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Addressing mechanism bias in model-based
impact forecasts of new tuberculosis
vaccines

M. Tovar 1,2, Y. Moreno 1,2,3 & J. Sanz 1,2

In tuberculosis (TB) vaccine development, multiple factors hinder the design
and interpretation of the clinical trials used to estimate vaccine efficacy. The
complex transmission chain of TB includes multiple routes to disease, making
it hard to link the vaccine efficacy observed in a trial to specific protective
mechanisms. Here, we present a Bayesian framework to evaluate the com-
patibility of different vaccine descriptions with clinical trial outcomes,
unlocking impact forecasting from vaccines whose specific mechanisms of
action are unknown. Applying our method to the analysis of the M72/AS01E
vaccine trial -conducted on IGRA+ individuals- as a case study, we found that
most plausiblemodels for this vaccine needed to include protection against, at
least, two over the three possible routes to active TB classically considered in
the literature: namely, primary TB, latent TB reactivation and TB upon re-
infection. Gathering new data regarding the impact of TB vaccines in various
epidemiological settings would be instrumental to improve our model esti-
mates of the underlying mechanisms.

Despite the decay in TB incidence and mortality achieved worldwide
since 19901, its yearly rate of reduction is arguably too slow tomeet the
goal settled by the World Health Organization (WHO) in the End-TB
strategy, which consists of completing a reductionof TB incidence and
mortality rates by 90% and 95%, respectively, between 2015 and 20352.
Instead, starting in 2020, we are witnessing, for the first time in dec-
ades, an alarming increase in global TB burden levels with respect to
previous years, with asmany as 1.6million casualties attributable to TB
worldwide in 2021, combining HIV negative and positive cases (1.5 and
1.4 in 2020 and 2019, respectively3). The cause of this increase was the
irruption of the COVID-19 pandemic, which threatens, in countries like
India, to raise the TB death toll back to even higher levels in the next
few years4. This issue, as well as the ever-increasing rates of emergence
of drug resistance5, evidence the need of new epidemiological inter-
ventions and tools against TB; paradigmatically a new and better
vaccine than the current bacillus Calmette-Guerin (BCG)6, whose effi-
cacy against themore transmissible respiratory forms of the disease in
young adults is disputed7.

Vaccine testing for TB is especially difficult due to a number of
factors. They include the slowness of the contagion dynamics that
forces vaccine developers to consider studies involving larger num-
bers of participants during longer follow-up periods than for other
diseases8–10, as well as the difficulty in defining trial endpoints for a
disease where infection status can only be ascertained indirectly, and
immunological correlates of protection remain elusive11. This
makes the testing of TB vaccines an extremely challenging and
expensive task, in spite ofwhich, nowadays, several preventive vaccine
candidates against TB are being tested in human clinical trials6,12. Some
candidates have completed phases 1, 2, and 2b of their development,
and are about to enter into phase 3 to test their efficacy at providing
prevention of infection (PoI) and/or prevention of TB disease (PoD) in
large cohorts of thousands of participants recruited in high-burden
settings. In this context, the first phase 2-2b trials to be completed for
new preventive vaccines against TB were those of the candidates
MVA85A8, M72/AS01E

9,10, and also H4:IC3113, which was compared to a
revaccination protocol with BCG (BCG-revac). These candidate vac-
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cines, which collected disparate efficacy readouts, were tested within
trials of noticeable diverse designs in several key characteristics such
as geographical distribution, participants’ age, or IGRA status, as
detailed in Table 1.

The comparison summarized in Table 1, involving just three pio-
neer phase 2/2b efficacy trials for novel tuberculosis vaccines, sug-
gests, given the diversity of their designs, that the question of what is
an optimal strategy for testing a preventive vaccine against TB at these
stages of vaccine development lacks a unique answer, and that, as the
rest of the vaccine candidates progresses through the development
pipeline, the field will witness a higher number of trial designs being
explored, as anticipated in14. This multiplicity of trial designs, along
with the paucity of resources to allocate for evaluating novel TB vac-
cine candidates at a global scale15, makes it absolutely critical to ensure
that vaccines with different target product profiles, and, or estimated
from trials of different characteristics can be timely compared in their
expected ability to halt the global epidemics of TB.

