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Microbial interactions shape cheese flavour
formation

Chrats Melkonian 1,2,3 , Francisco Zorrilla4, Inge Kjærbølling1,
Sonja Blasche4,5, Daniel Machado 5,6, Mette Junge7, Kim Ib Sørensen7,
Lene Tranberg Andersen8, Kiran R. Patil 4,5 & Ahmad A. Zeidan 1

Cheese fermentation and flavour formation are the result of complex bio-
chemical reactions driven by the activity ofmultiplemicroorganisms. Here, we
studied the roles of microbial interactions in flavour formation in a year-long
Cheddar cheese making process, using a commercial starter culture contain-
ing Streptococcus thermophilus and Lactococcus strains. By using an experi-
mental strategy whereby certain strains were left out from the starter culture,
we show that S. thermophilus has a crucial role in boosting Lactococcus growth
and shaping flavour compound profile. Controlled milk fermentations with
systematic exclusion of single Lactococcus strains, combined with genomics,
genome-scalemetabolicmodelling, andmetatranscriptomics, indicated that S.
thermophilus proteolytic activity relieves nitrogen limitation for Lactococcus
and boosts de novo nucleotide biosynthesis. While S. thermophilus had large
contribution to the flavour profile, Lactococcus cremoris also played a role by
limiting diacetyl and acetoin formation, which otherwise results in an off-
flavour when in excess. This off-flavour control could be attributed to the
metabolic re-routing of citrate by L. cremoris from diacetyl and acetoin
towards α-ketoglutarate. Further, closely related Lactococcus lactis strains
exhibited different interaction patterns with S. thermophilus, highlighting the
significance of strain specificity in cheese making. Our results highlight the
crucial roles of competitive and cooperative microbial interactions in shaping
cheese flavour profile.

Fermented foods based on microbial consortia (e.g., cheese, kefir
and kombucha) constitute a large part of themodern diet withmany
reported health benefits1–3. In cheese, well defined Starter Lactic
Acid Bacteria (SLAB) cultures are used to ensure consistent and
flavourful products. During cheese making, microbes encounter
dynamic conditions characterized by different nutrient availability

and different stresses, starting with an initial feast during milk
fermentation, followed by a long period of famine during cheese
ripening. Cheese-making thus provides a controlled system with
well characterized dynamics to understand the role of microbial
interactions in shaping the characteristics and quality of fermented
foods4.
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In industrial cheese making, SLAB cultures are responsible for
milk acidification via lactose fermentation. They are predominantly
composed of mesophilic strains of Lactococcus, including the species
L. lactis and L. cremoris as well as thermophilic strains of Streptococcus
thermophilus. A rich literatureexists on thephysiologyof the species in
mono-cultures5–8, and genome-scalemetabolicmodels have been used
tomodel theirmetabolism9–11. In contrast, the interactions between the
three taxa is still largely unknown from a mechanistic perspective
despite indications of strong inter-dependencies12,13. Further, the cur-
rent knowledge on cheese microbial interactions is limited to the
scope of simplified artificial milk media, concerns pairwise associa-
tions, or focus only on the short time interval during the milk acid-
ification. Less is known about the interactions involvingmore than two
SLAB strains and how interaction networks evolve during the cheese
ripening steps. Metabarcoding and metagenomics approaches have
also been used to study the cheese microbiome14–16. While these stu-
dies provide a good overview on the community dynamics during
cheese-making using higher-order taxonomy, they are limited in
uncovering inter-species interactions and strain-level diversity.

In this study, we investigated the role of microbial interactions
and interacting agents in cheese flavour formation. We employed a
strain dropout strategy, which involves omitting either a single strain
or a group of strains from the starter culture. Subsequently, we con-
ducted a comprehensive characterization of the entire cheese-making
process.Weused an industrially relevant SLAB culture, containing: one
Streptococcus thermophilus (ST), two major L. lactis (LLm1 & LLm2),
one major L. cremoris (LC), and a mixture of 21 L. cremoris and L. lactis
strains in smaller fractions (hereafter, Lactococcus blend (LB)). We
investigated the effect of leaving out S. thermophilus and Lactococcus
blend in a year-long Cheddar-making experiment (Fig. 1a). Subse-
quently, controlledmilk experimentswere conducted to delve into the
potential role of interactions, aiming to elucidate the observed growth
advantage of Lactococcus from S. thermophilus. For the latter, we used

an integrative systems biology approach that combined multiple lay-
ers of biological information from genomics, genome-scale metabolic
modeling, metatranscriptomics to metabolomics (Fig. 1b).

Results and discussion
S. thermophilus supports the growth of lactoccoci and shapes
the metabolite profile during cheese ripening
To study the interactions between the members of the SLAB culture,
we started by quantifying the population dynamics during a year-long
ripening cheese making experiment (see Methods). We used four
variations of starter cultures: (i) containing all member species of an
industrial starter culture, viz., S. thermophilus (ST), L. cremoris (LC), L.
lactis (LLm1 and LLm2), and Lactococcus blend (LB); (ii) the same as (i)
but prepared independently (HP); (iii) excluding LB; and (iv) excluding
ST (Fig. 1a). In the three conditions that included S. thermophilus, we
observed a trend of slow decline in the population of lactoccoci and S.
thermophilus, starting with 9.25 and ending at 8 log10 CFU/g
(Fig. 2a–c). In the single condition that excluded S. thermophilus, we
observed a much steeper decline in lactoccoci population, ending at
6.5 log10 CFU/g (Fig. 2a, b). Also, the declining lactoccoci population
exhibited different trajectories between the two batches, albeit both
converging at 9 and 12 months (Fig. 2a, b). The non-SLAB count
increased from0 to 7.5 log10CFU/g, in the highest case (Fig. 2d). Based
on 95% confidence interval estimates, we observed high variability
among the non-SLAB populations, but with no appreciable overall
difference between the conditions (Fig. 2d). Leaving out Lactococcus
blend or changing the way of packing the different strains in the cul-
ture did not result in any visible response to the community dynamics.
Thus, inter-species interactions, especially involving S. thermophilus,
appear to be driving the overall population dynamics.

Tomeasure the effect of themicrobial interactions in the resulting
phenotype of the cheese, we used targeted metabolomics analyses.
Across conditions, the biggest change in the metabolic profiles of

Fig. 1 | Schematic representation of the experimental design and methods.
a The 1 year long cheddar-making experiment. The SLAB culture is composed of
one S. thermophilus (ST), two major L. lactis strains (LLm1 & LLm2), one major L.
cremoris (LC), and a blend of Lactococcus strains (LB). Microbial population
dynamics were quantified during cheese ripening using a selective method of
viable cell counting, which discriminates between thermophilic cocci, mesophilic
cocci and non-Starter Lactic Acid Bacteria (non-SLAB). Additionally, metabolic
changes in the cheeses were measured using several targeted analytical chemistry
approaches measuring acids, sugars, flavour-related organic compounds and
peptides. b Schematic representation of the controlled milk experiment in the

laboratory as well as of the methods (1–5) used in the controlled milk experiment.
This second experiment involves the removal of additional strains, namely the
individual exclusion of three major Lactococcus strains. The numbers indicate the
different types of data and analysis as follows: 1. metatranscriptomics, 2. meta-
bolomics (i.e., acids, sugars, flavour-related organic compounds), 3. genomics, 4.
phylogenomics and 5. genomes-scale metabolic models (GEMs) and community
simulations. Our integrative systems biology approach combined: (i) the analysis
of the SLAB community’s genomes, (ii) the generation and simulation of their
respective GEMs, (iii) the analysis of the metatranscriptomes across the different
strain removal conditions and (iv) the quantification of key metabolites.
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cheese was observed between the two-week mark and three months
(Fig. 2e). This can be attributed to changes in peptide composition
followed by the general increase in amino acids concentrations
(Fig. 2f). Furthermore, cheese metabolomes continue to change at a
slower pace between the three- to twelve-month marks, resulting in
different end profiles. A notable time-depended accumulation of
compounds after the third month was observed on acetic acid, tyr-
amine, g-amino butyric acid, putrescine and cadaverine (Fig. 2f and
Supplementary Fig. 1). The cheeses produced without S. thermophilus
formed a separate cluster relative to the rest (Fig. 2e). This pattern can
be ascribed to compounds that, over time, result in significantly dif-
ferent concentrations across strain removal conditions, especially
when S. thermophilus was absent. The majority of these compounds
are peptides that were either not accumulated, accumulated in lower
amounts or accumulated in higher amounts without the addition of S.
thermophilus (Supplementary Fig. 2). Lactose, galactose and lactic acid
concentrations were also found to be significantly different when S.
thermophilus was absent (Fig. 2g, ANOVA F(3,36) = 208 ± 334,
p <0.001, η2 = 0.86 ±0.08). Specifically, lactose was not fully con-
sumed and galactose was not produced when S. thermophilus was
absent (Supplementary Fig. 3c). This difference was already notable in
the samples from the second week of cheese ripening and remained

relatively constant until the end of cheese-making (Fig. 2h and Sup-
plementary Fig. 3a, c and e). These results point towards the significant
influence of S. thermophilus growth during milk fermentation, while
the over-time differentiation, for example on peptide composition,
indicates the important effect of non-growing yet active cells during
long-term cheese ripening.

