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Genome-wide probing of eukaryotic nascent
RNA structure elucidates cotranscriptional
folding and its antimutagenic effect

Gongwang Yu1,2,4, Yao Liu1,2,4, Zizhang Li2, Shuyun Deng2, Zhuoxing Wu2,
Xiaoyu Zhang1,2, Wenbo Chen2, Junnan Yang2, Xiaoshu Chen 1,2,3 &
Jian-Rong Yang 1,2,3

The transcriptional intermediates of RNAs fold into secondary structures with
multiple regulatory roles, yet the details of such cotranscriptional RNA folding
are largely unresolved in eukaryotes. Here, we present eSPET-seq (Structural
Probing of Elongating Transcripts in eukaryotes), a method to assess the
cotranscriptional RNA folding in Saccharomyces cerevisiae. Our study reveals
pervasive structural transitions during cotranscriptional folding and overall
structural similarities between nascent and mature RNAs. Furthermore, a
combined analysis with genome-wide R-loop and mutation rate approxima-
tions provides quantitative evidence for the antimutator effect of nascent RNA
folding through competitive inhibition of the R-loops, known to facilitate
transcription-associated mutagenesis. Taken together, we present an experi-
mental evaluation of cotranscriptional folding in eukaryotes and demonstrate
the antimutator effect of nascent RNA folding. These results suggest genome-
wide coupling between the processing and transmission of genetic informa-
tion through RNA folding.

Secondary structure is a significant feature of RNA molecules, as
it is a prerequisite of many RNA functions, such as transcription1,
processing2, translation3 and degradation4. In the cellular environ-
ment, the presence of various RNA-binding proteins and helicases can
regulate RNA folding beyond thermodynamic equilibrium dictated by
the nucleotide sequence of an RNA molecule5. It is therefore not
unexpected that different structures might be formed at different
stages of the life cycle of RNA molecules6. For example, RNA starts to
fold once it has been transcribed7 (i.e., cotranscriptional folding). The
structure of nascent RNA formed by such cotranscriptional folding has
been shown to regulate alternative splicing8, as well as the speed of
RNA synthesis9.

Among the various potential functions of RNA secondary struc-
tures, the regulatory effect on the spontaneousmutation rate ofDNA is

of particular interest10,11. Specifically, transcription-associated muta-
genesis (TAM) is aggravated by the formation of an R-loop, in which
nascent RNA forms a stable RNA-DNA hybrid with the template strand
of the DNA, leaving the nontemplate strand of DNA single-stranded/
exposed and susceptible to mutagenesis. For a given sequence,
RNA–RNA duplexes in the stem of the stem-loop formed by the nas-
cent RNAmolecule are thermodynamicallymore stable thanRNA-DNA
hybrids with the same base pairing12; therefore, strong nascent RNA
folding near the transcription site (3′ end of the nascent RNA) might
competitively inhibit or dissolve the R-loop if the loop is not too large
in the nascent RNA stem-loop. The dissolution of the R-loop allows the
templateDNA strand to anneal backwith the nontemplateDNA strand,
thereby reducing TAM10. Indeed, our previous experiment in Sac-
charomyces cerevisiae showed that synonymous mutations, which
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computationally predicted as strengthening for a nascent RNA struc-
ture, dissolved the R-loop and lowered the mutation rate of a reporter
gene by >80% (ref. 10). Nevertheless, in silico prediction of nascent
RNA structure was at best moderately accurate13, thereby leaving the
magnitude of the regulatory effect on the mutation rate by the in vivo
nascent RNA structure largely unknown, let alone its generality at the
genome scale or in other species such as humans9. Additionally, does
the antimutator effect of nascent RNA folding contributed to the
slower evolution and/or the genetic robustness of highly expressed
genes? These questions was never quantitatively answered with
genome-wide experimental data despite their broad implications in
evolutionary biology11 and cancer genomics14.

Besides the antimutator effect, many detail aspects of cotran-
scriptional nascent RNA folding remained largely unexplored. For
example, is it always temporally coupled with the progression of
transcription? Is there nascent RNA-specific structure that is absent in
mature RNA? Which segment of nascent RNA does display thermo-
dynamic- or kinetic-dictated in vivo folding? High-throughput assess-
ment of nascent RNA structure shouldhelp answering these questions.
In this context, recent technological advancements, especially the
combination of biochemical probing and high-throughput sequencing
(HTS), have facilitated genome-wide investigations of RNA secondary
structures and their biological functions5,15–21. Several studies have
assessed the structure of nascent RNAs in eukaryotes6,22, but their lack
of information on transcriptional sites hindered the fine-scale resolu-
tion of cotranscriptional folding dynamics. To date, the only HTS-
based assays assessing the cotranscriptional folding of nascent RNA is
structural probing of elongating transcripts (SPET-seq) introduced in
bacteria7. However, SPET-seq is based on dimethyl sulfate (DMS),
which provides no structural information for guanine (G) or uracil (U),
thereby limiting the biological interpretation.

To overcome the technical limitations and investigate the TAM-
mitigation effect of nascent RNA structures,we adapted the SPET-seq
method to eukaryotes and substitute the DMS with NAI-N3, which
modifies all four nucleotides instead of two. Our method, eSPET-seq,
simultaneously captures both the NAI-N3 modified single-stranded
nucleotides and the transcription site, thus allowing genome-wide
assessment of nascent RNA structure during transcription. Experi-
mental data from eSPET-seq in S. cerevisiae recapitulate known nas-
cent RNA structures, revealing the dynamics of cotranscriptional
folding, as well as its (dis-)similarity withmature RNA structure. More
importantly, we find an anticorrelation between nascent RNA folding
and spontaneous mutation rate of DNA, which directly supports the
R-loop-dependent antimutator effect of nascent RNA folding10. Fur-
ther analyses reveals that nascent RNA folding potentially con-
tributes to the slower evolution and higher genetic robustness of
highly expressed yeast genes, as well as the gene-specific mutation
load in human cancer. Collectively, our results highlight the biolo-
gical and evolutionary significance of the nascent RNA structure,
in particular its potential regulatory effect on the spontaneous
mutation rate.

Results
Genome-wide in vivo probing of the nascent RNA structure near
the transcription site with eSPET-seq
We aimed to capture the nascent RNA structure near the transcription
site in yeast. To this end, we adapted the Structural Probing of Elon-
gating Transcripts (SPET-seq) method previously developed in
prokaryotes7 to eukaryotes with several major improvements (Fig. 1a.
See “Methods” for detailed experimental procedures). First, we used
NAI-N3, a chemical that is capable of modifying all four nucleotides
(adenine (A), U, G, and cytosine (C))23, to probe single-stranded bases
in nascent RNA (Fig. 1a). The full coverage for all nucleotides is an
apparent advantage over DMS previously used in SPET-seq7, which can
only modify A and C nucleotides. Second, we enriched the nascent

RNA by using the chromatin fraction after cellular fractionation (Sup-
plementary Fig. 1a–c). Third, we ligated the 3′ hydroxyl terminus of the
nascent transcript with a 3′ adapter, which was later paired with a
primer for reverse transcription (RT). Nascent RNA segments near the
transcription sitewere enrichedduring this stepdue to the presenceof
terminal phosphates in hydrolysis and degradation products. Next,
after RT that should stop at the NAI-N3-modified nucleotide and
enrichment for biotinylated molecules, the cDNA was extracted and
ligated with a 5′ adapter. Finally, the adapter-linked cDNA was PCR-
amplified before being subjected to paired-end HTS (Fig. 1a), in which
the forward reads represented the unpaired nucleotides tagged by
NAI-N3, and the reverse reads represented the transcription site. As a
control for the RT stops triggered by factors other than NAI-N3 mod-
ification, we also performed parallel experiments without NAI-N3

treatment, in which biotinylated 3′ adapters were used. This experi-
mental procedure (named eSPET-seq, “e” for eukaryote) collectively
enabled localization of single-stranded bases (those at NAI-N3-depen-
dent RT stops), which can be further utilized to approximate the sec-
ondary structures of nascent RNA. We would like to emphasize that,
strictly speaking, the NAI-N3 reactivities captured by eSPET-seq is not a
direct measure of the RNA structure, but the flexibility of RNA
nucleotides (as compared toNAz),whichwas previously proposed as a
proxy to RNA secondary structure18,23. Throughout the current study,
we followed this practice but will highlight potential deviations from
such assumption when necessary.

To validate the reliability of eSPET-seq, we performed replicated
experiments on the S. cerevisiae strain BY4741. We found that the
number of reads captured for each gene by eSPET-seq was highly
repeatable (Pearson’s R =0.99, P < 10−300. Fig. 1b). Focusing on genes
with ≥ 1 average RT stops per nucleotide (Supplementary Fig. 1d, e), we
found that both the NAI-N3-tagged RT stop site (Fig. 1c) and the tran-
scription site (Fig. 1d) were highly consistent between replicated
experiments. Indeed, the within-gene site wise Pearson’s correlation
between replicates was at least 0.40 and 0.65 for the NAI-N3-tagged
site and transcription site (Fig. 1c, d), respectively. Additionally, the
transcription site captured by eSPET-seq was distributed similar to
previous observations made with native elongating transcript
sequencing (NET-seq)24 (Supplementary Fig. 2a) and was comparable
between exonic and intronic regions (Supplementary Fig. 2b). We
found that approximately 52.6%, 40.8% and 6.6% of eSPET-seq reads
were from protein-coding genes, ribosomal RNA (rRNA) genes and
other noncoding RNA (ncRNA) genes, respectively, which were quite
similar to those previously reported by SPET-seq7. These observations
clearly demonstrated that eSPET-seq was highly repeatable and
effective in capturing nascent RNA segments near the transcrip-
tion site.

