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A generalizable Cas9/sgRNA prediction
model using machine transfer learning with
small high-quality datasets

Dalton T. Ham1,3, Tyler S. Browne1,3, Pooja N. Banglorewala1, Tyler L. Wilson2,
Richard K. Michael2, Gregory B. Gloor 1 & David R. Edgell 1

The CRISPR/Cas9 nuclease from Streptococcus pyogenes (SpCas9) can be used
with single guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent
and as a genome-engineering tool. However, current bacterial sgRNA activity
models struggle with accurate predictions and do not generalize well, possibly
because the underlying datasets used to train the models do not accurately
measure SpCas9/sgRNA activity and cannot distinguish on-target cleavage
from toxicity. Here, we solve this problem by using a two-plasmid positive
selection system to generate high-quality data thatmore accurately reports on
SpCas9/sgRNAcleavage and that separates activity from toxicity.Wedevelop a
machine learning architecture (crisprHAL) that can be trained on existing
datasets, that shows marked improvements in sgRNA activity prediction
accuracy when transfer learning is used with small amounts of high-quality
data, and that can generalize predictions to different bacteria. The crisprHAL
model recapitulates known SpCas9/sgRNA-target DNA interactions and pro-
vides a pathway to a generalizable sgRNAbacterial activity prediction tool that
will enable accurate antimicrobial and genome engineering applications.

The Cas9 nucleases from the type II-A clustered regularly interspaced
short palindromic repeat (CRISPR) system have gene-editing applica-
tions in both bacteria and eukaryotes1,2. Cas9 cleavage of DNA tem-
plates requires an associated CRISPR RNA (crRNA) that is
complementary to the target site, and a trans-activating CRISPR RNA
(tracrRNA) that is required for crRNA assembly with Cas93; in most
applications these two RNAs are genetically fused into a single guide
RNA (sgRNA)4. In bacteria, Cas9 nucleases can be used as sequence-
specific antimicrobial agents to target distinct bacterial species for
elimination5–12 because many bacteria lack appropriate DNA repair
pathways to repair double-strand breaks (DSB). Cleavage by Cas9
causes replication fork collapse and cell death13. Alternatively, Cas9
cleavage can eliminate plasmids through the cellular RecBCD exonu-
cleasepathway that degrades linearizedDNA.Cas9 can also beused for
bacterial genome engineering14–16, or for transcriptional modulation
with catalytically inactive dCas9 variants17–19.

A major unsolved problem when using Cas9 is the inability to
accurately select sgRNA/ Cas9 combinations that lead to high on-
target activity in both eukaryotic and prokaryotic systems. Selection
of sgRNAs typically involves computational prediction of activity
where the underlying models are trained on data of in vitro or in vivo
Cas9/sgRNA activity, and may also include biochemical parameters
of Cas9 activity, biophysical calculations of sgRNA:DNA stability,
and chromatin accessibility information20–25. However, as recently
reported26,27, most computational models poorly predict sgRNA
activity outside of the dataset on which they are trained. This lack of
generalizability could be because the underlying data are sparse and
not independently validated, because the datasets may not accu-
rately represent Cas9/sgRNA cleavage activity and instead report a
secondary DNA repair outcome of DSB generation, because the
machine learning algorithms are not optimal, or a combination of all
three26.
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In spite of the conceptual simplicity in targeting sgRNAs to small
bacterial genomes, eukaryotic-based computational models fail to
accurately predict activity in bacteria28. One issue for sgRNA activity
predictions in bacteria is that there are fewbacteria-specific large-scale
datasets of Cas9/sgRNA activity29,30. In each case, deep sequencingwas
used to readout sgRNA abundance of a pooled sgRNA library targeting
theEscherichia coligenome,with the assumption that sgRNAdepletion
was correlated with active Cas9/ sgRNA combinations. A complicating
factor in assessing Cas9/sgRNA activity in bacteria is that expressionof
Cas9 (and dCas9) alone can result in cellular toxicity and slow
growth31–34. Thus, experimental strategies that only use bacterial killing
as a measure of Cas9/sgRNA activity cannot separate toxicity from
activity because both will result in depletion of sgRNAs from a
pooled high-throughput experiment. Two sgRNA prediction models
have been developed based on this data, sgRNA-cleavage-activity-
prediction29 and DeepSgRNAbacteria35, but we found poor correlation
between predicted Cas9/sgRNA activity and killing of Salmonella
typhimurium5. Other factors that possibly impact sgRNA activity in
bacteria include sub-optimal secondary structures in the crRNA and
tracrRNA36, and similarity between the crRNA seed region and so-
called “non-targets" in bacterial genomes. In contrast, DNA modifica-
tions do not impact activity of type II CRISPR systems (from which
Cas9 is derived)37,38. Similarly, there is no bias in activity for Cas9/
sgRNAs targeting the template or non-template strand of transcribed
genes, or in targeting the leading or lagging strands relative to DNA
replication origins5.

Taken together, the evidence indicates that there is a pressing
need for additional high-quality bacterial sgRNA activity data sets to
validate and generalize previous findings, and to provide training data
for predictive machine learning models. Here, we develop a paired
experimental design in E. coli that compares behaviors of Cas9/sgRNA
combinations in repressed and induced conditions to provide a
readout of activity where active sgRNAs are enriched in a pooled
library. This approach differs from previous depletion studies by
accounting for initial sgRNA abundance in the pooled library, and does
not rely on end-of-experiment sgRNA abundance as the sole indicator
of sgRNA activity. Additionally, this setup distinguishes highly active
Cas9/sgRNA combinations from toxic ones with poor growth, even in
repressed conditions.We use this approach with the SpCas9 nuclease4

and the TevSpCas9 dual-nuclease39 to generate robust sgRNA
activity datasets to train a sgRNA prediction model, crisprHAL (crispr
macHine trAnsfer Learning) that recapitulates the known biology of
the Cas9/sgRNA-target DNA interaction surface. Significantly, we find
that transfer learning from existing datasets with a small amount of
sgRNA activity data (279 sgRNAs) from our assays improved bacterial
sgRNA predictions relative to previous models. Crucially, crisprHAL

can generalize Cas9/sgRNA activity predictions to different bacteria.
Collectively, our study highlights the importance of accurate sgRNA
activity data and transfer learning as being critical for computational
modeling.

Results
Current bacterial sgRNA prediction models are poorly
generalizable
We were interested in understanding why existing sgRNA prediction
models29,35 poorly correlate with in vivo activity5. Thus, we tested
whether current bacterial sgRNA prediction models were general-
izable to different SpCas9 activity datasets (Fig. 1). For this, we used a
two-plasmid positive selection system (Fig. 2) to generate two high-
quality activity datasets for the SpCas9 and the TevSpCas9 dual
nuclease (as described in detail in the following sections). When the
TevSpCas9 dataset was used as an input for the sgRNA-cleavage-
activity-prediction model29 (hereafter referred to as the Guo model)
and the DeepSgRNAbacteria model35 (hereafter referred to as the
DeepSgRNA model), we found only modest predictive performance
between predicted activity and experimental results, as measured by
Spearman correlation of rank order (Fig. 1). Modest predictive power
was observed regardless of which of the two published sgRNA deple-
tion datasets the Guo or DeepSgRNA models were trained on; one
dataset used SpCas9 and the other used an enhanced high-fidelity
SpCas9 variant (eSpCas9). We also tested whether 4 eukaryotic sgRNA
prediction models (DeepHF40, C-RNNCrispr41, DeepSpCas942, Crispr-
NET43) were generalizable to the SpCas9 and TevSpCas9 activity
datasets and found Spearman ranked correlation coefficients of
between −0.2 and 0.1 (Supplementary Fig. S1). DeepGuide is a recently
developed sgRNA activity prediction model for the yeast Yarrowia
lipolytica44 that was suggested as being applicable for bacterial sgRNA
predictions.We retrained theDeepGuidemodel with the Guo eSpCas9
dataset and then tested predictions using the TevSpCas9/sgRNA
activity data generated here; we found a rank correlation of 0.505
between predicted and measured activity.These results emphasize a
major issue with Cas9/sgRNA activity predictions, namely the lack of
generalizability and accuracy when models are used with data outside
of the initial training data and that existing eukaryote-specific models
datasets cannot predict activity when trained with bacterially-derived
Cas9 datasets. Collectively, these observations highlight the need for
high-quality datasets that accurately report on Cas9/sgRNA cleavage
activity.

