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A pharmacophore-guided deep learning
approach for bioactivemolecular generation

Huimin Zhu1,5, Renyi Zhou1,5, Dongsheng Cao2, Jing Tang 3,4 & Min Li 1

The rational design of novel molecules with the desired bioactivity is a critical
but challenging task in drug discovery, especially when treating a novel target
family or understudied targets. We propose a Pharmacophore-Guided deep
learning approach for bioactive Molecule Generation (PGMG). Through the
guidance of pharmacophore, PGMGprovides a flexible strategy for generating
bioactive molecules. PGMG uses a graph neural network to encode spatially
distributed chemical features and a transformer decoder to generate mole-
cules. A latent variable is introduced to solve the many-to-many mapping
between pharmacophores and molecules to improve the diversity of the
generated molecules. Compared to existing methods, PGMG generates
molecules with strong docking affinities and high scores of validity, unique-
ness, and novelty. In the case studies, we use PGMG in a ligand-based and
structure-based drug de novo design. Overall, the flexibility and effectiveness
make PGMG a useful tool to accelerate the drug discovery process.

The acquisition of biologically active compounds is a vital but chal-
lenging step in drug discovery. It has been estimated that the drug-like
chemical space is as large as 1060 formolecules obeying Lipinski’s ‘rule
of five’1,2, a set of criteria to evaluate a compound’s potential to be an
orally active drug based on its molecular properties. Therefore, it is
extremely difficult to search for desired molecules in such a huge
space. Traditionally, hit compounds that exhibit initial activity on a
specific target could be obtained from natural products designed by
medicinal chemists or acquired by high-throughput screening3. These
methods consume a lot of human and financial resources, making the
acquisition of hit compounds inefficient and costly. Recently, deep
generativemodels have been proposed for the rational design of novel
moleculeswith the desired properties, providing a newperspective for
this task. Among the popular architectures and models for generating
molecules from deep neural networks, the variational autoencoders4,5,
reinforcement learning6,7, generative adversarial networks8–10 and
autoregressive models11,12 have been successful in designing the
desired molecules at a specified precondition. Many methods aim at
generating molecules with given physicochemical properties, such as
the Wildman–Crippen partition coefficient (LogP), synthetic

accessibility (SA), molecular weight (MW) and quantitative estimate of
drug likeness (QED). However, a more practical and challenging
objective is to designmolecules that satisfy those properties involving
biological experiments or extensive calculations to approximate, such
as bioactivity of the molecules for a specific target13. To generate
bioactive molecules, the existing models require a large dataset of
known activemolecules to fine-tune. However, this datasetmay not be
available. The paucity of activity data is one of the main obstacles in
applying deep learning-based methods in drug design, especially for a
novel target family. The choice of drug design strategy also depends
on what information can be used, for example, the receptor structure
or some known active ligands, hence narrowing down the application
of many deep learning methods.

To overcome the problems of data scarcity, methods that com-
bine prior biochemical knowledge into molecule generation models
have been proposed. For example, conditioned generative adversarial
network is used to design active-like molecules for inducing the
desired gene expression signatures14. The Seq2Seq15 method exploits a
pretrained biochemical language model with two-stage fine-tuning to
generate active-likemolecules using the target protein sequence as the
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input. However, the structure–activity relationship for the molecules
generated by such methods is less interpretable. DeLinker16 and
SyntaLinker17 retain active fragments while updating linkers to gen-
erate active molecules. DEVELOP18 combines DeLinker with chemical
features as the constraints to improve the quality of the generated
molecules. Fragment-based approaches require explicit knowledge of
the active fragments, whichmay lead to a restricted chemical space for
themodel to explore. DeepLigBuilder19, Pocket2Mol20 and RELARION21

generate molecules that are based on the binding sites between
molecules and proteins in 3D Euclidean space. However, these meth-
ods are limited when the binding site or target structure is unknown.
There are other methods that use chemical features in molecule gen-
eration, such as Reduced Graph22, which simplifies a SMILES to an
acyclic graph of functional group as its input. A shape-based method
proposed by ref. 23 can generate molecules from a 3D representation
of a seed ligand.

In the present study, we propose Pharmacophore-Guided deep
learning approach for bioactive Molecule Generation (PGMG), a
pharmacophore-guided molecule generation approach based on
deep learning. PGMG uses pharmacophore hypotheses as a bridge
to connect different types of activity data. Here, a pharmacophore
is a set of spatially distributed chemical features necessary for a
drug to bind to a target. Pharmacophore hypotheses can be con-
structed by superimposing a few active compounds24 or can be
inferred from the structure of a given target25. Pharmacophore-
based drug design has many successful applications26,27, but its
potential in deep generative models has not been fully exploited.
The aforementioned REALTION incorporates pharmacophore
information but only as an auxiliary tool to assist in the generation
based on complexes and active molecules. In PGMG, we provide a
different approach that enables flexible generation without further
fine-tuning in different drug design scenarios, especially for newly
discovered targets where there is insufficient activity data. We use a
complete graph to fully represent a pharmacophore, with each
node corresponding to a pharmacophore feature, such that the
spatial information can be encoded as the distance between each
node pair. Using the graph as the sole input, PGMG can generate
molecules that match the corresponding pharmacophore. This
gives PGMG the capability to utilise different types of activity data in
a uniform representation and biologically meaningful way to con-
trol the process of molecule design. Furthermore, since pharma-
cophores and molecules have a many-to-many relationship, PGMG
introduces latent variables tomodel such a relationship to boost the
variety of generated molecules. In addition, a transformer structure
is employed as the backbone to learn the implicit rules of SMILES
strings to map between latent variables and molecules. We com-
prehensively evaluate PGMG performance in molecule generation
with goal-directed and drug-like metrics. The results show that
PGMG can generate molecules satisfying the given pharmacophore
hypotheses and pharmacokinetic requirements while maintaining a
high level of validity, uniqueness, and novelty. The case studies
further demonstrate that PGMG provides an effective strategy for
ligand-based and structure-based drug de novo designs.

