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SEPepQuant enhances the detection of
possible isoform regulations in shotgun
proteomics

Yongchao Dou1,2, Yuejia Liu3, Xinpei Yi1,2, Lindsey K. Olsen1,2, Hongwen Zhu4,
Qiang Gao5, Hu Zhou 3,4 & Bing Zhang 1,2

Shotgun proteomics is essential for protein identification and quantification in
biomedical research, but protein isoform characterization is challenging due
to the extensive number of peptides shared across proteins, hindering our
understanding of protein isoform regulation and their roles in normal and
disease biology. We systematically assess the challenge and opportunities of
shotgun proteomics-based protein isoform characterization using in silico and
experimental data, and then present SEPepQuant, a graph theory-based
approach to maximize isoform characterization. Using published data from
one induced pluripotent stem cell study and two human hepatocellular car-
cinoma studies, we demonstrate the ability of SEPepQuant in addressing the
key limitations of existing methods, providing more comprehensive isoform-
level characterization, identifying hundreds of isoform-level regulation events,
and facilitating streamlined cross-study comparisons. Our analysis provides
solid evidence to support a widespread role of protein isoform regulation in
normal and disease processes, and SEPepQuant has broad applications to
biological and translational research.

Alternative splicing of precursor messenger RNA (pre-mRNA) is an
essential post-transcriptional process that is believed to underlie
increased cellular and functional complexity in eukaryotic
organisms1,2. This process is highly regulated, and dysregulated RNA
splicing has been linked to a wide range of diseases such as retinal and
developmental disorders, neurodegenerative diseases, and cancer3,4.
High-throughput sequencing-based transcriptomic studies have
shown that most human protein-coding genes undergo alternative
splicing to produce multiple mRNA isoforms5. Mass spectrometry
(MS)-based shotgun proteomics is the primary method for protein
identification andquantification frombiological samples6, but shotgun
proteomics studies have provided very limited information on protein

isoforms due to intrinsic challenges in data analysis. In fact, the extent
to which transcript isoform complexity propagates to the proteome
remains controversial7–9, and systematic investigation of the roles of
protein isoforms in normal and disease biology is largely lacking10.

In a shotgun proteomics experiment, proteins extracted from
biological samples are digested into peptides using enzymes such as
trypsin and then analyzed by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). Each LC-MS/MS run generates thousands
of spectra, which serve as the basis for the identification and quanti-
ficationof peptides and proteins.Many bioinformatics tools have been
developed to perform these essential computational tasks in shotgun
proteomics data analysis, such as MaxQuant11, Trans-proteomic
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pipeline12, OpenMS13, FragPipe14,15, among others. Despite algorithmic
and implementation differences, these tools share a similar workflow.
First, observed MS/MS spectra are searched against a reference pro-
tein database for peptide identification. Next, identified peptides are
used to infer a list of proteins that are assumed to be present in the
sample, a process known as protein inference. Finally, inferred pro-
teins are quantified based on the signal intensity measurements of the
constituting peptides.

The difficulty in protein isoform identification and quantification
is complicated by the large number of degenerate peptides, which are
peptides that canbemapped tomultiple proteins due to a high level of
sequence similarity between protein isoforms encoded by the same
gene, or genes in the same gene family. The current most adopted
practice in the field is to collapse proteins with the same set of sup-
porting peptides together with those that are supported by a subset of
these peptides into a protein group16,17. For protein quantification,
peptides shared by multiple protein groups are either ignored or
assigned to the group with the largest number of associated peptides,
i.e., defined as razor peptides by MaxQuant11. Typically, one repre-
sentative protein (i.e., the one with the largest number of associated
peptides) is selected from each protein group for reporting and
downstream analysis14,18. This parsimonious approach plays a critical
role in preventing overstating the number of proteins in protein
inference, however, it also limits the potential for protein isoform
characterization. First, protein isoforms without uniquely identified
peptides are essentially ignored. Secondly, the assignment of shared
peptides to the protein groups andproteinswith the largest number of
associated peptides for quantification may not necessarily be the
correct solution.

To address the challenge in protein isoform discrimination, sev-
eral methods have been developed. One solution is to perform gene-
based quantification, which is implemented in tools such as
gpGrouper19 and FragPipe and used in some recent studies20–22.
gpGrouper uses quantities of gene-specific peptides to guide the split
of quantities of shared peptides. Because only a small proportion of
peptides are shared between genes, it makes full use of both unique
and shared peptides to produce gene-level quantification with
demonstrated accuracy19. However, protein isoform information is
ignored in this approach. Along the same line, SCAMPI uses statistical
modeling to generate quantification for individual proteins using both
unique and shared peptides23. This approach was demonstrated when
proteomics datawere searched against theUniProt canonical database
inwhichonly canonical protein sequences are included,whichmeans a
single canonical sequence formostgenes. For example, although there
are eight annotated isoforms of TP53 in UniProtKB, the canonical
database only included a single canonical isoform. Therefore, isoform
reduction occurred in database construction, and the challenge
addressed was primarily to distribute quantities of peptides shared by
different genes. The method’s ability to handle search results from a
comprehensive protein database is uncertain because the inclusion of
canonical and alternative isoform sequences leads to a substantial
reduction in thenumber of isoform-specificpeptides, whichare crucial
for accurately distributing the quantities of peptides shared between
isoforms. Moreover, it is also unclear whether the method can be
directly applied to ratio data generated from labeled experiments such
as tandem mass tag (TMT)-base experiments.

Methods have also been developed based on the assumption that
the quantitative pattern of peptides derived from one protein will
correlate over several samples. Protein Quantification and Peptide
Quality Control (PQPQ) selects peptides correlating over samples to
improve the quantitative accuracy and precision24, whereas Peptide
Correlation Analysis (PeCorA) focuses on outlier peptides to reveal
differential proteoform regulation25. These methods require multiple
samples for analysis, and peptides annotated tomore thanone protein
are excluded from the analysis. Therefore, many peptides would be

excluded when a comprehensive protein database covering both
canonical and alternative isoform sequences are used for database
searching.

Leveraging RNASeq data from matched samples, the Custom-
ProDB approach constructs a customized protein database with
reduced number of protein isoforms by excluding isoforms with low
transcript abundance in matched RNASeq data26. This method also
enables novel protein isoform identification, but the quantification
challenge remains because each gene may still have multiple RNASeq
data-supported isoforms. Based on a strong assumption that each
gene only has a dominant isoform, Liu et al.10 used matched RNASeq
data to select one isoform with the highest transcript abundance for
each gene. Woo et al.27 and Lau et al.28 focus on novel protein isoforms
by identifying and quantifying peptides mapped to novel isoform
junctions detected based on RNASeq data. While these methods are
appealing, their utility in themajority of proteomic studies is limitedby
the prerequisite of matched RNASeq data.