Profiling sgRNA activity using a two-plasmid system
To increase the accuracy of SpCas9 and TevSpCas9 targeting predic-
tions, we started with an improved assay in which we used an
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Fig. 1 | Spearman ranked correlation of predicted versusmeasured activity for
sgRNA prediction models. Barcharts are Spearman Rank correlations between
the (A) TevSpCas9dataset (n = 279) and (B) the SpCas9dataset (n = 303) generated
in this study and predictions from bacterial sgRNA activity models including

crisprHAL. The crisprHAL values are reported as the average rank correlation from
5-fold cross validation. For both panels, asterisks (*) indicate datasets from ref. 29
and hash marks (#) indicate datasets generated in this study. Source data are
provided as a Source Data file.
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integrated approach to assess SpCas9/sgRNAactivity in E. coli (Fig. 2A).
We adapted a two-plasmid system used for in vivo selection
experiments45−47 that is known to correlate with enzymatic activity
in vitro48 and expressed the SpCas9 or dual-nuclease TevSpCas9 pro-
tein (arabinose inducible) and a sgRNA (constitutive expression) from
one plasmid (pSpCas9/ or pTevSpCas9, Supplementary Fig. S2) in
combination with a second plasmid (pTox, Supplementary Fig. S2)
harboring the ccdB DNA gyrase toxin controlled by an IPTG inducible
lac promoter (Fig. 2A). Cleavage of the pTox plasmid by an active
SpCas9/sgRNA combination or TevSpCas9/sgRNA combination
(Fig. 2B) leads to degradation of the pTox plasmid and subsequent cell
growth and enrichment of cells lacking the pTox plasmid in the
population. Inactive SpCas9/sgRNA or TevSpCas9/sgRNA combina-
tions do not eliminate the pTox plasmid and are unable to grow under
toxin-inducing conditions. Importantly, the activity of the (Tev)
SpCas9/sgRNA combination is related to the rate of pTox plasmid
clearance, and so partially active combinations will have intermediate
outgrowth and lethality characteristics.With this system, (Tev)SpCas9/
sgRNA activity can be analyzed by deep sequencing of the sgRNA
expression cassette following competitive growth in liquid media, or
by growth rate in liquidmedia, or by counting colonies grown on solid
media (Fig. 2A). The dual-active-side nuclease TevSpCas9 has an
extended targeting requirement that includes the 5’-CNNNG-3’ I-TevI
cleavagemotif (Supplementary Fig. S3)39. Thus, all TevSpCas9 sites are
also SpCas9 sites, and cleavage by an active TevSpCas9/sgRNA com-
bination will create an additional DSB with the potential to enhance
killing efficiency.

We validated this system by targeting three TevSpCas9/sgRNA
combinations to a unique region of pTox; sgRNA2435_NC, sgRNA1887_C,
and sgRNA2541_NC (in this naming scheme sgRNAs are identified by the
position of the PAM-distal nucleotide of the sgRNA target in pTox and
whether they target the coding or non-coding strand, as all genes are in
the same orientation). We plated the transformed E. coli cells on solid
media and calculated percent survival by comparing the proportion of
colony forming units on toxin-inducing or toxin-repressing agar plates.
When expressed in combination with the TevSpCas9 protein, the three
sgRNAs tested showed survival ranging from88.2 ± 4.1% (standard error
of the mean) for sgRNA2435_NC to 0.9 ±0.29% for sgRNA2541_NC (Fig. 2B).
When no sgRNA was present (NG, no guide), we observed 0% survival
(Fig. 2B). We conducted a similar experiment in liquid media by mea-
suring absorbance at 600nmover 18 h todetect growthunder inducing
and non-inducing SpCas9 conditions in combination with the same
three sgRNAs (Fig. 2C). The resulting growth curves are consistent with
the survival values on solid media, with sgRNA2435_NC promoting robust
growth, sgRNA1887_C promoting intermediate growth and sgRNA2541_NC

and the NG control showing no growth (Fig. 2C). Collectively, these
results show that bacterial growth is dependent on cleavage of thepTox
plasmid by TevSpCas9/sgRNA, agreeing with previous results using
SpCas947, and that differential TevSpCas9/sgRNA activity results in
distinct growth differences over a large and consistent range.

Sensitivity of the two-plasmid system
Wenext tested the ability of the two-plasmid system to detect changes
in SpCas9/sgRNA or TevSpCas9/sgRNA activity when read out via a

Fig. 2 | Two-plasmid survival assay. A Experimental workflow of the two-plasmid
system. Transformation, the pCas9 plasmid expressing SpCas9 or TevSpCas9 from
an arabinose-inducible promoter and a sgRNA from a constitutive tetracycline
resistance gene promoter is transformed into E. coli harboring pTox. Induction and
Outgrowth, transformed cells are split into repressed (0.2% D-glucose) or induced
(0.02%L-arabinose and0.4mM IPTG) conditions and grown for 18 h.Active sgRNAs,
blue promote robust cleavage of the toxic plasmid and cell growth while inactive
sgRNAs, red do not cleave pTox preventing cell growth. Detection, SpCas9/sgRNA
activity can be read out by (i) deep-sequencing the pCas9 sgRNA cassette, (ii)
growth curves that measure optical density of induced and repressed cultures, or
(iii) plating on solid media to determine a percent survival based on the ratio of

colonies on induced media (chloramphenicol and IPTG) and repressed media
(chloramphenicol and D-glucose). B Different TevSpCas9/sgRNA combinations
promote a range of survival. Plot of survival percentage for three different sgRNAs
targeted to pTox (2435_NC,1887_C,2541_NC) identified as active (blue), inter-
mediate (orange), inactive (red) as well as a no-sgRNA(NG) control (black). Indivi-
dual data points represent independent experiments. C Growth curve of E. coli
harboring the SpCas9/sgRNA combinations used in (B) plotted as time versus
absorbance at 600 nm. Data points represent the mean of three biological repli-
cates and the whiskers representing the standard deviation from the mean. Source
data are provided as a Source Data file.
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multiplexed high-throughput sequencing experiment. This experi-
ment was designed to validate the sensitivity of the two-plasmid sys-
tem when reporting on a range of TevSpCas9/sgRNA activities, and to
assess the effect of mismatches between the sgRNAs relative to their
cognate target site. For this, we designed an oliognucleotide pool
where single and double nucleotide transversions were tiled along the
length of 28 different sgRNAs that were targeted to a unique 3.2 kb
region of the pTox plasmid (Fig. 3A, Supplementary Data 1). The
mutated oligonucleotide pool (mPool) also contained 20 sgRNAs not
targeted to pTox and 28 exactlymatching sgRNAs as internal controls,
for a total of 1140 sgRNAs. ThemPool was cloned into pTevSpCas9 and
we performed 10 independent transformations into E. coli harboring
pTox. Each transformation culture was split and then grown under
conditions that repressed or induced TevSpCas9 and CcdB. We
anticipated that active TevSpCas9/sgRNA combinations would

become enriched under the inducing conditions relative to the pool
grown under non-induced conditions. Our output score (reported as
normalized sgRNA activity) was the log2 difference in relative sgRNA
abundance between the induced and uninduced conditions (as
described in the Methods). Given the solid and liquid culture results
(Fig. 2), we anticipated that the assay would report a distribution of
activities that depended on the underlying activity of the pTevSpCas9/
sgRNA combination. After Illumina sequencing of the sgRNA cassette
from both conditions and data analyses, active combinations were
identified by a higher normalized activity score (Supplemen-
tary Data 2).

