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Demonstrating paths for unlocking the value
of cloud genomics through cross cohort
analysis

Nicole Deflaux 1,16, Margaret Sunitha Selvaraj 2,3,4,5,16, Henry Robert Condon6,
Kelsey Mayo 7, Sara Haidermota2,8, Melissa A. Basford7, Chris Lunt 9,
Anthony A. Philippakis 10, Dan M. Roden11,12,13, Joshua C. Denny9,
Anjene Musick9, Rory Collins14,15, Naomi Allen 14,15, Mark Effingham 15,
David Glazer 1, Pradeep Natarajan 2,3,4,5,8 & Alexander G. Bick 6

Recently, large scale genomic projects such as All of Us and the UK Biobank
have introduced a new research paradigm where data are stored centrally in
cloud-based Trusted Research Environments (TREs). To characterize the
advantages and drawbacks of different TRE attributes in facilitating cross-
cohort analysis, we conduct a Genome-Wide Association Study of standard
lipid measures using two approaches: meta-analysis and pooled analysis.
Comparison of full summary data from both approaches with an external
study shows strong correlation of known loci with lipid levels (R2 ~ 83–97%).
Importantly, 90 variants meet the significance threshold only in the meta-
analysis and 64 variants are significant only in pooled analysis, with approxi-
mately 20% of variants in each of those groups being most prevalent in non-
European, non-Asian ancestry individuals. These findings have important
implications, as technical and policy choices lead to cross-cohort analyses
generating similar, but not identical results, particularly for non-European
ancestral populations.

Traditional data sharing processes require researchers to download
copies of data to their own systems. More recently, health research
is shifting to use Trusted Research Environments (TREs), such as the
All of Us Researcher Workbench (AoU RW) and the UK Biobank
Research Analysis Platform (UKB RAP), for large-scale clinical and
genomic data-sharing and analysis1–4. In general, a TRE is a secure
computing environment which provides approved researchers with

tools to access and analyze sensitive health data. TREs offer many
benefits, including (1) increased protection of study participant
data, (2) decreased barriers to access and analyze data, (3) lower
cost of shared data storage, and (4) increased collaboration across
the scientific community5–7. The positive impact of TREs is clear, as is
their potential to facilitate population- and global-scale health
research8,9.
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For many important reasons, including participant data privacy,
trust and security, TREs often implement a variety of policy and
technological safeguards. For example, data that reside in an enclave
may not be allowed to leave the environment in non-aggregated
form10,11. Researchers wishing to safely and appropriately analyze data
across different TREs face technological hurdles and policy require-
ments to do so12. Several approaches to data analysis across enclaves
have been proposed. These include a meta-analysis whereby
researchers perform analysis in separate TREs and then meta-analyze
de-identified results outside of an enclave, and pooled analysis
whereby researchers create and analyze merged data within a single
enclave (Fig. 1). Each approach has advantages and limitations. All
approaches to cross-analysis benefit from improved harmonization
and standardization of data, policies, and working environments8,13.
Together with the broader research community, data providers play a
critical role in charting approved paths to cross-analysis and dis-
seminating this information broadly. This paper describes approaches
to cross-analyze All of Us and UK Biobank data, and discusses benefits

and limitations of each approachwith respect to cost, complexity, and
scientific utility (Supplementary Fig. 1).

Specifically, a genome-wide association study (GWAS)wasused to
explore cross-analysis of UK Biobank and All of Us data, as it is a
standard analytical approach that benefits significantly from the boost
in power obtained from increased sample size14,15. Additionally, meth-
ods for meta-analysis and pooled GWAS are well developed16. Circu-
lating lipid concentrations were chosen as the target phenotype to
enable validationof the two approaches by replicatingwell-established
genetic associations. The work presented here is the result of colla-
boration between the All of Us and UK Biobank programs intended to
build and describe research resources rather than discover novel
associations.

Results
We performed a genome-wide association study on circulating lipid
levels involving All of Uswhole genome sequence data andUKBiobank
whole exome sequence data twice - (1) bymeta-analyzingGWAS results

Fig. 1 | Outline of steps in the meta- and pooled analyses for All of Us and UK
Biobank cross-cohort analysis. Researchers analyzing data across TREs, using
eithermeta-analysis or a pooled approach,must negotiate policy requirements and
technical hurdles. Bold outline is used for computational steps where datamerging
occurs. Top: Computational steps involved in meta-analysis, many of which are

duplicated. Bottom: Computational steps involved in pooled analysis, where each
distinct step is performed only once. All of Us, theAll of Us logo, and “The Future of
Health Begins with You” are service marks of the U.S. Department of Health and
Human Services.