In this study, we systematically assess the challenge and oppor-
tunities of shotgunproteomics-basedprotein isoformcharacterization
using in silico digestion data and experimental data from a published
induced pluripotent stem cell (iPSC) study28 and twopublished human
hepatocellular carcinoma (HCC) studies29,30. To tackle the challenge of
protein isoform characterization and leverage the potential opportu-
nities, we extend the bipartite graph representation of peptide-protein
relationships17 to a tripartite graph for a comprehensive representation
of the peptide, protein, and gene relationships. From the tripartite
graph, we define a new quantification unit called Structurally Equiva-
lent PEPtides (SEPEPs). These SEPEPs consist of peptide vertices that
are connected to precisely the same set of protein vertices within the
graph and are thus structurally equivalent in the graph. To facilitate
downstream interpretation, we further divide the SEPEPs into five
classes based on their patterns of connections to source proteins and
genes in the tripartite graph. The introduction of SEPEPs as the
quantification unit represents a significant innovation. It fundamen-
tally differs from existing quantification approaches that employ par-
simonious protein groups, individual genes, individual proteins, or
correlated peptides from individual proteins, as the unit of quantifi-
cation. While using peptides mapping exclusively to a single protein
for quantifying that specific protein, as implemented in PQPQ and
PeCorA, provides accurate quantification, it excludes many peptides
that are shared by multiple proteins. On the other hand, when parsi-
monious protein groups or genes are employed as the quantification
units, the isoform-specific information available from shotgun pro-
teomics data is often suppressed or lost. By shifting the quantification
unit to peptides that exclusively map to a group of protein isoforms
that are indistinguishable based on the identified peptides, our SEPEP-
based method can leverage all confidently identified peptides,
including those mapping to multiple proteins or even multiple genes.
Moreover, this approach retains and utilizes all the available isoform-
distinguishable information present in the data, thus enhancing the
detection of possible isoform regulations in our analysis. Using the
iPSC and HCC datasets, we demonstrate the ability of our approach in
addressing the key limitations of the parsimony-based methods, pro-
viding more comprehensive proteome characterization, identifying
hundreds of isoform-level regulation events, and enabling streamlined
cross-study comparisons.

Results
Assessing the challenge and opportunities of isoform
characterization
Among the 19,449 protein-coding genes annotated in the RefSeq
database, 14,698 (75.6%) have more than one protein isoforms, and
3409 (17.5%) have 10 ormore protein isoforms (Fig. 1a). Most isoforms
from the same gene have very high sequence similarity (>90%, Fig. 1b),
highlighting the challenge in discriminating isoforms in shotgun
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Fig. 1 | Assessing the challenge and opportunities of protein isoform char-
acterization. aDistribution of the number of protein isoforms for all coding genes.
b Distribution of the minimum within-gene protein isoform sequence similarity.
c Classification of the in silico digested peptides based on their mapping to genes
and protein isoforms. d Classification of the experimentally identified peptides in

individual samples in an iPSC cell line study and two hepatocellular carcinoma
(HCC) studies into three categories, equivalent to the pie chart on the left in (c).
e Further classification of peptides in the multi-isoform group in d into three
categories, equivalent to the pie chart on the right in (c). Source data of (a, b, d, e)
are provided as a Source Data file.
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proteomics experiments. However, among the 11,809 genes with three
or more protein isoforms, 6165 (52.2%) have at least one pair of iso-
forms with a sequence similarity lower than 90%, or an average of one
amino acid difference in every 10 amino acids, suggesting the possi-
bility to identify isoform-discriminating peptide sequences for a sub-
stantial number of genes.

To further assess the challenge and opportunities of isoform
characterization using shotgun proteomics, we performed in silico
trypsin digestion of the RefSeq protein database to generate fully
tryptic peptides with length 7 to 50 and with 0, 1, or 2 missed clea-
vages, or with semi-tryptic peptides (Fig. 1c and Supplementary Fig. 1).
Taking peptide without missed cleavage as an example, among the
588,545 resulting peptide sequences, 2.8% could be associated to
multiple genes (i.e., multi-gene peptides), 13.6% to genes with a single
protein isoform (i.e., single isoformpeptides), and 83.5% to genes with
more than one isoform (i.e., multi-isoformpeptides).Within the group
of multi-isoform peptides, around half could be mapped to all protein
isoforms of a gene, and thus providing no information for isoform
discrimination (i.e., non-discriminative peptides); however, another
half, or 246,615 peptides, could be uniquely mapped to one isoform
(i.e., fully discriminative peptides) or a subset of isoforms (i.e., partially
discriminative peptides) (Fig. 1c). Peptide distributions from other in
silico digestion experiments were similar to that of the experiment
with fully digested peptides with no missed cleavages (Supplemen-
tary Fig. 1).

Next, we compared our in silico digestion results with experi-
mental data from a TMT-based iPSC study28 and two human HCC
studies29,30, one TMT-based (HCC-TMT) and one label-free (HCC-label-
free). Although two missed cleavage sites were allowed in database
searching, less than 5% of identified peptides hadmissed cleavage sites
(Supplementary Dataset 1). Around 6% of the peptides identified in
these studies were multi-gene peptides, and the ratios more than
doubled the 2.8% estimate from the in silico digestion (Fig. 1d). This
observation may be explained by the higher likelihood of detecting
thesepeptides indata-dependentMSexperiments because they canbe
derived from multiple genes. Percentages of the single isoform pep-
tides in these studies were slightly higher than that in in silico diges-
tion, whereas an opposite trend was found for multi-isoform peptides
(Fig. 1d). Within the group ofmulti-isoform peptides, the ratios of non-
discriminative peptides were about 15% higher in these studies than
those in in silico digestion, likely due to contributions from multiple
isoforms (Fig. 1e). Percentages of the fully discriminative peptides and
partially discriminative peptides in these studieswere lower than those
in in silicodigestion, however, they still accounted for about 35% of the
multi-isoformpeptides, or about 27% of all identified peptides (Fig. 1e).

In summary, experimental data are largely consistent with the in
silico digestion results, and both suggest that despite intrinsic chal-
lenges, there are a substantial fraction of peptides that hold important
information for isoform characterization in shotgun proteomics.

Tripartite graph modeling of peptides identified by shotgun
proteomics
Peptides shared by multiple genes or multiple protein isoforms of the
same gene complicate protein inference and quantification. Based on
Occam’s razor or the principle of parsimony, the current best practice
in the proteomics field is to collapse proteins with the same or subset
of supporting peptides into a minimal list of protein groups, and for
quantitative rollup, peptides shared by multiple proteins are assigned
only to the ones with the most identification evidence. Although
practically useful, this parsimonious approach greatly limits the
potential for protein isoform characterization. We propose a tripartite
graph modeling approach to represent the data more accurately.