The presence of S. thermophilus was found to benefit both the
growth of the Lactococcus community and the final metabolic profile
of the cheddar cheese. Notably, the growth benefit is not clearly visible
before two weeks to three months, a time-frame that may be con-
sidered prohibitively long for experiments in the laboratory. Instead,
these effects become more evident as the experimental time-frame
expands to one year. The observed effect may be attributed to the
early S. thermophilusoverflowmetabolites duringmilk fermentationor
to alteration of itsmetabolism at near-zero growth rates during cheese
ripening7,17,18. In both cases leading to potentially promoting cross-
feeding interactions6. It cannot be ruled out that the release of distinct
cytoplasmic enzymes through the lysis of S. thermophilus could
enhance the growth of Lactococcus19,20. Consequently, these factors
could result in the identified differences in peptide composition in the
final cheese. In accordance with the literature, the presence of S.
thermophilus reveals a few key metabolic changes from the milk

Fig. 2 | S. thermophilus benefit the growth of lactoccoci community and
influence the final flavour of cheese. a–d Microbial population dynamics during
cheese ripening. Relationship betweenCFUs and time (months) for (a) Mesophilic,
(c) Thermophilic cocci, and (d) non-Starter Lactic Acid Bacteria (non-SLAB). The
mean values are represented by lines, symbols (circle and asterisk) indicate batch
experiments, and the shaded area reflect the 95% confidence interval estimates
(similarly in h). b Presents the boxplot comparison of the different condition on
Mesophilic cocci at 12 months. The box edges represent the interquartile range,
the ends of the whiskers represent ± 1.5 × the interquartile range and central lines
are the median values (similarly in f). The p-values of two-sided t test presented as
ns: p >0.05, *p < =0.05, ****p < =0.0001. Note, significant reduction only on
Mesophilic cocci is observed when S. thermophilus is absent. Condition All corre-
sponds to whole culture which is composed of 25 number of strains. HP corre-
sponds to an alternative method (hand packed) of the whole culture inoculation.
-LB corresponds to the removal of a L. lactis blend population. -ST corresponds to
the removalof the S. thermophilus strain. e–hMetabolomedynamics during cheese
ripening. e 2-dimensional representation with the usage of UMAP of all samples
based on the metabolomics measurements (acids, carbohydrates and peptides).

The colour indicates the time when the sample was taken and the shape indicates
the four different conditions. Note, the stronger change is observed between
2 week and 3months while the removal of ST (cross symbol) has a strong effect on
the later time of cheese ripening. f Relative change of the metabolites on different
time intervals including all the conditions, both colour and shape indicates the
class of the metabolite. Note, the higher relative change of peptides followed by
acids at the interval between 2 week and 3 months, later acids exhibit higher
changes. The threemeasured sugars (glucose, lactose and galactose) are excluded
from this panel.g Selectionof the sixmost discriminativemetabolites out of 50 for
the four conditions. Colour indicate the condition while the right side shape the
class of themetabolite. Note, themajority of peptide concentrations are significant
different when S. thermophilus is not present, as well as with galactose, lactose and
lactic acid. The amino acid sequences of the peptides presented (g) in top-down
order are EEEKNRLNF, VNELSKD and ELSKDIGSESTE. h Galactose concentration
over time highlights the absence of galactose when S. thermophilus is absent. The
galactose concentration remains steady from the start till the 9 month of cheese
ripening and then shows signs of decline. All panels are based on n = 4 biologically
independent samples.
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fermentation; the complete consumption of lactose and the produc-
tion of galactose17,18. Together, the compositional and metabolic pro-
files led us to conclude that both early and late S. thermophilus activity
is critical for the long term effect on Lactococcus population and
cheese flavour development.

S. thermophilus has strain-specific interactions with the mem-
bers of Lactococcus lactis community
To assess the role of S. thermophilus, we performed controlled
experiments wherein additional strains were removed (Fig. 1b). Sam-
ples were taken when milk fermentation reached the transition from
exponential to stationary phase (at pH 5) and gene expression was
monitored using metatranscriptomics. To further investigate the
microbial interactions within the SLAB culture, we also analyzed the
genomes of the individual strains in the culture and their phylogenetic
relationship (Fig. 3a). The phylogenomic analysis separated the species
L. lactis and L. cremoris into two distinct groups. Two of the main
Lactococcus strains, LC and LLm2, have no close relatives within the
culture community. For the third main Lactococcus strain, LLm1, we
identified two close relatives (LL-LB01 and LL-LB02), belonging to
the Lactococcus blend (Fig. 3 and Supplementary Table 1). The rest
of the strains in the Lactococcus blend formed distinct sub-clusters
within the cremoris clade (Fig. 3). By employing pan-genome analysis
on Lactococcus strains, we identified singletons (i.e., a gene found only
in one genome) for each member of the culture. The highest number
of singletons was harbored by the main LLm2 followed by LC, and
LLm1 where its number of singletons was in the same range as the
Lactococcus blend strains, with numbers 288, 134, 79 and average of
53.6 ± 18.6, respectively (Fig. 3a). In parallel, we evaluated both the
presence and activity level (using metatranscriptomics) of the

Lactococcus strains by calculating percentile of the transcribed sin-
gletons per genome. We found a high number of transcribed single-
tons on all the main Lactococcus strains, while this number varied
considerably among the strains of the Lactococcus blend, raising
questions regarding whether or not these strains were active (Fig. 3a
and Supplementary Table 2). We hypothesized that the temperature
dynamics during the experiment could influence the strain acidifica-
tion potential. To test this, by carrying out milk fermentation using
eachof the individual Lactococcus strains atdifferent temperatures, we
calculated a proxy for their temperature stress tolerance (Pearson
correlation between curves of 30 °C against 37 °C, 40 °C and 43 °C).
The results showed that the L. lactis strains have higher temperature
stress tolerance in the tested ranges, including Lactococcus blend
strains LL-LB01 and LL-LB02 (PCC 0.96 ±0.05). The L. cremoris strains
exhibited low temperature stress tolerance (PCC 0.7 ± 0.24), with the
main LC being one of themost stress tolerant strains within this group
(PCC range 0.84–0.99) (Fig. 3a and Supplementary Fig. 4a, b).