Article https://doi.org/10.1038/s41467-023-41185-x

Nature Communications |         (2023) 14:5419 2



from separate TREs and (2) by analyzing pooled data in a single TRE.
The goals, recruitment methods, scientific rationale and genomic data
for All of Us and UK Biobank have been described previously1,2. In All of
Us, we leveraged 98,622 whole genome sequenced samples alongside
200,643 whole exome sequenced samples from the UK Biobank.
Although whole genome sequence data are available for UK Biobank,
pooled analysis would require the data to be moved to a common
enclave, which is not permitted by its access policy. The 200k exome
release fromUK Biobank was therefore explicitly chosen for use in this
project because it was the last release of individual-level UK Biobank
sequence data permitted to be analyzed outside of the UKB RAP, and
therefore available for use in both pooled and meta-analyses per-
formed on the AoU RW. Since our project was focused on comparing
the computational approaches rather than on discovering new asso-
ciations, maximal sample sizes were not needed.

The meta-analysis
For the meta-analysis, GWAS of lipid levels were performed sepa-
rately in the All of Us and UK Biobank TREs (see supplement for
further details). Phenotypes were prepared separately. We curated
lipid phenotypes (high-density lipoprotein cholesterol: HDL-C, low-
density lipoprotein cholesterol: LDL-C, total cholesterol: TC, trigly-
cerides: TG) using the cohort builder tool within the AoU RW. We
obtained phenotype information on one or more lipid measure-
ments from electronic health records for 37,754 All of Us partici-
pants with available whole genome sequence data. In the UK
Biobank, one or more lipid measurements from systematic central
laboratory assay were available for 190,982 participants with exome
sequence data17. Covariate information (age, sex at birth, self-
reported race) and data on lipid-lowering medication for these
corresponding samples were extracted from All of Us survey and
electronic health record data and UK Biobank self-reported data.

The lipid phenotypes were adjusted for statin medication18,19 and
normalized (see supplement).

A GWAS was performed in each cohort separately using
REGENIE20 on the subset of variants within the UK Biobank exonic
capture regions (Fig. 2). In each TRE, we retained variants with allele
count (AC) >=6, since variants with an exceptionally low allele count
are not considered by the analysis method, and obtained 1,699,534
biallelic exonic variants from All of Us and 2,158,225 from the UK Bio-
bank. After applying variant quality control to filter out low quality
variants from the subset of samples in the lipids cohort, single variant
GWAS was performed with 789,179 variants from the All of Us cohort
and associated with the LDL-C phenotype. Separately, this same pro-
cess was carried out with 2,037,169 variants from the UK Biobank
cohort. Each set of results was then downloaded, keeping in mind that
before dissemination they must be filtered to remove AC< 40 in
accordance with the All of Us Data and Statistics Dissemination Policy,
which disallows disclosure of group counts under 20 since a given
individual could have two copies of a single allele10. All of Us does
permit researchers to request an exception to this policy through the
program’s Resource Access Board, which we were granted for the
results in this particular study. Finally, we meta-analyzed variants by
combining the summary statistics obtained fromboth studies using an
inverse variance-weighted fixed effects method implemented in
METAL21. 490 variants from 321 loci (r2:0.5) were significantly asso-
ciated (p < 5E-08) with LDL-C (Fig. 3b, Supplementary Data 1).

The pooled analysis
For the pooled analysis, data from the UK Biobank were copied into
the AoU RW for cross-analysis with data from All of Us. Phenotypes
were prepared as previously described and merged into a single
table. Genomic data were prepared by merging variants for all
available samples from the UK Biobank and All of Us cohorts into a