The tripartite graphmodeling approach involves fourmajor steps
(Fig. 2a–d). First, a tripartite graph is built with three sets of vertices
representing all peptides identified in a study (Pep1-Pep12), proteins to

which the peptides can be mapped (Pro1.1–Pro3.1), and host genes of
the proteins (Gene1–Gene3), respectively, and the vertices are con-
nected by edges indicating their mapping relationships (Fig. 2a). Sec-
ond, using a graph theory-based technique31,32, peptides connected to
exactly the same set of protein vertices are grouped together and
defined as a group of structurally equivalent peptides (SEPEP), leading
to eight SEPEPs in Fig. 2b. To clarify, the term SEPEP is used to denote a
specific grouping of peptides that exhibit structural equivalencewithin
the context of the tripartite graph instead of an individual peptide. Of
note, the gene vertices do not affect the identification of SEPEPs, but
they help organize protein vertices into genes and classify SEPEPs into
single-gene or multi-gene SEPEPs (see below) to facilitate data inter-
pretation. Third, the target-decoy approach33 is used to estimate false
discovery rate (FDR) at the SEPEP level. Specifically, a SEPEP is con-
sidered a target hit if the peptides in the SEPEP are from a forward
protein sequence, and a decoy hit if the peptides are from a decoy
protein sequence. SEPEPs with FDR >0.01 are excluded from further
analysis (Fig. 1c). Finally, the remaining SEPEPs are classified into five
classes based on their patterns of connections to source proteins and
genes in the tripartite graph (Fig. 2d). Class 1 through 5 correspond to
single isoform SEPEPs, fully discriminative SEPEPs, partially dis-
criminative SEPEPs, non-discriminative SEPEPs, andmulti-gene SEPEPs,
respectively. Class 1 to 4 SEPEPs are labeled with gene name followed
by SEPEP order within the gene and SEPEP class type, e.g., Gene1_SE-
PEP.1_C1. Class 5 SEPEPs are labeled with “Multiple” followed by SEPEP
order across the whole study and C5, e.g., Multiple_SEPEP.1_C5. Each
SEPEP is also identified by associated gene(s) and protein(s), both
alphabetically sorted and concatenated, in amapping table, which will
allow streamlined cross-study comparison.

In contrast to existing methods that make protein inference and
then use protein groups or gene groups as the reporting and quanti-
fication units, our approach uses SEPEPs as the reporting and quanti-
fication units (Fig. 2e). All methods share the samedatabase searching,
peptide-spectrummatch (PSM) FDR control, and peptide FDR control
protocols. SEPEP identification and SEPEP-level FDR control are per-
formed in parallel to the standard protein inference and protein level
FDR control. Finally, the same algorithm can be used to report quan-
tification at SEPEP, gene group, and protein group levels. Specifically,
each quantification unit (protein group, gene group, or SEPEP) is
quantified based on abundance of all associated peptides using an
appropriate method, such as mean, median, or sum, according to the
nature of the proteomics experiment. SEPEP-based quantification is
referred to as SEPepQuant.

SEPepQuant enables more comprehensive proteome
characterization
We applied SEPepQuant to the iPSC, HCC-TMT, and HCC-label-free
datasetsmentioned above, using FragPipe for database searching. The
numbers of identified SEPEPs ranged from about 10,000–25,000 for
each sample or TMT plex, driving by the depth of the proteomics
studies (Fig. 3a). Although the numbers of identified SEPEPs varied
greatly across different datasets, the percentages of SEPEPs failing 1%
FDR filtering were around 15% formost samples, except for 11 samples
from theHCC-label-free dataset (Supplementary Fig. 2a). About 90%of
the rejected SEPEPs in these datasets contained only a single peptide
with a mean peptide number of about 1.04 (Supplementary Fig. 2b).
Therefore, the rejected SEPEPs may represent less robust identifica-
tions. After quality control, there were still about 500–3500 class 5
SEPEPs (Fig. 3b). These multi-gene peptides are typically removed or
assigned to a single gene with the strongest identification evidence in
parsimonious protein inference, leading to information loss or
potential misinterpretation.

The SEPepQuant results were further filtered by removing SEPEPs
withmore than 50%missing values in eachdataset. SEPEPs passing this
criterion were considered as quantifiable SEPEPs. The same criterion
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was also applied to gene and protein group-level quantification
derived from parsimonious protein inference. The total number of
quantifiable single-gene SEPEPs were 8322, 17,543, and 7745 from the
iPSC, HCC-TMT, and HCC-label-free datasets, respectively, and they
corresponded to 5147, 8865, and 4936 genes (Fig. 3c and Supple-
mentary Datasets 2–10). Compared with protein group-level quantifi-
cation reported by FragPipe, which may also provide abundance of
multiple distinguishable protein groups for individual genes, SEPep-
Quant reported 5.8–33.8 time more genes with multiple features
(Fig. 3d). To assess the broader applicability of this finding, we per-
formed a supplementary analysis on the iPSC dataset using MaxQuant
for database searching. Similarly, compared with the protein group-
level quantification reported by MaxQuant, SEPepQuant identified 43
time more genes with multiple features (Supplementary Fig. 2c). We
further compared genes harboring quantifiable single-gene SEPEPs
with quantifiable genes reported based on parsimonious inference
(Fig. 3e and Supplementary Datasets 2–10). The numbers of genes
harboring quantifiable single-gene SEPEPs were smaller than corre-
sponding gene numbers reported by parsimonious inference across all

threedatasets.However, SEPepQuant also reported 1318, 3122, and975
multi-gene SEPEPs for the three datasets, respectively, and such
information is missing or difficult to track in existing computational
tools (Fig. 3c).

Among genes quantified by both methods, the quantifications of
the C4, non-discriminative SEPEPs exhibited a strong correlation with
their respective host gene quantifications. Only a small fraction of
cases, specifically 8% in the iPSC dataset, 1% in the HCC-TMT dataset,
and 5% in the HCC-label-free dataset, showed correlations below 0.5
(Fig. 3f, black curves), emphasizing the reliability of SEPEP quantifica-
tions. Interestingly, for genes with multiple SEPEPs, a significant
number had at least one SEPEP with a correlation less than 0.5 with
their host genes, including 65.4%, 35.1%, and 79.8%of genes in the iPSC,
HCC-TMT, and HCC-label-free datasets, respectively (Fig. 3f, pink
curves). To further explore this observation, we assessed the dis-
tribution of within-SEPEP peptide correlations and their relationship
with average MS1 peptide intensities in the HCC-TMT dataset. As
expected, peptides with higher MS1 intensities exhibited relatively
higher correlations, but the overall correlation remained strong, with a

a b

c d

e Raw data

Database searching
(PSM FDR < 0.01)

Peptide level FDR
control (FDR < 0.01)

Protein level FDR
control (FDR < 0.01)

Identify SEPEPs

SEPEP level FDR
control (FDR < 0.01)

SEPEP level 
quantification

Gene and protein group 
quantification

Protein inference

Tripartite graph construction Identify SEPEPs

SEPEP level FDR control Classify and report SEPEPs

Fig. 2 | Overview of the tripartite graph modeling approach. a Tripartite graph
construction: connect peptides to all proteins that contain them, and proteins to
the host genes, to forma tripartite graph.b SEPEP identification: identify and group
structurally equivalent peptides (SEPEP), i.e., peptides connecting to the same set
of proteins in the graph. c FDR control: calculate SEPEP-level FDR and remove

SEPEPs with an FDR higher than the pre-specified threshold, e.g., FDR >0.01.
d SEPEP classification and reporting: classify SEPEPs based on their patterns of
connections and report SEPEP-level quantification. e A comparison between SEPEP
analysis procedure and the classical parsimony protein inference-based procedure.
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median value of 0.69 (Supplementary Fig. 2d). These findings suggest
that at least some of the discordance between SEPEP and gene corre-
lations could be attributed to isoform-specific regulation. Together,
our results show that SEPepQuant provides additional resolution that
may enable more comprehensive proteome characterization than
traditional protein group-level or gene-level analysis.