We next explored the extent to which we could discriminate
between the different strains. The number of unique k-mers in each
genome ranged from 368 to 622,455 and they were found to be
dependent on the presence of close phylogenetic relative strains
(Fig. 3a). The k-mer transcription abundance indicated the feasibility of
discriminating between the three main Lactococcus strains (LC, LLm1
and LLm2) and the one S. thermophilus strain, but not between the
strains in the Lactococcus blend (Supplementary Fig. 5). Using differ-
ential expression analysis, we investigated the interaction effect on S.
thermophilus transcriptome by leaving out each Lactococcus strain/
blend from the culture. We found the strongest response when LLm1
was left out followed by Lactococcus blend, LC and LLm2with 291, 182,
21 and 1 gene(s) significantly differential expressed, respectively

Fig. 3 | The removal of different Lactococcus strains has a distinct effect on
gene expression in S. thermophilus. a–e relationship of the Lactococcus phylo-
geny with the S. thermophilus transcription change on different dropout condi-
tions. a Lactococcusphylogenetic tree separates the L. cremoris and L. lactis strains.
The two clades are coloured with transparent yellow and gray, respectively. The
colours and shape of the tree tips indicate the strains presents in the SLAB culture.
Orange triangles represent L. cremoris (LC), dark and light blue circles represent L.
lactis (LLm1 and LLm2), and a teal square represents the Lactococcus blend (LB).
Tree empty tips correspond to the obtained complete NCBI genomes of Lacto-
coccus. Additional information is presented in the outer layers of the tree. The first
layer presents the unique k-mer content based on the SLAB culture’s genomes
(purple-scale colour) and indicates higher number for the strains who have no
close relative within the culture. The second layer presents the proxy of

temperature stress tolerance based on Pearson Correlation Coefficient (PCC)
between individual acidification curve of 30 °C and 40 °C (red-scale colour). High
values correspond to high temperature tolerance. The clade L. cremoris shows
lower temperature tolerance, with few exceptions including the main LC strain
(more details presented in Supplementary Fig. 5). The third layer presents the
percentile of transcribed sigletons (green-scale colour) as well as the total number
of the strains sigletons (outer bars). b–e Volcano plots show the S. thermophilus
transcription between the whole community (All) and the different Lactococcus
dropout conditions, respectively. The colours correspond to the 4 Lactococcus
components. The S. thermophilus transcription was observed to change more
whenLLm1was left out followedby LB,with 291 and 182 numberof total significant
up/down regulated genes, respectively. A smaller effect of 21 genes was observed
when LC was left out and only one gene when LLm2 was left out.
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(Fig. 3b–e, Supplementary Table 3 and sections below). Although both
LLm1 and LLm2 belong to L. lactis clade, the latter strain stands out by
having the highest number of singletons as well as having the second
highest number of unique k-mers (Fig. 3). By removing strains with a
different degree of relatedness we identified that different Lactococcus
strains have distinct effects on gene expression of S. thermophilus. This
finding can be attributed to the different genetic background and the
diverse phylogenetic relationships within the Lactococcus
community21, highlighting the diversity of potential microbial inter-
actions between S. thermophilus and the Lactococcus community.

S. thermophilus proteolytic activity may benefit Lactococcus
community by providing nitrogen sources
To investigate mechanisms of inter-species interactions, we generated
genome-scale metabolic models for the individual strains in the cul-
ture and performed flux balance analysis-based simulations. To
explore the effect of changes in growth medium composition, we
generated models gap-filled on relevant variations of milk-mimicking

media. Supplementary Fig. 6a shows overall model statistics for the
different species, while Supplementary Fig. 6b shows the specific
reactions added through gap-filling on different media across the
models (see Supplementary Note 1). Flux balance simulations with
individual models were carried out using the different model sets in
aerobic and anaerobic variants of fermented and non-fermented milk
(Fig. 4a, b and Supplementary Fig. 6c, d). All species consistently
consumed lactose in simulations where growth was feasible. Several
differences in amino acid uptake/secretion were observed among the
strains. The branched chain amino acid valine was exported by S.
thermophilus in all but one simulation condition, whereas LC, LLm1,
and LLm2 consumed this amino acid in four, six, and three simulations
conditions, respectively. Additional amino acid uptake/secretion pre-
dictions are reported at Supplementary Note 1.

To assess potential cross-feeding, we performed community
simulations using the SMETANA framework (see Supplementary
Note 1). We used the calculated SMETANA scores, ranging from 0 to 1,
as a measure of predicted interaction confidence (0 being lowest

Fig. 4 | S. thermophilus provides nitrogen in form of amino acids to L. lactis
community, which is necessary for de novo nucleotide biosynthesis.
a Summary of metabolic modeling analysis including individual model and
community-based simulations. b Selected exchange fluxes predicted across indi-
vidualfluxbalanceanalysis simulations carried inmilkmedia variations for each set
ofmetabolicmodels. In particular fermentation products, amino acids, and carbon
sources highlighting differences in metabolic strategies across species. c Alluvial
diagram showing predicted metabolic exchanges from community simulations in
milk media variants, highlighting the fact the amino acid valine is strongly pre-
dicted across all simulation conditions wheremetabolic cross-talk is expected. The
four metabolic models used correspond to L. cremoris (LC), coloured orange; L.
lactis (LLm1 and LLm2), coloured dark and light blue; and S. thermophilus (ST),
coloured green. Refer to Supplementary Fig. 6 for more details on the metabolic
models and simulation. d–i Transcriptomic profiles between All and -ST (S. ther-
mophilus is left out) conditions of key functions for all the strains in SLAB culture.
The box edges represent the interquartile range, the ends of the whiskers repre-
sent ± 1.5 × the interquartile range and central lines are the median values (n = 3

biologically independent samples). d–f Transcriptomics boxplots of branched
chain amino acids (BCAA) aminotransferase, BCAA transport system 2 carrier
protein and ammonium transporter (T) supports the predictions of metabolic
exchanges. Note, (e) the higher transcription profile of S. thermophilus on BCAA
transport system. g–j Up-regulation of Lactococcus glutamine and nucleotide
metabolism when S. thermophilus is left out. g–i Boxplots present the activities of
nitrogen regulatory protein P-II, glutamine synthetase (glnA) and related tran-
scriptional regulator (TR) (GlnR) for all community members. Note, the up-
regulation of all the enzymes derived from Lactococcus strains when S. thermo-
philus is left out. j Metatranscriptomics represents the increased activity of Lac-
tococcus reactions, which are incorporated into Escher maps. The pattern shows a
coordinate up-regulation (with green) of the enzymes towards guanine biosynth-
esis (and uridine).k Schematic compilation of the compounds S. thermophilusmay
provide to Lactococcus community as well as selected transcriptional changes of
the Lactococcus community when S. thermophilus was left out. The colour and
direction of the arrows represent the up- and down- regulation with green/up and
red/down, respectively.
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confidence and 1 being the highest)22. These simulation indicate that S.
thermophilus provides valine to Lactococcus strains in all three com-
munity simulation conditions (gap-filled on rich aerobic milk & simu-
lated on minimal aerobic milk, gap-filled on rich anaerobic milk &
simulated on minimal aerobic milk, and gap-filled on rich anaerobic
milk & simulated on minimal anaerobic milk) where exchanges were
predicted between community members (Fig. 4c). Not only was this
interaction consistent, it also occurred with a SMETANA score of 1 in
every case, suggesting that this is a key ecological interaction for
maintaining the composition and function of the community. Serine
exchanges from S. thermophilus to LLm1 were predicted in 2 out of 3
community simulation conditions, with an average SMETANA score of
0.38 ±0.01. Exchanges from S. thermophilus to LC involving glycine
and ammoniumwere predicted in 1 out of the 3 simulation conditions,
with SMETANA scores of 0.3 and 0.29, respectively (Fig. 4c). Finally, an
exchange from S. thermophilus to LLm2 involving alanine was pre-
dicted under only 1 simulation condition with a SMETANA score of
0.42. Overall, the metabolic simulations strongly indicate cross-
feeding between the community members, with S. thermophilus
standing out as a key donor (Fig. 4c).