Fig. 2 | Flow diagram highlighting the number of variants and sequenced samples retained at each stage of the meta- and pooled analyses. Whole Genome
Sequencing, WGS. Whole Exome Sequencing, WES. Minor Allele Count, MAC.
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Fig. 3 | GWAS phenotype and results. a Participant LDL-C levels for each cohort,
before (left) and after (right) adjusting for statin use. The black center line denotes
the median value (50th percentile), while the boxes contain the 25th to 75th per-
centiles of data. The black whiskers mark the 5th and 95th percentiles, and values
beyond these upper and lower bounds are considered outliers, marked with black

dots. Note that a few very high outliers were filtered to improve readability of the
plot. b Meta analysis results for LDL-C GWAS on merged exonic variants. c Pooled
results for LDL-C GWAS on merged exonic variants. Both replicate known gene
associations.
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single genomic data set (Fig. 2). For the pooled analysis, biallelic
variants were retained if the same variant was present in both
cohorts to avoid the clear batch effect of a variant present in only
one cohort. We obtained 2,715,453 biallelic exonic variants for the
pooled analysis after subsetting to UK Biobank exonic capture
regions and filtering allele count (AC) >=6, since variants with an
exceptionally low allele count are not considered by the analysis
method. After applying variant quality control to filter out low
quality variants from the subset of samples in the lipids cohort,
single variant GWAS was performed with 2,135,845 merged variants
in the pooled cohort for each of the lipid phenotypes. Cohort source
(either All of Us or UK Biobank) was included as an additional cov-
ariate to mitigate potential batch effects from the different
sequencing approaches and informatics pipelines used in All of Us
and UK Biobank (see supplement). 464 variants were significantly
associated (p < 5E-08) with the LDL-C phenotype from 284 loci
(r2:0.5) (Fig. 3c, Supplementary Data 2).

Scientific differences between pooled and meta-analyses
We sought to test whether important scientific differences exist
between our pooled and meta-analyses. We first investigated how the
analytical approach impacted the identification of variants sig-
nificantly associated with our phenotypes of interest. Most of the
significant variants identified by either method were previously
reported to be associated with plasma lipids in external datasets

(Supplementary Data 1 and 2). Of the novel significant variants, most
were short insertions/deletions which were largely excluded from
prior efforts. Geneprioritizationof theGWAS results fromour analysis,
fine-mapped variants to genes important to lipids including APOE,
APOA2, LDLR, PCSK9, CEPT, APOA5, APOB with top 20 prioritization
scores. We then tested the extent to which each approach replicates
known associations by comparing lipid GWAS results with two pre-
viously published datasets that contain the largest amount of data on
exome and genome sequencing lipid associations22,23. The Selvaraj
study includes diverse individuals from an external TOPMed cohort.
The Hindy study included ~40,000 individuals from the UK Biobank
(partially overlappingwith ourUKBiobankdataset) aswell as ~170,000
other individuals, most of whom were of European ancestry. Effect
sizes from both of our analyses are highly correlated with the two
previously published standards (Fig. 4b). Analytical approach had little
impact on either the number of significant SNPs or the concordance
(R2) of associations in common with the Selvaraj study. When com-
pared with the Hindy study, an average of ~3 more genome-wide sig-
nificant SNPs were retained with the pooled analysis (Supplementary
Fig. 10), however the concordance (R2) was slightly lower for all lipid
phenotypes using the pooled approach (Fig. 4b). We next examined
whether the pooled analysis includes a broader total set of variants
than the meta-analysis. There are 1,496,404 variants which were pre-
sent in only pooled analysis, most of which were of lower minor allele
frequency (Fig. 4a).

Fig. 4 | Scientific differences in pooled and meta-analyses. a Examination of
variants included only in the pooled analysis. b Comparison of lipid GWAS results
against two previously published reference datasets: Hindy22 and Selvaraj23. HDL
high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, TC