SEPepQuant addresses key limitations of the parsimony-based
methods
In parsimonious protein inference, protein isoforms without uniquely
identified peptides are largely ignored, and shared peptides are
assigned to proteins with the most identification evidence for quan-
tification. Here we selected representative examples from the HCC-
TMT dataset to illustrate the drawback of these simplifications on
protein isoform characterization, and the effectiveness of SEPepQuant
in addressing these limitations.

ACTR3 encodes two protein isoforms. The short isoform
NP_001264069.1 is translated froma downstream translation initiation
site and is shorter at the N-terminus compared to the long isoform
NP_005712.1. Among the 17 peptides identified for this gene, three
were unique to the long isoform, and others were shared between the
two isoforms (Fig. 4a). Parsimonious protein inference assigned all
shared peptides to the long isoform, and the quantification based on
all peptides showed that NP_005712.1 was significantly lower in tumors
compared with normal adjacent tissues (NATs) (P = 1.93e-4). Mean-
while, no quantitative information was provided for the short isoform.
In contrast, SEPepQuant reported two SEPEPs. ACTR3_SEPEP.2_C2 was
associated with the three NP_005712.1-specific peptides, and it was
significantly higher in tumors compared with NATs (P = 2.30e-11).
ACTR3_SEPEP.1_C4 was associated with the shared peptides, and it was
lower in tumors compared with NATs with a marginal significance
(P = 0.02). Despite the lack of NP_001264069.1-specific peptides, itwas
not difficult to infer that this isoform was suppressed in tumors based
on the strong elevation of NP_005712.1. Thus, SEPepQuant provided
useful information for both isoforms, whereas the parsimonious
inference assigned all peptides to the long isoform, leading to inac-
curate quantification because some peptides may actually belong to
the short isoform despite being mappable to both isoforms.

FKBP11 encodes three protein isoforms, and none of the six pep-
tides identified for this gene could be uniquely mapped to a single
isoform (Fig. 4b). Because NP_057678.1 could explain all six observed
peptides but the other two isoforms could not, parsimonious protein
inference assigned all six peptides to NP_057678.1, and the resulting
quantification showed that this isoform was significantly increased in
tumor samples compared with NATs. SEPepQuant reported quantifi-
cation results for three SEPEPs. Both the non-discriminative
FKBP11_SEPEP.1_C4 (one peptide) and the partially discriminative
FKBP11_SEPEP.3_C3 (NP_001137253.1 and NP_057678.1, one peptide)
had higher abundance in tumors, whereas the partially discriminative
FKBP11_SEPEP.2_C3 (NP_001137254.1 and NP_057678.1, four peptides)
had lower abundance in tumors. Although the change of NP_057678.1
remained difficult to determine, SEPepQuant results clearly suggested
decreased abundance of NP 001137254.1 and increased abundance of
NP_001137253.1 in tumor samples.

In addition to providing higher resolution for characterizing
multiple protein isoformsencodedby the samegene, SEPepQuant also
reports quantifications for multi-gene SEPEPs (C5 SEPEPs), which may
provide useful information that is typically missed in the parsimony-
based methods. For example, Multiple_SEPEP.2009_C5 was associated
with a peptide that could be mapped to two CDK2 isoforms and one
CDK3 isoform (Fig. 4c). In parsimonious inference, because the two
CDK2 isoformswere also supported by another CDK2-specific peptide,
this shared peptide was assigned to the CDK2 isoforms and thus CDK3
was not quantified. With SEPepQuant, Multiple_SEPEP.2009_C5 was
reported to be highly significantly decreased in tumors comparedwith

NATs (P = 4.96e-12). Although this SEPEPwas associatedwith twoCDK2
isoforms and one CDK3 isoform, it was possible to associate the
decrease of this SEPEP specifically to the CDK3 isoform because
another SEPEP (CDK2_SEPEP.3_C3) uniquely mapped to the two CDK2
isoforms were highly significantly overexpressed in tumors
(P = 1.00e-15).

Parsimonious inference may also complicate cross-study com-
parisons. For example, PYGL encodes two protein isoforms differing in
an exon-skipping event (Fig. 4d). The HCC-TMT study identified many
shared peptides and one unique to the long isoform. Accordingly, all
peptideswere assigned to the long isoform for reporting. In the closely
related HCC-label-free study, all identified peptides were shared
between the two isoforms.According to theparsimoniousprinciple, all
peptides were assigned to the short isoform for reporting. Although
significantly decreased expression of PYGL in tumors compared with
NATswasobserved in both studies, andmostof the identifiedpeptides
were identical in the two studies (Fig. 4d), different protein isoforms
reported by the two studies could cause confusions in a cross-study
comparison. In addition to reporting one SEPEP associated with the
long isoform-specific peptide in the HCC-TMT study, SEPepQuant also
reported a non-discriminative SEPEP, which was consistently
decreased in tumors compared with NATs in both studies, which
helped eliminate potential confusion.

Protein isoform expression changes during iPSC differentiation
into cardiomyocyte
To demonstrate the practical utility of SEPepQuant, we compared
SEPepQuant analysis results of the iPSC dataset with those from gene-
level quantifications reported by FragPipe. The iPSC dataset was gen-
erated by TMT-based shotgun proteomics on iPSC cells cultured over
14 days and harvested daily21. As a positive control, we checked the
gene and SEPEP-level results of TPM1, which was found to have two
regulated protein isoforms in the original study. TPM1 showed sig-
nificant upregulation with culture time based on gene-level quantifi-
cation by FragPipe (Supplementary Fig. 3a). Consistent with the
original study, SEPepQuant identified a group of isoforms recognized
by TPM1_SEPEP.2_C3, which differed from the canonical
TPM1 sequence at residues 189–212 by mutually exclusive exon (MXE)
splicing and were upregulated from day 0 to day 7 and then down-
regulated from day 7 to day 14 (Supplementary Fig. 3b), as wells as
another group of isoforms recognized by TPM1_SEPEP.8_C3, which
differed from the canonical TPM1 sequence at residues 41–80 by MXE
splicing and were upregulated at day 14 compared with day 7 (Sup-
plementary Fig. 3c). In addition, SEPepQuant further identified another
downregulated isoform group recognized by TPM1_SEPEP.6_C3, which
used an alternative translation start site (Supplementary Fig. 3d). Thus,
SEPepQuant not only confirmed existing findings but also revealed
new information.