As expected, when co-expressed with TevSpCas9, sgRNAs that
exactly matched their target sequences (black) (Fig. 3B, C) tended to
exhibit high normalized activity scores, sgRNAs with single mis-
matches to their target site (orange) showed a broad range of

Fig. 3 | Activity of sgRNAs with single and double mismatches. A Schematic of
the mutant pool (mPool) design and experimental approach. Single and dinu-
cleotide transversions are indicated by lower case red letters, with sgRNAs num-
bered from PAM proximal (postion 1) to PAM distal (position 20). B Ridge plots of
normalized sgRNA activity scores for non-targeted sgRNAs (NT, green) perfectly
matching sgRNAs (black), sgRNAS with single nucleotide mismatches sgRNAs

(yellow), and sgRNAs with dinucleotde mismatches (cyan). C Bland-Altmann plot
comparing the normalized abundance and normalalized activity scores for sgRNAs
in themPool with the colors representing the same sgRNAs categories as (B). Ridge
plots of normalized sgRNA activity scores by position ofmismatch for sgRNAs with
(D) single or (E) 2 mismatches. Source data are provided as a Source Data file.
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activities, and sgRNAs with double mismatches to their target site
(blue) generally had low activity scores that were similar to non-
targeted sgRNAs (green). Also as expected, the ability of the sgRNA to
confer activity was most impacted by mismatches in the seed region
corresponding to positions 1–10 relative to the PAM proximal end
(Fig. 3D)49,50. The impact of double transversions was more pro-
nounced than that of single transversions. In the former, mismatches
in all positions except 20 and 19 severely reduced activity (Fig. 3E),
while in the latter there was a broader range of activity conferred
(Fig. 3D). These results agree with previous studies on mismatch tol-
erance of Cas9/sgRNA from in vitro data and eukaryotic systems51–53

emphasize that selection of appropriate sgRNAs without mismatches
is critical for bacterial applications where specificity is a concern8. The
data also show that our experimental system can report a gradient of
sgRNA activities across an ~1000-fold normalized activity range and a
~2000-fold range in relative abundance; although the relative abun-
dance range was more clustered except for a few outlier sgRNA
sequences.

High-throughput profiling of a pooled sgRNA library
We next synthesized an oligonucleotide pool (oPool) to interrogate the
activities of 304 exactmatch sgRNAs targeted to the pToxplasmid,with
all sgRNA sites having a 5’-NGG-3’ PAM sequence (Fig. 4A, Supplemen-
tary Data 3). The oPool also contained 15 sgRNAs with nucleotide mis-
matches that had varying degrees of target complementarity to the
pToxplasmid, and48 sgRNAs that did not have any complementarity to
the pTox plasmid. In addition, 73 of the 304 sgRNAs that exactly mat-
ched their target sequence also contained an exact match with a con-
sensus I-TevI cleavage site at the correct spacing from the SpCas9
binding site. In total, the oPool contained 367 sgRNAs (Supplementary
Data 3). The oPool was cloned into pTevSpCas9 and pSpCas9, and 10
transformation replicates for each was generated. Following induction
and outgrowth, the result was read out by Illumina sequencing anddata
analysis to assign normalized activity and relative abundance scores for
each sgRNA in combination with both SpCas9 and TevSpCas9
(Supplementary Data 4). The final dataset included 332 sgRNAs and the
major findings from these experiments were:
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Fig. 4 | High-throughput pooled screen detects distribution of SpCas9/sgRNA
andTevSpCas9/sgRNAsactivity. A Schematicof target sites for the sgRNAspPool
with black boxes representing sgRNA target site (304), cyan boxes representing
target sites with mismatches (15), red boxes representing non-targeting sgRNAs
(48) and yellow boxes representing TevCas9 sites (75). Distribution of normalized
activity scores for mismatched (cyan), non targeting (red), and on target (black)
sgRNAs forCas9 (B) andTevCas9 (D) experiments. Bland-Altmannplots comparing

the normalized abundance and activity scores for individual sgRNAs in the Cas9 (C)
and TevCas9 (E) pooled experiments. sgRNAs with a false-discovery rate (FDR)
<0.01 are highlighted black and sgRNAs with a FDR >0.01 are colored gray. Cyan
and red points represent mismatched sgRNAs and non-targeting sgRNAs respec-
tively. sgRNAs that were tested individually in Fig. 2B, Care shown as triangles
where 2435_NC is blue, 1887_C is orange and 2541_NC is red. Source data are pro-
vided as a Source Data file.
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1. Of the 304 sgRNAs with perfect complementarity to the pTox
plasmid, 174 had significant positive normalized activity scores in
the SpCas9 data set and 178 in the TevSpCas9 data set using a
false-discovery rate <0.01 (Fig. 4C, E).

2. The non-targeted (red) and mismatched (cyan) sgRNAs generally
had negative normalized activity scores indicating that they did
not cleave the pTox plasmid efficiently (Fig. 4B–E).

3. We found no nucleotide preference in the first position of the 5’-
NGG-3’ PAM for either SpCas9 or TevSpCas9 (Supplemen-
tary Fig. S4).

4. sgRNA relative abundance alone was misleading as a measure of
activity as the vast majority of sgRNA sequences were highly
abundant, and both mismatched and non-targeted sgRNA
sequences tended to be more abundant than average (Fig. 4C, E).
One interesting finding from the oPool experiment was the

activity of sgRNAs in the SpCas9 versus the TevSpCas9 experiment.
Overall, the readouts from the same sgRNAs in both assays behaved
similarly (Fig. 5, Pearson correlation 0.90, p-value < 2.2 × 10-16), but we
found 22 sgRNAs that promoted higher activity with TevSpCas9 than
with SpCas9. In the SpCas9 experiment, these sgRNAs had low nor-
malized activity scores ranging from −1.21 to 1.45 versus −1.01 to 2.77 in
the TevSpCas9 experiment. The single non-targeted sgRNA (NT42)
with a high activity of 3.4 in the TevSpCas9 experiment also showed
high replicate-to-replicate variability suggesting that thiswas anoutlier
(Supplementary Data 4). One explanation for the increased activity of
sgRNAs in the TevSpCas9 experiment was the presence of the I-TevI 5’-
CNNNG-3’ cleavage motif at an appropriate distance upstream of the
sgRNA binding site (Figs. 2B and 5). This observation suggests that
SpCas9 binding is necessary but not sufficient for cleavage, and that
low SpCas9 cleavage can be rescued by the I-TevI nuclease domain to
promote elimination of the pTox plasmid.

We also noted a large dynamic range for the normalized activity
scores (~1000-fold) and relative abundances of the sgRNA sequences
(~2000-fold) (Fig. 4C, E). The dynamic range allowed us to identify
sgRNAs with low abundances but large activity scores (upper left
quadrant of Fig. 4C, E), andwouldconsider these sgRNAs as potentially
toxic. Conversely, we identified sgRNAs with high abundance but
negative activity scores (lower right quadrants of Fig. 4C, E); 58.7% and
73.5% of these sgRNAs are non-targeting (red) or mismatched (cyan)
guides with respect to the pTox plasmid.

The observation that the final datasets included 332 of the 367
designed oPool sgRNAs suggested that thesemissing sgRNAs are toxic
because they contain sufficient identity to promote cleavage of the

E. coli chromosome and thus are unclonable (Supplementary Data 5).
We classify these sgRNAs as overtly toxic and theywere excluded from
the training and test datasets for model development and testing. We
further confirmed this observation by identifying sgRNAs that were
present in the cloning reaction butmissing from the pool of recovered
plasmids after transformation into E.coli Epi300 (Supplementary
Fig. S5). Of the clonable sgRNAs that we identified in the upper left
quandrant of Fig. 4C, E two of the sgRNAs are exact matches to the lac
regulatory region present on pTox and in the E. coli chromosome
suggesting that toxicity arises from cleavage of the chromosomal
target, but only under inducing experimental conditions (Supple-
mentary Fig. S6). However, the other sgRNAs identified in the upper
left quadrant of Fig. 4C, E have 5 to 8 nucleotide mismatches that are
inconsistent with off-target cleavage based on ourmismatch tolerance
profiling (Fig. 3, Supplementary Fig. S6).

Taken together, the data highlight the importance of conducting
an experiment where the paired design allows the readout of relative
enrichment with multiple replicates to accurately measure the ability
of sgRNA to confer activity on the complex. Moreover, the approach
demonstrates that using sgRNA relative abundance alone as an indi-
cator of activity can lead to false identification of the abilty of sgRNAs
to confer activity.