Results
Overview of PGMG
PGMG is a pharmacophore-guided molecular generation approach
based on deep learning. The overall architecture of PGMG is illustrated
in Fig. 1. The goal of PGMG is to generate molecules matching a given
pharmacophore. Here, we introduce a set of latent variables z to deal
with the many-to-many mapping between pharmacophores and
molecules. Namely, a molecule x can be represented as a unique
combination of two complementary encodings, including c, which
represents the given pharmacophore, and z, which corresponds to
how chemical groups are placed within the molecule. The latent

variable z grants PGMG the ability to model multiple modes in the
conditional distribution:

P xjcð Þ=
Z

z ∼ P zjcð Þ
P xjc,zð ÞP zjcð Þdz ð1Þ

We train two neural networks, an encoder network Pϕðzjc,xÞ to
approximate PðzjcÞ indirectly and a decoder network Pθðxjc,zÞ to
approximate Pðxjc,zÞ. We embed molecules in the SMILES format into
dense feature vectors and use Gated GCN28 to embed pharmacophore
hypotheses. The transformer structure proposed by ref. 29 is used as
the backbone of our model to learn the mapping between the phar-
macophore and molecular structures.

A PGMG training sample can be constructed using the SMILES
representation of amolecule. First, the chemical features of amolecule
are identified using RDKit30, some of which are randomly selected to
build a pharmacophore network Gp. As shown in Fig. 1a, we use the
shortest-path distances on the molecular graph to replace the Eucli-
dean distances between two pharmacophore features in a pharmaco-
phore hypothesis. The description of pharmacophore types can be
found in Supplementary Table 1, and the mapping rule between the
shortest-paths and Euclidean distances is available in Supplementary
Table 2. The analysis of the correlation and differences between the
shortest-path distance and Euclidean distance can be found in the
Supplementary Information (Supplementary Figs. 1–4). Next, a mole-
cule is represented as a randomisedSMILES string and then segmented
into a token sequence s. We then corrupt s to obtain the encoder input
s’ by using the infilling scheme31 and obtaining a training sample
ðGp,s,s

0Þ. Since we avoid the use of target-specific activity data in the
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Fig. 1 | The overall architecture of PGMG. a Construction of the pharmacophore
networks. We use the shortest paths on the molecular graph to determine the
distances between two pharmacophore features, based on which a fully connected
graph was constructed to represent a pharmacophore hypothesis. Different col-
ours represent different types of pharmacophore features. b Preprocessing of
SMILES. We randomise a given canonical SMILES and corrupt it using the infilling
scheme. c Pipelines for model training and inference. c represents the embedding
vector sequences for the given pharmacophore hypothesis; x represents the
embedding sequence of the input SMILES; and z represents the latent variables for
a molecule. During inference, z is drawn from a predefined normal distribution
Nð0,IÞ while during training, it is sampled from a learned distribution Nðμ,ΣÞ. The
transformer encoder and decoder blocks are stacked with N layers. � denotes the
concatenation of two vectors and�matrixmultiplication. The overlapbetween the
training and inferencing processes is highlighted in the right panel. GatedGCN
stands for Gated Graph Convolutional Network, and MLP stands for Multi-Layer
Perceptron.
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training stage, PGMG bypasses the problem of data scarcity on active
molecules.

When using the trained model to generate molecules, a pharma-
cophore hypothesis is required. The generation process is as follows:
given a pharmacophore hypothesis c, a set of latent variables z is
sampled from the prior distribution pðzjcÞ, which, in our case, is the
standard Gaussian distribution N 0,Ið Þ, and the molecules are then
generated from the conditional distribution pðxjz,cÞ. There are multi-
ple ways to construct a pharmacophore using various types of
active data.

We demonstrate the use of both ligand- and structure-based
pharmacophores to generate active molecules for de novo drug
design.

Performance of PGMG on the unconditional molecule genera-
tion task
We evaluate our model’s performance on the unconditional molecule
generation task with other SMILES-based methods, including VAE4,
ORGAN9, SMILES LSTM32 and Syntalinker17. We have trained these
models on the ChEMBL dataset33 based on the train-test split used in
the GuacaMol benchmark34. Since PGMG is a conditional model, we
have approximated the unconditional distribution by generating
molecules based on randomly sampled pharmacophore features. The
molecule generation performance is evaluated by four metrics: valid-
ity, novelty, uniqueness and ratio of the available molecules (see the
methods section for the definition of the metrics).

As shown in Table 1, PGMG performs the best in novelty and with
the ratio of available molecules, while achieving a comparable level of
validity and uniqueness as the other top models such as Syntalinker
and SMILES LSTM. We consider the ratio of available molecules as a
primary metric because it assesses the performance of the model in

generating novel molecules. Notably, PGMG has been found to
improve the ratio of available molecules by 6.3%.

