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Reducing risks of antibiotics to crop
production requires land system
intensification within thresholds

Fangkai Zhao 1, Lei Yang2,3, Haw Yen4,5, Qingyu Feng2,3, Min Li2,3 &
Liding Chen 1,2,3

Land system intensification has substantially enhanced crop production;
however, it has also created soil antibiotic pollution, undermining crop pro-
duction.Here,weprojected soil antibiotic pollution risks to cropproduction at
multiple geographical scales in China and linked them to land system inten-
sification (including arable land expansion and input increase). Our projec-
tions suggest that crop production will substantially decrease when the soil
antibiotic pollution risk quotient exceeds 8.30–9.98. Land systems explain
most of the variability in antibiotic pollution risks (21–66%) across spatial
scales. The convex nonlinearities in tradeoffs between antibiotic pollution risk
and crop production indicate that vegetable and wheat production have
higher thresholds of land system intensification at which the risk–yield tra-
deoffs will peak than do maize and rice production. Our study suggests that
land system intensification below theminimum thresholds atmultiple scales is
required for acceptable antibiotic pollution risks related to crop yield
reduction.

Since the onset of the Anthropocene, human activities have driven
substantial socioeconomic development; however, they have also
created significant environmental risks from food security to che-
mical pollution, which must be managed1–3. As an emerging issue,
antibiotics are used worldwide to control microorganisms (e.g., for
human disease prevention and animal growth promotion)4,5. Unfor-
tunately, antibiotics are generally emitted into the soils during their
manufacture, use, and disposal, and agricultural practices have been
one of most important sources of antibiotic emissions, such as
manure fertilization and wastewater irrigation, which contain a large
amount of antibiotics2,6. Soil antibiotic pollution thereby increasingly
undermines the health of agricultural ecosystems, such as by inhi-
biting plant growth, disturbing soil functioning, and ultimately
reducing crop production7,8. Given the increase in human emissions
of antibiotics, risks to crop production caused by antibiotic pollution

are expected to increase in the future4,5. Thus, managing antibiotic
pollution risks is crucial for maintaining crop production and
sustainability9.

Although the antibiotic footprint has received considerable
attention10, the repercussionsof antibiotic dispersion in the soil remain
largely unknown. In both developed and underdeveloped countries, it
is difficult to determine soil antibiotic pollution risks on a massive
scale, which exacerbates the lack of a robust analysis that allows us to
synthesize the risks to crop production. This hasproven to be a serious
scientific challenge that limits our understanding of the linkages
between antibiotic pollution and food security. Several studies have
attempted to simulate the spatial characteristics of antibiotics in
soil11,12. However, these approaches are limited in that they have
restricted geographic extents anddonot directly characterize the risks
to crop production13,14.
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It has been highlighted that land use plays a crucial role in soil
antibiotic pollution15,16; however, the causes of antibiotic pollution
risks are still substantially challenging, partially because land systems
change over a vast range of spatial scales. Land system intensification,
particularly arable land expansion and increased agricultural inputs
(e.g., increased fertilization and irrigation), which seeks to increase
crop yields and associated economic returns, can substantially
exacerbate soil antibiotic pollution in parallel with improvements in
crop yields17,18. For instance, highmanure application rates increase the
loading of antibiotics into soil and result in serious soil antibiotic
pollution in a given region19. It has also been recognized that larger
areas of arable land have higher likelihoods of receiving agriculture-
originated antibiotics15. Thus, understanding the responses of anti-
biotic pollution to land system regimes and the thresholds for sus-
tainable land system intensification is greatly beneficial for
corresponding risk management. Recent studies suggest that land
systems distinctly affect antibiotic pollution risks from regional to
global scales15,20. Controlling human societies to reduce antibiotic
pollution at multiple scales requires sustainable land system intensi-
fication, including modifications to land use patterns and land man-
agement practices21. How land system intensification considering
different spatial scales affects antibiotic pollution is the key question in
addressing the risks to crop production; however, few efforts have
attempted to bridge these gaps.

Filling thesegaps can further promote sustainable socioecological
outcomes of land system intensification, balancing crop production
and soil antibiotic pollution. This study aims to address three ques-
tions: (i) Do antibiotic pollution risks reduce crop production at a
broad scale? (ii) How do land systems affect soil antibiotic pollution
risks with changing spatial scales? (iii) How can land system intensifi-
cation be managed to balance antibiotic pollution risk and crop yield
based on the potential thresholds where risk–yield tradeoffs take their
maximum values? To address these questions, we examine the scale-
dependent effects of land system intensification on soil antibiotic
pollution risk by taking China as a case study, which is one of
the greatest consumers of antibiotics worldwide and is exposed
to antibiotic pollution20. The risk quotient (RQ, unitless) of antibiotics
to arable crop growth is estimated to characterize soil antibiotic pol-
lution risk, and the risk quotient is defined as the extent to
which environmental concentrations surpass their no-effect
concentrations22. We first predict the risk associated with antibiotics
on a broad scale using machine learning logarithms and analyze the
relationships with maize, rice, wheat, and vegetable production.
According to the development Kuznets curve hypothesis, which
describes nonlinear relationships between sustainable development
and inequality (e.g., economy and environmental elements)23, we
examine inverted U-shaped relationships between land system inten-
sification and antibiotic pollution risk to crop production when spatial
scales change (that is, decrease or increase in the size and extent of
space, Supplementary Note 1, Supplementary Figs. 1 and 2).We further
explore the thresholds of land system intensification at which anti-
biotic pollution risk substantially increases. On the basis of these
analyses, we provide guidance for the development of tailored stra-
tegies to balance antibiotic pollution risk and crop production.