One of the reasons why such a task is difficult is the fact that the
PoI or PoD efficacy readouts obtained from an efficacy trial do not
offer an unequivocal characterization of a TB vaccine, since the same
risk-reduction readouts observed in a trial can be mapped onto dif-
ferent mechanisms of action in different vaccine candidates14. This is
extremely important because some of these compatible mechanisms
are impossible to distinguish just by interpreting the trial’s results
using standard methodologies, and yet, they appear associated with
significantly different impacts, as foreseen by transmission models, if
applied in simulated vaccination campaigns16.

In this work, we propose a Bayesian modeling approach in order
to relax suchkindof assumptions. In our framework,wedefine a family
of possible compartmental vaccine models characterized by different
vaccine mechanisms from each of which we can estimate the like-
lihood associated with a particular trial outcome. Using those like-
lihoods combinedwith uniform, non-informative priors for eachof the
possible models in the family, we can estimate the posterior prob-
abilities of each model, providing in this way a means to evaluate the
compatibility of each of the possible models with the outcome
observed in a specific trial. Finally, we use these Bayesian posteriors as
natural weights for each model’s impact forecasts, which -at least
within the breadth of the family of models considered- do not depend
on mechanistic assumptions anymore.

To illustrate our approach, we analyze the case of the multi-
centric clinical trial of the candidate vaccineM72/AS01E, conducted on
IGRA-positive individuals from settings in three different high-burden
countries: Kenya, Zambia, and South Africa, which led to a promising
PoD readout ofVEdis =49:7% ð95% CI 2:1� 74:2Þ. Specifically,we apply
our formalism to evaluate the a posteriori plausibility of the different
vaccine descriptions that can be built as all-or-Nothing vaccine
models17–19 by incorporating in their parametrizations different com-
binations of protective effects. Furthermore, we identify the specific
combinations of protection mechanisms that generate model
descriptions that are more plausible, under the light of the observed
trial outcome. This offers a rationale for selecting the most adequate
vaccine model structures, and weight them in order to produce
mechanism-agnostic impact forecast averages.

Results
In a trial such as the one carried out for the vaccine M72/AS01E, con-
ducted among TB−, IGRA+ individuals without a past of active TB, the
episodes of incident TB tobeobservedduring the study canbedivided
into three different groups, or routes to disease. First, some of the
individuals whose IGRA conversion had occurred relatively recently
will be expected to progress to primary TB during the first
12–24 months after exposure to the pathogen, which will typically
overlap with the follow-up period. This happens at a fast progression
rate denoted as r in this study (see Fig. 1A). Second, enrolled Ta
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individuals whose IGRA+ status is associated with a latent TB infection
(LTBI, linked to an exposure occurred, typically, >2 years before the
beginning of the study) would be at a much lower risk of experi-
menting endogenous reactivation during the trial, mapped to a slow
transition rate denoted as rL in Fig. 1A, with rL ≪ r. Third, enrolled
individualsmayundergo primary TB followed upon re-exposure to the
pathogen during the study, which, in Fig. 1A happens at a rate pro-
portional to q�β�p, where βmeans the basal forceof Infection, and q is a
reduction coefficient capturing the relative risk of infection of pre-
viously infected (IGRA+)with respect to unsensitized individuals (IGRA
−). These three possible routes to active TB, sketched in the com-
partmental model diagram in Fig. 1A, are classically referred to as the
“three risksmodel”20, a frame coined by Vynnycky and Fine in 199721. In

Fig. 1A we distinguish each of them according to one of the most
commonly assumed model structures found in TB modeling
literature22, where LTBI individuals are split into fast (F) vs slow pro-
gressors (L), which we have chosen to describe the transmission
dynamics of the placebo arms considered in this study.