To complement the genomic andmetabolicmodeling analysis, we
investigated the changes in S. thermophilus and Lactococcus commu-
nity transcriptome. The principal component analysis (Supplementary
Fig. 7) showed pattern consistency with the differential transcriptome
analysis (Fig. 3b–e, Supplementary Note 2). Regarding changes in S.
thermophilus’s transcriptome, we found up-regulated genes annotated
as oligopeptide-binding protein (AmiA) and oligopeptide transport
system permease protein (OppB, OppC, OppD & OppF) (see Supple-
mentary Note 2). Seven down-regulated genes are annotated as
transporters, such as glutamine ABC transporter permease protein
(GlnP), cadmium, cobalt and zinc/H(+)-K(+) antiporter (Supplementary
Note 2). Further, transcriptional repressors such as the catabolite
control protein A (CcpA) and nitrogen-metabolism-regulating-
proteins such as GTP-sensing transcriptional pleiotropic repressor
(CodY) were found to be transcriptionally active. In line with the
putative interactions predicted using metabolic modeling, we found a
gene annotated as branched-chain amino acids (BCAA) transaminase
expressed in S. thermophilus, suggesting that valine biosynthesis is
active. Moreover, we found a gene annotated as BCAA transport sys-
tem 2 carrier protein (BrnQ) as well expressed, suggesting that S.
thermophilus is secreting valine. Complementary differential pathway
enrichment analysis supported further that valine biosynthesis was
enriched in S. thermophilusmetatranscriptome (Fig. 4d, e). Overall, the
metabolic modeling and metatranscriptome analysis together sug-
gests that S. thermophilus can act as a branched chain amino acid
donor to Lactococcus. It is well known that Lactococcus harbor a
number of amino acid auxotrophies including valine1,20,23,24. In addi-
tion, the SMETANA simulations provide insights into the metabolic
strategies that may be employed by community members under
challenging media conditions.

We next investigated transcriptional change in the Lactococcus
community in the presence and absence of S. thermophilus. As it is not
possible to distinguish between the transcriptome profiles of all the
different Lactococcus strains, wemerged these into one group for pan-
genome analysis and pan-metabolic modeling. Strain-to-strain tran-
scriptional changes were investigated when possible (see Supple-
mentary Note 2). The most up-regulated OGs in Lactococcus when S.
thermophilus is left out are involved in nitrogen assimilation, namely
nitrogen regulatory protein P-II, related transcriptional regulator
(GlnR), ammonium transporter (amtB), glutamine synthetase (glnA)
and glutamine transport ATP-binding protein (glnQ). Additionally, we
confirmed that GlnR in Lactococcus regulates the three operons,
namely amtB, glnA, and glnQ (Fig. 4f–i, Supplementary Table 4 and
Supplementary Note 2). The purine and pyrimidine biosynthesis
pathways are deferentially expressed in a coordinatedmanner. Several

genes in the pathways were up-regulated, in particular the genes
associated with the reactions leading to uridine and guanine synthesis
(Fig. 4j and Supplementary Note 2). Both pathways are connected via
L-glutamine synthetase. Expression patterns in amino acidmetabolism
show a mixed pattern of both up- and down- regulation (see Supple-
mentary Note 2). Overall, the metatranscriptomics analysis further
supports that S. thermophilus cross-feed Lactococcus community. Co-
culture studies traditionally emphasized competitive interactions25,
but recent evidence highlights the importance of cross-feeding
cooperative interactions in community assembly26. Here, one
hypothesis that could explain the identified cross-feeding interaction
is that S. thermophilus has a higher proteolytic activity, thereby pro-
viding more peptides and amino acids (available nitrogen source) in
the culture which Lactococcus takes advantage of27,28. When S. ther-
mophilus is absent, there is a lower degree of nitrogen availability
causing up-regulation of the nitrogen assimilation and nucleotide
synthesis pathway in Lactococcus. A previous study conducted in a
chemically-defined medium has also identified proteolysis and amino
acid exchange as significant interactions between S. thermophilus and
L. lactis13.

Cheese flavour compounds are strongly influenced by the
interactions within Lactococcus community
To elucidate the role of interactions between the SLAB strains in the
development of cheese flavour, we performed a targeted metabo-
lomics analysis. Leaving out L. cremoris (LC) led to the strongest
metabolic response followed by a weaker and different response when
leaving out LLm1, S. thermophilus and the Lactococcus blend (see
Supplementary Note 3). Surprisingly, leaving out LLm2 did not lead to
amarked change in themetabolic profile of the acidifiedmilk (Fig. 5a).
Six flavour compounds, namely heptanal, hexanal, 2-ethyl-furan, 2,3-
pentanedione, diacetyl and acetoin, were either detected at sig-
nificantly higher concentrations or only produced when this main L.
cremoris strain was removed (Fig. 5b, c and Supplementary Fig. 8). A
graphical summary of the metabolome differences between the whole
culture and the culture lacking LC is shown in Fig. 5d. Many additional
flavour compounds found were significantly altered by the strain
removal strategy (Supplementary Fig. 9–10 and Supplementary
Note 3), with the majority corresponding to byproducts of secondary
metabolism with unknown microbial biosynthesis pathways or gene
clusters. Yet, investigation of their patterns highlights the numerous
ways these compounds may cross-feed within the SLAB culture. For
example, 2,3-pentanedione could be cross-fed by S. thermophilus to
LC, as it was found in milk only when S. thermophilus was present and
in higher amounts when LC was absent (Supplementary Fig. 8d).
Alternatively, the observed pattern could be a result of substrate
competition between the two strains. On the other hand, ethyl hex-
anoate, ethyl acetate and 2-methyl-3-thiolanone are likely produced by
LC (Supplementary Fig. 10a, b and d).

C4 aroma compounds such as diacetyl and acetoin are known
derivatives of citrate metabolism with characteristic contribution to
buttery-like aroma. Although desirable in small quantities, e.g less than
0.05 mg. per 100 g of diacetyl content, higher amounts could lead to
off-flavours29,30. Therefore, we investigated whether the increase in
diacetyl and acetoin concentrations triggered by the removal of LC
could be explained by the metatranscriptome profiles. Indeed, we
found differential expression patterns in genes related to diacetyl and
acetoin metabolism. We examined the gene expression levels in the
metabolic route from citrate towards diacetyl and acetoin through
pyruvate as well as an alternative route towards α-ketoglutarate. The
citrate-sodium symporter that is present only on Lactococcus strains
was highly expressed implying active uptake of the citrate available in
milk by L. lactis. Fromcitrate, Lactococcus strains showedexpressionof
the genes associated with the pyruvate carboxylase and acetolactate
synthase reactions, whereas only LC and LLm1 had the genes related to
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acetolactate decarboxylase expressed at high levels. On the other
route towards α-ketoglutarate and further, genes associated with
aconitate hydratase and isocitrate dehydrogenase are only expressed
in LC and S. thermophilus (Fig. 5e and Supplementary Figs. 11, 12.

Metabolic modeling simulations across the different medium condi-
tions are largely corroborated by themetatranscriptomics results with
the exception of three reactions involving acetoin. These are acet-
olactate decarboxylase (ACLDC), which does not carry a flux in the LC

Fig. 5 | Cheese flavour compounds are strongly influenced by the interactions
within Lactococcus community. The measured metabolome from the controlled
milk experiments in response to strain removal conditions (a–d). a The PCA of key
carbohydrades, acids and cheese flavour compounds. The strongest response
was observed from the removal of L. cremoris, followed by a coordinated response
of LLm1, LB and S. thermophilus. Removal of LLm2 does not affect the measured
metabolome. The arrows represent the top 5 compounds responsible for the
observed changes (2,3-pentanedione, hexanal, diacetyl, acetoin and ethyl acetate).
b, c Represents the signal-to-noise ratio (S/N) of diacetyl and acetoin, respectively.
The absence of S. thermophilus in the culture resulted in a lower accumulation of
those compounds, whereas the absence of L. cremoris led to their higher accu-
mulation. The black horizontal line indicates the average value of the two com-
pounds at milk prior to acidification. The box edges represent the interquartile
range, the ends of the whiskers represent ± 1.5 × the interquartile range and central
lines are themedian values (as in f). Panels based on n = 3 biologically independent
samples. Two-sided t test were performed for each condition against the whole
community (All). The symbols indicate the statistical significance results with ns:
p >0.05, *p < =0.05 and **p < =0.01. d Schematic compilation of the compounds
that changed between the whole SLAB culture and when L. cremoris was left out