Growth curves of individual sgRNAs identifies toxic guides
The pooled sgRNA experiments in Figs. 3 and 4 revealed a wide range
of sgRNA activity. To cross validate these activity measurements we
blindly picked 77 colonies from the transformed pTevSpCas9/sgRNA-
oPool library to test using individual growth experiments as shown in
Fig. 2D; the identity of each sgRNA was confirmed by sequencing of
isolated plasmids. We rationalized that growth curves performed with
individual sgRNAs would better resolve measure the properties of
sgRNA species independent of their behavior in a sgRNA pool where
we could only measure relative changes. These experiments were
performed when the TevSpCas9 protein and the CcdB proteins
were induced or repressed, and we found three different classes of
sgRNA sequences (Fig. 6A–C, Supplementary Fig. S7). Those sgRNAs
that conferred a high level of activitywhen complexedwith TevSpCas9
(20 of 77) grew in both induced and repressed conditions (Fig. 6A)
whereas inactive sgRNAs (12 of 77) only grew in the repressed condi-
tion (Fig. 6B). Surprisingly, we found a number of sgRNAs that we
classified as toxic (12 of 77) because they grew poorly in both the
induced and repressed condition (Fig. 6C) as compared to a non-
targeting sgRNA (Fig. 6D). The growth curves for the remaining 33
sgRNAs did not clearly fit in any category but showed intermediate
activity. For active sgRNAs,we consistently found thatmaximal optical
density values were lower in the induced than the repressed condition.
We attribute this difference to the presence of glucose in the media
used for the repressed condition,which is a preferred carbon source to
the arabinose present in the media for the induced condition.

For each sgRNA, we calculated the area under the curve (AUC) for
the induced and repressed conditions and normalized them relative to
the average AUC for all sgRNAs for each condition (Fig. 6E, Supple-
mentary Table S1). This plot emphasizes that many guides conferring
activity grew well in both induced and repressed conditions (20 of 77,
black dots Fig. 6E). Conversely, a subset of sgRNAs showed poor or no
growth in induced conditions, but robust growth in repressed condi-
tions, and thus were considered inactive (12 of 77, red dots in Fig. 6E),
although therewas no clear separationbetween these twogroups. This
analysis also revealed that toxic sgRNAs grew poorly in both repressed
conditions and induced conditions (12 of 77, cyan dots Fig. 6E). We
considered that toxicity could be due to off-target sgRNA sites in the
E. coli genome. Using Cas-OFFinder54 we found that none of these
sgRNAs have sites with less than four mismatches making off-target
cleavage unlikely (SupplementaryTable S2). This suggests that toxicity
is either an intrinsic property of the sgRNAor that these sgRNAs confer

Fig. 5 | Activity of TevSpCas9 versus SpCas9 with the pooled sgRNA library.
Comparing the difference between condition values for sgRNAs present in both
TevSpCas9 and SpCas9 pooled experiments where dark green dots represent
sgRNAs with upstream I-TevI recognition sites and light green dots representing
sgRNAs with Cas9 sites only. Non-targeting and mismatched sgRNAs are high-
lighted as red and cyan respectively. Three sgRNAs that target TevSpCas9 sites are
indicated. Source data are provided as a Source Data file.
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some unwanted property on the TevSpCas9 protein when complexed
with the toxic sgRNA.

To address parallels between individual and pooled experiments,
we mapped the different classes of sgRNAs from the growth experi-
ments back to the analyses of the deep sequencing experiments
(Fig. 6F, G). This revealed that sgRNAs that were classed as inactive in
the growth experiments had poor activity in the pooled experiments,
with a mean normalized activity score of −0.309 and relative abun-
dance value that were suggestive of minimal or modest enrichment
(Fig. 6F). In contrast, sgRNAs conferring activity in the growth
experiments largely had positive activity scores and relative abun-
dance values (Fig. 6F). Interestingly, guides determined to be toxic by
the growth curves had activity scores ranging from −1.33 to 1.81 in the
pooled experiment (6F, mean value of −0.0431) and many of these
sgRNAs had positive relative abundance values (Fig. 6F). One expla-
nation for this apparent discrepancy between toxicity and activity is
that toxic sgRNAs vary in how they promote bacterial growth in the
repressed and induced conditions. For instance, a toxic sgRNA may
still be active on the intended pTox plasmid target site under inducing
conditions (thus promoting growth), but show toxicity under repres-
sive conditions (thus preventing growth) in turn altering the relative
difference calculation that is used to infer activity.

Collectively, these data emphasize the importance of indepen-
dent validation of sgRNA activity using different methods of activity
assessment. Our analyses revealed that many sgRNAs that would be
considered active solely by their relative abundance in deep sequen-
cing experiments demonstrated high levels of toxicity when analyzed
individually. Thus, toxicity andhigh activity arenotmutually exclusive,

but cannot be distinguished if sgRNAs are classified based on a single
line of experimental evidence. Our data also suggest that toxicity is not
an all-or-nothing phenotype. In contrast, sgRNAs that are clonable but
show toxicity possess mismatches to chromosomal targets at posi-
tions that do no support cleavage by our mismatch profiling (Fig. 3).
Further studies are needed to directly identify toxic sgRNAs on a large
scale to determine the mechanism(s) of toxicity.

Transfer learning is required for suitable TevSpCas9 predictive
ability
With this data in hand, we next concentrated on building a model,
crisprHAL (Fig. 7, Supplementary Data 6 and Supplementary Data 7),
that could more accurately predict sgRNA target site sequence-
associated TevSpCas9 and SpCas9 activity in E. coli and other bacteria.
For this, we constructed a dual branch deep learningmodel and tested
this model using the TevSpCas9 dataset generated in this study. To
select our network architecture and evaluate model performance, we
used 5-fold cross validation, measured by Spearman ranked correla-
tion coefficient, hereafter referred to as rank correlation.

Our initial model tests resulted in poor performance, with a rank
correlation of 0.308. This result is not surprising given the small size of
the TevSpCas9 dataset (n = 279) (Fig. 7). Thus, we chose to pursue
transfer learning to improve performance. We constructed new
models to transfer learn from – denoted as base models – on SpCas9
(n = 40308) and eSpCas9 (n = 45010) datasets derived from an sgRNA
depletion experiment in E. coli29. Hereafter, these data are referred to
as the Guo SpCas9 or Guo eSpCas9 datasets to distinguish them from
the SpCas9 dataset generated in this study. A major difference of our
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model compared to priormodels is the use of a log ratio-based relative
difference metric for scoring sgRNA-associated nuclease activity55.
This metric resulted in mean scores near 0 across all datasets, while
providing differences in their dynamic ranges. The Guo SpCas9 and
eSpCas9 datasets contained the widest range of scores, with standard
deviations of 2.280 and 2.492, respectively. The TevSpCas9 dataset
contained the smallest range, with a standard deviation of 1.305. To
compensate for the variations in activity score ranges,we standardized
the scores for each dataset by dividing by the standard deviation
(Supplementary Fig. S8, Supplementary Data 8). This improvedmodel
performance since each dataset was on the same scale. Base model
performance was unaltered as expected since this is a simple linear
scaling.

Following base model construction, we tested variations in
freezing parameter weights for specific layers within the model to
optimize for transfer learningperformance.We found that freezing the
multi-layer CNNbranch and leaving all layers of the CNN-BGRU branch

– except for the initial CNN layer shared by both branches of themodel
and the final output layer—resulted in the best performance, as shown
in Fig. 7. Additionally, the performance of the model was higher when
the final layers of the model, which concatenate the outputs of both
branches of the model, were frozen.