To further confirm the capability of eSPET-seq, we compared
the eSPET-seq data with known RNA secondary structures. Using the
glutamate tRNA as an example, we used all eSPET-seq read pairs cor-
responding to the same transcription site, which therefore corre-
sponded to the same transcriptional intermediate, to estimate the
distribution of RT stops within the transcriptional intermediate of the
tRNA (see “Methods”). Note that the 18 nucleotides at the 3′ end were
not considered because they were covered by the transcriptional
elongation complex25 (Supplementary Fig. 3). The eSPET-seq reads
clearly indicated the single-stranded region in the known tRNA sec-
ondary structure, which was formed cotranscriptionally (Fig. 1e, f).

Dynamics of cotranscriptional folding revealed by eSPET-seq
Previous analyses7 based on SPET-seq revealed two distinct modes of
cotranscriptional folding inbacteria.On theonehand, 71%of localRNA
secondary structures are formed as they get transcribed. On the other
hand, for the remaining 29% of genomic regions, 5′ halves of long-
range helices form transient non-native structures until their 3’ coun-
terparts have been transcribed. Assuming instant folding as the null
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model, we tried to identify the structural transitions by analyzing the
changes in the NAI-N3 reactivity as transcription proceeded.

The 5S rRNAwas used as an example (Fig. 2a). Similar to the tRNA
above, we performed a longitudinal comparison of the RT stop density
for the same nucleotide among transcriptional intermediates of dif-
ferent lengths. For example, nucleotides 30–45 had a clear structural
transition when the transcript reached a length of ~80 nt, which was

consistent with sequential folding that is made possible only after the
downstream half of a stem-loop structure in 5S rRNA is transcribed
(Fig. 2b, greenbox, structural transition indicatedby the yellowarrow).
Note here that before the structural transition (Fig. 2a, tiles with
y < 80), the densities of RT stop at nucleotides 30 to 45 were relatively
low, a pattern compatiblewith the existenceof an R-loop on 5S rRNA26,
in which the nascent RNA is paired with the template DNA. The
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existence of this R-loop for transcript intermediate <80 nt and its
resolution after transcription proceeds to >80 nt in length was further
confirmed by DNA:RNA immunoprecipitation(DRIP) followed by
reverse transcription quantitative PCR (Supplementary Fig. 4. See
“Methods”). For some other regions such as nucleotides 1–25, a
structure was formed immediately after it was transcribed, which
persisted as transcription proceeded up to the length of the full 121 nt
of 5S rRNA (Fig. 2a, tiles with x ranges from 1 to 25). Note that the stem
structure between nucleotides 1–9 and 112–120 as observed in
the mature 5S rRNA (Fig. 2b) has not formed cotranscriptionally
because nucleotide 110-120 remained protected by RNA polymerase II
(Supplementary Fig. 3).

To perform a more thorough analysis of structural transitions
across the whole yeast transcriptome, we extracted the longitudinal
profile of the RT stop density for each nucleotide with the necessary
information (example of 5S rRNA is shown in Fig. 2c).We used a sliding
window strategy (See “Methods”) to locate significant structural tran-
sitions as transcriptionproceeds. Intriguingly, we found that structural
transitions were pervasive, as it was observed for an average of 5.4%
and 31.7% of nucleotides with necessary information (see “Methods”)
within mRNA and ncRNA, respectively (Fig. 2d). Although these
numbers are probably conservative because further transitions
might have been missed by eSPET-seq if they happened too far away
from the transcription site, they nevertheless suggested that

Fig. 1 | Overview of eSPET-seq procedure and accuracy. a Experimental proce-
dure of eSPET-seq. b The number of reads mapped to each gene was compared
between two biological replicates. Pearson’s correlation is indicated. The dashed
red line represents x = y. c The within-gene Pearson’s correlations (y-axis) of the
coverage (only the 5′ nucleotide was counted) of the forward reads (representing
the RT stops) were calculated between two biological replicates for each gene. The
correlation appeared stronger for genes with a higher average number of mapped
reads (x-axis). The detailed coverage profile is shown for one sample gene (red dot)
on the right.d Similar to (c), except that the correlation calculated for the coverage

(only the 5′ nucleotide was counted) of the reverse reads (representing the tran-
scription site) is shown. e Cotranscriptional folding revealed by eSPET-seq. Each
row is one transcriptional intermediate of a certain length (y-axis). Each column is a
specific nucleotide within the gene. The color of each tile represents the normal-
ized (by 90% winsorization) density of the RT stop, which is indicated by the color
scale bar. f The known structure of the yeast glutamate tRNA. The structures out-
lined by the red and green boxes correspond to the RT density signals outlined by
the red and green boxes, respectively, in (e). Source data are provided as a Source
Data file.
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ncRNAs tends to have more complex secondary structures that form
cotranscriptionally.

The overall similarity and occasional difference between nas-
cent andmature RNA structures are respectively explainable by
cis- and trans-regulation
Other than cotranscriptional folding, another important question
about nascent RNA structures was how and why they are similar/dif-
ferent from that of mature RNAs of the same gene. To assess the
overall structural similarity between nascent and mature RNA, we
performed regular icSHAPE experiments for the in vivo structures of
mature RNA. For each of the icSHAPE or eSPET-seq dataset, we
extracted all genes with ≥1 average RT stops per nucleotide, and
pooled the reads fromeachgene to estimate its overall structure in the
respective states. We found that majority of these genes displayed
significant structural similarity between nascent and mature RNAs
(Fig. 3a). Here structural similarity was estimated by the Pearson’s
correlation coefficient between the single-stranded scores obtained
for nascent and mature RNAs (Two genes in Fig. 3b, c shown as
examples). This observation is compatible with the notion that RNA
structures are largely cis-regulated, that is, thermodynamically favored
by the RNA sequence.

Furthermore, we hypothesized that trans-regulatory elements,
such as RNA-binding proteins, should be responsible for the dissim-
ilarities between nascent and mature RNAs, because the two types of
RNA molecules are folded in drastically different cellular contexts
(nucleus versus cytoplasm). To test our hypothesis, we conducted
additional icSHAPE experiments for the in vitro structures of mature
RNA (see “Methods”). We reasoned that, as trans-regulatory factors
were depleted during in vitro folding, genes whose NAI-N3 reactivities
were similar in vivo and in vitro should have mostly cis-regulated
structures, whereas the other genes should have mostly trans-
regulated structures. Therefore, our hypothesis predicted that,
mature RNA with highly similar in vivo and in vitro structures (i.e.
mostly cis-regulated) should alsohave similar nascent andmature RNA
structures folded in vivo, such as observed for YKL056C (Fig. 3b). And
vice versa, mature RNA with low similarity between in vivo and in vitro
structures (i.e., mostly trans-regulated) should also have dissimilar
nascent and mature structures in vivo, such as observed for YPL250C
(Fig. 3c). Consistent with this prediction, the structural similarity
(Pearson’s correlation coefficient of the single-stranded scores)
between in vivo and in vitro structures of mature RNA is a decent
predictor for the structural similarity between nascent and mature
RNA structures folded in vivo (Fig. 3d, Spearman’s ρ =0.32, P < 10−8).
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To further assess the molecular mechanism underlying the above
observation, we downloaded a list of in vivo interactions between
protein and mature RNAs experimentally inferred by gPAR-CLIP (glo-
bal Photoactivatable-Ribonucleoside-enhanced crosslinking and
Immunoprecipitation) from a previous report27. Using this dataset, we
found that the 50% genes with low structural dissimilarities between
in vivo and in vitromature RNA (red-colored in Fig. 3e) tended to have
more protein binding sites compared the other 50% genes (P =0.01,
Mann–Whitney test). Similarly, the 50% genes with low structure dis-
similarities between nascent and mature structures in vivo (red-
colored in Fig. 3f) tended to havemore proteinbinding sites compared
the other 50% genes (P =0.01, Mann–Whitney test). These results
suggested that at least some of the unique nascent RNA structures
when compared to the mature RNAs can be explained by the unique
cellular contexts in which nascent RNAs folded, including the avail-
abilities of RNA-binding proteins.

Relationship among mutation rate of a gene, prevalence of
nascent RNA structure, and R-loop score
Our previous study10, on one yeast gene (CAN1), has shown that
nascent RNA folding alleviates mutagenesis by weakening the R-loop
during transcription (Fig. 4a). Nevertheless, genome-wide assess-
ment of the relationship between experimentally measured nascent
RNA structure and R-loop or spontaneousmutation rate has not been
possible so far. eSPET-seq data offered a unique opportunity to
resolve this and better quantify the antimutator effect of nascent
RNA folding at the genome scale. To this end, we gauged the spon-
taneousDNAmutation rate by the population genomic data from 190
S. cerevisiae strains28 (see “Methods”), the propensity to formR-loops
by an “R-loop score” derived from yeast S1 nuclease DNA-RNA
immunoprecipitation with deep sequencing29 (see “Methods”), and
the prevalence of nascent RNA structure by a single-stranded score
estimated from the eSPET-seq data. Here the single-stranded score
was first calculated for each nucleotide (see “Methods”), reflecting
the relative probability of it being unpaired/single-stranded, and
then aggregated for a per-gene metric of prevalence of nascent RNA
structure by the negated mean within the gene or by Gini index (a
higher Gini index indicates a more structured region5) (Supplemen-
tary Fig. 5a, b). A single-stranded score can also reveal differences in
the prevalence of nascent RNA structure between sub-genic regions,
such as exons being more folded than introns (Supplementary
Fig. 5c, d). We would like to emphasize here again that the NAI-N3

reactivity captured by eSPET-seq only approximates the prevalence
of single-stranded RNA, therefore any metrics derived from the
single-stranded scores should be interpreted as the (un-)prevalence
of nascent RNA structure, but not thermodynamic stability of the
secondary structure of nascent RNA.