To test whether PGMG catches the distribution of the training
datasets, we have further examined the physicochemical properties of
the generated molecules. As shown in Fig. 2, physicochemical prop-
erties such as the MW, LogP, QED, and topological polar surface area
(TPSA) share similar distributions between the generated and training
molecules. This demonstrates that PGMG well captures the distribu-
tion of the molecules in the training dataset.

PGMG can generate bioactive molecules satisfying the given
pharmacophores
We have evaluated the extent to which the generatedmolecules fit the
given pharmacophore hypotheses. Furthermore, we have predicted
binding affinities between protein receptors and molecules that are
generated using PGMG through themolecular docking tool AutoDock
Vina35.

We have used a match score to estimate the matching degree
between each molecule-pharmacophore pair. The definition of the
match score and an algorithm for calculating the match score can be
seen in the Supplementary Information. To make the calculation pro-
cess understandable, we give some examples about the calculation of
the match score (Supplementary Fig. 5). We extract a random phar-
macophore hypothesis from each molecule in the test dataset. About
236,000 molecules in total are generated from these random phar-
macophore hypotheses. For comparison, we have also calculated the
match score between 236,000 random molecules from the ChEMBL
dataset33 and the selected pharmacophores.

As shown in Fig. 3, most of the generated molecules (83.6%) have
matching scores greater than 0.8, of which 78.6% have a matching
score of 1.0. In contrast, the matching degrees for the random mole-
cules are centred at 0.466, with only 4.91% having a matching score of
1.0. This result demonstrates PGMG’s ability to generate molecules
satisfying the given pharmacophore hypotheses.

To further examine thebinding activity ofmolecules generatedby
PGMG through the guidance of pharmacophores, we obtain pharma-
cophore hypotheses with known target structures from the literature.
For each pharmacophore hypothesis, 10,000molecules are generated
by PGMG, for which the docking scores are calculated by AutoDock
Vina35. In Fig. 4a, we show the docking score distributions of the top
1000 molecules generated by PGMG and top 1000 molecules with
known bioactivity for the 15 targets from the ChEMBL database. We
have found that the molecules generated by PGMG obtain a compar-
able docking score with active molecules, suggesting that these
molecules can bind to the 3D structure of targets (Supplementary
Fig. 6 and Supplementary Table 4). We also conducted a

Fig. 2 | Distributionof the physicochemical properties for theChEMBL training
set and molecules generated by PGMG. a Molecule weight (MW); (b) the
Wildman–Crippen partition coefficient (LogP); (c) quantitative estimate of drug-
likeness (QED); (d) topological polar surface area (TPSA). The PGMG generated

molecules include a total of 100,000 molecules from random pharmacophore
hypotheses and the ChEMBL molecules comprise 100,000 molecules randomly
sampled from the ChEMBL training datasets.

Table 1 | Performance of PGMG and other SMILES-
based models

Methods Validity↑ Uniqueness↑ Novelty↑ Ratio of Avail-
able
Molecules↑

ORGAN9 0.379 0.841 0.687 0.219

VAE4 0.870 0.999 0.974 0.847

SMILES LSTM32 0.959 1.000 0.912 0.875

Syntalinker17 1.000 0.880 0.903 0.795

PGMG 0.982 0.979 0.976 0.938

An upward arrownext to eachmetric indicates that higher values represent better performance.
Best performance among all methods for each metric is shown in bold.
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pharmacophore-guided docking experiment to assess the binding
affinities of the molecules generated by PGMG, which yields similar
results. A more detailed descriptions of the pharmacophore-guided
docking experiment can be found in the ‘Pharmacophore-guided
docking’ section of the Supplementary Information (Supplemen-
tary Fig. 7).

To evaluate whether PGMG can generate drug-like molecules, we
further predict the pharmacokinetics properties (absorption, dis-
tribution, metabolism, excretion) and toxicity (ADMET) of the top
1000molecules. As shown in Fig. 4b, most of themolecules generated
by PGMG satisfy the pharmacokinetic properties and toxicity con-
straint for drug candidates, according to the standard proposed by
ADMET lab 2.036. A comprehensive comparison of ADMETbetween the
generated molecules and the known bioactivity molecules can be
found in Supplementary Fig. 8 and Supplementary Fig. 9.

We have also compared PGMG with other recent methods that
can generate bioactive molecules, including RELATION21,
Pocket2Mol20 and Seq2Seq15. We use these methods to generate
10,000molecules for AKT1 and CDK2 and evaluate them using: (1) the
ratio of availablemolecules, (2) the average SA, (3) the averagedocking
score, (4) the average alignment score between generated molecules
and pharmacophore hypotheses (pharmacophore score) and (5)
computational time. As shown in Table 2, PGMGachieves the best ratio
of available molecules and a top docking score while still maintaining
low computational time.We alsofind that PGMGhas a pharmacophore
score similar to RELATION, suggesting the consistency between the
shortest-path-based pharmacophore and Euclidean distance-based
pharmacophore.

