pure endmembers
and their fraction covers within pixel68.

Ri =
Xn

k = 1

f ik � Cik + εi ð1Þ

where Ri represents the spectral signatures of pixel i, including spec-
tral reflectance of three visible (i.e., blue, green, red) and one near-

infrared bands, NDVI, and NDWI, Cik represents the spectral signature
of the kth endmember, εi is the unmodeled residual in the kth pixel,n is
the total number of endmembers, f ik is the fraction of kth endmember
within pixel i, which is usually calculated from the least-squares
method with the following physical constraints:

Xn

k = 1

f ik = 1and f ik ≥08k = 1, � � � ,n ð2Þ

We selected vegetation, impervious areas, and water as the three
endmembers (n = 3). To collect pure spectra of endmembers and
minimize their annual variations, in addition to Eq. (2), we included
four more physical constraints for three endmembers: (1) vegetation
endmembers should have an NDVI value > 0.8, (2) impervious end-
members should have an NDVI value < 0.2, (3) water endmembers
should have an NDWI value > 0, and (4) three endmembers should be
temporally stable over the past two decades, namely, constraints (1–3)
should be satisfied for the endmembers for each year from 2000
to 2018.

With the endmember spectra and the associated physical con-
straints, we first calculated the pixel-level fractional greenspace cov-
erage from Eq. (1). To remove the impacts of residue cloud
contaminations, we conducted a pixel-level data smooth to generate
the high-quality fractional greenspace coverage time series by using
the Savitzky–Golay (SG) filtering approach69. We reprojected the 30-m
fractional greenspace coverage using the nearest neighbor resampling
approach and aggregated it to 100-m resolution to ensure the derived
greenspacemap is spatially consistentwith the 100-mpopulationdata.
Then,we calculated the city-level physical greenspacecoverage rate by
overlapping the 100-m resampled pixel-level fractional greenspace
coverage with the city boundary and averaging all greenspace cov-
erages of pixels within the city. To further explore the residual
uncertainty in the spectral unmixing process, we proposed a spectral
unmixing-based threshold classification approach for the sensitivity
analysis of physical greenspace coverage mapping. We first generated
a greenspace binarymapby classifying the 100-m pixel-level fractional
greenspace coverage into greenspace (i.e., fractional greenspace
coverage ≥ threshold) or non-greenspace (i.e., fractional greenspace
coverage < threshold) components using a threshold approach70. We
adopted the thresholds of 0.3, 0.4, and 0.5 for this classification. Then,
we aggregated the greenspace binarymap to 100m for the calculation
of city-level physical greenspace coverage.

To validate the accuracy of the Landsat-derived city-level physical
greenspace coverage,weused the classificationmaps of 1-mresolution
National Agricultural Imagery Program (NAIP) aerial imagery for
2003–2015 and 10-m resolution Sentinel-2 satellite for 2016-2018 as
benchmarks, following the approach in Chen et al. 17. This task includes
three steps. First, we generated the annual composite from Sentinel-2
and NAIP datasets. For Sentinel-2 data, we applied a maximum value
composite approach to generate the yearly greenest vegetation green
metric across 1028 urban cities like Landsat data. Since NAIP only
collected aerial imagery during the agricultural growing season in the
sampling regions of the continental United States, we first chose the
summer NAIP data (i.e., June—September) of the sampled United
States cities as candidates. We then excluded these NAIP candidate
data whose observation dates are notably different from the peak
growing season by visually comparing them with the corresponding
Sentinel-2 and Landsat images. Consequently, a total of 639 United
States cities with 19, 580 NAIP images were selected (Supplementary
Table 6). Second, we generated the vegetation classification maps
from the fine-resolution NAIP and Sentinel-2 imageries using a random
forest machine-learning approach. To minimize the impacts of inter-
annual variations, we selected training samples of vegetation and non-
vegetation pixels from the NAIP and Sentinel-2 imagery for each year
to calibrate the random forest algorithm inGoogle Earth Enginewith 15
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decision trees while keeping other parameters as default. With the
annually calibrated random forest models, we classify the NAIP and
Sentinel-2 images into vegetation and non-vegetation binary maps.
Third, we calculated city-level greenspace fractions from the binary
vegetation maps as references to evaluate the accuracy of Landsat-
derived greenspace coverage. The overall consistency results with
high Pearson’s correlation coefficients (Supplementary Fig. 17) sup-
ported the feasibility and acceptable accuracy of using Landsat-
derived physical greenspace coverage to measure urban greenspace
provision.

Greenspace exposure
We adopted the population-weighted exposure framework16–18,32,
which can model the spatial interactions between greenspace and
population, to quantify the probability and level of human exposure to
greenspace according to Eq. (3):

GEd =
PM

i = 1Pi ×G
d
iPM

i= 1Pi

ð3Þ

where Pi represents the population of pixel i, Gd
i represents the frac-

tional greenspace coverage of pixel i that considers both the central
and nearby green environment with a buffer size of d (500m is used in
this study), M is the total pixel number within the city, and GEd is the
population-weighted greenspace exposure at a city level.

Greenspace exposure inequality
We used three commonly used economic metrics (including the Gini
coefficient, Atkinson, and Theil indices) to measure the inequality in
human exposure to greenspace for global cities following the frame-
work and method of Chen et al. 17. The calculations of these three
metrics are provided in the Supplementary materials. Three metrics
range between 0 and 1, where 0 indicates absolute equality and 1
indicates absolute inequality, and increasing valuemeans a larger level
of inequality.