Results
Predicting the risks of antibiotics to crop production
To quantify the risks to crop production in each geographic grid cell,
we modeled the RQs of each target antibiotic in soil using ensemble
random forest (RF) models fed with georeferenced datasets (Supple-
mentary Fig. 3). The differences between the modeled and validated
RQs were generally less than 1, with correlation coefficients ranging
from0.48 to 0.68, demonstrating the good prediction performance of
our models (Supplementary Fig. 4). This procedure allowed us to
clarify soil susceptibility to antibiotic pollution. To elucidate the extent

of pollution caused by antibiotic mixtures, we calculated the cumula-
tive RQs for the ecosystem in each grid cell on the basis of the con-
centration addition principle24. The average cumulative RQ of
antibiotics in the Chinese soil environment was 6.1 ± 2.1 (Fig. 1a). The
cumulative RQ was particularly high in central and eastern China,
which experience considerable exposure to antibiotics. The relative
uncertainty (ratio of standard deviation to mean) across the ensemble
model was ±26% of the predicted data on average, but areas of sub-
stantial uncertainty existed.Huang–Huai–Hai and theNortheast Plains,
which are the main grain production areas accounting for more than
one fifth of the agricultural output of China, exhibited the highest
uncertainties (Fig. 1b). This suggests that anthropogenic activities
possibly caused a wide range of antibiotic pollution risks in soil. An
RQ> 1 indicates that target antibiotics pose serious risks to crop yield,
which is recognized by EU risk assessments25. Our model estimated
that ~11.4% of the land was contaminated by more than one antibiotic
compound. Among the target antibiotics, ofloxacin accounted for the
most pronounced risk, with RQs of 0.76 ±0.37 (Fig. 1c).

We also asked whether soil antibiotic pollution could influence
crop production on a broad scale. Our analysis showed that the soil
antibiotic risk consistently imposed nonlinear effects on maize, rice,
wheat and vegetable production (Fig. 1d–g). Generally, when the
cumulative RQ of soil antibiotic pollution exceeded 8.30–9.98, the
yields of these crops substantially decreased andwere even lower than
the crop yields when the risks were zero. This indicates that serious
antibiotic pollution could partially offset the positive effects of human
activities on crop yield increase.

Scale-dependent land system effects on the risks of antibiotics
in soil
Since the local-specific relationships between land systems and anti-
biotic pollution risks might be hidden to a large extent, we evaluated
scale effects by reducing the scale extent (that is, the proportion of
areas selected along the human-impact gradient, Methods and Sup-
plementary Note 1). We excluded the segments from the lowest or
highest ends of the human-impact gradient to explore how the rela-
tionships between land systems and antibiotic pollution risks were
altered in watersheds subjected to high or low human footprint pres-
sures. At the large watershed level, the change in scale extent had
divergent effects, suggesting that the spatial extent stronglymodulated
human impacts on antibiotic pollution risks (Supplementary Figs. 5 and
6). Nevertheless, spatial extent changes had limited influences on the
land system–antibiotic pollution relationships at smallwatershed levels.
By combining the 20 analyses with different spatial extents, our results
suggested that antibiotic pollution risks strongly correlated with land
systems (including both land use and management) in most cases
(100%, particularly at the small watershed level), while they were less
correlated with population and economic indicators (Fig. 2a–d), indi-
cating a more fundamental role of land systems in regulating antibiotic
pollution risks across scales. At the small watershed level, management
(particularly manure application) increased the risk levels in 16 of 20
analyses (Fig. 2d). Shifts in land systems, such as land use composition
and management practices, enable us to capture the likelihood of soil
antibiotic pollution risks across scales. Given the complementarity
between land use and management, they showed opposite scale-
dependent contributions to the RQs of antibiotics (Fig. 2e–h). With
downscaling, the contribution of arable land to antibiotic pollution
increased from12.9 ± 3.2% to 59.5 ± 12.7%. These results indicate that the
land system–antibiotic pollution relationships were scale-dependent,
suggesting the necessity of different land system management strate-
gies to control antibiotic pollution risks.

Risk–yield tradeoffs through land system intensification
Changes in the risk–yield relationship with land system intensification
showed that a tradeoff existed between antibiotic pollution risks and
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crop yields (Fig. 3). The area between the crop yields and risk curves
indicates the potential to improve land system intensification.
According to the risk–yield tradeoffs, which are defined as the differ-
ence between scaled yield and risk, vegetable yield had a higher
improvement potential than maize, rice, and wheat, and it had higher
thresholds of land system intensification across scales. The results
demonstrate that although land system intensification can improve
vegetable production, its benefit–risk ratio decreased when land sys-
tem intensification crossed the thresholds; that is, the benefit increase
might be lower than the risk increase.