Demonstration of PGMG’s application in structure-based drug
design
Structure-based drug design (SBDD) utilises the 3D target structure as
determined by experimental or homologymodelling to design ligands
with specific electrostatic and stereochemical features, aiming to
achieve a high receptor binding affinity. Here, we consider four targets
(VEGFR2, CDK6, TFGB1 and BRD4) with pharmacophore hypotheses
collected from the literature37–41, which are initially built using a ligand-
receptor complex as examples to further demonstrate the

performance of PGMG in SBDD. The pharmacophore hypotheses were
slightly modified according to the structure of the protein-ligand
complex. We compared the top docking score conformations of the
generated molecules with the top docking score conformation of the
reference ligands in the crystal complex as obtained from AutoDock
Vina. As shown in Fig. 5, most of these molecules share interactions
with the same amino acid residues as the reference ligands, which
indicates that the PGMG-generated molecules are capable of fitting
into the binding sites of the reference ligands.

Because of pharmacophore constraints, the generated molecules
and reference molecules overlap with the predicted conformations in
the pharmacophore region. A greater number of pharmacophore
pointsmeans amore specific restriction. For example, in Fig. 5a–c,with
a pharmacophore restriction that has six pharmacophore points, the
generated molecules of VEGFR2 (PDBID: 1YWN) have very similar
scaffolds as the reference. As for CDK6 (PDBID: 2EUF) and TGFB1
(PDBID: 6B8Y), despite the structural differences, the generated
molecules (Fig. 5e–g, i–k) share common important functional groups
as the reference ligands (Fig. 5h, l). On the other hand, the generated
molecules shown in Fig. 5m–o possess novel scaffolds of hydrogen
bonds with N140. Furthermore, we assess the druggable using SA and
hERG, where SA is designed to estimate the SA ofmolecules, and hERG
is the predicted probabilities of hERG inhibition, a toxicity metric to
assess the effects of compounds on the heart. These generated
molecules perform well on SA and hERG, suggesting that PGMG can
design molecules that not only fit well into the binding site, but that
also exhibit drug-like quality in the SBDD.

Demonstration of PGMG’s application in ligand-based drug
design
Ligand-based drug design is capable of designing drug molecules that
are based on the superposition of known active molecules when the
target is unknown or binding site is unclear. Here, we consider squa-
lene oxidase, which is the target for ringworm, superficial skin fungal
infections and other diseases. Butenafine and terbinafine are typical
inhibitors of squalene oxidase42. However, these inhibitors are prone
to drug resistance and side effects, including skin erythema, burning
and itching. Therefore, it is critical to design novel squalene oxidase
inhibitors. Here, we have generated 200 molecules using a pharma-
cophore hypothesis constructed from squalene oxidase inhibitors.

As shown in Fig. 6, these generated molecules align well with the
active conformation of terbinafine, which is obtained from molecular
dynamics simulation43. The listed molecules match well with the
desired pharmacophore features, including two hydrophobic groups,
a cation and an aromatic ring centre. Furthermore, PGMG captures the
equivalence of the different substructures under the same pharma-
cophore features. For example, it matches the aromatic ring with
pyrrole, thiophene and pyrimidine and the hydrophobic group with
aliphatic, cycloalkane and benzene. This result shows that PGMG can
generate diverse molecules while maintaining the important proper-
ties of the substructures that are the same as the known inhibitors.

To further assess the pharmacokinetics and toxicity of the gen-
erated molecules, we have calculated the TPSA and SA and predicted
the hERG of the generated molecules. TPSA is a molecular descriptor
used to measure the polar surface area of a molecule, and it has an
application in predicting drug permeability. Of the six molecules
generated by PGMG, their TPSA, SA and hERG values are within the
rational range. The results suggest that PGMG can generate molecules
that match the pharmacophore andmeet the overall criteria for TPSA,
SA and hERG.

A showcase of PGMG application in scaffold hopping
Scaffold hopping refers to the acquisition of molecules with novel
scaffolds by replacing the chemical core structure while maintaining
some essential features of the known active compounds. It has been

Fig. 3 | The distributions of the match scores of PGMG-generated molecules
compared with randomly selected molecules. A total of approximately 236,000
molecules were generated using PGMG from random pharmacophore hypotheses
extracted from the test dataset and the match scores are calculated and compared
with the results of molecules randomly sampled from the training dataset.
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Fig. 4 | Docking scores and properties distribution of PGMG-generated mole-
cules. a The distributions of the docking scores of the top 1,000 molecules gen-
erated by PGMG over 15 targets compared with those of the top 1000 known
bioactivemolecules (using a thresholdof pChEMBL>4). ThepChEMBLvalue58 is the
negative logarithm of the molar IC50, EC50, Ki, Kd, or Potency, and it allows these
roughly comparable measures to be compared. The median is represented by the
centerline of the boxplot, while the first and third quartiles are indicated by the
bounds of the box. The whiskers represent the 1.5 interquartile range (IQR).
b Distributions of the ADMET properties of the top 1000 molecules generated by
PGMG. The dashed lines represent the thresholds of these properties, for which an
upward arrow indicates that values higher than the threshold are preferred, while a
downward arrow indicates that values lower than the threshold are preferred. TPSA
represents the topological polar surface area, suitable when: 0–140 (Å2); MW
denotes the molecular weight, suitable when: 100–600; nHA represents the