Consistent with our hypothesized model10, the genes with higher
prevalence of nascent RNA structure indeed had lower R-loop scores
(Fig. 4b, c). Notably, the corresponding correlations (Spearman’s
ρ = −0.198 and −0.345, P < 10−13 and 10−42, respectively) weremore than
an order ofmagnitude stronger than previous observationsmadewith
computationally predicted nascent RNA structure10 (Spearman’s
ρ = −0.014). Then, after confirming the expected relationship between
the spontaneous DNAmutation rate and the R-loop score (Fig. 4d), we
also found that the prevalence of nascent RNA structure was antic-
orrelated with mutation rate (Spearman’s ρ = −0.219 and −0.156,
P < 10−19 and 10−9, respectively, Fig. 4e, f), which were also much
stronger than the prediction-based observation10 (Spearman’s
ρ = −0.05). More importantly, the correlation between the prevalence
of nascent RNA structure and R-loop score or mutation rate remained
mostly significant if the mature RNA structure was controlled (Sup-
plementary Fig. 6. See “Methods”), suggesting that the R-loop dis-
solution and mutation mitigation effects of nascent RNA folding were
not confounded by mature RNA structure.

To further investigate the role of the R-loop in mediating the
antimutator effects of the nascent RNA structure, we calculated the
partial correlation between the prevalence of nascent RNA structure
and mutation rate, controlling the R-loop score. These partial corre-
lations were ρ = −0.177 (P < 10−11) for the negative single-stranded score
andρ = −0.086 (P < 10−3) for theGini indexof the single-stranded score,
which respectively suggested that approximately 34.7% (= 1 − (−0.1772/
−0.2192)) and 69.6% (= 1 − (−0.0862/−0.1562)) of the antimutator effects
of the nascent RNA folding were mediated via the R-loop (Fig. 4g).
Taking into account the considerable amount of experimental noise,
we suspected that these percentages were likely underestimated, such
that a large fraction of the antimutator effect of nascent folding was
mediated via the R-loop.

Genomic analyses by comparison among genes might be biased
by confounding factors such as gene expression level, which can be
excluded by within-gene analysis (an example shown in Fig. 4h). We
therefore calculated, within eachgene, three odds ratios (OR) to assess
the relationship between the three estimates, such that an excess of
sites in support of our hypothesized model (Fig. 4a) will result in an
observation of OR > 1. They included ORS-R for the relationship
between single-stranded score and R-loop score, ORR-M for that
between R-loop score and mutation rate, and ORS-M for that between
single-stranded score and mutation rate (see “Methods”). For each of
the three ORs, we combined the ORs from all genes using
Cochran–Mantel–Haenszel chi-squared test (MH test. See “Methods”)
and found all three combined ORs to be significantly greater than 1
(Fig. 4i). In addition, we calculated the average within-gene correla-
tions between the three estimates, and found them as significantly
different from their respective null distribution in a way that is con-
sistent with our hypothesis (Fig. 4j). Here the null distribution is
assessed by individually shuffling the three estimates within each gene
for 1000 times. These results were further supported by the observa-
tion that sites mutated in mutation accumulation experiments30–32

tend to have lower prevalence of nascent RNA structure compared to
non-mutated sites in the same gene (Supplementary Fig. 7). Collec-
tively, our analyses revealed the anticorrelation between prevalence of
nascent RNA structure and R-loop or DNA spontaneous mutation rate,
thereby offered an experiment-based, quantitative evidence for the
antimutator effect of nascent RNA folding at genome scale.

To further confirm the antimutator effect of nascent RNA folding
via inhibition of R-loop, we conducted manipulative experiments tar-
geting the CAN1 gene, which encodes an arginine permease that is
commonly used to detect spontaneous mutations10 and displayed a
clear signal of R-loop at the first 300 nt of its 5′-end (Fig. 5a). Three
different synonymous mutants of CAN1 with strong, intermediate and
weak nascent RNA folding (Fig. 5b. See “Methods”) were expressed in
yeast cells.We found that the spontaneousmutation rateswere indeed
lower in CAN1mutants with stronger nascent RNA folding (Fig. 5c). To
further verify that the reduction of mutation rate by nascent RNA
folding is mediated by inhibiting R-loop formation, we examined the
prevalence of R-loops at the 5’ end of these three CAN1 mutants by
DRIP-RT-qPCR, and found that the R-loop signal was significantly
reduced when nascent RNA folding became stronger (Fig. 5d. See
“Methods”). More importantly, when we stably overexpressed RNA-
SEH1, which hampers R-loop formation by degrading the RNA in an R-
loop, the differences of mutation rate (Fig. 5e) or R-loop prevalence
(Fig. 5f) among the three versions of CAN1 were all weakened or dis-
appeared. Collectively, these CAN1-based manipulative experiments
demonstrated the R-loop-dependent antimutator effect of nascent
RNA folding.

Genes functionally sensitive tomutations have stronger nascent
RNA folding
What could be the biological consequence of such antimutator effect
of nascent RNA folding? One question, i.e., whether this antimutator
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effect was correlated with gene expression level, was of particular
interest for several reasons. First, TAM is by definitionmore severe for
highly expressed genes compared to lowly expressed genes33,34. This
trend might be exaggerated/weakened by a negative/positive corre-
lation between gene expression and prevalence of nascent RNA
structure, thereby affecting the relative evolutionary rate of highly
versus lowlyexpressed genes35,36. Second, highly expressed geneswere
generally more functionally constrained35 because, relative to lowly
expressed genes, a larger fraction of mutations in highly expressed
genes were functionally prohibitive37. Therefore, more/less prevalent
nascent RNA structure in highly expressed genes might contribute to
the genetic robustness/fragility. Last but not least, the nascent RNA
structure of some genes, due to their intensive transcription, might
have a large effect size for TAM-mitigation, such that the nascent RNA
structure qualifies as an adaptive gene-specific mutation rate
modifier11,38 (but see below).

To answer the first two questions above, we estimated for yeast
protein-coding genes the expression levels, and, as a proxy for

functional constraints, the evolutionary conservation of their
sequences (see “Methods”). When these two metrics were compared
with prevalence of nascent RNA structure, we consistently found
positive correlations (Spearman’s ρ =0.19–0.56, Fig. 6a–d). More
importantly, these correlations remained significant when the pre-
valence of structure in mature RNA was controlled (Supplementary
Fig. 8), suggesting that the observed correlations were not con-
founded by the more prevalent mRNA structures of highly expressed
genes3,39. Collectively, the above results suggested that highly
expressed genes tended to have more prevalent nascent RNA struc-
tures, and therefore might have contributed to the slower evolution
and genetic robustness of highly expressed genes.

As for the third question, we need to estimate the effect size of
TAM-mitigation due to nascent RNA folding. Within each gene, we
calculated the fold reduction in the spontaneous mutation rate
between the one 50-bp segment with the highest prevalence of nas-
cent RNA structure, versus the one 50-bp segment with the lowest
prevalence of nascent RNA structure (see “Methods”). Intriguingly,
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Fig. 5 | Validating the R-loop-dependent antimutator effect of nascent RNA
folding viamanipulativeexperiments. a Snapshot ofR-loop signals fromS1-DRIP-
seq. The y-axis represents the enrichment of S1-DRIP-seq reads relative to Input
chromatin. There is a strong R-loop signal in the 1–300bp region. b Experimentally
determinednascent RNA folding strengths of the three selectedCAN1mutants with
weak, intermediate and strong nascent RNA folding. c Relative mutation rate of
CAN1 for weak (n = 5), intermediate (n = 5) and strong (n = 5) versions. Data are
presented as standard box-and-whisker plots defined as in Fig. 3. d Relative R-loop

signal at CAN1 for weak, intermediate and strong versions. The results are expres-
sed as means ± s.d. of two independent experiments. e Relative mutation rate at
CAN1 for weak (n = 5), intermediate (n = 3) and strong (n = 4) versions when RNA-
SEH1 was overexpressed. Data are presented as standard box-and-whisker plots
defined as in Fig. 3. f Relative R-loop signal on CAN1 for weak, intermediate and
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t tests. Source data are provided as a Source Data file.
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we found that fold reduction of mutation rate appeared greater in
highly expressed genes (Fig. 6e), suggesting that the TAM-mitigation
effect of nascent RNA folding was indeed stronger for genes tran-
scribed more frequently. Nevertheless, the fold reduction in mutation
rate per gene (6.4 ± 12) is too small, such that vastmajority of the genes
displayed <40 fold reduction inmutation rate, and therefore shall only
lead to a very small selective advantage (<10−7). This selective advan-
tagewas smaller than the inversionof effective population size of yeast
(107) (ref. 10), therefore the increased nascent RNA folding would not
be selected as an adaptive trait in yeast (Fig. 6f, see “Methods”). This
observation is consistent with previous theoretical work suggesting
that selection for mutation rate reduction of individual genes should
be generally weak40. Altogether, we concluded that antimutator effect
of nascent RNA folding is not a direct subject of natural selection,
whereas the reason behind its correlation with gene expression
remained unresolved. This result also explained why delayed cotran-
scriptional folding (structural transition during transcription) can be
pervasive, as the fitness cost due to delayed cotranscriptional folding
and therefore increased TAM were not strong enough. Collectively,

our quantitative analyses of the antimutator effect of nascent RNA
folding demonstrated again the potential of eSPET-seq in furthering
our biological understanding of nascent RNA structure.

Discussion
In the current study, we developed eSPET-seq, an experimental assay
specifically designed to probe the pairing status of all four RNA
nucleotides (A, U, G, and C) near the transcription site, thereby
revealing nascent RNA structures. Based on the eSPET-seq data, we
found heterogeneous rate of cotranscriptional folding, the (dis-)simi-
larity between nascent andmature RNA structure partially explainable
by RNA-binding proteins, and quantitative genomic evidence for the
hypothesis that nascent RNA folding mitigates TAM by dissolving the
R-loop. eSPET-seq therefore facilitated understandings of nascent RNA
folding in eukaryotes with unprecedented resolution, which has broad
implications in molecular and evolutionary biology.