Tomanage land systems, their effects on risk–yield tradeoffs were
evaluated on different scales via the moving-window approach. The
convex nonlinearities in the effects of land management on risk–yield
tradeoffs were widely observed for four arable crops across scales
(Supplementary Fig. 7). These convex nonlinearities suggested that
there were thresholds of land system intensification where risk–yield
tradeoffs peaked (Fig. 4). Our analysis showed that vegetable
and wheat production had higher thresholds (vegetables:
523.5–1801.6 kgN/km2/yr, wheat: 672.1–1186.9 kgN/km2/yr) of manure
fertilization than maize and rice production, particularly at small
scales. For irrigated areas, vegetable and wheat production generally
also had high thresholds (vegetables: 54.4–61.5%, wheat: 50.0–61.7%)
at small scales, while rice production had high thresholds at large
scales (46.0–66.5%). Given the importance of arable land to antibiotic
pollution risk (Fig. 2e–h), we also analyzed the arable land area
thresholds for risk–yield tradeoffs. Vegetable and wheat production
also had higher thresholds (vegetables: 34.4–39.1%, wheat:
32.7–44.9%) than maize and rice production at small scales. These

results suggest that vegetable andwheat production seem tohavehigh
resistance to antibiotic pollution at small scales.

Discussion
During the Anthropocene era, human demands and land use intensity
have increased. Throughout history, humans have modified the soil
ecosystem to obtain life-sustaining resources. This has recently resul-
ted in negative environmental effects, such as antibiotic pollution,
which must be managed to protect crop production26. This study
found that using an ensemble random forest model fills the gaps in
information on antibiotic pollution in China and expands previous
regional-scale risk assessments, which were limited by data availability
and spatial scale12,27. We first investigated the susceptibility of crop
production to soil antibiotic pollution on a broad scale (Fig. 1). The
results revealed that antibiotic pollution posed a widespread risk to
the cropproduction ofChina,which has similar geographicpatterns to
land system intensification (which showed increasing trends fromwest
to east), as partially substantiated by a national-scale survey28. The
prediction revealed that ofloxacin posed a higher risk to the soil eco-
system than other target antibiotics (Fig. 1c), which is similar to its risk
priority calculated by ranking its prevalence, persistence, bioaccu-
mulation, and toxicity29.

Here, we quantitatively investigated human impacts on risks to
soil antibiotic pollution across a broad range of scales (Fig. 2). Despite
the importance of soil and climatic conditions, human activities are the
dominant predictor of antibiotic pollution risks30. Among various
anthropogenic factors, land systems, which are terrestrial socio-
ecological systems that interact with human and environmental

Fig. 1 | Risks of antibiotics in soil to crop production in China. a, bMaps of the
cumulative risks associated with target antibiotics and uncertainties associated
with the predictions. Cumulative risk quotients for nine target antibiotics were
calculated per grid on the basis of the concentration addition principle24. Themaps
of China used in this study were adapted from the data released by the National
Administration of Surveying, Mapping and Geoinformation of China (http://www.
sbsm.gov.cn; review drawing number: GS(2020)4619). c Density distribution of
risks associatedwith each antibiotic; the ridge line plots the estimateddensity from

predicted data. d–g Convex nonlinearities in the relationships between crop yields
and antibiotic pollution risks. The lines (regression lines) and shaded areas (95%
confidence intervals) were estimated by generalized additive models, and adjusted
(Adj.) R2 and two-sided p values of the t-statistic for eachmodel are provided. The T
values (thresholds of antibiotic pollution risk for crop yield reduction) were esti-
mated by the “segmented” package in R according to the significant changes in
regression slopes69. All silhouettes are from PhyloPic (https://www.phylopic.org/).
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subsystems31, have been demonstrated to affect antibiotic pollution
risks on multiple spatial scales14,30. Since the intensification of the land
system, land use composition and management intensity have been
the predominant factors affecting antibiotic pollution risks across
spatial scales instead of population and economic systems. Weak
correlations between population density and antibiotic pollution in
soil were also demonstrated in previous studies32,33. These findings
suggested that population and economic systems likely did not
directly affect soil antibiotic pollution but rather had indirect effects
on soil antibiotic resistance globally20. This is because antibiotics were
not directly discharged into soils by population and economic systems
but rather were generally released through land systems; that is,
human impacts on soil antibiotic pollution risks were ultimately
mediated via land systems. For instance, urban sewage sludge (or
wastewater) containing antibiotics is usually not applied on urban land
and is transported to agricultural land as fertilizer orother neighboring
sites34. Given that wastewater is one of the main sources of antibiotics
in agricultural soils, the fact that the irrigated area proportion was
positively correlated with antibiotic pollution risks supported our
hypothesis, that is, increased inputs (i.e., land system intensification)
enriched antibiotics in soils. Moreover, population and economic
growth would significantly promote land system intensification and
thus increasingly introduce antibiotics into soils. As an example, it has
been demonstrated that the expansion of arable lands, which are
treated with antibiotic-containing fertilizer, could result in antibiotic
pollution to more land30,35.