number of hydrogen bond acceptors, suitable when: 0–12; nHD represents the
number of hydrogen bond donors, suitable when: 0–7; SA is the synthetic acces-
sibility score, suitable when: <6; the predicted Madin–Darby Canine Kidney cells
(MDCK)measures theuptake efficiencyof a drug into thebody, suitablewhen: >2 ×
10−6 (cm/s); BBB is the predicted probability of a drug to cross the blood-brain
barrier to its molecular targets, qualified value: 0–0.7; F(20%) is the predicted
probability of molecules with a human oral bioavailability <20%, suitable when:
<0.3; CYP2C9 assesses drug metabolism reactions, and the value is the predicted
probability of being an inhibitor; T12 assesses the half-life of the drug, and the value
of T12 is the predicted probability of the half-life ≤3; hERG evaluates whether the
molecule is toxic to the heart, and the value of hERG is the predicted probability of
being inhibiting to the human ether-a-go-go gene; ROA measures acute toxicity in
mammals. The value of ROA is the predicted probability of being toxic.
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widely applied to generate novel backbones to improve physico-
chemical and ADMET properties or to arrive at patentable analogues.
As pharmacophores define the chemical features that are essential for
biological activity, they can be employed to guide scaffold
replacements44–46. Here, we show how PGMG can help scaffold hop-
ping using Lavendustin A as a case study. Lavendustin A is an inhibitor

of epidermal growth factor receptor (EGFR), but it is difficult to cross
the cell membrane because of its poor lipophilicity. It has been shown
that improving the lipophilicity of Lavendustin A can lead to nano-
molar levels of IC50 inhibition activity at the cellular level47. We con-
struct a pharmacophore hypothesis using Pharao48, and three
pharmacophore features are retained by analysing the binding sites of
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Fig. 5 | Binding sites of PGMG-generated molecules in a structure-based drug
design. The molecular structure, docking scores, synthetic accessibilities (SA), the
predicted probabilities of hERG inhibition (hERG) of the top-rankingmolecules and
the reference active molecule are given for each target with the corresponding
pharmacophore hypothesis: (a–d) VEGFR2 (PDBID: 1YWN), (e–h) CDK6 (PDBID:

2EUF); (i–l) TGFB1 (PDBID: 6B8Y); and (m–p) BRD4 (PDBID: 3MXF). Different
pharmacophore features are shown in different colours: magenta red (aromatic
ring), green (hydrophobic group), purple (hydrogen bond donor), blue (hydrogen
bond acceptor). The conformations of generated molecules are acquired through
docking.

Table 2 | The experimental results of PGMG and other methods aimed at generating bioactive molecules

Target Method Validity↑ Uniqueness↑ Novelty↑ Ratio of Available
Molecules↑

SA±std↓ Docking
Score±std↓

Pharmacophore
Score±std↑

Time↓

CDK2 PGMG 0.981 0.949 0.995 92.6% 2.49 ±0.42 −9.14 ±0.45 0.78 ±0.06 18 s

RELATIONphar
[a21 0.361 1.000 1.000 36.1% 2.77 ± 0.54 −8.67 ± 0.52 0.741 ± 0.07 5 s

RELATIONphar-
BOdock

a
0.622 0.992 0.942 58.1% 2.78 ± 0.57 −8.67 ± 0.53 0.743 ±0.06 ~60h

Pocket2Mol20 1.000 0.248 0.998 24.8% 4.23 ± 1.26 −9.09 ±0.98 - 1.5 h

Seq2Seq15 0.953 0.796 0.999 75.8% 2.76 ± 0.43 −9.09 ±0.47 - 97 s

AKT1 PGMG 0.996 0.848 0.993 83.9% 2.35 ±0.46 −11.17 ±0.48 0.75 ± 0.12 15 s

RELATIONphar
a 0.332 1.000 1.000 33.2% 3.13 ± 0.54 −9.85 ±0.70 0.79 ±0.14 5 s

RELATIONphar-
BOdock

a
0.541 0.94 0.951 48.4% 3.12 ± 0.55 −9.83 ± 0.73 0.81 ± 0.14 ~60h

Pocket2Mol 1.000 0.313 0.997 31.2% 4.29 ±0.95 −10.48 ± 1.03 - 1.9 h

Seq2Seq 0.945 0.67 1.00 63.3% 3.18 ± 0.41 −10.60 ± 0.59 - 103 s
aThe validity, uniqueness and novelty of the two RELATION methods taken from the original paper. Because different methods have different numbers of available molecules, the synthetic
accessibility (SA) score, docking score and pharmacophore score are calculated as the average of the top 2000 molecules sorted based on their docking scores. ‘std’: the standard deviation. An
upward (or downward) arrow next to each metric indicates that higher (or lower) values represent better performance. Best performance among all methods for each metric is shown in bold.
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Lavendustin A in the EGFR protein pocket49. Then, we use PGMG to
generate molecules for the given pharmacophore hypothesis.

We filter the generated molecules with LogP > 3.41 to obtain
molecules with a higher lipophilicity than Lavendustin A. We calculate
Tanimoto similarity using Morgan Fingerprints with RDKit30 between
the obtained molecules with three pharmacophore features of the
aromatic ring, hydrogen bond donor and hydrophobic group and the
EGFR inhibitors acquired from the ExCAPE database50. Fig. 7 shows the
different scaffolds for the generatedmolecules with their closest EGFR
inhibitors obtained from the ExCAPE database. We have found that
some of the generatedmolecules exhibit high scaffold similarity to the
EGFR bioactive molecules in the ExCAPE database, which have not
been included in the training set. Furthermore, the generated mole-
cules have the same binding mode as Lavendustin A in EGFR (Sup-
plementary Fig. 10), suggesting that PGMG can discover those
inhibitors that have novel scaffolds with only knowledge of Laven-
dustin A.