Temporal trend analysis
We used the non-parametric Mann–Kendall statistic and Theil–Sen
slope estimator approaches, which are insensitive to data distribution
and outliers71, to calculate themagnitude anddirection of the city-level
monotonic trends of physical greenspace coverage, human green-
space exposure, and greenspace exposure inequality. We adopted a
significance level of 0.05 to assess the significance of time series
trends.

Attribution of changing inequality in greenspace exposure
We proposed a Venn conceptual model to quantify the contributions
of greenspace andpopulation to the temporal changes of greenspace
exposure inequality. This model originates from the widely used
variation partitioning approach that attributes the variations of a
response result (i.e., outcome) into different explanatory variables.
As shown in Fig. 3, the change of greenspace exposure inequality
measured by the Gini index can be decomposed into three parts:
individual greenspace provision (region I in Fig. 3a), individual
population change (region III in Fig. 3a), and joint greenspace and
population impacts (region II in Fig. 3a). When greenspace exposure
inequality changes from year i to i + 1, the individual contribution
of greenspace provision (green regions I + II in Fig. 3a) can be mod-
eled as:

I + II =4Ginigreen,i =Gini gi+ 1,pi

� �� Gini gi,pi

� �
ð4Þ

where4Ginigreen,i denotes the contribution of greenspaceprovision to
the overall changes of greenspace exposure inequality measured by
the Gini index in year i (i = 2001, …, 2018), Gini gi + 1,pi

� �
is the Gini

index with greenspace coverage gi + 1 in year i + 1 and population pi in
year i,Gini gi,pi

� �
is theGini indexwith greenspace coverage gi in year i

and population pi in year i.
Similarly, the individual contribution ofpopulation distribution to

the overall greenspace exposure inequality (orange regions I + III in
Fig. 3a) can be modeled as:

II + III =4Ginipop,i =Gini gi,pi+ 1

� �� Gini gi,pi

� �
ð5Þ

where 4Ginipop,i denotes the contribution of the population to the
overall changes of the Gini index in year i (i = 2001, …, 2018),
Gini gi,pi + 1

� �
is theGini indexwith greenspace coverage gi in year i and

population pi + 1 in year i + 1.
The joint contribution of greenspace provision and population

change (regions I + II + III in Fig. 3a) can be modeled as:

I + II + III =4Giniall,i =Gini gi+ 1,pi+ 1

� �� Gini gi,pi

� � ð6Þ

where4Giniall,i denotes the contribution of greenspace provision and
population to the overall changes of the Gini index in year i (i = 2001,
…, 2018), Gini gi+ 1,pi+ 1

� �
is the Gini index with greenspace coverage

gi+ 1 and population pi+ 1 in year i + 1.
By solving Eqs. (4–6), we can quantify the contributions of

greenspace provision, population distribution, and joint greenspace
and population to the change of greenspace exposure inequality.

In addition to the Venn conceptual model, we adopted another
empirical approach41 to quantify the comparative contributions of
greenspace and population to the change of human greenspace
exposure inequality, with four major steps: 1) calculation of the
monotonic trend of greenspace exposure inequality βexpo by varying
greenspace coverage and population from 2000 to 2018; 2) calcula-
tion of greenspace coverage βgreen (or population growth, βpop) con-
tribution with the monotonic trend analysis by varying greenspace
coverage (or population) while keeping a fixed population (or green-
space coverage) at the baseline year 2000; 3) calculation of population
growth, βpop (or greenspace coverage βgreen) contribution by
subtracting greenspace (population) contribution from the overall
trend of greenspace exposure inequality, i.e., βpop =βexpo � βgreen

(or βgreen =βexpo � βpop); 4) calculation of the comparative contribu-
tion (CC) as: CC = ðjβpopj � jβgreenjÞ � jβexpoj, where | ·| represents the
absolute function.

Data availability
Global urban area boundaries products are available from FROM-GLC
research group of Tsinghua University (http://data.ess.tsinghua.edu.
cn). Greenspace and population datasets used in this study are avail-
able from the Google Earth Engine cloud-computing platform.
Landsat-5 Collection 2/Tier1 Level-2 surface reflectance product is
available at: https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT-LT05-C02-T1-L2, Landsat-7 Collection 2/Tier1
Level-2 surface reflectance product is available at: https://developers.
google.com/earth-engine/datasets/catalog/LANDSAT-LE07-C02-T1-
L2, Landsat-8 Collection 2/Tier1 Level-2 surface reflectance product is
available at: https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT-LC08-C02-T1-L2, Sentinel-2 Level-2A surface reflec-
tance product is available at: https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS-S2-SR, National Agriculture
Imagery Program (NAIP) aerial imagery is available at: https://
developers.google.com/earth-engine/datasets/catalog/USDA-NAIP-
DOQQ, WorldPop global project population data is available
at: https://developers.google.com/earth-engine/datasets/catalog/
WorldPop-GP-100m-pop, The resulting greenspace exposure assess-
ments and associated changes for global 1028 cities have been
deposited at the following repository: https://datahub.hku.hk/
projects/GreenExposureEquality/176019.
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Code availability
The random forest classification algorithm code for greenspace cover-
age mapping is available from Google Earth Engine: https://developers.
google.com/earth-engine/apidocs/ee-classifier-smilerandomforest. The
non-parametric Mann-Kendall statistic and Theil–Sen slope estimator
codes for temporal trend analysis are available from Google
Earth Engine: https://developers.google.com/earth-engine/tutorials/
community/nonparametric-trends. The concentrationMetrics library
(https://pypi.org/project/concentrationMetrics/) is used to calculate the
Gini, Atkinson, and Theil inequality metrics. The code used to produce
the necessary data and results in this study is available in the following
repository: https://datahub.hku.hk/projects/GreenExposureEquality/
176019.
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