(for detailed boxplots see Supplementary Fig. 8 & 10). The colour represents the
removal conditions; orange indicates the removal of L. cremoris while red repre-
sents the whole SLAB culture. The upwards arrow indicates the increase of the
compounds relative to their compounds concentration in milk. The X symbol
indicates the lack of production of the compounds in the respective condition.
e Simplified metabolic Escher maps from citrate to α-ketoglutarate as well as to
diacetyl through pyruvate and (S)-2-acetolactate. Metabolites and reactions are
indicated by black and gray colour in the graph, respectively. Full coloured circles
and open coloured circles indicate the high and low transcription per strain,
respectively. The absence of circle indicates the lack of the corresponding ortho-
logous group genes. Note that the transcriptional fluxes from the citrate-sodium
symporter towards diacetyl are present in all members of the Lactococcus com-
munity. In addition, LC and LLm1 manifest higher transcription among the Lacto-
coccus community on the genes related to acetolactate decarboxylase. Only LC
strain within the Lactococcus community manifests transcriptional flux through
diacetyl reductase andbutanediol dehydrogenase aswell as in reactions towards α-
ketoglutarate. f Predicted fluxes based onmetabolicmodeling across the different
simulated media.
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model, and 2,3-butanediol dehydrogenase (BTDD_RR) and diacetyl
reductase (ACTD), which carry fluxes in LLm1 model but not in LC
model (Fig. 5e, f). Taken together, the presence of themain L. cremoris
strain in the cultures results in the prevention of an undesirable
increase in the levels of some key flavour compounds, including dia-
cetyl and acetoin. This can be attributed to the degradation of diacetyl,
e.g., through the action of some alcohol dehydrogenases from LC.
Alternatively, LC might be competing with the other strains in the
culture on citrate and subsequently converting it to other products
thandiacetyl and acetoin, such as ethyl-hexanoate, ethyl-acetate and 2-
methyl-3-thiolanone, which normally happens in mixed culture fer-
mentation following the rapid dropof redox potential in the beginning
of fermentation4,31,32. This would result in the reduction of the overall
amount of citrate available for diacetyl and acetoin formation.

Microbial interactions as a mechanism in Cheddar cheese
flavour formation
Interactions in microbial communities are reported in a wide range of
ecosystems33–37. While such interactions are widely reported also in
food microbial communities4,38–42, very few studies have provided
insights into the molecular agents that mediate the interactions.
Uncovering interactions in situ is particularly challenging due to
complexity of the communities involved as well as that of themedium
such as milk. Here, we combined genomics, metatranscriptomics,
metabolomics, and metabolic modeling to uncover key microbial
interactions in Cheddar cheese-making. Notably, we used industrial
strains and a full cycle of one-year long cheese ripening.

In presence of S. thermophilus, we report a significant one-year
long growth benefit to Lactococcus strain population, leading to a
distinct final cheese metabolome profile. Based on these findings, we
conclude that cross-feeding interactions within the SLAB culture sub-
stantially contribute to the formation of flavour in cheese. Our analysis
indicated that S. thermophilus plays a crucial role by providing the
necessary nitrogen source to the Lactococcus community. This pro-
vides an explanation about the observed growth benefit of the Lacto-
coccus population and establishes a connection between the cross-
feeding interactions and the development of cheese flavour. Addi-
tionally, we identified competitive metabolic interactions within the
Lactococcus community. L. cremoris strain competes with L. lactis for
the available citrate, resulting in accumulation of keymetabolites such
as diacetyl and acetoin in the final product. Such interactions take
place within the first 5 hours of milk fermentation and strongly influ-
ences the final cheeseflavour. Lastly, wehave identified that the strains
of Lactococcus affect the activity of S. thermophilus differently. While
the presence of one L. lactis strain hardly influences the activity of S.
thermophilus and the development of the final cheese flavour profile,
the presence of a different L. lactis strain influences both significantly.
Often in literature the attempts to study microbial interactions dis-
regard the strain diversity. Yet, recent studies highlight the importance
of strain interactions, claiming the major role of those in predicting
eco-evolutionary dynamics43. Our results show how strain-specific
metabolic interactions between microbes shape the biochemical pro-
file of cheese, and provide targets towards the rational design and
assembly of microbial communities with the aim of fine-tuning cheese
flavour. More broadly, the study provides a blue-print to uncovering
in situ interactions in complex food microbial ecosystems.

Methods
Starter lactic acid bacteria culture
A cheese making experiment was designed to investigate the effect of
removing selected strains from a defined-strain SLAB culture. Wild-
type strains were obtained from the Chr. Hansen Culture Collection
and were originally isolated from dairy products or cultures. By
applying this strain removal strategy, it becomes possible to gain
insights into the individual role of the strain but also its interactions

within the microbial community. The original defined-strain SLAB
culture consisted of five different components: one component with
single strain S. thermophilus, one component with a multi strain mix-
ture of 21 Lactococcus strains belonging to both species of L. lactic and
L. cremoris44, which were inoculated as a single component (hereafter,
Lactococcus blend), two components with single strain L. lactis, and
one component with single strain L. cremoris. The original defined-
strain SLAB culture was composed of 25 strains and all bacterial and all
strains applied are listed in Supplementary Table 1.

To apply the strain removal strategy four defined-strain SLAB
cultures were designed. Condition ALL, corresponded to the original
defined-strain SLAB composed of 25 strains packed under industrial
conditions. Condition HP, corresponded to the original defined-strain
SLAB composed of 25 strains packed under non-industrial condition
by hand. Condition -LB, corresponded to the removal of the Lacto-
coccus blend. Condition -ST, corresponded to the removal of the S.
thermophilus strain. The amount added varied between the conditions
to target the same acidification profile in the cheese vat while the
cheeses making process was kept constant. The target was to obtain a
pHof 5.35 atmilling and afinalmoisture in non-fat solids of the cheeses
at 54% ±0.5% measured after 2 weeks of ripening. The designed
defined-strain SLAB for conditions ALL, HP, and -LB were all dosed
using 8.1 g of culture/100 L, whereas the designed defined-strain SLAB
for condition -ST was dosed at a concentration of 17.3 g/100 L to
compensate for missing contribution to acidification from S. thermo-
philus. The proportion of each component was adjusted based on the
dosage recommended by the producer for the intended use expressed
in terms of units of activity, as indicated on the component’s infor-
mation sheet. The final compositions of each component within the
SLAB cultures are provided in Supplementary Table 14.

Cheese making
Cheeses were produced at the Application and Technology Center of
Chr. Hansen A/S (Hørsholm, Denmark). The composition of the pas-
teurized cheese milk (organic milk, Naturmælk, Denmark) was mea-
sured using a Milkoscan™ (FOSS, Hillerød, Denmark), and the fat level
was adjusted with pasteurized cream (organic cream 38% fat, Nat-
urmælk, Denmark) to obtain a protein to fat ratio of 0.90. The cheese
milkwasheated to 32 °Cand each cheese vatwasfilledwith 150kg. The
milk was ripened for 40min with the starter culture before the coa-
gulant (CHY-MAX® Plus, Chr. Hansen A/S) was added. After 30min of
coagulation, the gel was cut into cubes 10 × 10mm. The whey and the
cheese grains were stirred for 10min before heating to 38 °C over
40min and the final scalding and stirring period was 45min before
whey drainage at pH 6.4–6.5. After 20min, the cheese curd was cut
into 12 blocks and rearranged in blocks 3 times during the next 75min
until pH 5.35 was obtained. The blocks where then milled, and the
chips were dry salted (1.7–2.0% salt in dry matter) by manually adding
andmixing the salt 2 times during 15min. The salted chips weremixed
every 5minover a period of 30min. Followingmolding, the chips were
pressed at 2 bars for 15min followed by 5 bars for 17 h. The cheeses
were vacuum-packed and stored at 9 °C until sampling after 0.5, 3, 6, 9
and 12 months. The cheese gross composition (moisture, fat, protein
and total solids)wasestimated after 2weeks of ripening by FoodScan™
(FOSS, Hillerød, Denmark). The NaCl content was estimated by ana-
lyzing the chloride concentration by automated potentiometric end-
point titration (DL50,Mettler-Toledo A/S, Glostrup, Denmark). pHwas
measured potentiometrically (PHC2002-8, Radiometer Analytical SAS,
Lyon, France) in a paste prepared bymixing 10 g of grated cheesewith
10ml of deionized water with a wooden spatula. All analyses were
carried out in duplicate.