From a technological perspective, eSPET-seq had several unique
advantages over similar techniques previously developed. Specifically,
SPET-seq has been used to probe cotranscriptional folding of nascent

� = 0.31 P  < 10−32

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

20 25 210

Expression level
(RPKM)

N
eg

at
iv

e 
of

si
ng

le
−s

tra
nd

ed
 s

co
rea � = 0.56 P  < 10−117

0.0

0.1

0.2

0.3

0.4

0.5

20 25 210

Expression level
(RPKM)

G
in

i i
nd

ex
 o

f
si

ng
le

−s
tra

nd
ed

 s
co

reb
� = 0.19 P  < 10−11

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

2 4 6
Evolutionary conservation

(dS/dN)

N
eg

at
iv

e 
of

si
ng

le
−s

tra
nd

ed
 s

co
re

c

� = 0.38 P  < 10−46

0.1

0.2

0.3

0.4

0.5

2 4 6
Evolutionary conservation

(dS/dN)

G
in

i i
nd

ex
 o

f
si

ng
le

−s
tra

nd
ed

 s
co

re

d � = 0.24 P  < 0.01

0

20

40

60

20 23 26 29

Expression level
(RPKM)

Fo
ld

 re
du

tio
n 

of
m

ut
at

io
n 

ra
te

e

1

10

100

10−710−910−11

Observed mutation rate (after
reduction by nascent RNA folding)Fo

ld
 re

du
ct

io
n 

of
 m

ut
at

io
n

ra
te

by
 n

as
ce

nt
 R

N
A 

fo
ld

in
g

10−410−810−12

Selective advantage conferred
by nascent RNA folding

f

Fig. 6 | Stronger antimutator effect of nascent RNA folding in highly expressed
genes. a–d The expression level (a, b) (n = 1404) in unit of Reads Per Kilobase per
Million mapped reads, or RPKM, and evolutionary conservation (c, d) (n = 1311),
calculated as the ratio between dS (the number of synonymous substitutions per
synonymous site) and dN (the number of nonsynonymous substitutions per non-
synonymous site. See “Methods”) of a gene, were compared to both estimates of
prevalence of nascent RNA structure. Spearman’s rank correlation coefficient is
indicated, and the red lines represent the fitted LOESS regression. The evolutionary
conservation was calculated as the log of inversion of dN/dS (see “Methods”).
e Within 113 genes containing at least 5% sites with mutation rate data, the ratio
between the mutation rate of a 50-bp segment with the highest single-stranded
score and that of a 50-bp segment with the lowest single-stranded score within the
same gene was calculated. We used this ratio to approximate the fold reduction in
the mutation rate due to the nascent RNA folding for each gene and compared it

with the expression level of the gene. Spearman’s rank correlation coefficient is
indicated, the red line represents the fitted LOESS regression, and the red shade
shows the standard error of the fitted value (n = 113). f Phase diagram showing the
selective advantage (color scale bar) conferred by the mutation rate reduction due
to nascent RNA folding. This selective coefficient was dependent on two critical
parameters, namely the mutation rate (x-axis) and the fold reduction in the
mutation rate by nascent RNA folding (y-axis). The solid line indicates the selective
coefficient that is equivalent to the inversions of the effective population size of
yeast. That is, the parameter space above the lines represents a selective advantage
large enough as a subject of natural selection. Two example genes were marked in
both (e) and (f) as a square (YHL033C) and as a triangle (YDR233C). These two genes
show that even for genes showing strong antimutator effect of nascent RNA fold-
ing,mutations strengthening the nascent RNA structuremight still not be adaptive.
Source data are provided as a Source Data file.
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RNA in bacteria7. However, SPET-seq can only capture the pairing
status of A and C nucleotides, but not U and G nucleotides, and
therefore has a limited resolution. In addition, icSHAPE has been
applied to chromatin-associated nascent RNAs in human HEK293
cells6. However, since NAI-N3-tagged sites across the whole nascent
transcript was capturedwithout enriching those near the transcription
site, the generated data, compared to eSPET-seq data, should be less
informative for nascent RNA folding ocurring immediately after tran-
scription, a time point that was presumably critical for R-loop dis-
solution by nascent RNA folding. In other words, eSPET-seq is, to the

best of our knowledge, the first experimental technique assessing the
nascent RNA structure for all four RNA nucleotides near the
transcription site.

With the help of eSPET-seq, several significant features of nascent
RNA folding were revealed. For example, an average of 5.4% of
nucleotides within mRNA displayed significant structural transition as
transcription progressed. Compared to previous observation of 29% in
bacteria revealed by SPET-seq, we speculated that the difference was
mainly caused by separation of transcription and translation in
eukaryotes, such that structural transitions accommodating
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Fig. 7 | The prevalence of nascent RNA folding of a gene was correlatedwith its
mutation rate in tumors. a–f Both estimates of prevalence of nascent RNA
structure of a gene were compared with its R-loop score (a, b) (n = 628), its prob-
ability of being mutated (c, d) (n = 315) and its mutation density (e, f) (n = 515) in
cancer. Spearman’s rank correlation coefficients are indicated, and the red lines
represent the fitted LOESS regression. g Three odds ratios representing the cor-
respondence among single-stranded scores, R-loop scores and mutation rates
(ORS-R, ORR-M and ORS-M. See “Methods”) were calculated for each gene, and then

combined and tested for statistical significance by the Cochran-Mantel-Haenszel
chi-squared test. Error bars represent s.d. of the combined OR estimated by
bootstrapping the genes 1000 times. h The three odds ratios were compared with
their random expectations (histogram), which were estimated by permutating the
single-stranded score, R-loop score andmutation ratewithin each gene 1000 times.
P values frompermutation tests are indicated. Source data are provided as a Source
Data file.
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translation are unnecessary until mRNA had finished its transcription
and have been exported to cytoplasm in eukaryotes, whereas similar
translation-accommodating structural transitions happened soon
after transcription and before translation in prokaryotes. Additionally,
our comparison between nascent and mature RNA structure in vivo
and in vitro suggested that their differences are at least partially
explainable by trans-regulatory elements such as RNA-binding pro-
teins. Collectively, data of eSPET-seq has offered a unique experi-
mental approach for the studies of molecular biology of nascent RNA
structure, and shall therefore lay the foundation for further studies.

We inferredwith eSPET-seqdata that the increasedTAM inhighly
expressed genes was weaken by the stronger nascent RNA folding
(Fig. 6a, b). This observation could have been confounded by
transcription-coupled repair (TCR), as TCR is theoretically more
active for highly expressed genes41 (but see ref. 42). To disentangle
the antimutator effect of nascent RNA folding and that of TCR, we
exploited the different strand biases of the two mechanisms. Speci-
fically, TCR repairs mutations on the template strand43 and nascent
RNA folding suppresses mutations on the coding strand10. We col-
lected spontaneous mutation events found in three mutation accu-
mulation experiments30–32 and classified all C/G to T/Amutations into
either template or coding strand by assuming dominate contribution
by hydrolytic deamination of cytosine in C/G to T/A mutations44 (see
“Methods”). Based on these stranded mutations, we found that
the prevalence of nascent RNA structure was anticorrelated with the
relative C-to-T mutation rate of the coding strand (Supplementary
Fig. 9a. Spearman’s ρ = −0.28, P < 0.02) but not that of the template
strand (Supplementary Fig. 9b. Spearman’s ρ = −0.02, P = 0.83),
thereby suggesting the TCR-independent antimutator effect of nas-
cent RNA folding on the coding strand. In terms of effect size, com-
paring the top and bottom 20% of genes in terms of prevalence of
nascent RNA structure revealed a 25% decrease of C-to-T mutation
rate of the coding strand. We further contrast the C-to-T mutation
rate of template and coding strand to better isolate the TCR-
independent antimutator effect of nascent RNA structure (Supple-
mentary Fig. 9c, d). Specifically, we found that C-to-Tmutation rate of
template strand (suppressed by TCR) relative to that of the coding
strand (suppressed by nascent RNA folding) decreased 10% for highly
expressed genes compared to lowly expressedgenes (Supplementary
Fig. 9c), which revealed the effect of TCR; And the C-to-T mutation
rate of coding strand (suppressed by nascent RNA folding) relative to
that of the template strand (suppressed by TCR) decrease by 29% for
genes with high prevalence of nascent RNA structure compared to
genes with low prevalence of nascent RNA structure (Supplementary
Fig. 9d), which revealed the antimutator effect of nascent RNA fold-
ing. Collectively, these results suggested substantial antimutator
effect by nascent RNA folding independent of TCR.

Together with our manipulative experiment for one yeast gene,
the genomic correlations among nascent RNA structure, R-loop and
mutation rate have collectively supported the antimutator effect of
nascent RNA folding, especially for highly expressed genes. In addition
to the evolutionary significance mentioned above, regulators for the
spontaneous mutation rate might also has broad implications in can-
cer biology. For example, a temporary increase inmutation rates, i.e., a
mutator phenotype, has been proposed as an early step in
carcinogenesis45. With the mutation mitigation effect of nascent RNA
folding confirmed in S. cerevisiae, we speculated a similar role for
nascent RNA folding in humans. Notably, our speculation was con-
sistent with recent progress in R-loopbiology showing that aberrant or
excessive R-loop formation can lead to genomic instability, a hallmark
of cancer46, thereby laying the mechanistic foundation for the rele-
vance of the nascent RNA structure. As a further support for our
speculation, we analyzed public available relevant data6 and found that
both proxies for prevalence of nascent RNA structure in a gene, i.e.
negative of and Gini index of single-stranded score, were negatively

correlated with each of R-loop score, probability of being mutated in
cancer and mutation density in cancer of the gene (Fig. 7a–f. See
“Methods”). More importantly, these patterns found by among-gene
comparisonswere also consistently supportedbywithin-gene analyses
based on combined Odds Ratios using MH tests (Fig. 7g, h. See
“Methods”). Collectively, these observations supported the mutation
mitigation role of nascent RNA folding in humans, and suggested a
potential mechanistic link between the nascent RNA structure and
mutational hotspots in cancer.

Methods
Yeast strain and growth conditions
S. cerevisiae strain BY4741 was grown in YPDmedia at 30 °C. Saturated
cultures were diluted into 300ml YPDmediumwith an optical density
at 660 nm (OD660) of approximately 0.1 and then grown at 30°Cwith
shaking at 250 rpmuntilmid-log phasewith anOD660of0.6~0.7 at the
time of NAI-N3 treatment.