Discussion
In the present study, we have developed a pharmacophore-guided
deep learning approach for bioactive molecule generation called

PGMG. As the only constraint during the generation process, we use
pharmacophores by (1) encoding both the pharmacophore features
and spatial information of a given pharmacophore into a complete
graph with node and edge attributes and (2) introducing latent vari-
ables so that a molecule can be uniquely characterised by a pharma-
cophore and set of latent variables to handle the many-to-many
relationship of pharmacophores and molecules. Our approach offers
advantages over current molecule generation methods. First, PGMG
provides a way to utilise different types of activity data in a uniform
representation, allowing it to overcome the problemofdata scarcity. It
is also worth mentioning that the training scheme itself does not
require any activity data to proceed. Second, pharmacophores incor-
porate biochemistry knowledge and, thus, are biologicallymeaningful,
hence providing PGMG a strong prior and interpretability into the
generation process. Furthermore, a trained PGMG model can be
directly applied to different targets without further fine-tuning. We
have alsodeveloped aneasy-to-useweb server for PGMG (https://www.
csuligroup.com/PGMG) that allows users to generate molecules for
any given pharmacophore hypothesis.

We show that PGMG is competent in generating a large number of
molecules with docking scores similar to or even better than the
known activemolecules obtained from theChEMBLdatabase.With the
pharmacophore for certain targets, PGMG can also be utilised to
design dual or multitarget molecules. In addition, we expect that
PGMG can be adopted to prepare chemical libraries to improve virtual
screen efficiency because this can provide a certain number of candi-
date drug-like molecules for a specified target. The structure-based
and ligand-based case study shows that PGMG can generate high-
quality bioactivity molecules that match the pharmacophore hypoth-
esis with structural diversity, suggesting that PGMG can be applied to
multiple drug design scenarios, such as researching alternative medi-
cine and drug resistance. Finally, the showcase of scaffold hopping
demonstrates that PGMG can discover active molecules with novel
scaffolds.

De novo drug design is a complicated and situation-specific pro-
blem, and computational methods should benefit from the input of
prior biochemistry knowledge. PGMG benefits from this idea by leav-
ing the construction of pharmacophore hypotheses to the user. There
are multiple ways to form a pharmacophore hypothesis; various
information can be used, and different adjustments can be made to
enhance the hypothesis. A more accurate hypothesis can be used to

Lavendustin A

LogP: 3.91 LogP: 4.23

LogP: 4.53

LogP: 3.57

LogP: 4.96

EGFR inhibitor
IC50: 10.49 μM

EGFR inhibitor 
IC50: 3.54 μM

EGFR inhibitor
IC50: 0.57 μM

EGFR inhibitor  IC50: 25.12 μM

EGFR inhibitor
IC50: 25.12 μM

OH 7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

Fig. 7 | The molecule generated by PGMG with known inhibitors in the case of
scaffold hopping.Molecules generated by PGMG are shown inside the circle, and
their closest active nearest neighbours are shown outside the circle. The colours

indicate the pharmacophore features extracted from Lavendustin A: aromatic ring
(red), hydrogen bond acceptor (blue) and hydrophobic group (green).

QED: 0.61
TPSA: 52.0
SA: 3.0
hERG: 0.12

QED: 0.90
TPSA: 63.1
SA: 2.5
hERG: 0.02

QED: 0.85
TPSA: 63.1
SA: 2.5
hERG: 0.05

QED: 0.86
TPSA: 30.3
SA: 3.9
hERG: 0.06

QED: 0.67
TPSA: 33.0
SA: 2.7
hERG: 0.29

QED: 0.83
TPSA: 49.3
SA: 2.4
hERG: 0.08

6-36-26-1

6-4 6-5 6-6

a b c

d e f

Fig. 6 | Alignment of terbinafine (grey) and molecules (green) generated by
PGMG. a–f Represent the alignment of six structurally different molecules gener-
ated by PGMG with the conformation of terbinafine. The coloured spheres repre-
sent different pharmacophore elements, including aromatic ring (red), cation
(yellow) and hydrophobic group (green).
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import the quality of the generated molecules. For example, QSAR
studies can beused to adjust thehypothesis, whichmay result in better
constraints of the generated molecules. On the other hand, the lim-
itations of PGMG should be acknowledged. For example, PGMG cur-
rently does not support exclusion volume in pharmacophore
hypotheses. Since we focus on the task of generating molecules with
the desired activities, PGMG does not explicitly constrain the proper-
ties of the generated molecules. A future direction of our work is to
include the exclusion volume and other features in PGMG,making the
generated molecules more controllable and malleable. Another
direction is to incorporate QSAR analysis into the generative models,
which may provide a stronger baseline of pharmacophore hypothesis
with enhanced interpretability.

Methods
Datasets
We used the ChEMBL 24 dataset containing more than 1.25 million
molecules to train PGMG. ChEMBL is a collection of bioactivity data for
various targets and compounds from the literature. It contains 13 types
of atoms (T = 13): H, B, C, N, O, F, Si, P, S, Cl, Se, Br and I. Each bond is
either a no-bond, single, double, triple or aromatic bond (R = 5).

We also used the ZINC51 molecule dataset from JTVAE52 for our
ablation study. It contains 220,000 molecules in the training data and
11 types of atoms (T = 11): H, B, C, N, O, F, P, S, Cl, Br and I. Each bond is
either a no-bond, single, double, triple or aromatic bond (R = 5).