In summary, for the one year-long ripening cheese making
experiment we inoculated three variations of the SLAB cultures into
four milk tanks. Twomilk tanks were inculcated with the complete set
of strains, one used as the control and the other to test a different
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approach of culture inoculations (All and All HP, respectively). The two
other variations of the culture were prepared using the ‘strain removal
strategy’with the aim of testing the effect of L. lactis blend (All-LB) and
of the single S. thermophilus (All-ST) during cheese-making. Following
the acidification phase, we sampled the resulting cheddar cheeses in 5
time points over the one year period. We followed two batch experi-
ments started on two consecutive days.

Microbial community dynamics
Grated cheese (5.0 g) was mixed with 45.0 g of autoclaved 2% sodium
citrate buffer, pH 7.5, 46 °C. The mixture was homogenized in a Sto-
macher® blender for 4min at medium setting to dissolve the cheese
and suspend the bacteria present. Sequential 10-fold dilutions were
prepared as required in 0.1% peptone/0.15MNaCl in water, pH 7.0. The
total population of Mesophilic cocci (Lactococcus) was determined on
pour plated M17 Agar (Difco, USA) after aerobic incubation for 5 days
at 30 °C. The total population of Thermophilic cocci (ST) was deter-
mined on pour plated M17 Agar after aerobic incubation for 3 days at
37 °C. The total population of non-SLAB was determined on overlaid
Rogosa Agar (Sigma Aldrich, USA) after incubation for 7 days at 37 °C.
The microbial analysis was carried out in duplicate at each
sampling point.

Carbohydrates and organic acids in cheese
The content of lactose, glucose, galactose, lactate, citrate and acetate
were quantified using a Dionex ICS-3000 RFIC-EG™ dual system
equipped with an amperometric detector (Dionex, Sunnyvale, CA,
USA). The separation was performed using an anion-exchange column
(CarboPac® PA20, 3 × 150mm, 6.5μm) and an ion-exclusion column
(IonPac® ICE-AS6, 9 × 250mm, 8 μm). Grated cheese (3.0 g) wasmixed
with 15ml 83mMPCA containing mMNa-EDTA, 30mMarabinose and
48mM 2-hydroxyisobutyric acid (internal standards) and rotated for
30min at room temperature. This extract was subsequent centrifuged
(5000 × g, 30min, 4 °C) and the supernatant was filtered (0.45μm).
The supernatant was diluted (600-fold) before analysis. For analysis of
carbohydrates 25μLwas injected and the separationwas performed at
26 °C with a flow rate of 1.3mL/min increasing the KOH concentration
as follow: 1mMKOH for 5min, from 1mM to 20mMKOHover 0.5min,
then kept at 20mM KOH for 6.6min min before re-equilibration to
1mM KOH over 5min. For analysis of organic acids 50μL was injected
and the separationwasperformed at 30 °Cwith a flow rate of 1mL/min
using 0.4mM heptfluorobutyric acid in 5% acetonitrile as eluent. The
analysis was performed in duplicate at each sampling point.

Proteolysis in cheese
Grated cheese (2.0 g) wasmixedwith 18ml distilledwater and blended
for 2min at 25,000 rpm (Ultra-Turraxmodel T25). This suspensionwas
used for determination of total nitrogen (TN), Non-Casein nitrogen
(NCN), and non-protein nitrogen (NPN) using the fractionation pro-
cedure described in standard NF ISO 27871 (ISO, 2011). The nitrogen
content for each fractionwas determinedusing theKjeldahlmethod as
described in standard NF EN ISO 8968-1 (ISO, 2014). The level of pri-
mary proteolysis (NCN) and secondary proteolysis (NPN) were
expressed as the percentage of TN found in the cheese. The analysis
was performed in duplicate at each sampling point.

Peptides in cheese
The peptide profile was analyzed by liquid chromatography-mass
spectrometry (LC-MS/MS). Grated cheese (3.0 g) was mixed with 15ml
urea solution (8M urea, 0.01MHCL, 0.1% DTT) and rotated for 30min
at room temperature. This extract was subsequent centrifuged
(5000 × g, 20min, 4 °C). 1ml of the supernatant was transferred to an
Eppendorf tube and centrifuged (12,000× g, 5min, 4 °C). The super-
natant was transferred to vial ready for analysis. Separation was per-
formed using an Agilent 1290 Infinity UHPLC (Agilent, Santa Clara,

USA). Injection volumewas3μL and the peptideswere separated using
a reversed-phase column (Waters Acquity CSH C18 peptide column
(1.7 um, 2.1 × 150mm). Binary linear gradient elution at 50 °C was
applied by mixing MilliQ water (0.1% formic acid) (A) with acetonitrile
(0.1% formic acid)(B). The gradient used was as follows: 0–0.36min
96% A, 70% A at 8min, 54% A at 14min, 20% A at 16min, holding 20% A
until 16.5min, increasing to 96% A at 16.6min and holding until 21min.
The flow rate was 0.3mL/min. Detection was performed using an
Agilent 6540A quadrupole time-of-flight (QTOF) mass spectrometer
(Agilent, Santa Clara, USA). Mass spectra were acquired using elec-
trospray ionization in positivemode in themass rangem/z 100–3000.
MS/MS analysis was performed using collision induced fragmentation
using data-dependent acquisition. For each MS full scan, the two
highest intensity ionswere selected for fragmentation. Themass of the
peptides was annotated using MassHunter Bioconfirm (ver. B.10.0,
Agilent Technologies) and quantification by MassHunter Qualitative
analysis (ver. B.09.00, Agilent Technologies). The peptidemasseswere
assigned to particular sequences of dairy proteins using Peak Studios
(Bioinformatics Solutions Inc.). The data base search was performed
using a 50ppm threshold on mass accuracy and a 0.3 Da threshold on
the fragment ions. The digestion enzymewas set to none leading to an
unspecified digestion pattern. The analysis was performed in duplicate
at each sampling point.

Free amino acids in cheese
The content of free amino acids (not arginine, but including the
breakdown product ornithine), γ-amino butyric acid (GABA), and
biogenic amines (phenylethylamine, putrescine, putrescine, cadaver-
ine, histamine, tyramine, spermidine) were quantified using gas
chromatography-mass spectrometry (GC-MS) (7890A&5975C, Agilent
Technologies). Grated cheese (3.0 g) was mixed with 15.0ml milli-Q-
water and rotated for 30min at room temperature and subsequent
centrifuged (5000× g, 30min, 4 °C) and the supernatant was filtered
(0.45μm). For each sample, 25μL were mixed with 225μL milli-Q-
water, 50μL 1.72% norvaline as internal standard, 200μL of methanol/
pyridine 32/8% (v/v). Subsequently, 25μL methyl chloroformate was
added andmixed using a whirlmixer at 3000 rpm for 5 s. Then, 500μL
1% mff/choloroformate was added and the sample mixed using a
whirlmixer at 3000 rpm for 5 s. For the analysis 2μL was injected unto
a DB-XLB 15m×0.25mmx0.25μm column (Agilent Technologies)
using heliumas carrier gas,flowof 1.26mL/min and anownprogramof
110 °C (0min) with a gradient of 20 °C/min until 320 °C (0min). The
analysis was performed in duplicate at each sampling point.

Volatile compounds in cheese
Volatile compounds were analyzed using Solid Phase Micro Extraction
(SPME) and GC-MS (7890B & 5977A, Agilent Technologies) equipped
with a SPME autosampler (Gerstel). A plug of cheese (3.0 g) was
transferred using a syringe to a 20ml vial and 100μL internal standard
was added before closing the vial with a cap. The internal standard
consisted of a 10 ppm solution of ethanol-d6, dimethyl-d6-disulfide, 2-
methyl-3-heptanone and pyrazine-d4 solubilized in 1-methyl-
2pyrrolidone. The vial was heated at 60 °C for 10min and volatiles
were adsorbed to the SPME fiber (DVB/Car/PDMSGray, 2 cm, Supelco)
using an extraction time of 20min. The fiber was transferred to theGS-
inlet and kept at −50 °C for 2min and then the temperature was
increased at 16 °C/s to 150 ∘C and then 12 °C/s to 300 °C, leading to
desorption of the volatiles. Volatiles were then separated on a DB-5,
30m×0.25mm× 1μmcolumn (Agilent Technologies) using helium as
a carrier gas 0.085ml/min at 325 °C. The mass spectra of the volatile
components were collected by running MS scans within the mass
range of m/z 29–209. The volatiles were identified by comparison of
mass spectra using a compound specific quantifier ion and 2 qualifier
ions within a given retention index window. This was done using
MassHunter (Version B.07.02.1938, Agilent Technologies). Results
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were given as signal-to-noise (S/N) whichwas calculated as peak height
dividedby baseline noise. Cheeses from the sampling points 3, 6, 9 and
12 months were analyzed in duplicate. The measurements for the
second week aremissing for volatile compounds, as they are expected
to be very limited. Finally, the metabolic profile of the cheeses was
quantified by measuring 30, 3, 28 and 248 features belonging to the
classes of acids, sugars, flavour-related organic compounds and pep-
tides, respectively.