In vivo NAI-N3 modification of RNA
For in vivo modification by NAI-N3, 50ml of exponentially growing
yeast cells at 30 °C were harvested and resuspended in 475μl mod-
ification buffer (467.5μl 1× PBS, 5μl 1mg/ml Actinomycin D (Sigma
Aldrich, Cat. A1410), 2.5μl 10% SDS). Note that for icSHAPE library
construction (mature RNA), Actinomycin D was removed from the
modification buffer. The sampleswere then incubatedwith either 25μl
of 2M NAI-N3 in DMSO (in vivo modification) or 25 μl of pure DMSO
(DMSO control) with moderate shaking (10 rpm) at 30 °C for 10min,
centrifuged and washed twice with 1× PBS to remove traces of NAI-N3.
The pellets were stored at −80 °C until further use.

Note that we used Actinomycin D to stop further transcription
during NAI-N3 treatment. Although, direct interaction between Acti-
nomycin D and RNA or DNA:RNA hybrid duplex is unlikely47 due to the
steric hindrance between the 2-amino group of the phenoxazone ring
and the 2′-hydroxyl group of RNA, indirect interference of the nascent
RNA structure via competitive bindingswith the single-strandedDNA48

is still possible. To show that our result would not be significantly
altered by the usage of actinomycin D, we extracted the sequence
motifs known to bind to Actinomycin D48 in the genes captured by
eSPET-seq data. We found that only 32 genes contain these motifs,
such that excluding these genes/regions did not alter the direction or
statistical significance of any relevant correlations between nascent
folding, R-loop and mutation rate. We therefore concluded that the
effect of Actinomycin D is largely negligible across our study.

In vitro NAI-N3 modification of RNA
RNA was extracted from cells treated with DMSO. One micrograms
RNA was resuspended in 5.2μl RNase-free water, and then denatured
at 95 °C for 2min. It was quickly transferred to ice to cool, refolded in
SHAPE reaction buffer at 30 °C for 5min by adding 3.3μl 3.3× SHAPE
buffer (333mM HEPES (pH 7.5), 20mM MgCl2 and 333mM NaCl) and
0.5μl RiboLock (Invitrogen, EO0384), followedbyNAI-N3modification
for 10min at 30°C by adding 1μl 1M NAI-N3. The modified RNA was
cleaned up and eluted in RNase-free water by using RNA Clean&Con-
centrator™−5 kit (Zymo, R1014).

Cell fractionation for nascent RNA extraction
S. cerevisiae fractionation was performed as previously described49.
Specifically, each yeast pellet from a 50ml culture (OD660~0.7) was
homogeneously suspended in 1.5ml buffer Y1 (1M sorbitol, and 0.1M
EDTA at pH 7.4), with 50μl lyticase (SigmaAldrich, L2524, 10 U/μl in Y1
buffer), and the samples were incubated at 30°C with rotation
(100 rpm) until >90% of the cells became spheroplasts (~30min).
Spheroplasts were collected by centrifugation at 300 × g for 5min at
4°C, washed twicewith SB buffer (1M sorbitol and 20mMTris-Cl at pH
7.4) and resuspended in 500μl precooled cytoplasmic lysis buffer
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(20mM Tris-Cl at pH 7.4, 100mM NaCl, 0.5% Triton X-100 (SIGMA),
15mM β-ME, 50 U/ml SUPERase•In™ RNase Inhibitor (Invitrogen,
00795321) and 1× Complete EDTA-free protease inhibitor
(Roche,04693132001)) to lyse the cytoplasmic membrane, and the
samples were kept on ice for 10min with gentle mixing every 3min.
The lysate was layered over 1ml sucrose buffer (20mM Tris-Cl at pH
7.4, 100mM NaCl, 1.2M sucrose, 15mM β-ME, 50 U/ml SUPERase•In™
RNase Inhibitor and 1× Complete EDTA-free protease inhibitor) and
centrifuged at 13,000 g for 15min at 4°C. The supernatant contained
the cytoplasmic fraction (Cytoplasm). An aliquot (50 μl) was taken for
Western analysis and RT-qPCR, and the rest of the supernatant was
discarded. The white nuclear pellet was resuspended in 500μl nuclei
lysis buffer (20mM Tris-Cl at pH 7.4, 100mMNaCl, 1.0% Triton X-100,
15mM β-ME, 50 U/ml SUPERase•In™ RNase Inhibitor and 1× Complete
EDTA-free protease inhibitor) to lyse the nuclear membrane. Samples
were kept on ice for 10min with max speed vortex for 5 s every 3min
and the chromatin fraction was collected by centrifugation at 16,000 ×
g for 10min at 4 °C. Chromatin pellets were washed three times with
fractionation wash buffer (0.1% Triton X-100, 1mM EDTA and 1× PBS)
and suspended in 250μl 1× PBS. An aliquot (50μl) was taken for
Western analysis and RT-qPCR (Chromatin). The remaining chromatin
solution was stored at −80 °C until further use.

To quantify the nascent RNA enrichment in cell fractionation,
RNAs were isolated from the chromatin (nascent RNA) and cyto-
plasmic (mature RNA) fractions using the miRNeasy Mini Kit (Qiagen,
217004) according to the manufacturer’s instructions. One hundred
nanograms of RNA was reverse transcribed using SuperScript III
reverse transcriptase (Invitrogen,18080044) with specific primers
(Supplementary Fig. 1b, Supplementary Table 2), following the man-
ufacturer’s protocol. We selected ADH1 as a molecular indicator to
estimate the extent of nascent RNAenrichment. Because nascent RNAs
contain the regions after the polyadenylation sites that are present in
the nascent transcripts but absent from the mature mRNAs, ADH1
nascent RNA was selectively detected by priming an RT reaction
downstream of this site50. Mature ADH1 transcripts were detected by
priming an RT reaction at the poly(A)-tail with oligo(dT) primer50.
cDNAs were quantified by qPCR to yield the abundance of mRNA and
nascent RNA in the samples. Enrichment was calculated by the con-
centration ratio between the nascent RNA and the mature RNA from
the chromatin fractions, normalized to the same ratio from the cyto-
plasmic fractions.

Western blots of different samples from yeast cell fractionation
were carried out to assay the success of the fractionation. Western
blotting was performed as previously reported with minor
modifications51. Briefly, protein samples from different fractions were
mixedwith 5×protein loadingbuffer, boiled at 95 °C for 5min and then
resolved by SDS-PAGE. Next, separated proteins were transferred to
nitrocellulose membranes and probed with the following primary
antibodies against chromatin proteins (histone H2B, Abcam,
ab188291,1:2000 dilution) and cytoplasmic proteins (tubulin, Abcam,
ab185224,1:5000 dilution). Finally, the membrane was probed with
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
(Abcam, ab6721,1:10,000 dilution) and scanned using a ChemiDoc
Touch Imaging System (BioRad).

Nascent RNA extraction from chromatin fraction
The chromatin solution (200μl) containing nascent RNAs was resus-
pended in 0.8ml TRIzol™ LS reagent (Invitrogen, 10296010CN),
thoroughly mixed and incubated at 50 °C for 5min. Then, 200μl
chloroform was added and shaken vigorously for 15 s. After cen-
trifugation at 12,000 × g for 15min at 4 °C, the aqueous phase was
transferred to a 1.5mlRNase-free tubeandpurifiedusing themiRNeasy
Mini Kit (Qiagen, 217004) and on-column DNase I digestion was per-
formed using the RNase-free DNase set (Qiagen, 79254) according to
the manufacturer’s instructions. For each treatment, three

independent biological replicateswere performed for the nascent RNA
isolation and library construction.

Preparation of eSPET-seq library of nascent RNA at the gen-
ome scale
After nascent RNA extraction, sequencing libraries were prepared
similarly to previous protocols used for icSHAPE23 and Structure-seq52,
with some modifications. The whole process can be divided into six
steps, namely biotin click reaction of NAI-N3, 3′ adapter ligation,
removal of excessive 3′ adapter, cDNA synthesis and isolation of NAI-
N3-modifiedmolecules, 5′ adapter ligation, and library amplification by
PCR. Each individual step is described in detail below.

Step one is the biotin click reaction of NAI-N3. To specifically
select NAI-N3-modifiedRNA, all nascent RNA sampleswere treatedby a
biotin-alkyne click reaction (Click-iT™ Biotin sDIBO Alkyne, Invitrogen,
C20023,). Note that DMSO-treated RNA samples were not capable of
‘click’ reaction due to their lack of the NAI-N3 modification, but this
experimental step was still carried out for the DMSO-treated control
sample in parallel with the NAI-N3-treated samples. For each reaction,
3 μg of nascent RNA was used in a final volume of 100μl by adding
100URiboLock, 37μM1.85mMDIBO-biotin, 50μl 2× PBS. Biotinylated
RNAs were purified using the Zymo RNA Clean & Concentrator-5 col-
umn according to the manufacturer’s protocol and eluted in 7μl of
RNase-free water.

Step two is the ligation of 3′ adapters. Due to a lack of a biotin
moiety for the DMSO control, DMSO-treated samples require a 3′
biotinylated RNA adapter (Supplementary Table 2), whereas NAI-N3-
treated samples require a 3′ ddC RNA adapter (Supplementary
Table 2). A total of 100 pmol of a 3′-adapter was ligated to the bioti-
nylated nascent RNA in a reaction volumeof 20μl by adding 2μl of 10×
RNA ligase buffer (NEB), 1 μl of T4 RNL2tr K227Q (NEB), l μl of
SUPERase•In™ RNase Inhibitor, 2μl of 100% DMSO and 6μl of 50%
PEG8000. Each sample was gently mixed and then incubated at 37 °C
for 3 h. The 3′ end ligated nascent RNA was purified using the Zymo
RNA Clean & Concentrator-5 column according to the manufacturer’s
protocol and eluted in 30μl of RNase-free water.