Leaning on this basic model description of disease dynamics
sketched in Fig. 1A, our first goal is to implement computational
simulations to estimate the relative weight of each route to disease in
the incidence observed in the placebo armof a clinical trial such as the
M72/AS01E study. To implement such simulations, we need two main
ingredients: the epidemiological parameters r, rL, q, and p governing
the transitions, as well as the expected initial prevalence of fast (F) vs.
slow progressors (L), and the forces of infection β in the population
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sampled during the recruitment phase of the clinical trial. While the
epidemiological parameters r, rL, q and p are extracted from previous
literature (see Methods), we resort to computational modeling to
gather age-specific estimates of the relative weight of F and L reser-
voirs, as well as of the force of infection. More specifically, in order to
obtain estimates of these parameters we use the sameTB transmission
model that will be later used to evaluate the impact of the vaccine,
whose compartmental structure is sketched in Fig. 1B. Thismodel, first
introduced in ref. 23, can be conceived as a more comprehensive
version of the model represented in Fig. 1A, designed not to provide a
description of the disease transitions within the context of a trial, but
to provide an exhaustive description of TB transmission dynamics on
the whole population of an entire country during several decades. The
model is based on a system of ordinary differential equations (see
Methods and supplementary text S1 for further details), and integrates
information from assorted bibliographic sources (epidemiologic
parameters), demographic databases (the UN population division
database, from where time-evolving demographic structures are
extracted), as well as from the WHO TB database (TB incidence and
mortality trends) around a detailed age-structured description of TB
dynamics. Calibrating the force of infection and the diagnosis rates,
this model reproduces TB incidence and mortality trends reported in
the WHO Database in the three countries of the M72/AS01E study
(South Africa, Kenya, and Zambia, Fig. 1C) during the period
2000–2018. From this calibration procedure, we then obtain a com-
plete model-based description of the dynamical evolution of TB epi-
demics in each country. Specifically, from its results we extract the
desired estimates of the relative prevalence of fast (F) vs slow (L)
individuals in the population (Fig. 1D), as well as the estimates of the
basal force of infection β in each country (South Africa, Kenya and
Zambia) and age group, both of them evaluated in 2015 (Fig. 1E), the
year that the M72/AS01E study took place (see Methods and Supple-
mentary text S1 for further details).

With those ingredients at hand, we then perform a first set of in
silico trial simulations stratified per age group in each of these three
countries, wherein participants’ fates are simulated stochastically,
according to an implementation of the Gillespie algorithm that allows
tracking the three routes to disease independently (see Methods and
Supplementary text S1). Through these simulations, we quantify the
fraction of total TB cases associated with each route to disease in the
placebo arms enrolled in each country, stratified per age group
(Fig. 1F). In the multi-centric trial of M72/AS01E, participants between
18 and 50 years old (724 between 18 and 25 years old; 321 between
25–30, and 594 between 30.50) were enrolled in South Africa (80.8%),
Kenya (14.9%), and Zambia (4.3%)9,10. Considering these demographics,
we produce a global estimate of the contribution of each route to
disease to the incidence observed in the placebo arm of the entire

study in the M72/AS01E trial, as an average of the results of the age
groups and countries involved in the study, weighted by their relative
frequencies (Fig. 1G).

Now, within the framework of the “three risks model”, it is con-
ceptually possible that vaccinesmay provide PoD by reducing only the
disease risk associated with some of these three routes to disease. The
estimates of the relative share of total incidence that can be attributed
to each route to disease give us very useful information aboutwhat are
the precise mechanisms that may be more interesting to target in a
given population. However, the immunological components of host
responses against Mycobacterium tuberculosis (M.tb., the causative
agent of TB) that are involved in protecting against primary TB upon
recent infection, endogenous reactivation, or re-infection are complex
and neither homogeneous nor linear;24 and could be boosted to dif-
ferent extents by a vaccine in a way that is difficult to predict a priori.