Genome sequencing and assembly
Genomic DNA for de novo short read whole-genome shotgun
sequencing was extracted from 1mL of overnight culture (M17 Broth
(Difco) supplemented with glucose) of each of the strains (at
OD600= 1) with DNeasy Blood and Tissue kit on QiaCube system
(Qiagen, Germany) following the manufacturer’s protocol. Prior to
extraction, cell pellets were washed twice in TES buffer (50mM TRIS
pH 8.0, 1mM EDTA pH 8.5, 20% sucrose) and then resuspended in
180 uL of pre-lysis TET buffer (20mM TRIS-Cl pH 8.0, 2mM EDTA pH
8.5, 1,2% Triton X-100, 20mg/mL lysozyme, 2μL of 25U/μL mutano-
lysin, 4μl of 100mg/mL RNase A). Genomic libraries were prepared
using KAPA LTP Library Preparation Kit KK8230 (Roche, Switzerland)
on a Biomek 4000 Liquid Handler (BeckmanColter, USA). A portion of
500 ng of genomic DNA diluted in EB buffer (Tris-Cl, pH 8.0) was
mechanically fragmented on Bioruptor® Standard (Diagenode, USA)
with 12 sonication cycles (30 s ON/OFF) to obtain an average fragment
size of 300bp (CV%: 1.5). Fragmented DNA was processed following
the KK8230 kit manufacture’s protocol. Following the adapter ligation
step, adapter-modified DNA fragments were enriched by 8-cycle PCR.
AMPureXP (BeckmanColter) paramagnetic beadswere used for clean-
ups to purify fragments at average size between 450 and 550bp.
Concentration of gDNA and double stranded DNA libraries were
measured by Qubit® Fluorimeter using Qubit dsDNA Broad range and
Qubit 1 × dsDNA HS assays (Thermo Fisher Scientific, USA), respec-
tively. Average dsDNA library size distribution was determined using
an Agilent HS NGS Fragment (1–6000bp) kit on an Agilent Fragment
Analyzer (Agilent Technologies, USA). Libraries were normalized and
pooled in NPB solution (10mMTris-Cl, pH 8.0, 0.05%Tween 20) to the
final concentration of 10 nM. Following denaturation in 0.2N NaOH,
10 pM of pooled libraries in 600μL ice-cold HT1 buffer were loaded
onto the flow cell provided in the MiSeq Reagent kit v3 (600 cycles)
and sequenced on a MiSeq platform (Illumina Inc., San Diego, USA)
with a paired-end protocol and read lengths of 301 nucleotides.

All processing of the short reads was done in either CLCGenomics
Workbench versions 9.5.3, 9.5.4 or 10.1.1. The short readsweremapped
with default parameters to the reference sequence of the phage Phi ×
174 using the tool “Map reads to reference”. Unmapped reads from the
mapping were trimmed for quality using the PHRED score 23 as the
threshold and with the non-default parameter of discarding reads that
were less than 50 base pairs long using the tool “Trim Sequences”. The
trimmed reads were de novo assembled with default parameters
except for the minimum contig length was set to 600 base pairs using
the tool “De Novo Assembly”. Afterwards, a decontamination step was
performed where contigs with low depth of coverage were removed
using a custom plugin written by Qiagen. The decontamination step
first removes all contigs where the depth of coverage is below 15X and
afterwards removes all contigs where the depth of coverage is below
25% of the median depth of coverage for the entire genome assembly.
Gene calling of the filtered contigswas donewith Prodigal version 2.6.2
using the default parameters. Finally, the genome assemblies with
annotated genes were functionally annotated with BLAST against a
local annotation database using a custom plugin written by Qiagen.

Comparative genomics and phylogenomics
A L. lactis and L. cremoris pan-genome was created without strain LC-
LB16 which was found to have 6 times more singletons than all the

other strains. The number of core, accessory, and unique (singletons)
genes in the pan-genome is 1247, 3308, and 2323, respectively. The
OGs from this pan-genome were used in the comparative genomics
and differential metatranscriptome analyses as well as in the creation
of a pan-metabolic network of L. lactis and L. cremoris for microbial
community modeling. We identified all k-mers of length up to 31 bps
(k = 31) in the genomes of all the strains and unique k-mers in each
strain were filtered. For the set of unique k-mers we mapped the
metatranscriptomic reads to get their abundance and kept only those
above seven counts. Normalization of the number of counts per strain
performed based on the number of unique k-mers identified in each of
the strains. From the total pool of 54667 genes 15.8% was removed as
the cluster above 96 cd-hit identity was mixed among the three taxa.
still 84.2% consider a significant number to look at L. cremoris and L.
lactis differences. For the phylogenetic analysis 22 genomes from the
SLAB culture were used alongside 107 complete genomes of L. lactis
and L. cremoris, which were retrieved from NCBI results in total to 129
genomes. CD-HIT (v4.8) on 80% amino acid identity thresholds along
with a custom-made R script were used to identify a set of 464
monocore marker gene sets45,46. The trees were constructed using
PhyloPhlAn v3.047 using the PhyloPhlAn parameters “–accurate” and
“–diversity low”, which translate to the usage of a
pfasum60 substitution matrix. In addition, multiple sequencing
alignments (msa) were performed with muscle (v3.8.1551) and trim-
mingwas performedby removing columnswith at least onenucleotide
appearing above a threshold of 0.99. The final maximum likelihood
tree was constructed on the concatenated DNA msa using raxmlHPC
(v8.2.12), 100 bootstrap and GTRGAMMAI model48,49.

Generation and simulation of genome-scale metabolic models
The metaGEM workflow’s prokaryotic GEM reconstruction and simu-
lation module was used for metabolic modeling50. Genome-scale
metabolic models were generated for S. thermophilus, Lactococcus
LLm1, LLm2, and LC using CarveMe v1.4.151 based on the protein
sequences of assembled genomes. First, Prodigal v2.6.352 was used to
generate open-reading-frame annotated protein sequence files from
the corresponding DNA fasta files. Additionally, milk media from a
recent kefir publication was used for gap-filling during model
generation42. More specifically, we formulated four biologically rele-
vant variations of the milk composition, including aerobic rich milk,
anaerobic rich milk, aerobic depleted milk, and anaerobic depleted
milk. The former two media represent the initial composition of milk,
while the latter twomedia represent milk after it has been depleted by
fermentation. A version of each of the four species was generated by
gap-filling on each of the four milkmedia variations, as well as without
gap-filling, resulting in a total of 20models. All models were generated
using the default CarveMe universal bacterial model template. Note
that although gram positive bacteria are generally not modeled with a
periplasmic compartment due to its smaller size relative to gram
positive bacteria, all models generated with the automated CarveMe
tool contain such a compartment. Individual model simulations were
carried out for all models on each of the four media variations using
the reframed v1.2.1 and cobrapy v.0.20.0 metabolic modeling
packages53. Community simulation of genome-scale metabolic models
was also carried out in the different media variations, using SMETANA
v1.2.022. All associated data, including code used for generating and
plotting results, is available on GitHub.