Step three is the removal of excessive 3′ adapters. After the liga-
tion reaction, the excessive 3′ adapter was degraded with RecJ exo-
nuclease after deadenylation of the 3′ adapter with 5′ deadenylase.
Briefly, 2μl of 5’deadenylase(NEB,M0331S), 2μl of RecJ(NEB,M0264S),
4μl of 10× RecJ buffer and 2μl of SUPERase•In™ RNase Inhibitor were
added to the product of the ligation reaction above. The samples were
then incubated at 37 °C for 1 h. Reactions were stopped by purification
with the Zymo RNA Clean & Concentrator-5 column according to the
manufacturer’s protocol, and the samples were then eluted in 11 μl of
RNase-free water.

Step four is cDNA synthesis and isolation of NAI-N3-modified
molecules. RT primer (1μl, 50μM) (Supplementary Table 2) was added
to the 3′ adapter-ligated nascent RNA samples. The samples were heat-
denatured at 70 °C for 5min, then cooled slowly to 25 °C (1 °C per s)
and then incubated at 25°C for 5min. After primer annealing, cDNA
synthesis was carried out in a final volume of 20μl (containing 0.5mM
dNTPs, 50 pmol RT primer, 5mM DTT, 1× First-Strand Buffer, 20 U
SUPERase•In™ RNase Inhibitor and 200 U SuperScript® III Reverse
Transcriptase(Invitrogen)) by incubation at 25°C for 3min, 42°C for
5min, and 52 °C for 30min. Enrichment of NAI-N3-modifiedmolecules
wasperformed aspreviously described23. NAI-N3-enriched cDNAswere
purified using the Zymo Oligo Clean & Concentrator column (Zymo,
D4061) according to the manufacturer’s protocol and eluted in 6μl of
RNase-free water.

Step five is the ligation of the 5′ adapter. The ligation was per-
formed using T4 RNA ligase 1 (NEB, M0437M) which ligated the 3′ end
of the cDNA to a single-stranded DNA adapter (where “N” denotes a
mixture of all four bases, and the three “N” were used to distinguish
PCRduplicates createdby step six below). The reactionwas carried out
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in a final volume of 20μl, in the presence of 1× RNA ligase buffer, 20%
PEG8000, 1mM ATP, 100 pmol DNA adapter, and 30 U T4 RNA ligase.
The ligation was performed at 25 °C for 16 h and then deactivated at
65 °C for 15min. The 5′ adapter-ligated cDNA was then purified using
Oligo Clean & Concentrator columns according to the manufacturer’s
protocol, and eluted in 20 μl of RNase-free water.

Step six is the library amplification and purification. PCR amplifi-
cation was performed on the ligated cDNA using Q5 High Fidelity DNA
polymerase (NEB, M0530) and Illumina TruSeq primers. For each
experiment, we took 5μl of the ligated cDNA and set up an 80μl
reaction for PCR cycle optimization. Reactions (80μl) were performed
with 1× Phusion HF buffer, 0.2mM dNTPs (each), 0.8125μM forward
primer, 0.5μM reverse primer (Supplementary Table 2, in which the
NNNNNN was the multiplexing index) and 1.6 U Phusion DNA poly-
merase. To determine the minimum number of cycles required to
obtain sufficient products, we set up four PCR tube strips and trans-
ferred a 20μl aliquot of the PCR mixture into one tube in each strip.
PCR amplifications were carried out with varying numbers of cycles
(10, 12, 14, and 16) by placing all strip tubes in the thermal cycler and
starting a programwith the following conditions: 98 °C for 1min, 98 °C
for 15 s, 60 °C for 30 s, 72 °C for 60 s. For the remaining ligated cDNAs
(15μl), the amplification was completed at the selected cycle number.
The PCR product was then run on a 10% native polyacrylamide gel to
remove the byproduct, and the slice corresponding to 150–600 nt was
cut using both a 50-bp DNA Ladder (Takara, 3421) and a Low Range
DNA Ladder (Invitrogen, SM1193) as references. The DNA in the slice
was resolved by passive diffusion in diffusion buffer for 16 h at 37°C in
a Thermomixer at 1000 rpm and purified from the residual PAGE gel
using a 0.45 μm Spin-X columns (Corning, 431481) and the Zymo DNA
Clean & Concentrator-5 column (Zymo, D4014). The dsDNA libraries
were then sequenced with 2 × 150 paired-end reads on an Illumina
HiSeq X Ten. All sequenced samples and their summary statistics were
listed in Supplementary Table 1.

Preparation of icSHAPE library of mature RNA
icSHAPE sequencing librarieswere prepared as follows. First, total RNA
extraction, isolation of mRNAs, biotin click reaction of NAI-N3, RNA
fragmentation, RNA end repair and RNA 3′-end ligation were con-
ducted as previously described18. The RNAs were then purified and
eluted in 31μl RNase-freewater by using RNAClean&Concentrator™−5
kit. The purified RNA was incubated in a 40μl reaction by adding 4μl
10×NEB buffer 2, 2μl RecJ, 2μl 5′Deadenylase,1μl Ribolock at 37 °C for
60min. Then reverse transcription and biotin-streptavadin enrich-
ment was performed as described in the icSHAPE assay18. The enriched
first-strand cDNAs were then ligated at their 3′ ends to a ssDNA linker,
and Illumina sequencing adapters and indexes were introduced by
8–14 cycles of PCR using PhusionHF Polymerase as described above in
our eSPET-seq procedure. The dsDNA libraries were then sequenced
with 2 × 150 paired-end reads on an Illumina NovaSeq 6000. All
sequenced samples and their summary statistics were listed in Sup-
plementary Table 1.

Inference of prevalence of secondary structures by eSPET-seq or
icSHAPE data
Raw sequencing reads were first trimmed to remove the 3′ adapters by
Trimmomatic53 (V 0.38). The three nucleotides corresponding to the
three “N” in the 5′ adapter (see step five in the eSPET-seq library pre-
paration above) were also removed by cutadapt54 (V 1.18). Any reads
shorter than 18 nts were discarded. The S. cerevisiae genome and
annotation (R64-1-1) were downloaded from EnsEMBL. The processed
forward (corresponding to NAI-N3-modified site) and reverse
reads (corresponding to transcription site in eSPET-seq and random
DNA fragmentation in icSHAPE) were separately mapped to the
genomic sequences (intron retained) of all genes using Bowtie2 with
the parameters “—norc” for forward reads, “—nofw” for reverse reads.

Any reads with a mismatch on the first nucleotide at the 5′ end or
mapping quality score <30 were discarded. Reads with ambiguous
origins, or likely PCR duplicates (judged from the mapped position of
both reads and the three “N”) were further removed. Biological repli-
cates, which were highly correlated with each other (Fig. 1b), were
pooled together unless otherwise stated.

To investigate cotranscriptional folding using eSPET-seq data, we
collected all read pairs from whose reverse reads were mapped to the
same position, which therefore corresponded to the same transcrip-
tional intermediate. The base immediately preceding the first 5′ end
mapping position of the forward read was considered the RT stop site
caused by the NAI-N3 modification. For each transcriptional inter-
mediate, the sum of RT stops at each position was calculated, and the
density of RT stops was normalized within each transcriptional inter-
mediate by 90%winsorization. For testing structural transitions during
cotranscriptional folding, a sliding window with a length of 50 nt was
used to scan the longitudinal profile (Fig. 2c) of RT stop density for
each nucleotide. Only windowswith at least one read in the first half of
thewindowand at least one read in the secondhalf of thewindowwere
considered. Structural transitions were identified as windows whose
first and second halves have significantly different densities of RT
stops by the Wilcoxon test. Note that the DMSO-treated samples were
not involvedherebecauseDMSO-treated sampleswereused to control
NAI-N3-independent RT stops due to sequence features (e.g., GC%).
Such NAI-N3-independent RT stops should be constant for the same
nucleotide; therefore, longitudinal comparisons made here for the
same nucleotide between transcriptional intermediates intrinsically
controlled the probability of NAI-N3-independent RT stops. For all
other analyses, we used a single-stranded score, which controlled the
probability of NAI-N3-independent RT stops by contrasting the NAI-N3

samples with the DMSO samples (see below).
For both eSPET-seq and icSHAPE data, a single-stranded score for

eachnucleotidewas estimated based on theNAI-N3 reactivity reflected
by the forward reads, following previous methods55. Briefly, the num-
ber of RT stops was normalized to take into account the different
sequencing depths between the NAI-N3 and DMSO samples, using the
normalization constants kDMSO and kNAI-N3, which are defined as fol-
lows:

kDMSO =
SDMSO + SNAI�N3

2 × SDMSO
ð1Þ

kNAI�N3 =
SDMSO + SNAI�N3

2 × SNAI�N3
ð2Þ

SDMSO and SNAI�N3 are the total number of mapped reads in the
DMSO- and NAI-N3-treated samples, respectively. Then, the normal-
ized number of RT stops for nucleotide i of a gene in the DMSO and
in vivo samples were calculated as:

NDMSO ið Þ= kDMSO ×nDMSO ið Þ ð3Þ

NNAI�N3 ið Þ= kNAI�N3 ×nNAI�N3 ið Þ ð4Þ

where nDMSO ið Þ and nNAI�N3 ið Þ are the raw numbers of RT stops for
position i of a gene in the DMSO and NAI-N3 samples, respectively.
Finally, the single-stranded score of nucleotide i was calculated as:

θNAI�N3 ið Þ= log2
NNAI�N3 ið Þ+ 1
NDMSO ið Þ+ 1 + 1

� �
ð5Þ

Note thatpseudocounts of 1were added to avoid a logarithmof or
division by zero and made the final score larger than zero. The final

Article https://doi.org/10.1038/s41467-023-41550-w

Nature Communications |         (2023) 14:5853 13



single-stranded score is larger than 0 and not larger than 7, with any
raw θNAI�N3 larger than 7 capped at 7.