Interestingly, we found that the effects of land systems on anti-
biotic pollution risks were influenced by spatial scale in this study,
indicating that the cumulative effects of land systems declined with
increasing scales (Fig. 2). Land management, rather than land use
composition, primarily explained antibiotic pollution risks on a large
spatial scale. This ‘scale dependence’ possibly arises for two major
reasons. First, the spatial scale at which data are analyzed will

substantially change the data variability. Despite the expansion of
human-dominated landscapes, natural land (including forest and
grassland) still accounts for most of the Earth’s land surface (for
example, built-up lands account for less than0.7%of the total land area
on Earth)36. From the viewpoint of a broad scale, the variability in land
use is generally lower than the variability in management among
watersheds, and it is the latter that causes the differences in antibiotic
pollution risks. Second, human use that triggers antibiotic discharges
can vary dramatically across spaces and respond differently to human
activities across scales. Bu et al.37 found an inconsistent pattern of
antibiotic usewith scale change, suggesting that somewestern regions
of China possessed low antibiotic use on a large scale but high use on a
small scale. Therefore, scale change will modify the spatial patterns of
management-induced antibiotic discharges (e.g., reuse of wastewater
and manure excreted by humans).

One of the facts about land systemswith regard to sustainability is
that land systems often create tradeoffs between social equality (i.e.,
crop yield) and environmental safety (i.e., antibiotic pollution risks)
rather than win‒win outcomes17,31. Based on a simple assumption, land
system intensification may linearly increase crop yield. However, we
observed nonlinear trends in crop yield increase with increasing land
system intensification, suggesting that benefits for crop yields were
partially offset by soil antibiotic pollution. This can be confirmed by
our finding that antibiotic pollution reduced crop yields when its
cumulative RQ exceeded 8.30–9.98. Given the substantial effects on
risk–yield tradeoffs, sustainable land system intensification may offer
an alternative for riskmanagement. It can be expected that watersheds
consisting of a higher proportion of arable land experience more
severe antibiotic pollution7. Thus, reducing the area proportion of
arable land can potentially mitigate antibiotic pollution. However, it is
unreasonable to crudely decease areas of human-dominated land-
scapes in a watershed to reduce soil antibiotic pollution risks, which
might also reduce socioeconomic outcomes (e.g., crop yields).
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used to identify the statistical significancewhen their values are less than0.05. Land
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The average R2 values for 20 full-parameter analyses are presented.
e–h Contributions of arable land use and management to soil antibiotic pollution
risks; the columns and error bars indicate mean contribution and standard devia-
tion (n = 20 subdatasets). The points on the columns show the data distribution.
The plots from left to right are the results of watershed level 1, level 2, level 3, and
level 4. Level 1 corresponds to large watersheds.
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Intensification of the land system is now one of the main agendas
benefiting socioeconomic development across and within human
societies and thus is typically associated with benefit–risk tradeoffs17.
In our study, the tradeoffs between crop yield and antibiotic pollution
risk show that the high priority afforded to sustainable land system
intensification efforts is necessary to achieve the expected likelihood
of win–win outcomes, that is, crop production and risk control.

There were many difficulties in decision-making for sustainable
land system intensification. We set lenient limits for land system
intensification to control soil antibiotic pollution risks, suggesting that
it should not exceed these thresholds to balance the risk–yield trade-
offs. Based on the development Kuznets curve hypothesis23, we

elucidated the inverted U-shaped relationships between land system
intensification and risk–yield tradeoffs. Thus, the thresholds where the
risk–yield tradeoffs take their maximum values fall on the inverted
U-shaped curves. These thresholds are comforting for decision-makers
as they can capture the desired information for land system manage-
ment. When land system intensification exceeded the thresholds, we
will risk a reduction in crop production; that is, the relative benefits for
crop yields decreased and antibiotic pollution risks increased (Fig. 3).
Waiting to cross these thresholds could avoid a situation in which
antibiotic pollution risks exceed benefits for crop yields.

It is often not clearwhether thesewin–winoutcomes are achieved
across different scales because land system–antibiotic pollution
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based on the scattered point clouds (see Methods). An example of the constraint
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benefits for crop yield are higher than risks when the value is higher than zero
(Supplementary Fig. 9). Land system intensification is estimated by summing the
standardized scores of land use composition (i.e., proportion of arable land) and
management (including manure application rate and irrigation area proportion)
within a specific watershed. a Level 1 watershed. b Level 2 watershed. c Level 3
watershed. d Level 4 watershed.
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relationships are scale-dependent. Further complexities arise because
the scales at which policy decisions are made often do not match the
scale at which human activities matter31. We attempted to account for
the scale effects, as scale changes can completely shift statistical
supports. Our analysis revealed that vegetable and wheat production
had a higher likelihood of achieving win–win outcomes at small scales
than maize and rice production (Fig. 4); thus, policymakers, farmers,
and other actors should pay more attention to small-scale crop
structure changes.When crop production is not greatly compromised,
land system intensification within small-scale watersheds should be
carefully considered according to the thresholds for risk–yield trade-
offs to protect crop production with low environmental costs. Overall,
the findings of this study and others38 suggest that land system
intensification and its win–win outcomes are urgent issues limiting
sustainable development, and more efforts considering safe limits
should be undertaken.