Next, we correlated quantifiable genes and SEPEPs with culture
time to identify genes and SEPEPs showing monotonic abundance
changes during iPSC differentiation into cardiomyocytes. Among the
2028 quantifiable genes with multiple SEPEPs, most showed con-
cordant alterations at gene and SEPEP levels (Fig. 5a and Supplemen-
tary Dataset 11). However, 141 SEPEPs from 127 genes showed a
significant positive correlation with culture time without matching
significance at the gene level, including five SEPEPs from five genes
showing a significant negative correlation at the gene level. As an
example, PES1_SEPEP.2_C3 was significantly upregulated with culture
time, but PES1_SEPEP.1_C4 and the gene-level quantification were sig-
nificantly downregulated (Fig. 5b). Similarly, 98 SEPEPs from 91 genes
showed significant negative correlation with culture time without
matching significance at the gene level, including three SEPEPs from
three genes showing a significant positive correlation at the gene level.
For example, DPYSL3_SEPEP.2_C2, which included a single protein
NP_001184223.1 with 5 uniquely identified peptides (Supplementary
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Fig. 3e), was significantly downregulated with time; but both
DPYSL3_SEPEP.1_C4 and thegene-level quantification showed apattern
of downregulation from day 0 to day 7 and upregulation from day 7 to
day 14 (Fig. 5c). This observation was further validated by the RNASeq
data obtained from the original publication, despite the limited num-
ber of time points profiled (four in total). Specifically, the transcript
NM_001197294.2, which corresponds to NP_001184223.1, showed a
consistent downward trend from day 0 to day 14, whereas the other
transcripts and the gene-level measurements exhibited the lowest
values at day 7 but showed an increase by day 14 (Supplemen-
tary Fig. 3f).

Our analysis also identified 221 multi-gene SEPEPs showing sig-
nificant correlation with culture time (Supplementary Fig. 3g). The
most significantly positively correlated multi-gene SEPEP, Multi-
ple_SEPEP.122_C5, was associated with four calmodulin-dependent
protein kinase genes CAMK2D, CAMK2A, CAMK2B, and CAMK2G. The
most significantly negatively correlated multi-gene SEPEP Multi-
ple_SEPEP.978_C5 was associated with four zinc finger genes ZNF93,
ZNF431, ZNF714, and ZNF92. Although it is difficult to attribute the
associations to specific genes, these observations still revealed the
important roles of these gene families in iPSC differentiation.
Moreover, data specific to some genes in a multi-gene SEPEP could
be leveraged to improve the interpretation of the association
observed for the multi-gene SEPEP. For example, the SEPEP Multi-
ple_SEPEP.997_C5 was associated with both UHRF1 and UHRF2, and it
was found to be significantly negatively correlated with time
(Fig. 5d). Because UHRF1_SEPEP.1_C1 was not significantly correlated
with time (Fig. 5d), it is logical to infer that the significant negative
association between Multiple_SEPEP.997_C5 and time was driven
primarily by UHRF2 even though it was not specifically quantified in
this dataset.

Protein isoforms associated with liver cancer development and
prognosis
The HCC-TMT dataset included liver tumor samples and paired NATs
from 165 patients, and overall survival information is also available for
these patients. We performed tumor vs NAT comparison and survival
analysis based on SEPepQuant and gene-level quantifications reported
by FragPipe, respectively. In the tumor vsNATcomparison,most of the
4481 genes with multiple SEPEPs showed concordant alterations at
gene and SEPEP levels (Fig. 6a and Supplementary Dataset 12). How-
ever, 396 SEPEPs from 330 genes showed a significant increase in
tumor samples without matching significance at the gene level,
including 78 SEPEPs from 69 genes showing a significant decrease in
tumor samples at the gene level. Similarly, 392 SEPEPs from 331 genes
showed a significant decrease in tumor samples without matching
significance at the gene level, including 93 SEPEPs from 85 genes
showing a significant increase in tumor samples at the gene level. In the
survival analysis, a higher level of concordance was observed between
SEPEP-level and gene-level results (Fig. 6b and Supplementary Data-
set 13). However, there were still hundreds of SEPEPs showing sig-
nificant positive or negative associations with survival without
matching significance at the gene level. Notably, 18 genes showed
significantly increased expression in tumors compared with normal
samples as well as significant association with poor prognosis at the
SEPEP level, and these associations were not observable at the gene
level (Fig. 6c and Supplementary Dataset 14).

One of the 18 was SLK_SEPEP.2_C2, a fully discriminative SEPEP
associated with a single protein isoform NP_001291672.1 encoded by
the STE20-like serine/threonine-protein kinase gene SLK (Fig. 6d–f).
Identification and quantification of this SEPEP were based on two
junction peptides specific to NP_001291672.1 (Supplementary Fig. 4a).
Among the three protein isoforms encoded by SLK, SEPepQuant con-
nected this specific isoform to liver cancer development and prog-
nosis, suggesting a critical pro-tumor role of the exon-skipping event.

Although the quantification for the NP_001291672.1-specific SEPEPwas
very sparse in the independent HCC-label-free dataset, samples with
identification of NP_001291672.1-specific peptide KKEEQEFVQK had
significantly worse survival compared with samples without identifi-
cation of this peptide (Supplementary Fig. 4b), which provided inde-
pendent confirmation of our finding in the TMT dataset. Protein
group-level quantification from FragPipe reported two protein groups
with representative proteins NP_001291672.1 and NP_055535.2,
respectively. However, the protein group represented by
NP_001291672.1 showed no significant association with survival in
FragPipe quantification (Supplementary Fig. 4c). This is because mul-
tiple shared peptides were assigned to this protein group based on the
parsimony principle, but shared peptides derived from the other
protein group, which had significant association with good prognosis
(Supplementary Fig. 4d), could greatly dilute the signal specific to
NP_001291672.1.

In order to verify the correlationbetween the exon-skipping event
in SLK and tumor initiation and prognosis in HCC, we performed
parallel reaction monitoring (PRM) analysis on 20 paired tumor and
NAT samples selected from the HCC-TMT study (Supplementary
Dataset 14). Among these samplepairs, 10wereobtained frompatients
who passed away within 12 months of tissue collection (poor prog-
nosis), while the other 10 pairs were obtained from patients who sur-
vived for more than 40 months after tissue collection (good
prognosis). For the PRM experiment, we specifically chose five pep-
tides that had been previously identified in the TMT study (Supple-
mentary Dataset 14). One of these peptides, KKEEQEFVQK, was found
exclusively in the isoform NP_001291672.1, which resulted from exon
skipping. Our analysis revealed a significant increase in the abundance
of this peptide in tumor samples compared to NATs (Fig. 6g). More-
over, when comparing poor prognosis tumors to good prognosis
tumors, we observed a higher abundance of KKEEQEFVQK in the for-
mer (Fig. 6h). Conversely, another peptide EVINEVEK, which exclu-
sively mapped to the two exon inclusion isoforms, displayed the
opposite pattern. Its abundancewasdecreased in tumors compared to
NATs, and further decreased in poor prognosis tumors compared to
good prognosis tumors (Fig. 6g, h). The other three peptides, shared
by both the exon-skipping and exon inclusion isoforms, demonstrated
either lower levels of increase or even a decrease in abundance when
comparing tumor samples to normal samples, as well as when com-
paring poor prognosis tumors to good prognosis tumors (Fig. 6g, h).
These results provide robust evidence confirming the association
between the exon-skipping event in SLK and tumor initiation and
prognosis in HCC.