The structure of the targets FGFR1 (PDBID: 2FGI), ACHE (PDBID:
4EY7), MDM2-P53 (PDBID: 3JZK), PARP1 (PDBID: 6I8M), NS5B (PDBID:
3PHE), HSP90 (PDBID: 3HHU), BACE1 (PDBID: 2IRZ), PRKCQ (PDBID:
1XJD), PIM1 (PDBID: 3BGQ), CDK2 (PDBID: 4KD1), BRD4 (PDBID: 3MXF),
VEGFR2 (PDBID: 1YWN), CDK6 (PDBID: 2EUF), TGFB1 (PDBID: 6B8Y)
and AKT1 (PDBID: 4GV1) are downloaded from the PDB53 database.

Representation of pharmacophores and molecules
Apharmacophorehypothesis consists of several chemical features and
their spatial descriptions and is representedby a fully connected graph
with chemical feature types as node attributes and distances as edge
weights (a detailed description of the pharmacophore graph and
preparation of the pharmacophore graph is included in the Supple-
mentary Information). We have applied a state-of-the-art graph neural
network, Gated-GCN28, to embed the graph by considering node
attributes and edge attributes.

Molecules are represented in SMILES format. Symbols of stereo-
chemistry like ‘@’ ‘/’ are removed because stereochemistry informa-
tion does not exist in the graph representation of a pharmacophore,
and it is not difficult to list all the stereoisomers of a molecule. Then,
the SMILES string is separated into a sequence of tokens corre-
sponding to heavy atoms and structural punctuation marks. For
example, the SMILES string ‘C(C[NH2-])OC( =O)Cl’will be split into ‘C/
(/C/[NH2-]/)/O/C/(/ = /O/)/Cl’, where each tokenwill be embedded into
a vector.

Encoder and decoder
An illustration of the encoder and decoder networks can be found in
Fig. 1. The encoder and decoder network have been adapted from the
standard transformer29 architecture, with each consisting of several
layers of stacked transformer encoder and transformer decoder
blocks. The difference between the transformer encoder and decoder
blocks is that the encoder block uses only self-attention modules and
the decoder block uses cross-attention modules to incorporate the
context in the generation process. Some modifications have been
made to handle our inputs and better suit the variational autoencoder
structure of PGMG.

We first calculate the latent variables z of molecule x given
pharmacophore c by the encoder network. The encoder input is a
concatenation of molecule and pharmacophore features. Following

BART31, positional and segment encoding are added to the following
input sequence:

Inputencoder = E 0
p;E

0
m

� �
ð2Þ

E 0
mi

= Emi
+ SEm +PEi ð3Þ

E 0
pj
= Epj

+ SEp ð4Þ

where Inputencoder is the input representation, Epj
is the j-th

pharmacophore feature vector, Emi
is the i-th token embedding of

molecule features, SEm and SEp are two segment embedding vectors
for molecule features and pharmacophore features, and PEi is the
positional embedding for the i-th token. After several layers of
transformer encoder block, the molecule features are averaged by
an attention pooling layer to obtain the final molecule representation
hx . hx is then fed into two separate subnetworks to compute themean
μ and log variance log Σ of the posterior variational approximation.
Latent variables z are then sampled from the normal distribu-
tion Nðμ,ΣÞ.

The decoder network takes the latent variables z and pharmaco-
phore features as the input:

Inputdecoder = E 0
p;E

0
z

� �
ð5Þ

E 0
zi
= zi + SEz +PEi ð6Þ

where E 0
p is calculated using Eq. (4), SEz is the segment embedding for

the latent variables, and PEi is the positional embedding for i-th token.
The decoder then uses inputdecoder to generate target SMILES
autoregressively. Each token is determined based on previously
generated tokens and context:

oi = argmax
oi

P oijo<i,c,z
� �

ð7Þ

where oi is i-th generated token.

Loss function
PGMG’s model is trained in an end-to-end manner. The loss function
consists of three different terms: KL loss, languagemodelling loss (LM
loss) and mapping loss. The first two terms are derived from the evi-
dence lower bound (ELBO) of the log-likelihood logPθðxjcÞ:

logPθ xjcp
� �

= log
Z

Pθ xjc, zð ÞPϕ zjcð Þdz ≥ � KLðPϕ zjx, cð ÞjjPθ zjcð ÞÞ

+ EPϕ zjx,cð Þ logPθ xjz, cð Þ� � ð8Þ

where KL denotes the Kullback–Leibler divergence and where we
assume PθðzjcÞ the prior distribution of z to be a standard Gaussian
Nð0,IÞ. We call KLðPϕ z,j,x,cð ÞjjPθ z,j,cð ÞÞ KL loss, and it serves as a reg-
ulation term tomitigate the gap between the true prior distribution of
z and the posterior distribution while making the latent space of z
smoother. The expectation term EPϕ z,j,x,cð Þ logPθ x,j,z,cð Þ� �

is estimated
throughMonte Carlo estimationwith one data point for each sample54.
Because x takes the form of the SMILES string, we refer to it as the
LM loss.