total cholesterol, TG triglycerides (c) Bar chart of ancestry proportions across all
methodswith the variant resultsmeeting genome-wide significance superimposed.
Here, AFR, AMR, EAS, NFE, and SAS indicate African, American, East Asian, Non-
Finish European, and South Asian ancestry groups, respectively.
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Next, we tested how the analytical approach impacted the ancestry
frequency distributions of significant variants. We obtained ancestry
data from gnomAD and referenced the popmax ancestry information24.
Out of the 490 significant variants from meta-analysis and 464 variants
from pooled analysis, 400 variants were common between both ana-
lyses. The variants common between both analyses were from different
ancestral groups, 16%African, 13%American, 26%Non-Finnish European,
22% each from East Asian and South Asian groups (Fig. 4c, Supplemen-
tary Data 3). Around 90 variants were identified as genome-wide sig-
nificant in meta-analysis but not in the pooled analysis, whereas 64
variants were significant in the pooled analysis but not in meta-analysis.
Some of the variants considered significant in only one method were
below but near the significance cutoff, or not included in both analyses
due to AC filtering or variant QC (Supplementary Figs. 8 and 9). We
identified two (rs72646508, rs145777339) and six low frequency variants
(AF <0.01) from meta- and pooled analysis respectively from American
and African ancestral groups (Table 1). Since the All of Us cohort is
enriched forAmerican (Hispanic) andAfricanancestral samples,wewere
able to identify multiple variants unique to these ancestral groups using
the pooled approach. Among the ancestry-specific variants from the
pooled analysis we identified 5 rare variants specific to African ancestry
and 1 from American ancestry. We also observed that the 64 variants
uniquely significant in pooled analysis hadmore significantCADDscores
(Phred-scores >= 20) when compared to those uniquely significant in
meta-analysis (p-value 0.02), with much of the signal observed in the
American ancestral group (p-value 0.09). The variants identified from
pooled analysis (Phred-scores >= 20) were rare and present in non-
European ancestry and these variants harbored functional severe con-
sequences extending to missense, frameshift and stop-gain mutations.

Cost and complexity differences between pooled and meta-
analyses
Cost and complexity are critical considerations impacting the use and
usability of large-scale biomedical research data. We evaluated analysis
complexity by examining the number of discrete computational steps
required to complete a lipid GWAS (Fig. 1). The number of arrows
(where each arrow represents an input or output of a computational
step) required for the meta- and pooled analysis were 32 and 19,
respectively. The increased complexity of themeta-analytical approach
is primarily attributed to the duplication of computational steps within
each silo. Extending this model to a theoretical analysis of N datasets
siloed in N distinct TREs, the number of arrows required to complete
the GWAS scales linearly at ~4x faster rate with the number of siloed
TREs in the meta-analysis versus the pooled analysis (see supplement).

Additionally, we report the cost comparison of the meta- versus
pooled analyses. There are two aspects to the overall cost: (1) Cloud
resource utilization (including the cost of data storage and cloud
compute), and (2) the person-time needed to perform and review the
results of each step. For cloud data storage costs, the respective TREs
assume the considerable cost of hosting the primary formats of the
genomic data, freeing researchers of this cost burden. Cloud compute
costs are tool dependent. For analysis steps involving R, PLINK, or

REGENIE the cloud compute resource costs are quite low - on the order
of cents to a few dollars. Analysis steps involving Hail, by comparison,
incur increased cloud compute cost. Hail processes data in a parallel
fashion, leading to reduced wall-clock time to complete large-scale
analyses. Hail is particularly useful whenever there does not already
exist an optimized, purpose-built tool to perform the exact genomic
data transformation needed. The primary cost driver for the meta-
analysiswas theHail processingneeded to extract relevantAll of Usdata
from a Hail matrix table to create a BGEN file for use with REGENIE
($220). The primary cost driver for the pooled analysis was the Hail
processing needed to merge the UK Biobank and All of Us variant
data ($360).

Person-time is highly dependent on the researcher’s familiarity
with the datasets, methods, tools, and TRE capabilities. We found the
amount of person-time for the meta-analyses was roughly twice that
required for the pooled analyses. The person-time savings gained
during pooled data harmonization, manipulation, and visualization
within a single analysis environment, outweighed the cost of the
additional steps required to merge the phenotype and genomic data.

Discussion
Wepresent twopotentialmethods for the cross-analysis ofUKBiobank
and All of Us data using lipid GWAS as a case-study in computational
approaches to analysis across TREs. Specifically, we looked at scientific
and technical differences between meta-analysis of data in separate
TRE silos, and pooled analysis of data in a single TRE. In each analysis
we controlled for potential batch effects by including the source
cohort as a covariate and limiting both pooled and meta-analyses to
the subset of variants common in both the All of Us and UK Biobank
cohorts. Each approach successfully replicated known genetic asso-
ciations with plasma lipids. For both approaches, effect sizes found for
each lipid trait are highly correlated with previously published studies.
However, we did note several important scientific differences. First,
pooled analysis enabled 1,496,404 additional variants to be included in
the GWAS, compared with meta-analysis. Most of these variants were
of lower minor allele frequencies, and thus this difference may be
attributed to the fact that merging the two cohorts prior to applying
the AC> 6 filter “rescued” rarer variants. We expect that the smaller
overall number of variants retained formeta-analysis, because variants
with an exceptionally low allele count are not considered by the ana-
lysis method, may negatively impact analysis of rare disease or rare
variants. In these cases, a pooled approach may be preferred.