Our study goes beyond previous work on the risk assessment of
antibiotic pollution in soil on multiple spatial scales. However, the
following uncertainties and limitations need to be further considered.
(i) The antibiotic pollution risk presented in this study may be over-
estimated, mainly because the risk assessment model assumed max-
imum exposure and minimum tolerance of nontarget organisms to
represent the worst scenario; nonetheless, the estimated risk can be a
good reference for regulatory agencies in making critical decisions

because the worst scenario represented soil antibiotic pollution risks
that canmaximally lead to negative changes (i.e., crop yield reduction)
in land systems. (ii) This study only considered the exposure risks to
crops, but the spread of antibiotic-induced resistance was not inclu-
ded. In addition, biotic factors seem overlooked in the present work,
although soil microbes or plant microbiomes are believed to play
crucial roles in the relationships between antibiotic pollution and crop
yield. Unfortunately, long time-series datasets of biotic factors (e.g.,
soil microbes and plant microbes) are lacking at a broad scale. It has
been shown that the diversity of soil microbes and plant microbes is
significantly correlated with soil organic carbon, precipitation, and
temperature39,40, which were considered in this study. The relation-
ships of these factors with microbes might partially reduce the
uncertainties causedby the absenceofmicrobes in ourmodels. (iii)We
assumed the nonexistenceof target antibiotics thatwere not reported;
however, these antibiotics might be present but below the detection
limit of the adopted methodology. (iv) This study was performed
based on modeling results without the inclusion of a validation
experiment, and thus lacks a mechanistic understanding. When the
universal screening of antibiotic pollution is difficult and not cost-
effective, a modeling approach can provide reliable evidence. Several
studies have modeled antibiotic concentrations in soil using regres-
sion techniques, although with limited modeling accuracy11,41. Addi-
tional biophysical models and available data should be developed to

Maize Rice Wheat Vegetable

Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4
0

500

1000

1500

Scale

Th
re

sh
ol

ds

a

Maize Rice Wheat Vegetable

Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4
0

20

40

60

Scale

Th
re

sh
ol

ds

b

Maize Rice Wheat Vegetable

Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4 Leve1 Level2 Level3 Level4
0

10

20

30

40

Scale

Th
re

sh
ol

ds

c

Fig. 4 | Thresholds of land system intensification for risk–yield tradeoffs across
scales. a Thresholds for manure fertilization (kg N/km2/yr). b Thresholds for irri-
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development Kuznets curves are used to describe the relationships between land
system intensificationand risk–yield tradeoffs, and invertedU-shaped relationships

generally exist (Supplementary Fig. 7). A threshold of land system intensification is
identifiedwhen the inverted U-shaped curve has a slope value of zero. The columns
and error bars indicate mean values and standard errors, which were estimated by
uncertainties of regression parameters (n = 17 for level 1, n = 177 for level 2, n = 414
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accurately predict the risks associated with antibiotics in multiple
environmental compartments and investigate the mechanisms
underlying the socioecological system.

Nevertheless, our findings might enable generalization to other
regions or countries. Intensive land systems often result in high soil
antibiotic pollution risks, which hinder crop production. Inverted
U-shaped relationships between land system intensification and
risk–yield tradeoffs were generally observed, and the thresholds of
land system intensification, where tradeoffs were maximized, provide
a comforting guide for decision-makers aiming to manage land sys-
tems based on a balance between crop yields and antibiotic pollution
risks. Sustainable land systems are required for antibiotic pollution
control to protect crop production. In addition, to achieve sustain-
ability goals, cooperation among innovative and effective policies,
implementation strategies, and stakeholder actions for land system
sustainability is required for sustainable soil use and sustainable living
with low exposure to antibiotic pollution.

Methods
We collected data on the measured environmental concentrations
(MECs) of antibiotics in Chinese soil. Many antibiotics widely occurred
in soil, and nine frequently detected antibiotics with wide distribution
and high toxicity were selected: tetracycline, chlortetracycline, oxy-
tetracycline, doxycycline, ofloxacin, norfloxacin, ciprofloxacin, enro-
floxacin, and lomefloxacin. Then, we evaluated the risks of these target
antibiotics to crop production. We also collected data on anthro-
pogenic factors, climatic factors, and soil and vegetation character-
istics that could explain the variability in antibiotic pollution risks as
predictors. Next, we scaled up the risks associated with target anti-
biotics in soil using a machine learning model (RF algorithm)42. We
combined a linear model, generalized additive model, and moving-
window approach to describe the relationships between human
activities and antibiotic pollution risks on four scales. All modeling and
analyses were conducted using R software 4.2.1.