The third part of PGMG’s loss function is mapping loss. It evalu-
ates the model’s performance in predicting the mapping between
heavy atoms and pharmacophore elements. We use mapping loss as a
regulation termtohelpalleviate theproblemofposterior collapse. The
mapping score of the i-th pharmacophorepi and j-th output token oj is
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calculated as follows:

smapping ij
= σ g WpEpi

� �
� g WoEoj

� �� �
ð9Þ

where smapping ij
is the mapping score, Epi

and Eoj
are the embedding

vectors of pi and oj, respectively, Wp and Wo are two learnable
matrices to project twodifferent embeddings into the same space,� is
the dot product, σ is the sigmoid function and g is the ReLU function.
The calculation of the mapping scores can be vectorised as follows

smapping = σ g WpEp

� �
g WoEo

� �� �
ð10Þ

Since the SMILES format contains tokens other than atom sym-
bols, we mask them when calculating the mapping loss. The mapping
loss is then calculated as the cross-entropy of the masked scores and
labels. An illustrationof themaskedmapping score and label is given in
Supplementary Fig. 11.

Training details and model parameter settings
During training, we inject noise into the input to make the training
more robust by using the infilling scheme. Some random sub-
sequences in every input sequence are replaced by a single [mask]
token. The teacher forcing technique is applied to the generation
process during training, by which we replace the previously generated
tokens with the ground truth to produce the next token. Aside from
the mapping loss introduced before, another approach we use to
alleviate posterior collapse is KL annealing55, where an increasing
coefficient is used to control the size of KL loss.

We use the samemodel parameters in both the ChEMBL and ZINC
datasets. The hidden dimension is 384. The transformer encoder
blocks and transformerdecoder blocks are stacked eight times.Weuse
an eight-head attention, and the feed-forward dimension is 1024. We
use anAdamoptimiser to train themodel with a 3e–4 learning rate and
a 1e–6weight decay rate. Cosine learning rate annealing is appliedwith
a cycle length of four epochs. We use the gradient clipping technique
and set the maximum gradient as five. Since the ChEMBL dataset
contains many more molecules compared with the ZINC dataset, it
requires fewer training epochs to reach a similar validation perfor-
mance. Thus, the number of training epochs for the former is 32 and48
for the latter.

Evaluation
Four different metrics, including validity, uniqueness, novelty and
ratio of available molecules, are employed to evaluate the ability to
generate novel molecules. Validity is the percentage of chemically
valid molecules with the generated SMILES. Uniqueness measures
how many valid molecules are nonrepetitive. Novelty refers to the
percentage of chemically valid molecules not generated in the
training set. The ratio of available molecules is the proportion of
novel molecules in all generated results. These metrics are calcu-
lated as follows:

validity =
#of chemically valid SMILES ð#of moleculesÞ

#of generated SMILES
ð11Þ

uniqueness =
#of uniquemolecules

#of molecules
ð12Þ

novelty =
#of novelmolcules

#of uniquemolecules
ð13Þ

ratio of availablemolecules =
#of novelmolecules
#of generated SMILES

ð14Þ

We use the match score to indicate the match degree of the
generated molecules to the specified pharmacophore (see the calcu-
lation of match score section of the Supplementary Information for
details).

The docking score of AutoDock Vina35 is used as a proxy for the
binding activity of the generated molecules to the target35. We use
AutoDock Vina to perform semiflexible docking with the default
parameter, where the flexibility of ligands is considered to dock into a
rigid receptor. The central coordinates of the box are calculated as the
average coordinates of each heavy atom in the ligand. The size of the
box is determined by the size of the ligand in the PDB complex. The
analysis shows that water in the BRD4 (3MXF) pocket affects receptor
binding to the ligand, so we conduct hydrated docking for 3MXF56.

We also use ADMETlab 2.036 to predict the ADMET properties of
the generated molecules and assess the drug-like potential of the
generated molecules.

The pharmacophore score in Table 2 is calculatedwith Align-it48, a
tool to align molecules with the pharmacophores hypotheses:

pharmacophore score=
Voverlap

V ref
ð15Þ

where Voverlap is the overlapping volume between the given pharma-
cophore elements and the reference and where Vref is the volume of
the reference pharmacophore elements36 to predict the ADMET
properties of the generated molecules and assess the drug-like
potential of the generated molecules. The computational time is
calculated using a NVIDIA Tesla V100s GPU card, except for
RELATIONphar-BOdock, of which the computational time is obtained
from the original paper. For Pocket2Mol20 and Seq2Seq15, we run the
experiment using the code and model weights provided by the
authors. However, for Pocket2Mol, wemake a small modification in its
code to disable it from filtering the duplicated results and outputting
only unique molecules. As for RELATION21, the results are acquired
using ReMODE57, a web server developed by the authors of RELATION.
Since the web server will automatically filter the generated molecules,
validity, uniqueness and novelty are obtained from the original paper
of RELATION. The pharmacophore hypotheses used for fine-tuning
RELATION are provided by the author and later used in the generation
process of PGMG.

We also conducted an ablation study to see the performance of
variants of PGMG. The details can be found in the ‘Ablation Study’
section of the Supplementary Information (Supplementary Table 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset used to train and evaluate themodel is provided at https://
github.com/CSUBioGroup/PGMG. Other data including generated
molecules are provided in Supplementary Data files 1–3. Source Data
for Figs. 2–4, Tables 1, 2, and Supplementary Figs. 1–9 are provided as a
Source Data file. Source data are provided in this paper.

Code availability
The source code is available at https://github.com/CSUBioGroup/
PGMG, which has also been deposited in the Zenodo under accession
code https://doi.org/10.5281/zenodo.8195825.
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