We found that base models constructed on the Guo eSpCas9
dataset had better transfer learning performance than base models
constructed with the Guo SpCas9 dataset. TevSpCas9 average 5-fold
cross validation performance improved by 0.053 rank correlation
when transfer learning with the eSpCas9 base model versus the Guo
SpCas9basemodel (SupplementaryData S7).We found that crisprHAL
with a dual branch architecture performed well on our TevSpCas9
dataset (n = 279) after transfer learning from a base model built on
eSpCas9data (n = 45,010),with a rank correlationof0.630 (Fig. 7). This
exceeds the best prior bacterial model, built for SpCas9 by Guo et al.,
which had a rank correlation in this dataset of 0.52 (Fig. 1A).Within the
four prior bacterialmodels tested,we found that the gradient boosting
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regression tree (GBR) models for SpCas9 and eSpCas9 by Guo et al.
generalize to TevSpCas9 data better than the deep learning based
models for SpCas9 and eSpCas9 from DeepSgRNA, respectively29,35.
This contrasts with the improved performance from the deep learning
models versus the GBR models on their own SpCas9 and eSpCas9
data; both Guo and DeepSgRNA construct their models on the
same data.

To validate model performance, we tested crisprHAL on a set of
unique sequences from the Guo et al. SpCas9 dataset (n = 8728)29. This
set of sequences was curated to remove any overlap with the Guo
eSpCas9 dataset used to construct the base model, a process which
removed 36342 sgRNAs. As shown in Fig. 8B, crisprHAL performs well
on this dataset with a rank correlation of 0.682.

Applying transfer learning model to the SpCas9 dataset
We also tested the model with the SpCas9 dataset (n = 303) in place of
TevSpCas9 for transfer learning from the eSpCas9 base model while
leaving all other aspects of the model unaltered. The model performs
well with the SpCas9 data, resulting in a 5-fold cross validation average
rank correlation of 0.627 (Fig. 8C). This performance exceeds that of
all existing models, with the best prior model, built for SpCas9 by Guo
et al., attaining a rank correlation of 0.456 (Fig. 1B)29,35. We noted
transfer learning to be an essential component of the SpCas9 perfor-
mance. Without transfer learning themodel reaches a rank correlation
of only 0.417.

In line with our TevSpCas9 model performance, our SpCas9
model performs best when using the dual branch model, with per-
formanceonlymarginally exceeding thatof the hybridCNN-RNNalone
(Fig. 7). Although performance is optimal when using the eSpCas9
dataset base model, we found models used our SpCas9 dataset to
performwell when transfer learning from theGuo SpCas9dataset base
model, with a 5-fold cross validation average rank correlation of 0.609,
notably higher than the TevSpCas9 results (Fig. 7). When testing
SpCas9 model generalization, we found it to perform well on the
uniqueGuo SpCas9dataset, with a rank correlation of0.657 (Fig. 8D)29.
Testing could not be performedwith the TevSpCas9dataset due to the
presence of all sgRNAs being cross-listed.

crisprHAL predictions are generalizable to other bacteria
One significant issue with most existing Cas9/sgRNA prediction mod-
els is that they fail to generalize to datasets outside of those used for
training26. We took two approaches to test if crisprHAL could accu-
rately predict SpCas9/sgRNA activity on datasets generated for dif-
ferent bacteria. First, we designed a pool of 31,796 sgRNAs targeted
against the chromosome of Citrobacter rodentium (Supplementary
Data 9) that is used in mouse models of enterohaemorrhagic E. coli
(EHEC) infections56–58. This experiment differed from the pTox
experiment in that highly active Cas9/sgRNA combinations would
become depleted relative to weakly active or inactive combinations
because they would cleave the C. rodentium genome, promoting
replication fork collapse and cell death (Supplementary Data 10). We
found a rank correlation of 0.635 and 0.612 for TevSpCas9 measured
activity versus the TevSpCas9 and SpCas9 crisprHAL model predicted
activities (Fig. 8E, F). Second, we cloned a 2-kb fragment of the katG
gene from Salmonella enterica Typhimurium LT2 into pTox to create
pTox+KatG. We designed a pool containing 296 sgRNAs targeting the
katG sequence (Supplementary Data 11), andmeasured their activity as
described for the pTox/oPool experiment (Supplementary Data 12).
We found rank correlations of 0.678 and 0.648 between themeasured
activity of the TevSpCas9/sgRNA and the TevSpCas9 and SpCas9
crisprHAL model predicted activities, respectively (Fig. 8G, H). Col-
lectively, these experiments demonstrate that crisprHAL predictions
can be generalized to bacteria other than E. coli and that predictions
are robust to different measurements of SpCas9/sgRNA activity
(depletion versus enrichment).

Downstream target site nucleotides impact predictive
performance
Prior models have proposed various input sequence lengths for opti-
mal predictive performance29,35. For example, the DeepSgRNABacteria
model suggests that 43nt input sequencesmay be optimal for eSpCas9
and SpCas9 performance based on calculated importance scores, with
nucleotides downstream of the sgRNA binding site containing more
information than upstream nucleotides35. Biologically, it is implausible
that sequences outside of those contacted by either the sgRNA or
the SpCas9 nuclease59–63 should have a large effect on a machine
learning model, and these models may thus be overparameterized.

To identify the optimal input sequence length to use for our
model, we constructed versions of our model with input sequences
extending upstream and downstream of the 20nt sgRNA target site
(Fig. 9A). The 20-nt base input was extended upstream 10 positions in
1-nt increments upstream and downstream 11 positions in 1-nt incre-
ments. A single increment of 3 nt covered the PAM sequence. Pre-
dictive performance of these incremental models was measured
by 5-fold CV across the TevSpCas9 dataset using rank correla-
tion (Fig. 9B).

We noted that nucleotide additions upstreamof the sgRNA target
site immediately decreased the predictive ability of the model
(Fig. 9B). In contrast, nucleotide additions downstream of the sgRNA
target site improved predictive performance, up to the limit of 8nt
downstream. Based upon these results we chose an input sequence of
28nt, comprising the 20 nt sgRNA target site, the 3nt PAM, and five
additional downstream nucleotides. No upstream nucleotides were
included in our input sequence for the crisprHAL model.

Discussion
Although targeting SpCas9/sgRNA to desired sequences in small-sized
bacterial genomes appears straightforward because it relies on
apparent nucleotide complementarity, there are significant limitations
in our ability to reliably identify highly active SpCas9/sgRNA combi-
nations. Ideally, a predictive model of SpCas9/sgRNA activity should
be agnostic to different datasets, generalize to different organismal
systems, and recapitulate the known biology of SpCas9/sgRNA target
interactions. Current prediction models do not meet all of these cri-
teria.Here, we identify three areas that improve computationalmodels
of SpCas9/sgRNA activity; collection of biological data that accurately
assesses SpCas9/sgRNA cleavage, appropriate treatment of high-
througput Illumina data for model training, and transfer learning to
capitalize on existing and additional datasets.

Accurate computational predictions of sgRNA activity rely on
biological data that reports onSpCas9/sgRNAcleavage activity andnot
secondary outcomes of DNA cleavage. This is particularly relevant in
mammalian systems wheremany Cas9/sgRNA datasets report on non-
homologous end joining (NHEJ) DNA repair outcomes of cleavage
rather than directly assessing Cas9 cleavage. While bacteria generally
lack NHEJ pathways, Cas9/sgRNA cleavage can be enhanced in recA
deficient strains, or strains expressing dominant negative recA var-
iants, to suppressDNA repair through the SOS response30. Our strategy
to assess SpCas9/sgRNAcleavagewas to use a two-plasmid enrichment
assaywith pooled libraries readout by Illumina sequencing that agrees
well with the kineticsof in vitroDNAcleavage48,64. Crucially, this system
also helps distinguish SpCas9/sgRNA on-target activity from toxicity
because we measure both the relative activity and abundance of
SpCas9/sgRNA combinations. Distinguishing toxicity from activity can
be a confounding issue in bacterial systems where overexpression of
Cas9 (or dCas9) can cause cellular toxicity, or at the very least to
reduce the growth rate significantly. With the enrichment assay, we
found that about one in seven SpCas9/sgRNA combinations showed
evidence of toxicity. Our data suggest that there are different
mechanisms of sgRNA-dependent toxicity, one of which results from
sgRNAs with sufficient off-target identify to cleave the bacterial
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chromosome. However, we also identified toxic sgRNAs that have
multiple mismatches to chromosomal targets in positions that our
mismatch profiling data indicate would not support SpCas9 cleavage.
It is possible that toxicity could result from partial matches between
the sgRNA and functionally critical genes on the chromosome that
preclude DNA cleavage but facilitate transcriptional repression65,66. In
large-scale pooled sgRNA depletion experiments, these sgRNAs would
mistakenly be classified as having high on-target activity and add noise
when trainingmachine learningmodels. In more directed applications
like the one implemented in this study, these sgRNAs are easily iden-
tifiable and no longer reported as false positives. Moreover, overtly
toxic sgRNAs with high identity to chromosomal targets can be easily
avoided during the design process8.