Data collection
To determine the risks of soil antibiotic pollution, a comprehensive
MEC dataset was established. We mainly compiled the publicly avail-
able dataset of Zhang et al.43, which records antibiotic occurrence and
distribution in Chinese soil. This dataset contains georeferenced
occurrences for our target antibiotics, considering land use type
(urban green space, cropland, grassland, and forestland) and experi-
ment location (coordinates) at a specific sampling time. Concentra-
tions that were ‘not detected’ or ‘below detection limit’were regarded
as zero values. The MECs were converted into standardized units (μg/
kg or ng/g). We revisited the data sources of the dataset of Zhang
et al.43 and found that the measurements of antibiotics were per-
formed with a depth of 20 cm inmost cases. When scaling up the risks
of soil to antibiotic pollution, we considered a fixed depth value
of 0–20 cm.

To expand the existing data, we also collected soil samples from
Yunnan and Zhejiang provinces and measured the concentrations of
target antibiotics. The soil samples were transported to the laboratory,
freeze-dried, and stored at −20 °C until further analysis. The extraction
and analysis of antibiotics are detailed in the Supplementary Methods
(Supplementary Note 2). Themeasured antibiotic data were combined
with the dataset of Zhang et al.43, which comprehensively depicts the
MECs of soil antibiotics in most regions of China.

The following selection criterion procedures were performed for
our combineddataset tominimizepossible bias: (i)weonly considered
the field samples that were not experimentally treated, such via addi-
tion of antibiotics; (ii) soil samples collected from seriously polluted
sites (such as hospitals and livestock farms), where high levels of
introduced antibiotics might add a layer of uncertainty, were not
considered in this study; and (iii) we calculated the Moran’s I index to

evaluate the bias caused by spatial autocorrelation in our dataset
(Moran’s I =0.03, Z score = 0.22, p >0.05), and the results suggested
that our dataset does not appear to be significantly different than
random distribution. Finally, our selection criteria generated a dataset
of 484 locations which is higher than the minimal sample size
requirement20. Our measured data are available in Supplementary
Data 1, and other raw data can be downloaded from figshare44.

Risk assessment model
Given the disparities in the tolerance of crop growth to different
antibiotics, the risk of antibiotics to crop growth can be better repre-
sentative of the consequences of antibiotic pollution than their
concentration45. In this study, risk assessment of antibiotics is per-
formed following the risk quotient (RQ) approach, with RQs for indi-
vidual mixture components determined fromMECs and predicted no-
effect concentrations (PNECs). To assess the risks of the target anti-
biotics, the PNECs were first estimated via the assessment factor
approach22. PNECs were determined as the ratio of the median effec-
tive concentration (EC50) ormedian lethal concentration (LC50) to the
assessment factor (AF = 1000) or the ratio of the chronic no-observed-
effect concentration (NOEC) to the assessment factor (AF = 100); that
is, PNEC = EC50 (or LC50)/1000 or PNEC =NOEC/100. Owing to the
scarcity of available data, the toxicity data of the relevant terrestrial
organisms (including soil animals, microbes, and plants) were col-
lected from the literature (Supplementary Table 1), and the lowest
PNECs were used for further calculation to represent the worst sce-
narios. Then, the species-specific RQs of the antibiotics were calcu-
lated as the ratio of MEC to PNEC (that is, RQ=MEC/PNEC). For some
antibiotics, the PNECs of soil (PNECsoil) were estimated from their
values in water (PNECwater), which were corrected by the soil–water
partition coefficient (Kd) via the equilibrium partitioningmethod (that
is, PNECsoil = PNECwater × Kd). To consider the worst scenarios, we
defined the risk levels of antibiotic pollution as the highest RQ values.
We determined the cumulative risks in soil as the sum of the highest
RQs of each target antibiotic.

Identification of candidate predictor variables
The predictor variables were determined from spatially explicit data-
sets (Supplementary Table 2). Climatic information on the annual
average temperature and precipitation at the specific sampling time
was sourced from the CRUTS V4 database46. Land use data were
released from the Resource and Environmental Science and Data
Center (https://www.resdc.cn). Five anthropogenic factors were col-
lected, namely, livestock density (cattle, pigs, and chickens), human
population density, GDP, chemical fertilization (nitrogen and phos-
phorus), and pesticide use, which are linked to socioeconomic devel-
opment and agricultural activities. Soil properties, which substantially
influence the fates and behaviors of antibiotics in soil, were collected
as important predictor variables; they included clay content, organic
carbon content, bulk density, soil thickness (distance to bedrock), and
saturated hydraulic conductivity. We selected the groundwater table
depth and normalized difference vegetation index as indicators of
leaching and plant uptake capacity. Moreover, we obtained terrain
information from the GTOPO30 database47, as terrain can influence
antibiotic movement on land. To ensure compatibility across datasets
and variables, we processed all data at a spatial resolution of 1 km,
which was consistent with the land use data. Gridded datasets with
higher pixel resolutions were resampled by the mean aggregation
method, anddatasetswith lower resolutionswere resampledby simple
upsampling (i.e., without interpolation)48. The data were extracted
according to the experimental site location and sampling year. We
assumed that several predictor variables (e.g., soil properties and
terrain) had limited temporal changes due to the lack of time-series
datasets, while the other predictor variables generally had long time-
series datasets from2000 to 2020. Anthropogenic and climatic factors
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as well as soil and vegetation characteristics determine the amount of
antibiotic residue in soil and the soil susceptibility to antibiotic
pollution.