Another SEPEP showing significantly increased expression in
tumors compared with normal samples as well as significant associa-
tion with poor prognosis but without concordant changes at the gene
level was TF_SEPEP.2_C2, a fully discriminative SEPEP associated with a
single protein isoform NP_001054.2 encoded by the transferrin (TF)
gene (Fig. 6i–k). Identification and quantification of this SEPEP were
based on three peptides mapping to the N-terminal region specific to
NP_001054.2 (Supplementary Fig. 4e). Among the three protein iso-
forms encoded by the TF gene, SEPepQuant connected this specific
isoform to liver cancer development and prognosis. Despite sparse
identification of the isoform-specific peptides, the trend was con-
firmed in the independent HCC-label-free dataset (Supplementary
Fig. 4f, g). Protein group-level report from FragPipe only reported one
protein groupwith NP_001054.2 as the representative protein because
it can explain all identified peptides (Supplementary Fig. 4e). However,
quantification of this protein group based on all peptides was
equivalent to gene-level quantification which showed no significant
difference in tumor vs normal comparison and no significant associa-
tion in survival analysis (Fig. 6i, j).

Our analysis also identified 423 and 418 multi-gene SEPEPs with a
significant association with good or poor prognosis, respectively
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(Fig. 6i). Among them, multiple_SEPEP.5947_C5 showed the lowest
hazard ratio. This SEPEP was associated with two genes ATF7IP and
DHRS2, and DHRS2 has been reported to inhibit cell growth and
motility in esophageal squamous cell carcinoma34.
Multiple_SEPEP.4840_C5 showed the strongest association with poor
prognosis. This SEPEP was associated with two genes SLC7A1 and
SLC7A2 (Fig. 6m). Interestingly, SLC7A2_SEPEP.1_C4 was associated

with slightly longer patient survival (Fig. 6n), suggesting that the
association between Multiple_SEPEP.4840_C5 and poor prognosis
was driven by SLC7A1. Consistent with this inference,
Multiple_SEPEP.4840_C5 showed significantly higher abundance in
tumors compared with normal samples, but SLC7A2_SEPEP.1_C4 was
significantly decreased in tumors (Supplementary Fig. 4h). Despite the
lack of detection of gene-specific peptides for SLC7A1, SEPepQuant

a b c

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 0.0143,  HR= 2.18 ( 1.15 - 4.11 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

<=median
>median

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 5.2e-05,  HR= 5.97 ( 2.24 - 15.9 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

<=median
>median

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 0.08,  HR= 0.623 ( 0.365 - 1.06 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

<=median
>median

d e f

h

i

SLK_SEPEP.2_C2
(NP_001291672.1)

Multiple_SEPEP.4840_C5
(SLC7A1 and SLC7A2)

SLC7A2_SEPEP.1_C4

Tumor/Normal
Survival

312 (47 %) 329 (50 %)

18 (3 %)

g

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 0.539, HR= 1.18 ( 0.697 - 1.99 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty
<=median
>median

SLK gene

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 0.758,  HR= 1.09 ( 0.642 - 1.84 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

<=median
>median

TF gene

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P-value= 0.00466,  HR= 2.17 ( 1.25 - 3.75 )

Survival Time (Month)

O
ve

ra
ll 

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

<=median
>median

TF_SEPEP.2_C2
(NP_001054.2)

j

l

-1.0

-0.5

0.0

0.5

1.0

SLK_gene

SLK_SEPEP.2_C2

Normal Tumor

FDR=7.95e-1

FDR=1.40e-9

-2

-1

0

1

2

3

TF_gene

TF_SEPEP.2_C2

Normal Tumor

FDR=6.77e-1

FDR=3.76e-12

k

 

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6

340, 419

7, 7

0, 0

2, 2

17, 18

296, 386

Signed SEPEP Log10(P value)

S
ig

n
ed

 g
en

e 
L

o
g

10
(P

 v
al

u
e)

SLK_SEPEP.2_C2

TF_SEPEP.2_C2

Survival and SEPEP correlation

Ststistic legend
# of gene, # of SEPEP

Lo
g2

(T
M

T 
ra

tio
)

Lo
g2

(T
M

T 
ra

tio
)

m n

-14

-12

-10

KKEEQEFVQK

ILNEKPTTDEPEK

DTILQTVDLVSQETGEK

ELDEEHSQELK

EVINEVEKLo
g2

(li
gh

t /
 h

ea
vy

 p
ep

tid
e)

Normal Tumor

p = 1.55e-4

p = 1.88e-4 p = 9.39e-2
p = 9.18e-4

p = 1.27e-7

-14

-13

-12

-11

-10

KKEEQEFVQK

ILNEKPTTDEPEK

DTILQTVDLVSQETGEK

ELDEEHSQELK

EVINEVEK

Good prognosis Poor prognosis

Lo
g2

(li
gh

t /
 h

ea
vy

 p
ep

tid
e) p = 2.56e-5

p = 4.37e-1
p = 8.52-e-2

p = 3.63e-1

p = 2.42e-3

−20 −10 0 10 20

−
20

−
10

0
10

20

S
ig

n
ed

 g
en

e 
L

o
g

10
(F

D
R

)

Signed SEPEP Log10(FDR)

Tumor and normal comparison

199, 247

62, 71

69, 78
SLK_SEPEP.2_C2

TF_SEPEP.2_C2

Statistic legend
# of gene, # of SEPEP

85, 93

67, 73

179, 226

n = 165       165 120       120

n = 165       165 165       165

n = 10     10 10      10 10      10 10      10 10      10n = 10     10 10      10 10      10 10      10 10      10 n = 10     10 10      10 10      10 10      10 10      10

−4 −2 0 2 4

0
2

4
6

8

Log2(HR)

−
L

o
g

10
(p

 v
al

u
e)

P < 0.01
Log2(HR)>1
Log2(HR)<−1

Multiple genes mapped SEPEPs

Multiple_SEPEP.4840_C5
(SLC7A1 and SLC7A2)

Multiple_SEPEP.2035_C5

Multiple_SEPEP.5947_C5
(ATF7IP and DHRS2)

Article https://doi.org/10.1038/s41467-023-41558-2

Nature Communications |         (2023) 14:5809 11



results clearly suggested a pro-tumor role of this gene, which was
previously reported in ovarian cancer35.