One parameter for model inclusion that we explored in detail was
the length of up- and down-stream sequence flanking the 20-nt sgRNA
target site. Inclusion of flanking DNA sequence in prior models was
justified by factors such as chromatin accessibility, consideration of
DNA unwinding, and Cas9 activity data that indicated nucleotide
preference in flanking regions (although it is possible this reflects DNA
repair and not Cas9 cleavage preference). However, outside of the
20-nt sgRNA-target strand interaction, Cas9-target DNA contacts
occur exclusively downstream of the PAM sequence, including a
transient interaction 14-nt downstream that impacts binding and
dissociation59–63. Thus, the biological data argue against inclusion of
upstream DNA sequences. Indeed, our data show the best model
performance with a 28-nt input sequence that includes the sgRNA

binding site, the PAM and 5 downstream nucleotides, and that inclu-
sion of upstream sequence is uninformative.

Significantly, we found that the small amounts of high quality data
generated in this study that while insufficient to train a model on their
own, improved sgRNA activity predictions with the crisprHAL model
that utilized machine transfer learning as well as a unique dual-branch
CNN and RNN architecture. Our work corroborates prior findings
that hybrid CNN-RNN architectures are well suited for transfer
learning43,67,68. We found that the multi-layer CNN was the primary
contributor to base model performance on the eSpCas9 data, reaf-
firming its use bymodels such as DeepSgRNA35. Inclusion of thismulti-
layer CNNbranch, in addition to the hybridCNN-BGRU, improved base
model performance on eSpCas9 while retaining transfer learning
capacity. Our dual branch structure provided a significant boost to
model generalization performance on the unique Guo SpCas9 dataset
as compared to the hybrid CNN-BGRU only architecture. Additionally,
since all parameters in the multi-layer CNN and branch concatenation
layers were frozen, nullification of the multi-layer CNN branch’s con-
tribution to the output prediction was unlikely. We attained the best
model performance when using the same scoring method across the
datasets, while compensating for variations in dynamic range through
scalingby the standarddeviation of scores fromeachdataset.With this
treatment, crisprHAL predictions showed a linear correlation with
measured sgRNA activity. Moreover, we did not utilize negative con-
trol sgRNAs in our process for sgRNA activity score calculations. Given
that our eSpCas9 basemodel performs at least as well as the prior Guo
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and DeepSgRNA models constructed on that dataset, we suggest that
negative control sgRNAs are unnecessary for the scoring of SpCas9/
sgRNA activity.

One issuewith current Cas9/sgRNApredictionmodels is that they
do not perform well outside of the initial datasets on which they were
trained26. This lack of generalizability suggests that the training data is
not accurately capturing Cas9/sgRNA cleavage activity, because there
is no reason to believe that the biochemical basis of Cas9 cleavage
should differ between organisms to impact predictive activity scores.
Indeed, to our knowledge, there has been no attempt to test the
generalizability of current sgRNA bacterial prediction models. Sign-
ficantly, we showed that crisprHAL can predict with reasonable con-
fidence activity for sgRNAs targeted to different bacteria (S. enterica
and C. rodentium). Both of these bacteria have different codon usage
and dinucleotide frequencies than E. coli, and the sgRNA sequences
used are distinct from those in the training datasets. Thus, crisprHAL
cannot be memorizing any aspect of the training datasets to make
predictions for S. enterica or C. rodentium. Moreover, these experi-
ments suggest that additional high-quality data for different species
can be used for transfer learning with crisprHAL to improve predic-
tions for a wide range of bacteria.

In summary, we have generated datasets for the activity of several
hundred SpCas9/sgRNA and TevSpCas9/sgRNA combinations in a
bacterial environment. The experimental setup detects activity over a
large dynamic range and is able to distinguish toxicity from on-target
cleavage activity. The datasets were then used in conjunction with
machine transfer learning and a model architecture to produce
crisprHAL, the most accurate TevSpCas9 and SpCas9 activity predic-
tionmodel for bacteria to date. Our results show that small amounts of
high-quality data can improve predictions of sgRNA activity and
represent a step towards a generalizable model for bacteria. In prin-
ciple, the approach outlined here to improve sgRNA activity predic-
tions could be applied to any biological system where it is possible to
collect high-quality Cas9/sgRNA cleavage data. When using in con-
junction with existing large datasets for base model training, this will
allow researchers to use transfer learning to fine-tune crisprHAL for
their organism of choice by generating relatively small datasets that
will overcome the barrier in research time and cost needed for both
the deep sequencing experiments and the training of amodel on those
datasets. Overall, crisprHAL will enable more accurate prediction of
sgRNAs for bacterial applications, including the use of Cas9/sgRNA as
an antimicrobial agent, for eliminating plasmids or phages from
strains, and for genome engineering of phage and bacterial genomes.

Methods
Bacterial strains
E. coli Epi300 (F’λ−mcrAΔ(mrr-hsdRMS-mcrBC)ϕ80dlacZ ΔM15 Δ (lac)
X74 recA1 endA1 araD139Δ (ara,leu)7697 galU galK rpsL (StrR) nupG trfA
dhfr) (Epicenter) was used for cloning the sgRNA pools. Screening
sgRNA activity using a two-plasmid enrichment was done in NEB
5-alpha F’Iq E. coli (F’ proA+B+lacIqΔ(lacZ) M15 zzf::Tn10(TetR) /fhuA2
Δ(argF-lacZ)U169 phoA glnV44ϕ80Δ (lacZ)M15 gyrA96 recA1 relA1
endA1 thi-1 hsdR17) strain harboring pTox. Citrobacter rodentium
DBS100wasused for screeningof sgRNAactivity against chromosomal
targets.

Construction of sgRNA pools
pTox was screened for 5’-NGG-3’ PAM sequences in a unique 3.2 kb
region that included the kanamycin acetlytransferase (kanR) coding
region, the pBR322 origin of replication, and the ccdB DNA gyrase
toxin coding region. The DNA sequence 20 nts upstream of each PAM
site was computationally extracted to create a pool of 304 sgRNAwith
exact matches to pTox (oPool). We also included 15 sgRNAs with
mismatches at various positions and 48 non-targeting sgRNAs as
internal controls (Supplementary Data 3). To create the library of

sgRNAswith nucleotide transversions (mPool), 28 sgRNAswerepicked
from the oPool and single and double nucleotide transversions
were tiled along the length of each oligo (Supplementary Data 1).
Sequences that contain BsaI-HF-V2 restriction sites that generate cor-
rect overhangs for Golden Gate Cloning were added to the ends
of the sgRNA sequences for subsequent cloning. The sequence
5’-CCTGGTTCTTGGTCTCTCACG-3’was added upstream of the sgRNA
and 5’-GTTTTAGAGACCGCTGCCAGTTCATTTCTTAGGG-3’ was added
downstream to allow for efficient and directional cloning. Each pool
was ordered as single-stranded fragments at 1 pmol/oligo from Inte-
grated DNA technologies (IDT). For each library, second strand
synthesis was performed using 1μg of single stranded pool DNA and
equimolar amounts of primer DE5224 in NEB buffer 2 (50 nM NaCl,
10mM Tris-HCl, 10mM MgCl2, 1mM DTT, pH 7.9) by denaturing at
94 °C for 5min. Primers were annealed by decreasing temperature
0.1 °C/second to 56 °C and holding for 5min, and followed by
decreasing temperature 0.1 °C/second to 37 °C. To the annealed oli-
gonucleotides, 1μL of Klenow polymerase (New England Biolabs) and
1μL of 10 mM dNTPs were added and incubated for 1 h at 37 °C, fol-
lowed by a 20min incubation at 75 °C before being held at 4 °C. The
resulting dsDNA fragments were purified using a Zymogen DNA Clean
& Concentrator-5 kit following manufacturer specifications. Golden
Gate cloning was used to clone the oPool and mPool into SpCas9 and
TevSpCas9 by combining 6 pmol of oPool or mPool, 100 ng of back-
bone plasmid, 0.002mg BSA, 2μL T4 DNA ligase buffer (50mM Tris-
HCl, 10mMMgCl2, 1mM ATP, 10mM DTT, pH 7.5), 160 units T4 DNA
ligase (New England Biolabs) and 20 units of BsaI-HF-V2 (New England
Biolabs) with the following thermocycler conditions: 37 °C for 5min
then 22 °C for 5min for 10 cycles, 37 °C for 30min, 80 °C for 20min,
12 °C inf. The resulting pool was then transformed by heatshock into
E. coli Epi300 and plated on LB plates (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L sodiumchloride, 1% agar) supplementedwith 25mg/mL
chloramphenicol and 0.2% w/v D-glucose.