Scaling-up approach and output maps
An RF model including all of the predictor variables42 was fitted to the
log-transformed (log10) RQs of each antibiotic using the R packages
randomForest49 and Caret50. All predictor variables were standardized
using the Z score. We constrained the RF models by setting the max-
imum number of allowed trees to 1000. Since the RQ data were
modeled using 2020 datasets, cross-validation was performed. The
dataset was randomly divided into training and validation sets, cor-
responding to 70% and 30% of the data, respectively. Finally, the data-
trained RF model was applied to the gridded data of predictors to
estimate the risk levels of nine target antibiotics on a larger scale.
Ecosystems not covered by soil (including bare land and water) were
excluded from the analysis based on the land-covermap. An ensemble
model for our final predictions anduncertainty analysis was developed
via theMonte Carlo approach.Our finalmodel was an ensemble of 500
RF models (that is, the model was separately trained 500 times; each
time, a different set of data was selected from our dataset) to generate
a distribution of model error on random data51. The distribution den-
sity of differences between measured and predicted data was deter-
mined for each target antibiotic, and the root mean square errors
(RMSE) and Pearson’s correlation coefficients between measured and
predicted data were used to assess the accuracy of the RF models. We
derived the models’mean prediction across the ensemble models and
determined the uncertainties associated with the predictions from the
standard deviation. Maps of the distribution of risks related to soil
antibiotic pollution, expressed as average RQs, and the corresponding
uncertainty maps were derived using the data-trained RF models at a
resolution of 1 km.

Land system indicators
The land system can be manipulated by technologies and governance
systems across spatial scales and is more sensitive than other human
activities31. Thus, we identified areas highly subject to human dis-
turbance using the geographically gridded maps of the land system,
which includes land use patterns and management practices (Sup-
plementary Table 2). We summarized the mean risks of antibiotics for
eachwatershed at four levels, aswell as themean landuse composition
and mean management intensity. Land use composition was reclassi-
fied into the area proportions of arable, built-up, and natural (mainly
consisting of grassland and forestland) lands. Land management
intensity was indicated by the manure application rate (characterized
by manure nitrogen application rate per year, kg N/km2/yr) and irri-
gated area proportion because manure application and irrigation are
generally considered the main pathways of antibiotics into soil30.

To analyze the responses of antibiotic pollution risks (response
variable) to human activities using each generated dataset, we listed
three land use composition indicators and two land management
indicators as explanatory variables using linear regression models,
while population and GDP were also considered socioeconomic indi-
cators. We standardized the land use composition (area proportion of
arable land) and management indicators via the minimum–maximum
method. Land system intensification was estimated by summing the
standardized scores of land use composition and management within
a specific watershed.

Scale effects and human impacts on the risk of antibiotics
The primary goal of this analysis was to identify the effects of human
activities on antibiotic pollution risks when the spatial scale changes.
The scale changes were characterized by (i) grain of scale: generating
datasets by changing the grain size (that is, the watershed level at
which data are generated), and (ii) extent of scale: resampling the

datasets by changing the scale extent (that is, the proportion of sam-
pled data to the whole dataset). To explore the scale effects, four
watershed levels (sizes 3, 6, 9, and 12) were selected from the Hydro-
SHEDS dataset52 to represent the changes in spatial grain (Supple-
mentary Fig. 5); here, these levels were renamed levels 1, 2, 3, and 4,
respectively. Watershed level 1 represented a broad-scale grain, while
level 4 was a small watershed scale.

On the other hand, the extent of scale changes can generate a
series of subdatasets. After we ranked the datasets according to
increasing human footprints53, the subdatasets represented a gradient
of human footprints. When the whole dataset across China was used,
the large spatial extent only reflected the average condition andmight
consequently hide some local-specific relationships between land
system intensification and antibiotic pollution risks to a small extent54.
Thus, the model results based on the whole dataset could not com-
pletely represent the relationships between land system intensification
and antibiotic pollution risks. To avoid arbitrary model choices, we
conducted 20 runs by selecting different data to explore the effects of
spatial extent change. Following the rank of whole datasets according
to increasing human footprints, the scale extent was reduced through
the omission of segments from the ranked datasets. We omitted
0–90% of the upper segments (in intervals of 10%) from the ranked
datasets in sequence; that is, 0–90% of the watersheds with high
human footprints were removed from the datasets in sequence and
10 subdatasets were generated (upper part omission, Supplementary
Fig. 6c). The data included in the subdatasets represented the rela-
tionships between land system intensification and antibiotic pollution
risks in watersheds with low human footprints. Then, we omitted
0–90% of the lower segments from the ranked datasets in sequence;
that is, the watersheds with low human footprints were removed, and
another 10 subdatasets were generated (lower part omission). The
data included in these subdatasets represented the conditions in
watersheds with high human footprints. Through this approach,
20 subdatasets with different ranges of human impacts and scale
extents were generated. Then, the best models were selected via a
procedure based on the corrected Akaike information criterion (AICc).
We then considered the best models withΔAICc <2, and this threshold
can be up to 5 to include more than one plausible model55. Model
averaging was conducted to calculate the coefficients of predictors
and test their significance. This procedure was performed using the
dredge function in the R packageMuMIn56. Moreover, we characterized
the contributions of land use and management to antibiotic-related
risks. For doing so,we expressed the contributions of predictors as the
percentage of variance explained, according to the absolute values of
the ratio of the standardized regression coefficients to the sum of all
standardized regression coefficients from all predictors.