Second, the analytical approach impacted the number and ancestry
frequency distributions of variants significantly associated with our
phenotype of interest. We report 490 variants significantly associated
with LDL-C from meta-analysis of GWAS performed separately in All of
Us and UK Biobank TREs. In comparison, we found 464 variants sig-
nificantly associated with LDL-C from pooled analysis of All of Us gen-
ome and UK Biobank exome sequencing data. We noted approximately
20% of variants significant in only the pooled analysis or significant in
only the meta-analysis were most prevalent in non-European, non-Asian
ancestry individuals. Prior foundational work has demonstrated that

Table 1 | Rare variants uniquely significant in either meta-analysis or pooled analysis

Analysis Type RS Id AF Ancestry Gene-Mutation

Meta-analysis rs72646508 0.002 AFR PCSK9 p.Leu253Phe

Meta-analysis rs145777339 0.003 AMR APOB p.Tyr3098=

Pooled rs981175281 0.0002171081 AFR PDZRN3 intron_variant

Pooled rs150401820 0.0007244627 AFR LRP4 p.Asp91Asp

Pooled rs370601772 0.0004823927 AFR MYO19 p.Lys118Asn

Pooled rs121908030 0.0001933862 AFR LDLR p.Asp389Asn

Pooled rs28942084 7.236588e-05 AFR LDLR p.Pro770Leu

Pooled rs142412517 0.001 AMR APOE p.Arg239Trp
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given otherwise equivalent datasets pooled and meta-analysis will gen-
erate theoretically and empirically equivalent results25,26. However real-
world experience as illustrated above and by others27–29 has identified
numerous differences between cohorts including phenotype ascertain-
ment, genetic ancestry and population structure. Therefore, it is not
surprising that these two analytical approaches yielded scientifically
similar, but not identical, results. This has important implications for
studying genetic variants in diverse individuals.

In addition to the scientific differences considered above,
researchers seeking to analyze data across TREs face significant tech-
nical hurdles. Both complexity and cost scale with the number of data
enclaves cross-analyzed. The pooled GWAS approach described was
the least complex of the two investigated, requiring almost half as
many discrete computational steps as meta-analysis. While analysis
steps are displayed in a logical order in Fig. 1, many steps are run
multiple times as an analyst becomes familiar with the datasets and
capabilities of the respective TREs. The number of computational
steps involved in meta-analysis grows at a ~4x faster rate than for
pooled, and therefore there is a significant increase in meta-analysis
cost associated with the person-time required to develop and debug
an analysis. That increased cost is high for two TREs, and even more
significant as the number of TREs increases, which is expected as the
amount of valuable global data increases.

This study found several capabilities provided by existing TREs
that facilitated cross-cohort analysis, and that if adopted by future
TREs would facilitate incorporation of more data into future analyses.
These include: (1) maintaining a single centrally funded copy of data
that can be accessed in-place by researchers, (2) providing robust,
integrated research support, (3) providing access to flexible, scalable
infrastructure and tools suited to large-scale data analysis (Table 2).

In addition, this study identified many opportunities to improve
the support for cross-analysis in current and future TREs, including
both technical and policy considerations (Table 2). In a meta-analysis,
TRE technical differences (such as differences in user interfaces, ana-
lytical tools, supported programming languages, acceptable mechan-
isms for data access, acceptable mechanisms for data output, and
methods for organizing and orchestrating an analysis) are consider-
able hurdles. The activation energy just to “get started” in multiple
TREs is high. Our study team found it challenging to manage multiple
copies of code in separate TREs. Data harmonization, a critical and
time-consuming step, becomes much more tedious and error prone

when one cannot view and visualize together the row-level data. Many
common analytical tasks, including creating a simple comparison plot
with dots and whisker detail like the one in Fig. 3a, are infeasible with
aggregate data. Improved harmonization and standardization of data,
policies, and working environments across TREs can help reduce this
burden.