To create pTox+KatG, a 2 kb fragment corresponding to the
Salmonella entericaTyphimurium LT2 katG genewas amplified by PCR
using primers DE6665 and DE6666 and cloned into pTox using Gibson
Assembly (Supplementary Fig. S2). There were 296 sgRNA target sites
in the katG fragment, 324 in the pTox backbone (303 of which are in
the original pTox pool) and 20 non-targeting sgRNAs were included
(Supplementary Data 11).

Pooled sgRNA two-plasmid enrichment experiment
A two-plasmid enrichment experiment was used to assay sgRNA
activity as previously described45,46. For liquid selections, 50 ng of the
sgRNA plasmidpool was transformed into 50μL E. coli NEB 5-alpha F’Iq

competent cells harboring pTox by heat shock. Cells were allowed to
recover in 1mL of non-selective 2xYT media (16 g/L, 10 g/L yeast
extract, and 5 g/L NaCl) for 30min at 37 °C with shaking at 225 rpm.
The recovery was then split and 500μL was added to 500μL of
inducing 2xYT (0.04% (w/v) L-arabinose and 50mg/mL chlor-
amphenicol) or to 500μLof repressive 2xYT (0.4% (w/v)D-glucose and
50mg/mL chloramphenicol) and incubated for 90min at 37 °C with
shaking at 225 rpm. The two cultures were washed with 1mL of indu-
cing media (1x M9, 0.8% (w/v) tryptone, 1% v/v glycerol, 1mMMgSO4,
1mM CaCl2, 0.2% (w/v) thiamine, 10mg/mL tetracycline, 25mg/mL
chloramphenicol, 0.4mM IPTG) or repressedmedia (1xM9, 0.8% (w/v)
tryptone, 1% v/v glycerol, 1mM MgSO4, 1mM CaCl2, 0.2% (w/v) thia-
mine, 10mg/mL tetracycline, 25mg/mL chloramphenicol, 0.2% (w/v)
D-glucose) respectively before addition to 50mL of the same media
that was used in the wash in a 250mL baffled flask. These cells were
grown overnight at 37 °C with shaking at 225 rpm. Plasmids were then
isolated using the Monarch Plasmid Miniprep Kit (NEB) according to
manufacturers specifications. The sgRNA locuswas thenPCRamplified
using primers (Supplementary Table S3) containing Ilumina adapter
sequence, four random nucleotides, 12-mer barcodes to specify the
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replicate, and plasmid-specific nucleotides at the 3’ end. The resulting
amplicons were sent for 150bp paired-end Illumina MiSeq sequencing
at the London Regional Genomics Center (London, ON).

Growth-curve experiments with individual sgRNAs
The pool of cells containing pTevSpCas9+sgRNAwas grown overnight
in selective LB (25mg/mL chloramphenicol and 0.2% (w/v) D-glucose),
diluted and plated on agar plates (10 g/L tryptone, 5 g/L yeast extract,
10 g/L sodium chloride, 1.5% agar (w/v) supplemented with 25 /mL
chloramphenicol and 0.2% w/v D-glucose). Individual colonies were
selected and grown overnight in selective LB (25mg/mL chlor-
amphenicol and 0.2% (w/v) D-glucose) before plasmids were isolated
using the Monarch Plasmid Miniprep Kit (NEB) according to manu-
factuer specificatons. The sgRNA locus of each plasmid was Sanger
sequenced at London Regional Genomics Center (London, ON) to
determine the sgRNA identity. In three independent transformations,
20 ng of each plasmid, isolated oPool DNA, and pTevSpCas9 with no
sgRNA were transformed into 20μL E. coli competent NEB 5-alpha F’Iq

cells harboring the pTox. Cells were allowed to recover in 1mL of non-
selective 2xYT media (16 g/L, 10 g/L yeast extract, and 5 g/L NaCl) for
30min at 37 °C with shaking at 225 rpm. The recovery was then split
and 500μL was added to 500μL of inducing 2xYT (0.04% (w/v)
L-arabinose and 50mg/mL chloramphenicol) or to 500μL of repres-
sive 2xYT (0.4% (w/v) D-glucose and 50mg/mL chloramphenicol) and
incubated for 40min at 37 °C with shaking at 225 rpm. These cultures
were then plated on inducing or repressing M9 plates and grown
overnight at 37 °C. At the same time, 20μL was added to 180μL of
inducing and repressing M9 liquid media in a 96-well plate for growth
curves. Plates were grown at 37 °C in the BioTek Epoch 2 Microplate
Spectrophotometer measuring the absorbance at 600nm every
10min for 18 h with double orbital shaking. Raw data was collected,
processed, and analyzed using the Growthcurver R package69.

Citrobacter rodentium sgRNA pool construction and deple-
tion assay
A 236-kb fragment of the Citrobacter rodentium DBS100 genome was
screened for 5’-NGG-3’ PAM sequences and 31,596 sites were identified
(Supplemental Dataset 6). The 20bp upstream of each PAM was
extracted andordered as apool fromTwist Bioscience after appending
the sequence 5’-CCTGGTTCTTGGTCTCTCACG-3’ upstream of the
sgRNA and 5’-GTTTTAGAGACCGCTGCCAGTTCATTTCTTAGGG-3’
downstream for cloning. The pool also contained 200 non-targeting
sgRNAs(Supplemental Dataset 6). The sgRNA pool was made double
stranded by PCR amplification with primers DE5231 and DE5224
(Supplementary Table S3) using 1 ng of single stranded sgRNA tem-
plate and cloned into pTevSpCas9 plasmid as described above. Five
independent cloning reactions were electroportated into E. coli
Epi300 in and added to 500mL of LB (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L sodium chloride) supplemented with 25mg/mL chlor-
amphenicol and 0.2% w/v D-glucose to grow at 37 °C with shaking at
225 rpm overnight. The plasmid pool was then isolated using the
Monarch Plasmid Miniprep Kit (NEB) according to manufacturer’s
specifications.

In 10 independent reactions, 50ng of the sgRNA pool was elec-
troporated into 100μL C. rodentium competent cells and allowed to
recover in 1mL of non-selective 2xYT media (16 g/L, 10 g/L yeast
extract, and 5 g/L NaCl) for 30min at 37 °C with shaking at 225 rpm.
The recovery was then split and 500μL was added to 500μL of
inducing 2xYT (0.4%) (w/v) L-arabinose and 50mg/mL chlor-
amphenicol) or to 500μL orepressive 2xYT (0.4%) (w/v) D-glucose and
50mg/mL chloramphenicol) and incubated for 90min at 37 °C with
shaking at 225 rpm.The resulting cultureswere then added to 50mLof
LB (10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride) sup-
plemented with 25mg/mL chloramphenicol and 0.2% w/v D-glucose
and grown overnight at 37 °C with shaking at 225 rpm. Plasmids were

isolated using theMonarch PlasmidMiniprep Kit (NEB) and the sgRNA
locus was then PCR amplified using primers (Supplementary Table S3)
containing Ilumina adapter sequence, four random nucleotides,
12-mer barcodes, and plasmid-specific nucleotides at the 3’ end. The
resulting amplicons were sent for 150bp paired-end Illumina NextSeq
High Output sequencing the London Regional Genomics Center
(London, ON).