Risk–yield tradeoffs and thresholds for land system
intensification
The crop yield data included rice, maize, wheat, and vegetable yields57.
Then, generalized additive models (GAMs), which can be identified
without prior subjectivemodel specifications, were used to analyze the
nonlinear relationships between antibiotic pollution risk (predictor
variable) and crop yield (response variable). In the GAMs, nonpara-
metric smoothers were used, and the basis dimension of the
smoothing function was five58.

We calculated the risk–yield tradeoffs using the approach pro-
posed for land management59. To remove the effects of differences in
the measurement scale, we first standardized the two objectives:
antibiotic pollution risk and crop yield, and the improvement (P) of
land system intensification for one objective was estimated (antibiotic
pollution risk is defined as one disservice):

P = Ai � Amin

� �
= Amax � Amin

� � ð1Þ
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whereAi is the observed value of this objective inwatershed i, andAmax

and Amin are the maximum and minimum values in all watersheds,
respectively.When themagnitude of improvement ranged from0 to 1,
a higher P value in watershed i represented a higher level for this
objective in comparison with other watersheds, indicating that this
objective could obtain more benefits from land system intensification
in watershed i. Then, we quantified their tradeoffs in two dimensions.
On the 1:1 line, improvement in crop yield equals improvement in
antibiotic pollution risk, and their tradeoffs increase with distance
from the 1:1 line. The risk–yield tradeoff is defined as the P value of
crop yield subtracting the P value of antibiotic pollution risk, that is,
thedistance fromthe 1:1 line (SupplementaryFig. 9).When the tradeoff
values were higher than zero, crop yield benefits were higher than
antibiotic pollution risks.

The constraint line is the percentile boundary of the scattered
point cloud between the response variable (antibiotic pollution risk,
crop yield, and risk–yield tradeoff) and the constraint variable (i.e.,
land system intensification)60. Then, the value range of each response
variable on the x-axis (constraint variable) of the scattered point cloud
is divided into 50 parts to obtain 50 point columns (10 parts for the
level-1 watershed). For the crop yields and risk–yield tradeoffs, we
calculated the 99% upper boundaries as their constraint lines (i.e.,
chose the 99% quantile in each point column as the boundary point)
and the 1% lower boundary for RQs as the constraint line of antibiotic
pollution risks. The 99% upper boundary and 1% lower boundary were
constructed to include most points of point clouds, indicating the
maximum likelihood considering most scenarios. Due to non-
linearities, thresholds between constraint variables and response
variables are often detected.

Using amoving-window approach, we analyzed the effects of land
systems on antibiotic-related risks61. We generated a range of window
sizes and calculated the relative range of RQs (the ratio of the range of
RQs under a given window size to the maximum range under all win-
dow sizes). When the relative range exceeded 60%, we fixed the win-
dow size. For each window, we calculated themean values of RQ, crop
yield, and land system intensification (that is, area proportions of
arable land, manure application rate, and irrigated area proportion).
Then, we fitted risk–yield tradeoffs (y) against the land system vari-
ables (x) using inverted U-shaped curves as follows in Eq. (2):

y=ax2 +bx + c ð2Þ

where a, b and c are fitting parameters. The thresholds for land system
variables were defined as x values when slopes were zero. That is:

thresholds = � b
2a

ð3Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data of antibiotic pollution risks in soils from field work are
provided in Supplementary Data 1. Other raw data of antibiotic pol-
lution risks can be downloaded from figshare44. Livestock density can
be obtained from GLW 3 dataset (https://www.fao.org/livestock-
systems/en/). Gross domestic product, population density, and land
use data are accessed in Resource and Environmental Science and
Data Center (https://www.resdc.cn). Chemical fertilization and man-
ure management data are collected from PANGAEA62,63. Pesticides
data are available at figshare64. Irrigation data are available at https://
luh.umd.edu. Soil data are publicly available from the following
sources: soil physicochemical property data are collected from

SoilGrids (SoilGrids.org), soil thickness data are available at ORNL
DAAC65, and the saturated hydraulic conductivity data are collected
from SoilKsatDB66. Groundwater table depth data can be requested
from Fan et al.67. Terrain are collected from GTOPO30 Digital Eleva-
tionModel (https://lta.cr.usgs.gov/GTOPO30). Normalized difference
vegetation index data are available at National Ecosystem Science
Data Center, National Science & Technology Infrastructure of China
(http://www.nesdc.org.cn). Crop production data are collected from
https://doi.org/10.7910/DVN/PRFF8V.

Code availability
The R codes for random forest model were adapted from Yang et al.
(2021)68. Other codes for statistical analyses and visualization can be
available from the corresponding author upon reasonable request.
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