Policy decisions are based on complex rationale that attempt to
balance participant privacy, data security, scientific utility, and data
sharing goals which have significant practical impact on cross-analysis.
Policy changes that enable researchers to cross-analyze pooled data in
one or more mutually trusted TREs would be a powerful step forward
towards improved data usability and increased researcher productivity.
The additional friction incurred when performing data harmonization
for the meta-analysis could be reduced if TREs had reciprocal policies
that permitted some participant level data, such as phenotypes, to be
securely transferred between them. This middle-ground approach may
be a compromise to increase data usability in amanner respectful of the
current myriad of genomic data sharing policy and governance issues.

The analyses and results in this paper have several limitations.
First, cross-analyses were limited to All of Us whole genome sequence
and UK Biobank whole exome data available at the time of this study
and meeting the TRE policy constraints. As noted previously, these
data were generated using different sequencing methods and infor-
matics pipelines. Future cross-analyses may be improved by further
harmonizing approaches and joint-calling pipelines used to generate
these data. The primary goal of this work was to build and describe
approved paths for cross-analysis to encourage use by the broader
scientific community. As such, the case study selected for cross-
analysis was intentionally limited to common variants associated with
well-studied lipid phenotypes. Future cross-analysis of All of Us andUK
Biobank data exploring rare-variants and novel associations are likely
to have greater scientific impact, and potentially to surface greater
sensitivity to methodological differences. Finally, this study was lim-
ited to the cross-analysis of data residing in two enclaves. Future work
is needed to expand these approaches to cross-analysis of data resid-
ing in three or more enclaves.

Early paths for cross-analysis of population-scale clinical and
genomic data are clear. Program leaders, data providers, policy
groups, and TRE developers have a shared responsibility to ensure
data assets generated from public funding yield maximal scientific
benefit while continuing to balance and honor participants as partners

Table 2 | Important capabilities and opportunities to consider for improved cross-cohort analysis

Data Access Safeguards Existing Capability - Maintain a single centrally funded copy of data that can be accessed in-place by researchers

Opportunity - Expand the ability to store temporaryworkingdata outside the source TRE (e.g., to create a single table containing all
the multi-cohort phenotypes being studied)

- Engage with participants around the potential scientific value balanced by privacy and trust concerns of dis-
seminating more granular results (e.g. results summarizing observations from <20 individuals without applying for
an exception)

- Support mirroring of several datasets into one or more mutually trusted multi-dataset TREs
- Joint call the WGS data for the two cohorts, and make it available to researchers that have been granted access to
both cohorts.

Research Support Existing Capability - Have a reasonable researcher-onboarding process and good researcher documentation on how to do in-TRE
analysis

Opportunity - Build a library of cross-TRE-analysis examples, including run-it-yourself copies of well-documented analysis code,
that cover a variety of analysis types and input datasets

Analysis Infrastructure Existing Capability - Support standard code packaging tools, especially Docker containers and Jupyter notebooks
- Provideflexible access to native cloud infrastructure, including different compute, storage, and database resources
- Provide access to large-scale analysis methods, including special-purpose tools like REGENIE and general-purpose
tools like Hail

Opportunity - Provide access to a single dataset frommore than one TRE and includemappings to common vocabularies or data
models, to make it easier to share analysis code

- Use standard analysis application programming interfaces, such as those from the GA4GH, to allow central
orchestration of distributed analysis using common methods

- Expose cloud-native data analysis tooling (vs. requiring researchers to learn and use TRE-specific tooling and
techniques)
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in research programs. Thoughtful approaches to reducing barriers for
efficient data access and analysis across large programs can increase
the power of discovery while preserving participant trust. Data provi-
ders could consider providing mirrored copies of the data in multiple
clouds to better enable pooled analyses. Additionally, and consistent
with many existing efforts at federated analysis, data generators can
further harmonize and standardize methods to avoid the need for
downstream researchers to re-align and re-call genomic data. This
study reinforces the need to reduce friction in cross-analysis to fully
realize the potential of global-scale health research.

Methods
Cohorts
The UK Biobank (UKB) is a population-based cohort of approximately
500,000 participants recruited from 2006 to 2010, that has existing
genomic and longitudinal phenotypic data. Baseline assessments were
conducted at 22 assessment centers across the United Kingdom, with
sample collections including blood-derivedDNA. Secondaryuseof this
datawas approved by theMassachusetts GeneralHospital Institutional
Review Board (protocol 2021P002228) and was facilitated through UK
Biobank application 7089. The All of Us research program recruited
individuals that have been and continue to be underrepresented in
biomedical research due to limited access to healthcare. The first
release of genomic data included approximately 98,000 individuals
who completed electronic consentmodules and health questionnaires
upon enrollment. Approval to use the dataset for program operational
demonstration projects was obtained from the All of Us Institutional
Review Board.