To accommodate modeling decisions to this uncertainty, we
consider a set of vaccines that provide PoD by reducing each of the
three individual risks, either alone, or combined (Fig. 2A). This yields
seven vaccine models that can be denoted as M i,εð Þ, where we have
each model being defined by the integer index i 2 f1,2, . . . ,7g, deter-
mining the specific protection mechanism(s) present in the vaccine
(Fig. 2A) and the continuous parameter ε 2 ½0,1�, which captures the
intrinsic efficacy, modeled as the fraction of individuals protected
within an all-or-nothing modeling framework, considered identical for
all the vaccine effects present in each case. This way, while in models
1–3 only one of the three routes to TB is disrupted by the vaccine,
models 4–7 incorporate several mechanisms simultaneously (Fig. 2).
For instance,model 5 describes a vaccine that protects against primary
TB and against LTBI endogenous reactivation at the same time, and
model 7 represents a vaccine tackling all three routes alike. Crucially,
as represented in Fig. 2B, themaximum fraction of total TB cases that a
vaccine behaving according to each of these models can prevent is
variable, spanning from 13.8% of cases that would be prevented by a
vaccine with a 100% efficacy against LTBI reactivation only, to the
obvious 100% of cases, that would be prevented by a perfect vaccine
with 100% efficacy against all routes of TB alike.

Therefore, the set of vaccine descriptions fM i,εð Þgwill constitute a
space of possible models, within which we will look after the one(s)
whose assumptions are most compatible with a trial’s PoD readout of
vaccine efficacy, that is, with the largest Bayesian posteriors, instead of
blindly assuming that a vaccine acts through a given specific
mechanism, or, for example, that it reduces all risks alike. To accom-
plish that task, we expand the Gillespie stochastic simulations men-
tioned before to include the simulation of vaccine arms each of them
coherent with the seven types of vaccine models described. Specifi-
cally, we assume a uniform non-informative prior on the efficacy
parameter, and register the observed efficacy against disease VEdis

Fig. 1 | A priori characterization of the three routes to disease in the placebo
arm of a Phase 2b clinical trial conducted on IGRA+ participants.
ACompartmentalmodel used to describe TBdynamics in the placebo armof a trial
conducted on IGRA+ individuals without past or present evidence of active TB.
According to this model, trial participants can be divided in fast (F) vs. slow (L)
progressors, each of which show different risks of progression to disease (D) per
unit time that can be further divided into three routes to disease.BCompartmental
model used to describe TB transmission at country-level. Individual states are:
susceptible S, infected (either fast LF or slow LS progressors, analogous to F and L
reservoirs in A); active disease D, disease under treatment T (pulmonary smear-
positive TB (p+), pulmonary smear-negative TB (p−) and non-pulmonary TB), dis-
ease recovery R (Natural (N), successful after treatment (S), treatment default (D))
and treatment failure (F). The model is used first to obtain estimates of parameters
to inform clinical trial simulations, and later to evaluate vaccine impact (for further
details see Supplementary text S1 and ref. 23).C The country-level model sketched
in B is calibrated to reproduce TB incidence trends (also mortality, see Supple-
mentary Fig. S1) in each country. Error bars represent the reported uncertainty of

incidence estimates in the WHO tuberculosis database, shaded areas capture the
95% CI in all the trajectories forecasted by the model (N = 500). D From the cali-
brated simulations conducted country-wise, we retrieve estimates for the relative
fraction of fast progressorsover the total populationof IGRA+ individualswithout a
past of active TB LF /(LF + LS) that is expected in each country. E From the same
simulations, we obtain estimates of the force of infection per country and age
group (fraction of susceptible individuals infected per year and age group).
D, E bars represent the median, boxes capture the inter-quartile range, and error
bars represent the 95% CI from a set of N = 500 simulations. F With those items at
hand, along with literature-based estimates for the epidemiological parameters r,
rL, q, and p, the placebo arm of the M72/ASO1E study can be simulated in-silico,
from which we can estimate the expected fraction of incident TB cases associated
to each of the routes to disease. G Weighting the contributions estimated in
F, according to the age and country-wise distributions of participants in the M72/
AS01E trial

9, we obtain an overall estimate of the relative contribution of each route
to disease to the total incidence observed in the global placebo arm of the trial.
Source data are provided as a Source Data file.
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(that is, the PoD readout) that is associated with each trial simulation
(see Fig. 3A). After we conduct a total amount of two million simula-
tions for each model type, we consider the likelihood
P VEdis =49:7%ji,ε
� �

associated with each possible model defined by
the combination of parameters fi,εg. Integrating these likelihoods over
all possible values of ε for each vaccine type we retrieve the margin-
alized likelihood curves P VEdis =49:7%ji

� �
represented along with the

simulation clouds in Fig. 3A. Red dashed lines on top of these mar-
ginalized likelihoods capture the probability that a trial with the spe-
cifications of the one described in ref. 9,10, conducted on a given
vaccine behaving according to the i-th vaccine model, will lead to a
PoD efficacy readout VEdis that is compatible with the observations
made in the real trial: VEdis = 49.7%10.