Inoculations in milk
All milk fermentations were carried out in organic low fat (1.5%) milk
from the organic dairy NATURMÆLK, Tinglev, Denmark, which con-
sists of skim milk powder at a level of dry matter of 9.5% (w/v)
reconstituted in distilled water and pasteurized at 99 °C for 30min,
followed by cooling to 30 °C54. Starting material for all inoculations
were concentrated F-DVS® (Direct Vat Set) strains and cultures for
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direct inoculation into. All cultures were inoculated 0,02% with F-DVS
material by firstly transferring 2.0 g F-DVS material to 200ml cold
milk. After mixing, 4ml were transferred to 200ml pre-warmed milk
(32 °C) for the final fermentation. The percentages of the different
strains and cultures for the 6 different culture blends is given in Sup-
plementary Table 15.

Milk acidifications and sampling
For the SLAB cultures, after inoculation into bottles withmilk placed at
32 °C in a waterbath, pH measurement was started and acidification
was followed using a CINAC system55. After 59min, the temperature
was raised to 38 °C and at 183min, the temperature was reduced to
the final temperature, 35 °C, for 20 h. The six different culture blends
were each run in triplicate. After around 5 h of acidification during the
exponential growth phase when reaching pH 5, 1 g fermented milk
from each fermentation and 1 g unfermented milk were sampled and
added 200μl 4 N H2SO4 to prepare for analysis for organic acids,
Carbohydrates and Volatiles. In addition 1 g was sampled for mRNA
extraction. Temperature stress of individual Lactococcus strains was
assessed by following the acidification of the same milk on four tem-
peratures (30 °C, 37 °C, 40 °Cand43 °C) by continuousmonitoring the
milk’s pH levels.

Carbohydrates, acids and volatiles in milk
For the preparation of fermented milk samples used for carbohydrate
and small organic acid analysis, 1 g or 1mL of sample was quenched
with 200μL 4N sulfuric acid (H2SO4) in a 7mL glass tube, mixed and
stored at −20 °C until analysis. The analytes for carbohydrate analysis
were extracted from the sample and proteins get deproteinated and
precipitated by treatment with an aqueous perchloric acid (PCA)
solution. The samples get further diluted to fit into the dynamic range
of the quantification. Arabinose is added as an internal standard. The
diluted samples are analyzed on a Dionex ICS-3000 system (Thermo
Fischer Scientific, Waltham (MA), USA) using an analytical anion-
exchange column and a pulsed amperometric detector. For quantifi-
cation a one-point calibration curve is used. Concentrations are cal-
culated based on the chromatographic peak heights after normalizing
to the internal standard (arabinose). The analytes for analysis of small
organic acids were extracted from the sample and proteins get
deproteinated and precipitated adding an aqueous PCA solution. The
samples get further diluted to fit into the dynamic range of the
quantification. Adipic acid is added as an internal standard. Thediluted
samples are analyzed on a Dionex ICS-3000 or ICS-5000 system
(Thermo Fischer Scientific, Waltham, MA, USA) using an analytical ion
exclusion column and a suppressed conductivity detector. For quan-
tification, an 8-point calibration curve is used. Concentrations are
calculated based on the chromatographic peak heights after normal-
izing to the internal standard (adipic acid).

For the preparation of the volatile organic compounds (VOC’s)
samples, 1 g or 1mL of each samplewas transferred to a head space vial
(20mL) with 200μL of 4N H2SO4 and sealed with teflon-lined alumi-
num caps. The samples were then identified using a static head space
sampler connected to a Gas Chromatograph with Flame Ionization
Detector (GC-FID) (Perkin Elmer, MA, USA) and equipped with a HP-
FFAP column. The identification of VOC’s was based on retention time
in comparison with that of standards. The injector and detector were
maintained at 180 °C and 220 °C, respectively. The oven was initially
heated to 60 °C and held for 2min, then increased to 230 °C and held
for 0.5min. The calculation of the concentration of each compound in
each sample was based on the peak height divided by the response
factor. The response factor is established suing standard solutions by
the quotient of the peak height divided by the known sample con-
centration. All of the chemicals and analytes used for the standard
solutions were provided by Sigma-Aldrich, Munich, Germany. Overall
with these approaches, we measured a total of 43 metabolites

comprising five carbohydrates, eight organic acids and 30 important
flavour compounds.

RNA extraction, sequencing and analysis
Total RNAwas extracted using the RNeasyMini kit (Qiagen 74104) and
rRNA was depleted with the NEBNext rRNA Depletion Kit (Bacteria).
The sequencing library was then prepared using the NEBNext Ultra II
Directional RNA Library Prep Kit for Illumina and the libraries were
sequenced by EMBLGenomic C-ore Facility using the IlluminaNextSeq
500 system, read length 150bp. The RNA-reads are preprocessed and
filtered based on minimum quality and length using the NGLess
pipeline and substrim. Given a read it finds the longest substring, such
that all bases are of at least the given quality. The parametersminimum
quality and minimum length were set to 25 and 100, respectively. The
filtered reads are mapped to the genomes of all strains present in the
Culture using bbmap (v38.75)—if one read has multiple hits, a random
distribution is used (selecting one top-scoring site randomly). The
total number of reads ranges from 4,855,868 to 18,812,096 in samples
4B and 1B, respectively, and the percentage of mapped reads is in the
range of 93–95% (Supplementary Table 16)56. htseq-count (v0.11.2) was
used to count the number of reads per gene57. The resulting counts
were grouped per orthology group (custom python script) based on a
previously created pan-genome created for the pan-metabolic net-
work. Normalization was performed and differential gene expression
with DESeq2 (v1.26.0) and SARTools (v1.7.2) in R58,59. For the differ-
ential gene expression analysis, Wald significance tests were per-
formed with BH p-value adjustments60 to take into account multiple
testing, and the level of controlled false positive rate was set to 0.01.
Further differentially expressed genes, Lactococcus pan-metabolic
network information and KEGG pathways were based on custom
analysis35,61. The data was normalized using DESeq2 to correct sys-
tematic technical biases and make it possible to compare read counts
across samples. The median scaling factor for each sample was used.
This is done for the data containing all genes. RegPrecise database was
used for validation of key functional regulation62.

General statistical and computational analysis
We used R-packages Boruta (v8.0.0), uwot (v0.1.14), apcluster
(v1.4.10), ggplot2 (v3.4.2), ggrepel (v0.9.3), ggfortify (v0.4.16), ggrid-
ges (v0.5.4), ggbiplot (v0.55), ggpubr (v0.6.0), ggalluvial (v0.12.5),
scales (v1.2.1), tidyverse (v2.0.0), dplyr (v1.1.2), plyr (v1.8.8), reshape2
(v1.4.4), cowplot (v1.1.1), patchwork (v1.1.2), rstatix (v0.7.2), viridis
(v0.6.3), grid (v4.2.2), Biostrings (v2.64.1) and readxl (1.4.2) for down-
stream analysis including, data parsing and visualization, clustering,
dimensionality reduction and importance feature ranking
analysis46,63–83. Specifically, Boruta algorithm is a wrapper around
Random Forest84 that performs randomization tests. It is used to
identify discriminative metabolites in cheese ripening experiment.
Features with confidence of importance above 0.99 (the default value
in Boruta) were treated as informative. Also the maximal number of
importance source runs was increased to 10,000. In this study, sta-
tistical analysis of variance (ANOVA) and pairwise comparisons
between two groups using either the Wilcoxon rank-sum test (wil-
cox.test) or the Student’s t test (t test)were conducted. The resultingp-
values were reported in the figures. Temperature stress of Lactococcus
strains was represented as a proxy based on the Pearson correlation
coefficient (PCC) between the acidification curves of mono-cultures at
30 °C compared tomono-cultures at 37 °C, 40 °C and 43 °C. Metabolic
networks were visualized using Escher web-tool (v1.5.0)85. Schematic
representations and figures were created and polished, respectively, in
Inkscape.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Source Data, including metabolomics, metatranscriptomics count
tables are available in https://github.com/Chrats-Melkonian/mi_
cheese86. Genomic and metatranscriptomics data have been depos-
ited under the BioProject ID PRJNA950467. The genomes of SLAB
culture has been deposited under BioSample accession
SAMN34041181-SAMN34041202. The metatranscriptomes has been
deposited under SRA accession SRR24029527-SRR24029544.

Code availability
Code to reproduce the results is available in https://github.com/
Chrats-Melkonian/mi_cheese86.
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