Discussion
Shotgun proteomics has become an essential tool for protein identi-
fication and quantification in biomedical research. However, shotgun
proteomics-based protein isoform identification and quantification
remains an open challenge, hampering a thorough understanding of
protein isoform regulation and their roles in normal and disease
biology. We developed SEPepQuant, a graph theory-based approach
that uses groups of structurally equivalent peptides in a peptide-
protein-gene tripartite graph, instead of protein groups or gene
groups, as the identification and quantification unit to enable com-
prehensive protein isoform characterization in shotgun proteomics. In
three experimental datasets, SEPepQuant identified 5.8–33.8 times
more genes with multiple quantification units compared with that by
parsimony-based protein inference (Fig. 3). For genes with multiple
SEPEPs, 35.1–79.8% had at least one SEPEP with a below 0.5 correlation
with the corresponding gene abundance, suggesting extensive
isoform-specific regulation. Indeed, analysis based on SEPepQuant
quantification results revealed more than 100 genes with protein
isoform-level regulation during cardiomyocyte differentiation and
hundreds of protein isoform-level regulatory events with significant
associations to liver cancer development and prognosis.

Parsimony-based protein inference was introduced at the early
stage of proteomics research to address the problem of overreporting
the number of identified proteins in shotgun proteomics studies16,17,
and it has since become the dominant method in the field. However,
the consequence of this method on protein quantification has not
been formally evaluated.Our analysis in this paper revealed several key
limitations associated with the parsimony-based methods, including
ignoring protein isoforms and genes without uniquely identified
peptides, incorrect or inaccurate quantification of protein isoforms by
simply assigning shared peptides to isoforms with the largest number
of identified peptides, and complicating cross-study comparisons
because of different reporting isoform selection driven by minor
changes in peptide detection in different studies. We showed that
SEPepQuant is able to address these limitations, leading to more
comprehensive and accurate analysis of protein isoforms.

To reduce the number of degenerate peptides, a commonly
employed strategy is the utilization of the UniProt canonical database.
However, due to its limited scope of ~20,000 proteins, this database
only encompasses a single canonical sequence for most genes, ren-
dering it unsuitable for investigating protein isoform regulation. In our
study, we sought to facilitate a comprehensive exploration of protein
isoforms by employing the RefSeq database that encompasses both
curated proteins (NP and YP) and predicted proteins (XP), resulting in
a total of 140,000 entries. When a SEPEP includes both curated and
predicted proteins, it makes sense to focus on the curated proteins in
further investigation. However, when a SEPEP includes only predicted

proteins, it provides direct experimental evidence for the predictions.
Opting for amore conserved protein database, such as one exclusively
composed of curated proteins, may reclassify certain higher-class
SEPEPs into lower classes. However, this approach could potentially
overlook regulatory mechanisms involving predicted isoforms. Alter-
natively, when matched RNASeq data is available, the utilization of
customized protein databases derived from such data represents the
optimal choice. Notably, SEPepQuant can also be utilized alongside
customized databases.

SEPepQuant identified hundreds of protein isoform-level reg-
ulatory events from both the iPSC and liver cancer datasets, high-
lighting widespread impact of protein isoform-level regulation in
normal and disease processes. Notably, 18 genes showed significantly
increased expression in liver tumors comparedwith normal samples as
well as significant association with poor prognosis at the SEPEP level
but not at the gene level. Among these, SLK encodes a kinase that
promotes apoptosis36. The pro-tumor SEPEP of SLK is a fully dis-
criminative SEPEP and thus the pro-tumor effect could be attributed to
the associated protein isoform NP_001291672.1. Compared to the
longer SLK isoformNP_055535.2, this short isoformhas a skipped exon,
which encodes a section of a coiled-coil domain that mediates
homodimerization to enhance SLK activity36,37. Therefore, this exon
skipping may lead to reduced SLK activity and decreased apoptosis to
facilitate tumor progression. Consistently, a recent analysis of RNASeq
data from melanoma tumors has shown that expression of the long
isoform is decreased, whereas the short isoform is increased in meta-
static tumors compared with primary tumors, suggesting a role of the
exon skipping in facilitating metastasis38. Transferrin is another gene
found to be correlated with poor prognosis at the SEPEP level but not
gene level. This pro-tumor SEPEP is also a fully discriminative SEPEP
associated with NP_001054.2, the longest isoform of the transferrin
gene. Transferrin is synthesized primarily in the liver and secreted into
serum, with a half-life of eight days in the serum39. The unique
N-terminal sequence of this isoform and the long half-life of the pro-
tein make it a promising candidate for serum biomarkers of liver
cancer prognosis for further investigation.

In summary, our analysis provides strong evidence to support a
critical and widespread role of protein isoform regulation in normal
and disease processes, and SEPepQuant is expected to have broad
applications to biological and translational research to boost scientific
discoveries.

Methods
Ethical statement
Protein lysates used in the PRM experiments were previously
prepared29 from liver cancer specimens collected from patients who
underwent surgical resection at ZhongshanHospital, FudanUniversity.
The study was approved by the Research Ethics Committee of
Zhongshan Hospital (B2017-060), and written informed consent was
obtained from each patient.

Fig. 6 | Application of SEPepQuant to an HCC-TMT dataset. a Scatter plot of
tumor versus normal comparison results at gene and SEPEP levels. b Scatter plot of
survival association results at gene and SEPEP levels. Colored dots in (a, b) are
utilized to represent SEPEPs that exhibit a significant test result, while lacking a
corresponding significance at the host gene level. In addition, the numbers within
each area indicate the count of unique host genes and SEPEPs present in that
particular region. c Overlap of genes showing significantly increased expression in
tumors compared with normal samples as well as significant association with poor
prognosis at the SEPEP level but not at the gene level. d Tumor versus normal
comparisons based on SLK gene and SLK_SEPEP.2_C2 abundance, respectively.
e, f Kaplan–Meier plots comparing overall survival for patients stratified by the
median SLK gene-level abundance and median SLK_SEPEP.2_C2 abundance,
respectively. g PRM abundance comparison of selected peptides between tumor
and matched normal samples. h PRM abundance comparison of selected peptides

between selected patients with poor and good prognosis. i Tumor versus normal
comparisons based on TF gene and TF_SEPEP.2_C2 abundance, respectively.
j, k Kaplan–Meier plots comparing overall survival for patients stratified by the
median TF gene-level abundance and median TF_SEPEP.2_C2 abundance, respec-
tively. l Associations between survival and multi-genes SEPEPs.m, n Kaplan–Meier
plots comparing overall survival for patients stratified by the median Multi-
ple_SEPEP.4840_C5 abundance and median SLC7A2_SEPEP.1_C4 abundance,
respectively. For boxplots, P valueswere calculatedusing two-sidedStudent’s t test,
the Benjamini and Hochberg method was used to adjust P values for multiple
comparisons, centerline indicates the median, box limits indicate upper and lower
quartiles, whiskers indicate the 1.5 interquartile range. For survival analysis, P values
were calculated usingKaplan–Meier test. Sourcedata are provided as a SourceData
file. HR hazard ratio.
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Protein database
RefSeq gene annotation andmatched protein databasewith all NP, XP,
and YP protein sequenceswere selected for this study (downloaded on
06/28/2020)39,40.

In silico digestion
Protein sequences were cut after any K and R except followed by P
using in-house script. Up to two missed cleavage sites were allowed in
the in silico digestion41,42. The resulting peptide sequences with length
<7 bp or >50bp were excluded from our analysis.