At the gene level, the single-stranded score of a gene was calcu-
lated as the arithmetic mean of the single-stranded scores of all the
nucleotides within the gene. We also calculated the Gini index (by R
package “ineq”) using the single-stranded scores of all nucleotides
within a gene to represent the average prevalence of RNA secondary
structure of the gene, as it has previously been shown that as the
structure unfolds, the single-stranded score becomes more even (low
Gini index)5.

Verification of structural transition-coupled R-loop dissolution
on 5S RNA
A DNA:RNA immunoprecipitation (DRIP. See below) followed by
reverse transcription quantitative PCR was conducted to determine
whether nucleotides 30–45 of 5S rRNA form an R-loop. Briefly, DRIP
was first used to purify R-loops by utilizing the high specificity and
affinity of the S9.6 monoclonal antibody. Reverse transcription was
conducted using three different RT primers designed for transcription
intermediates L1, L2 and L3 (length = 78 nt, 105 nt and 115 nt, respec-
tively. Supplementary Fig. 4a). The resulting cDNA was quantified by
qPCR with primers targeting nucleotides 30–45 of the 5S rRNA, and
then normalized to ACT1 to yield the relative R-loop signal in this
region (Supplementary Fig. 4a). We found that the R-loop signal is
significantly higher for intermediate L1 than L2 and L3 (Supplementary
Fig. 4b, three bars on the left). To further verify that this observed
difference is indeed caused by R-loop formation, we overexpressed
RNASEH1 (it hampers R-loop formation by degrading the RNA in R-
loop) and repeated the same experiment of DRIP followed by RT-qPCR
(Supplementary Fig. 4b, three bars on the right).

Detection of R-loop by DRIP-RT-qPCR
In order to detect R-loop in specific regions, we performed DNA:RNA
immunoprecipitation followed by reverse transcription quantitative
PCR(DRIP-RT-qPCR) as previously10 described with some minor
modification. Briefly, exponentially growing BY4741 and its mutant
derivatives (OD600 = 0.7, 10ml) were crosslinked for 25minutes at
room temperature using 1% formaldehyde, and quenched for 5min
using 360mM glycine(Sigma, 50046). The pellets were rinsed with
PBS for 5min, resuspended in 400μl FA-1 lysis buffer, mixed with
200μl of glass beads (Sigma,18406), and vortexed for 15min at 0 °C
in a Thermomixer at full speed. Glass beads were removed after
transient centrifugation. By centrifuging at full speed for 15min at
4 °C, the cross-linked chromatin was recovered, and then resus-
pended in 800 μl of FA-1 buffer, and sonicated to obtain DNA frag-
ments of approximately 150 bp. Sonicated chromatins were
centrifuged at 20,000 × g for 15min at 4 °C to remove cellular debris,
and 5% glycerol (Sigma, G5516) was added to the supernatant. The
supernatants were mixed with 25 μg of antibody S9.6 (Kerafast,
ENH001) and 100μl of prewashed Protein A agarose (Sigma, P2545)
and rotated overnight at 4 °C. We recovered the agarose beads,
washed them successively with FA-1 buffer, FA-2 buffer, FA-3 buffer,
and TE at 4 °C, then added 700μl of QIAzol reagent and mixed them
by vortexing. RNA was purified using the miRNeasy mini kit accord-
ing to the manufacturer’s instructions, including the optional on-
column DNase treatment with the RNase-free DNase set (Qiagen,
79254). The purified RNA was then used in RT-qPCR to examine the
relative R-loop signal. The primers used for RT-qPCR in this study are
listed in Supplementary Table 2.

Secondary structure models
Secondary structure models (Figs. 1f and 2b) were plotted by VARNA
(http://varna.lri.fr/). The known structure of tRNA was extracted from
RNAcentral (https://rnacentral.org) and that of 5S rRNA was extracted
from RiboVision (http://apollo.chemistry.gatech.edu/RiboVision).

Ratio of reads mapped to exons versus introns
The nascent RNA 3′-end sequencing data were downloaded fromNCBI
Sequence Read Archive under accession number SRR3177717. Initial
analysis of the sequencing data was carried out in the samemanner as
previously reported56, after which the “bigwig” files were created from
BAM files using bamCoverage of deepTools57 with default parameters.
A customscriptwasused to extract intronic andexonic readcounts for
all intron-containing genes from the bigwig files according to the
annotation of S. cerevisiae genome (R64-1-1). The total number of
exonic and intronic reads per gene are normalized by their respective
lengths. The ratio of the size-normalized counts is calculated for each
gene containing at least one read in both exonic and intronic regions
(Supplementary Fig. 1c).

Expression levels and evolutionary conservation of S. cerevi-
siae genes
The expression level of the yeast transcriptome was extracted from a
previous RNA-seq-based report58. Evolutionary conservation was esti-
mated inversely by the ratio between the number of nonsynonymous
substitutions per nonsynonymous site (dN) and the number of
synonymous substitutions per synonymous site (dS) detected from
one-to-one orthologs between S. cerevisiae and Saccharomyces baya-
nus following previously described pipelines35.

R-loop score
The yeast S1 nuclease DNA-RNA immunoprecipitation with deep
sequencing (S1-DRIP-seq) data29 were downloaded from NCBI
Sequence Read Archive (SRA) under the accession number SRP071346
specific runs used were: SRR3504389-SRR3504390, SRR3504393-
SRR3504394, and SRR3504396 (wild-type data and the corresponding
input-chromatin control data). The procedure of the S1-DRIP-seq data
analysiswas the sameaspreviously reported29. Let the number of reads
whose 5′most nucleotidemapped to a given site be n, and the sumofn
over all sites in the genome bem. We calculated x = log2((n + 1)/m), and
the R-loop score of a site was defined by x calculated from the wild-
type data subtracted by x calculated from the input-chromatin data for
the site. Human R-loop score (R-ChIP) data were downloaded from
NCBI Gene Expression Omnibus available under the accession number
GSE97072. The longest transcript was selected when genes had more
than one transcript.

Mutation rates across the S. cerevisiae genome
All single nucleotide variations (SNVs) from previously compiled
population genomic data of 190 S. cerevisiae strains, as well as their
inferred phylogenetic relationship, were extracted from the original
publication28. Based on this dataset, we applied the GAMMA
algorithm59 to estimate the (relative) mutation rate for each segre-
gating site, as described below. First, based on the phylogeny and the
genotypes of the focal site, GAMMA first inferred its ancestral state on
each internal node as the one with the highest (posterior) probability
using a distance-based method60. Second, GAMMA estimates the
expected number ofmutations per unit of time at the focal site using a
maximum likelihood (ML) method, which takes into account the pos-
sibility ofmultiplemutations appearing as only one nucleotide change
in a long branch. Specifically, let us denote the total branch length of
the full phylogeny as B, and the total number of mutations happened
on the focal site within the full phylogeny as k. On a branch i with
length bi, the number of mutations on the focal site follows a Poisson
distribution with the expectation of kbi=B. Thus, the probability of no
change on branch i is pi = e

�kbi=B, and the probability of a change
(which might be the result of more than one mutations) is
qi = 1� pi = 1� e�kbi=B. We can further divide all branches within the
phylogeny into two groups: those that have undergone genotype
changes (denoted by G1), and those that have not (denoted by G0).
Then the likelihood of observing the empirical data can be given by
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L=
Q

i2G1
qi
Q

j2G0
pj =

Q
i2G1

ð1� e�kbi=BÞQj2G0
e�kbi=B. Finally, GAMMA

estimates k by finding a positive solution of equation ∂lnL=∂k =0,
since L is maximized (i.e. maximum likelihood) when the derivative of
lnL is 0. As a result, each segregating site has its ownML-estimation of
k, which is then divided by B and used as an approximation of per-site
mutation rate (relative to other sites within the genome). Note that the
unit of time for k is B, which is shared by all sites since they share the
same full phylogeny. As a result, k values from different sites can be
compared regardless of the actual value of B. Non-segregating sites
were assumed to have a zero (negligible) mutation rate. Non-
segregating sites were assumed to have a zero (negligible)
mutation rate.

It is imperative to note that usingDNApolymorphisms to estimate
mutation rates is not ideal. There is a possibility that the observable
level of DNA polymorphism, or mutation rate thereby estimated, may
be affected by both mutation rate and natural selection, especially
negative/purifying selection, as positive selection is generally much
rarer. However, according to the neutral theory of molecular
evolution61,most intraspecific polymorphisms are selectively neutral62,
which is indeed empirically supported63,64. For example, it was pre-
viously estimated that only 12% of coding SNPs found in yeast popu-
lations are deleterious64. Using Tajima’sD test65, we also independently
validated such general neutrality of polymorphisms in the current
dataset of 190 strains by confirming that polymorphisms in the whole
genome (P =0.1 by Tajima’sD test) and the vastmajority of genes were
indeed compatible with the neutral expectation (only 604 out of 6079
genes show a P <0.05 by Tajima’s D test, and none of them show a
P <0.05 when corrected for multiple testing using the Benjamini-
Hochberg Procedure). Such general neutrality of polymorphisms dic-
tates that the majority of variation in polymorphism levels can be
attributed to variations inmutation rates rather than natural selection.
Indeed, a higher level of polymorphism in a particular genomic region
has often been used as an indicator of a higher localmutation rate66–68.
Moreover, we found that there is a positive correlation between our
polymorphism-based mutation rates and those estimated from three
previously publishedmutation accumulation datasets30–32 (Spearman’s
ρ = 0.52, P <0.05. Supplementary Fig. 10), which is generally accepted
as the best direct estimate ofmutation rate. Here themutation rate of a
gene was estimated by the total number of mutations identified in the
gene divided by the gene length10. This correlation further supports
our view that polymorphism-based estimates are reasonable approx-
imations for the mutation rate relative to other sites within the gen-
ome. Most importantly, even when we used mutation rate estimates
from mutation accumulation experiments, we are still able to detect
the antimutator effect of nascent RNA structure (Supplemen-
tary Fig. 7).