Datasets and input sequence encoding
Two distinct groups of data are utilized in model development: data
generated in this study using the nuclease TevSpCas9 and sgRNAs
targeted to the pTox plasmid, and a published dataset using the eSp-
Cas9 and SpCas9 nucleaseswith ~70,000 sgRNAs targeted to the E. coli
genome from Guo and colleagues29. Due to the methodology in the
Guo study, the eSpCas9 and SpCas9 datasets contain overlapping
sgRNA target sequences. To generate a unique sgRNA testing set for
model testing, sgRNAs in the Guo SpCas9 dataset that are cross-listed
with the eSpCas9 dataset were removed. We refer to this dataset as
the unique sgRNAGuoSpCas9 dataset. All sgRNAsweremapped to the
E. coli genome andpToxplasmid and sgRNAswith ≥15nt PAMproximal
matches to an off-target site were excluded from our datasets. Based
on thesemapping results, 43nt target site sequenceswere obtained for
each sgRNA and containing the 20nt sgRNA target site, the 3nt PAM,
and 10nt upstream and downstream of the sgRNA target site. These
extended inputs provided the ability to test sequence length versus
predictive performance.

The nucleotides comprising the sgRNA target site sequences are
commonly represented with strings of single characters (A, C, G, T)
each representing a nucleotide. However, alphabetic encoding of
nucleotides is not useful for deep learning models. We converted our
input sequences with one-hot encoding, where the input sequence is
represented as a 4-by-N matrix – 4 nucleotide options across an
N-length input sequence. The nucleotides, A, C, G, and T, are encoded
as [1 0 0 1], [0 1 0 0], [0 0 1 0], and [0 0 0 1] respectively.

Data processing and activity score calculation
Reads from the Illumina sequencingwere parsed using a custom script
that deconvolute the barcoded sequences into a table that contained
replicates of induced or repressed conditions. The bacterial sgRNA
read counts from these datasets representing on-target activity scores
are compositional in nature55, and therefore require normalization or
transformation to become interpretable70. All sgRNAs in the Guo et al.
datasets having a read count less than 20 in either replicate of the
catalytically dead Cas9 (eSpdCas9 and SpdCas9) samples were
removed. Relative abundance (‘rab.all`) and difference values
(‘diff.btw`) for each guide were calculated using the ‘aldex.effect`
function of ALDEx255. For the C. rodentium depletion datatset, we used
the initial read count from the sgRNA sequencing pool prior to
transformation in place of replicates for the repressed condition as the
input to ALDEx2. For the S. entericakatG dataset, highly variable guides
with a difference within (ALDEx2 ’diff.win’) >1 were removed from
testing. Scores used in model training were then normalized to gen-
erate the final activity scores by dividing each value by the standard
deviation from its respective dataset (Supplementary Fig. S8). To
obtain an untoucheddataset formodel generalization testing, weused
the original, Z-score based normalization, sgRNA activity scoring by
Guo et al. for the unique Guo SpCas9 dataset29. Data were plotted
using R.

Model construction and transfer learning
During model development we tested various architectures, including
thosewithmultiple branches, to test the performance ofCNNandRNN
neural networks. A CNN is an artificial neural network which excels at
capturing spatial information from an input. This capability results in
the frequent application of CNNs to image recognition problems.
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Similar to pixels in an image, one-hot encoded nucleotide sequences
can be used as inputs to a CNN, whereby local nucleotide preferences
can be extracted35,43,68.

Contrasting the CNNs local information capture capabilities,
RNNs excel at learning sequential information. RNNs contain an
internal memory state which are updated to learn important interac-
tions within a sequence. Prior work has shown the benefit of utilizing a
combination of CNN and RNN layers within a model to improve
performance43,68. Spatial information captured by CNN layers can be
fed to the RNN, whereby sequential information is then deduced,
increasing performance67.

We developed models on prior datasets to optimize for transfer
learning – referred to as base models. Transfer learning is a method
whereby a model utilizes information transferred from a similar
domain to improve performance71. In practice, the base model is
commonly constructed on datasets larger than those to which the
transfer learning will be applied. For our context, we test models
constructed on either the Guo SpCas9 or eSpCas9 dataset, and apply
those base models as the starting point for training on our smaller
datasets. Tomaximize the benefit of the pre-learned information from
the base model, we tested variations in model layer freezing, where
parameters in specific layers of the model are fixed before transfer
learning model training occurs.

Model training and tuning
We constructed crisprHAL with Tensorflow Keras72. This network was
trainedusing theoptimizerAdam,withmeansquared errorused as the
loss function. The transfer learningmodel was tuned using 5-fold cross
validation with a 80% training set and a 20% test set for each fold. The
base model was tuned using a simple 80% training and 20% testing set
split. Hyperparameter tuning was performed for a number of factors
affecting the model, including: number of CNN layers, number of
dense layers, channel sizes, CNN window sizes, RNN size, dense layer
sizes, dropout rates, and activation functions between layers. Base
model epochs were optimized by testing in increments of 5, versus
transfer learning epochs, which were tested in single epoch incre-
ments. During hyperparameter tuning, the following activation func-
tions were tested: linear, sigmoid, tanh, ReLU, and LeakyReLU. Batch
sizes were optimized separately for the base and transfer learning
model stages. Smaller batch sizes for transfer learning model training
were preferential due to the smaller datasets used and the greater
importance of accuracy in this stage, relative to the base model.
Architecture testing of variations in the total number of CNN and/or
RNN layers within the model used homogeneous hyperparameters for
each type of neural network layer.

Installation and testing of other models
We installed and ran the Guo and DeepSgRNA models (downloaded
from Github sites https://github.com/zhangchonglab/sgRNA-
cleavage-activity-predictionand https://github.com/biomedBit/Deep
SgrnaBacteria)29,35. To test the Guo SpCas9 and eSpCas9 models, we
converted our sgRNA-associated target site sequence inputs to the
required 30nt length, containing the 20nt sgRNA target, 4nt upstream,
and 6nt downstream including the NGG PAM. To test the DeepSgRNA
SpCas9 and eSpCas9 models, we converted our sgRNA-associated
target site sequence inputs to the required 43nt length, containing the
20nt sgRNA target, 10nt upstream, and 13nt downstream including the
NGG PAM. The eukaryotic sgRNA prediction models DeepHF40,
C-RNNCrispr41, DeepSpCas942 and Crispr-NET43 were downloaded,
installed and used to predict the activities of the oPool sgRNAs tar-
geted to pTox. We compared the predicted activities to the measured
activities for TevSpCas9 and SpCas9 using Spearman rank correlation.
We also downloaded and installed DeepGuide44, retrained the model
on the Guo eSpCas9 dataset, and tested predicted versus measured
activity for the pTox TevSpCas9 dataset.

Performance and evaluation of models
To evaluate our models we used Spearman rank correlation coeffi-
cient, referred to as rank correlation. We chose this metric rather than
Pearson correlation coefficient as it does not depend on a linear
association between variables. Additionally, given its past use, it pro-
vides a clear metric from which to compare our models’ performance
to prior models29,35,43,68. We calculated rank correlation with the
“spearmanr" function from the Scipy stats Python package73.

Statistics and reproducibility
We chose a sample-size based largely on convenience. The number of
samples per group for the positive and negative selection experiments
was large enough to identify the majority of significant features fol-
lowing the guidance of ref. 74 Significance was determined using the
ALDEx2 R package55,75 with an expected FDR of 0.05. All difference and
dispersion measures were Expected values calculated from Bayesian
posterior estimates of the sequencing data. This has been found to be
more reproducible than using point estimate measures55.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Illumina sequencing datasets generated in this study have been
deposited in the Sequence Read Archive with the accession code
PRJNA939699. Source data is available as a Source Data file. Source data
are provided with this paper.

Code availability
Our model to predict TevSpCas9 and SpCas9 target site activity is
available for download at https://github.com/tbrowne5/crisprHAL
without restriction.
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