Protein sequence similarity
Protein sequences for genes with multiple protein isoforms were
aligned using clustalw2 with default parameters43. Then, clustalo was
applied to above multiple sequence alignments to calculate sequence
similarity with percent identities as sequence distance44. Pairwise
sequence similarities were extracted from the clustalo percentage
identity matrix.

Experimental datasets
Three published datasets were selected to cover different sample
types and proteomics platforms. The iPSC dataset is a human cell line
dataset generated on a 10-plex TMTplatform. In this study, the human
iPSC cells were cultured over 14 days and harvested daily for pro-
teomics analyzing28. The HCC-TMT dataset includes 165 tumor sam-
ples from hepatocellular carcinoma patients and matched adjacent
normal tissues, and the data were generated on a 11-plex TMT
plagrom29. The HCC-label-free dataset includes 111 tumor samples
from hepatocellular carcinoma patients andmatched adjacent normal
tissues, and the data were generated on a label-free platform29,30.

Database searching and protein quantification using FragPipe
The comprehensive shotgun proteomics analysis pipeline FragPipe
(https://fragpipe.nesvilab.org/; V17.0) with MSFragger (v3.4) and
philosopher (v4.2.1) was used for database searching and protein
group-level and gene-level quantification for all three datasets14,15.
MaxQuant (v2.3.1.0) was only applied to the iPSC dataset11. The same
parameters and modifications from the original publication were
used for database searching. PeptideProphet and ProteinProphet
with default parameters were used for peptide validation and protein
inference45,46. PSM count was used for label-free data quantification,
and TMT ratio was used for quantification in TMT-based datasets.
Median centering was used as the normalization method for TMT-
based datasets.

SEPEP quantification and normalization
For label-free data, the sum of PSMs of all peptides from a SEPEP was
used to quantify the SEPEP. For TMT-based data, the median value of
the TMT ratios of all peptides from a SEPEP was used to quantify the
SEPEP. Normalization factors derived from median centering of the
gene-level analysis described above were used to normalize SEPEP
quantifications.

PRM data generation and quantification
The tissues were from a published study29 and were lysed in SDS lysis
buffer (4% SDS, 100mMTris-HCl, 0.1MDTT, pH 7.6) previously. Filter-
aided sample preparation (FASP) procedure was used for peptide
preparationwith all centrifugation steps at 12,000× g at 25 °C. Briefly, a
total of 50μg proteins for each sample were loaded in 10-kDa cen-
trifugal filter tubes (Millipore), washed twice with 200μL UA buffer
(8M urea in 0.1M Tris-HCl, pH 8.5), alkylated with 50mM iodoaceta-
mide in 200μL UA buffer for 30min in the darkness, washed thrice
with 200μL UA buffer again and finally washed thrice with 200μL
50mMNH4HCO3. Proteins were digested at 37 °C for 18 hr with trypsin
(Promega) at a concentration of 1:50 (w/w) in 50mM NH4HCO3. After

digestion, peptides were eluted by centrifugation and acidated by
trifluoroacetic acid (TFA) with a final concentration of 1%. Then the
peptides were purified using C18 stage-tips, and the elutes were sub-
jected to vacuum centrifugation dryness. The peptides were resolved
in 20μL 0.1% formic acid (FA) and the concentration was determined
using NanoDrop.

Six standard peptides were synthesized with heavy-isotope
labeled lysine in the C-terminal in GL Biochem (Shanghai) Ltd. The
synthetic peptides were first resolved in 20% ACN and diluted using
0.1% FA for further use. For the PRM experiment, 1μg peptides of each
sample were mixed with the six standard peptides (1 pmol for each
peptide). The peptides were separated using a home-made micro-tip
C18 column (75μm×200mm) packed with ReproSil-Pur C18-AQ,
3.0-μm resin (Dr. Maisch GmbH, Germany) on a nanoflow HPLC Easy-
nLC 1200 system (Thermo Fisher Scientific), using a 60min LC gra-
dient at 300nL/min. Buffer A consisted of 0.1% (v/v) FA in H2O and
Buffer B consisted of 0.1% (v/v) FA in 80% acetonitrile. The gradient
was set as follows: 1–32% B in 43min; 32–45% B in 7min; 45–100% B in
2min; 100% B in 8min. The PRM analyses were performed on a Q
Exactive HF-X mass spectrometer (Thermo Fisher Scientific) using a
scheduledmode tomonitor both the “light” and “heavy” parent ions of
the six peptides. The retention time of eachpeptidewasdetermined in
a preliminary experiment and the ±3min of the retention time for each
peptide was targeted for analysis. Information of the five peptides is
shown in Supplementary Dataset 14.

The MS parameters were set as follows: The spray voltage was
1800V in positive ionmode, and the ion transfer tube temperaturewas
set at 320 °C. MS data acquisition was performed using Xcalibur soft-
ware in profile spectrum data type. The MS1 full scan was set at a
resolution of 120,000 @ m/z 200, AGC target 3e6, and maximum IT
50ms by orbitrap mass analyzer (350–1500m/z). The MS/MS scans of
the target peptide were generated by HCD fragmentation at a resolu-
tion of 15,000 @ m/z 200, AGC target 1e5 and maximum IT 100ms.
Isolation window was set at 1.0m/z. The normalized collision energy
(NCE) was set at NCE 27%, and the loop count was set at 12.

The MS data were processed using the Skyline software. The
chromatographic peak of each peptide was manually checked. For
each peptide, five product ions with the top intensities were selected
for quantification analysis. The ratios of light to heavy peptides were
reported and used to perform the quantification comparison among
samples.

Statistics and reproducibility
This study did not employ a statistical method for predefining sample
size, because all cohorts used in our investigation were derived from
previously published studies. To validate our findings based on global
proteomics data, we performed targeted PRM analysis on 20 liver
cancer tissues. These tissues were selected based on their high or low
NP_001291672.1 abundance, and protein lysate availability from the
original publication. The primary focus of this study revolves around
the identification and quantification of protein isoformsusing datasets
available in existing literature. As such, no data was excluded from the
analyses, and randomization was not applicable. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human iPSC28 and HCC-label-free30 datasets were downloaded
from PRIDE (www.ebi.ac.uk/pride) with accession numbers
PXD013426 and PXD006512. The PRM proteomics data of 20 selected
samples generated in this study have been deposited in the PRIDE
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database under accession code PXD044809. The HCC-TMT29 pro-
teome data was downloaded from NODE (https://www.biosino.org/
node) by accession number OEP000321. ProteoWizard (vc143) was
used to transfer rawfiles tomzML files47. Processed quantification data
and downstream analysis results were included in Supplementary
Datasets 1–14. Source data are provided with this paper.

Code availability
SEPepQuant is open source under an Apache 2.0 license and can be
found at https://github.com/bzhanglab/SEPepQuant. The version used
in the manuscript has been publicly released (https://github.com/
bzhanglab/SEPepQuant/releases/tag/v1.0.0-alpha). The source code
has also been placed on the Zenodo platform [https://doi.org/10.5281/
zenodo.8258298]48.
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