To distinguish the independent effects of TCR and the anti-
mutator effect of nascent RNA folding, we used mutation events
detected in three mutation accumulation experiments30–32 (Supple-
mentary Fig. 9). Here mutation accumulation experiments instead of
the 190 S. cerevisiae strains were used becausewe need themutational
direction. Assuming dominate contribution by hydrolytic deamination
of cytosine in C/G to T/Amutations44, we assigned all C-to-Tmutations
as happened on the Watson strand and all G-to-A mutations as C-to-T
mutations happened on the Crick strand.

Odds ratios
To assess within-gene correspondence among single-stranded scores
(S), R-loop scores (R), andmutation rates (M),we calculated threeodds
ratios, namely,ORS-R,ORR-M, andORS-M. To calculateORS-R, a 2 × 2 table
was constructed for each gene by respectively classifying each
nucleotide into one of four groups on the basis of (i) whether its single-
stranded score is higher than the mean single-stranded score within
the gene and (ii) whether its R-loop score is higher than the mean
R-loop score within the gene. Let the numbers of nucleotides that fall

into the four categories be: a (yes to both questions), b (yes to only
question i), c (yes to only question ii) and d (no to both questions),
respectively. The number of nucleotides in each category was added
by 1 as a pseudocount to avoid division by zero. Then,ORS-R = ad/bc. If
strong nascent RNA folding reduces the R-loop, ORS-R should be > 1.
The function “mantelhaen.test” in R was used to combine the ORS-R

values from all genes and perform the MH test (Cochran-Mantel-
Haenszel chi-squared test). Similarly, to calculate ORR-M, a 2 × 2 table
was constructed for each gene by respectively classifying each
nucleotide into oneof four groups on the basis of (i) whether its R-loop
score is higher than the mean R-loop score within the gene and (ii)
whether itsmutation rate is higher than themeanmutation rate within
the gene. ORR-M should therefore be > 1 if a weak R-loop reduces the
mutation rate. To calculate ORS-M, a 2 × 2 table was constructed for
each gene by respectively classifying each nucleotide into one of four
groups on the basis of (i) whether its single-stranded score is higher
than the mean single-stranded score within the gene and (ii) whether
its mutation rate is higher than the mean mutation rate within the
gene. ORR-M should therefore be > 1 if strong nascent RNA folding
reduces the mutation rate.

Manipulative experiment of CAN1
Our manipulative experiment focused on the CAN1 gene, which
encodes an arginine permease that is commonly used to detect
spontaneous mutations. It has been demonstrated10 that a functional
CAN1 is lethal in media containing the toxic arginine analog canava-
nine, whereas aCAN1 nullmutant is viable. Bymeasuring the frequency
of colonies that were resistant to canavanine, the spontaneous muta-
tion rate in the CAN1 gene can be estimated. Furthermore, S1-DRIP-seq
data29 (see above) demonstrated that CAN1 forms R-loops in the first
300bp of its 5’ end during transcription (Fig. 5a), thereby enabling
manipulative experiment.

Utilizing this reporter gene, we first determined whether
increased nascent RNA folding would reduce spontaneous mutations.
To manipulate nascent RNA folding strength around the region prone
to form R-loop (the first 300bp at 5’-end of CAN1), we first generated
synonymous mutants of CAN1 by shuffling all synonymous codons
within this region, so that the protein sequence and the codon usage
bias of these mutants remained identical to wild-type CAN1. We then
predicted the nascent RNA folding strength of these CAN1 mutants
using DrTransformer69. Considering the potential error of in silico
structure prediction, we synthesized several mutants with various
nascent RNA folding strengths, inserted them into the yeast genome
and experimentally measured their nascent RNA structures with
eSPET-seq. The eSPET-seq experimental pipeline was same as descri-
bed above, with the exception of an additional round of 16-cylcle PCR
amplification enriching CAN1-derived transcript intermediates (pri-
mers listed in Supplementary Table 2) before PAGE-purification and
NovaSeq library preparation. Based on these CAN1-specific eSPET-seq
results, three CAN1 mutants with strong, intermediate and weak nas-
cent RNA folding (Fig. 5b) were selected and tested for the corre-
sponding spontaneous mutation rate.

To measure mutation rates of CAN1, we performed forward-
mutation assay as described previously10,70 with some minor mod-
ification. Briefly, for each strain (with different versions of CAN1), a
single colony was grown at 30 °C in 5ml synthetic complete (SC)
medium overnight. The cells were diluted to ~100 cells/ml in 10 sepa-
rate cultures for each strain and again grown to 1 × 108 cells/ml in SC
medium. About ~1.0 × 104 cells were plated onto canavanine-
containing SC-arg plates (medium without arginine) to identify for-
ward mutations in CAN1 and onto SC plates to count the number of
viable cells. Colonies appearing after 3 or 4 days of growth at 30° were
counted. The spontaneous mutation rate of a strain was estimated by
the number of CANR colonies divided by the total number of cells after
the growth in SC.
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To further verify that the reduction of mutation rate by nascent
RNA folding is mediated by inhibiting R-loop formation, we examined
the prevalence of R-loops at the 5′ end of these three CAN1mutants by
DRIP-RT-qPCR (see above). Consistent with our model, we found that
the R-loop signal was significantly reduced when there was strong
nascent RNA folding (Fig. 5d). To directly confirm that the antimutator
effect of nascent RNA folding is R-loop-dependent, we stably over-
expressed RNASEH1 in the yeast genome, which hampers R-loop for-
mation bydegrading theRNA in anR-loop. It is predicted thatRNASEH1
overexpression reduces or even abolishes the effects of nascent RNA
folding on spontaneous mutation rates, and this is indeed observed
(compare Fig. 5c, e). Specifically, the significant reduction in mutation
rate of CAN1 sequence with intermediate folding compared to that
with weak folding is no longer significant upon RNASEH1 over-
expression. Similarly, the antimutator effect of strongly-folded CAN1
relative to the other two CAN1 sequences was alsoweakened, although
it remained statistically significant. More importantly, such a dis-
appearance/weakening of the antimutator effect of nascent RNA
folding was accompanied by the disappearance/weakening of R-loop
prevalence reduction upon RNASEH1 overexpression (contrasting
Fig. 5d, f).

Estimation of fitness advantage conferred by stronger nascent
RNA folding
We estimated the fitness advantage conferred by the TAM-mitigation
effect of stronger nascent RNA folding following our previous
framework10. Briefly, assuming no recombination between the muta-
tion target site and the corresponding site of the nascent RNA struc-
ture, the fitness advantage (s) conferred by a mutation that increases
nascent RNA folding is approximately the reduction in the deleterious
mutation rate (Δμd) of its target site40,71. Let us assume that 70% of
mutations at the target site are deleterious and that a mutation alters
local nascent RNA folding can affect the mutation rate of a target of
10 sites. If the strengthened nascent RNA folding reduces themutation
rate of the target site by x-fold and the genomic average mutation
rate per generation per nucleotide (which has already been reduced
due to nascent RNA folding) is y, the fitness advantage can then be
calculated as s =4ud =0:7 × 10ðx � 1Þy. A phase diagram for the
numerical relationship between x, y and s is shown in Fig. 6f. As a
reference, the selective coefficient value that is equivalent to the
inversions of the yeast effective population size is marked by a solid
line. Therefore, the parameter space above the line represents a
selective advantage large enough as a subject of natural selection (i.e.,
adaptive mutations), the parameter space below the line represents
neutral mutations.

We attempted to estimate realistic values of x and y of the phase
diagram. For x, we used 113 genes with at least 5% sites with mutation
rate data and calculated the ratiobetween the averagemutation rate of
the 50-bp segmentwith the highest average single-stranded score, and
that of the 50-bp segment with the lowest average single-stranded
score. Infinite numbers (there are four of them) caused by division-by-
zero were capped at 50. The resulting ratios for each gene appeared
positively correlated with the gene expression level (Fig. 6e), sug-
gesting that the mutation rates of the highly expressed (more func-
tionally constrained) genes were more strongly reduced by nascent
RNA folding. For y, it has previously been estimated71 that the genomic
average of per-generation per-nucleotide mutation rate in yeast is
3.3 × 10−10. Two yeast genes, as indicated by the cross and the triangle,
were marked on the phased diagram using the estimated x and y
values.

icSHAPE data for human nascent RNA
NAI-N3 reactivity data for humannascent RNAby icSHAPE experiments
were collected from a previous report6. The longest transcript was
selected when genes had more than one transcript.

Estimation of tumor mutation load
Gene-level somaticmutation data of the TCGAwere downloaded from
the UCSC Xena website (https://tcga.xenahubs.net), which consists of
37 types of cancer, with 36–9104 samples per type. We calculated the
probability of each gene being mutated (regardless of the type of
mutation) in all samples within each type of cancer. Then, the prob-
abilities from all types of cancer were averaged and comparedwith the
prevalence of nascent RNA folding. For the density of mutations, we
downloaded the Mutation Annotation Files (MAF) for 33 types of
cancer from the GDC data portal (https://portal.gdc.cancer.gov/).
Next, the total number of mutations (regardless of cancer type) that
appeared in each gene was divided by the gene length to calculate the
mutation density.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study, i.e., eSPET-seq data, were
deposited to NCBI Sequence Read Archive (SRA) under accession
number SRP291653. Publicly available datasets used in this study were
retrieved for yeast nascent RNA 3′-end sequencing available under
accession number SRR3177717 at SRA, yeast S1-DRIP-seq data under
accession number SRP071346 at SRA, human R-ChIP data under
accession number GSE97072 at NCBI’s Genome Omnibus (GEO),
icSHAPE data for human nascent RNA under accession number
GSE117840 at NCBI’s GEO. Furthermore, somatic mutations (https://
tcga.xenahubs.net) and mutation annotations (https://portal.gdc.
cancer.gov/) in cancer, and tRNA sequences and secondary structure
models (https://rnacentral.org) were used. Source data are provided
with this paper.

Code availability
Custom R/Python/Perl codes, that were used in data analysis, are avail-
able on GitHub (https://github.com/GongwangYu/NascentRNAfolding)
and Zenodo (https://zenodo.org/record/8271608)72.
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