Genotypes
Whole exome sequencing (WES) from the 200K exome release is the
most recent release of genomic data permitted by UK Biobank policy
to be analyzed outside of the UK Biobank Research Analysis Platform
(RAP). The 200K exome release includes approximately 10 Million
exonic variants with >95% of targeted bases covered at a depth of
20X or greater. On both the All of Us ResearcherWorkbench (AoURW)
and the UK Biobank Research Analysis Platform (RAP), the genotypes
were filtered to include only variants within the exome capture region
with an alternative allele frequency of 6 or more. Whole genome
sequenced (WGS) data from All of Us alpha 3 release was available as a
Hailmatrix tableon theAoURW.The alpha3 genotypeswerefiltered to
include only variants within the same exome capture region with an
alternative allele frequency of 6 or more. As initial quality control,
variants with Hardy-Weinberg equilibrium exact test p-value below 1e-
15 ormissing call rates exceeding 10% were removed. QC also checked
for samples with missing call rates exceeding 10%, but none were
found. To mitigate batch effects, in the pooled analysis the prepared
genotypes were filtered to include only those variants found in both
cohorts and in the meta-analysis the results were filtered to include
only those indicated found to be in both cohorts.

Phenotypes
The primary outcomes in this study included LDL cholesterol (LDL-C),
HDL cholesterol (HDL-C), total cholesterol (TC) and triglycerides (TG)
as phenotypes. We curated and harmonized the lipid measurements
and statin drug exposures for both UK Biobank and All of Us from the
phenotype resources of these cohorts. LDL-C was either directly
measured or calculated by the Friedewald equation when triglycerides
were <400mg/dL. Given the average effect of lipid lowering-medi-
cines, when lipid-lowering medicines were present, we adjusted the
total cholesterol by dividing by 0.8 and LDL-C by dividing by 0.7,
triglycerides remained natural log transformed for analysis. The lipid
phenotypeswere then inverse rank normalized by the residuals, scaled
by the standarddeviation and adjusted for the covariates.We included
PC1-10, age, age2 and sex at birth as covariates in our study. Tomitigate

batch effects, for the pooled analysis we also included a covariate
of ‘cohort’.

Statistical analysis
Single variant genome wide association studies (GWAS) were carried
out using REGENIE v2.2.4. We implemented REGENIE Step1 NULL
model generation using quality-controlled variants with a minor allele
count (MAC) of 100. We applied the leave one chromosome out
(LOCO) method for GWAS while adjusting for the covariates stated
above. We used variant and sample missingness at 10% followed by
Hardy-Weinberg equilibrium p-value not exceeding 1 × 10−15 for both
step 1 and for the genome wide associations. We carried out meta-
analysis of the siloed GWAS results from each cohort using theMETAL
package with the Standard Error scheme, where the methods weights
effect size estimates using the inverse of the corresponding standard
errors. The UKB siloed analysis was carried out on the UKB RAP, and
theAll of Us siloed analysis and the pooled analysis were carried out on
theAoURW.All the stepswere implemented inRor Pythonnotebooks.
Complete details on the various steps carried out in the project are
provided in the supplementary information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UK Biobank (UKB) whole-exome sequence data can be accessed
through UKB Research Analysis Platform (RAP), through the UKB
approval system (https://www.ukbiobank.ac.uk). Access to individual-
level data from the All of Us research program is available to
researchers whose institution has signed a data use agreement with
All of Us (https://www.researchallofus.org/register/). Whole-genome
sequencing data belongs to the controlled tier dataset, which requires
additional training to access. gnomAD is publicly available (https://
gnomad.broadinstitute.org/). The significant GWAS results generated
in this study are provided in the Supplementary Data file.

Code availability
The code for all analyses can be found in https://github.com/all-of-us/
ukb-cross-analysis-demo-project30 and was compatible with UK Bio-
bank Research Analysis Platform and All of Us Researcher Workbench
available data and technical capabilities as of the Spring of 2022.
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