Using this marginalized likelihood, we can apply Bayes rule to
define the marginal posterior probability associated with each parti-
cular model, P ijVEdis =49:7%

� �
. These marginal posteriors

P ijVEdis =49:7%
� �

, represented in Fig. 3B, provide a mean to quantify
the relative support in a given trial’s outcome for eachone of the seven
different vaccine descriptions provided. In our case, the observed PoD
efficacy readout reported for the vaccine M72/AS01E

10 appears more
compatible with models 4, 5, 6, or 7, each featuring a combination of
several vaccine mechanisms, than with models where vaccine effects
are associated to a unique mechanism of action. The reason behind
this emerging hierarchy between vaccine models is the relation
between the observed VEdis and the maximum fraction of events that
are preventable by each type of vaccine (shown in Fig. 2B). Posteriors
of models whose maximum fraction of preventable cases is smaller
than the observed VEdis are in turn smaller, meaning that the protec-
tion mechanisms present in these vaccines are likely insufficient to
explain the observed trial result (models 1, 2 and 3: see Figs. 2B, 3A). In
what regards the remaining vaccinemodels (4 to 7), all of themprovide
protection against several routes to disease, featuring maximum
fractions of preventable cases that are well above the VEdis value
observed in the trial (see Fig. 2B). Their different posteriors can thenbe

understood by comparing the relative frequency at which each model
is expected to generate simulated values for VEdis that are compatible
with the trial observation, when all simulations at all possible values of
ε, distributed around the uniform, non-informative prior, are con-
sidered (marginal density curves over the VEdis axis in Fig. 3). Obser-
ving those curves, -the marginalized likelihoods, integrated over ε for
eachmodel as defined in Eq. 4 (see Methods)- we see that models 4–6
showmarginalizeddensitieswith a tighter spreadaround intermediate
values of VEdis than model 7, showing higher values around the
observed VEdis =49:7%, and therefore higher model posteriors than
model 7.Maximum fractions ofpreventable cases formodels 4, 5 and6
are smaller than that ofmodel 7, which is equal to 1, since the latter can
potentially prevent all TB cases by blocking all routes to disease alike.
This translates into a cloudof simulateddata formodel 7with a steeper
slope in Fig. 3A, which in turn causes the flatter marginal density curve
for model 7 than for models 4–6. Taken together, these results lead to
the slightly lower marginal posterior probability observed formodel 7
than for models 4–6, evaluated at VEdis =49:7% (Fig. 3B)

Our approach can also be used to estimate the intrinsic efficacy
values ε that are most compatible with the observed PoD efficacy
readout VEdis =49:7% under each vaccine model, by applying the
Bayes rule over each of the seven types of models independently to
obtain the conditional posteriors P εjVEdis =49:7%,i

� �
: The first

momentum of these conditional posteriors corresponds to the
expected values of the intrinsic efficacy parameter under each model
type, that is εh ii, which is captured in Fig. 3C, along with its confidence
intervals obtained from the conditional posterior distribution
P εjVEdis =49:7%,i
� �

itself. As expected, these efficacy estimates illus-
trate a sensible feature of our model approach, namely, that a given
PoD readout VEdis must bemapped to lower intrinsic efficacy ε values
when the vaccine is able to halt progression to disease through all
possible routes than when it acts on a subset of them.

Oncewe have described our Bayesian approach to inform vaccine
characterization combining trials’ results with in-silico simulations, we

Fig. 2 | Compartmental models to accommodate the description of vaccines
providingPoDbyactingon specific routes todisease.A (Top left): Venndiagram
sketching the seven vaccine types contemplated in the study, as a function of the
routes to disease they are assumed to protect against: primary TB (model 1), TB
upon re-infection (model 2) or endogenous reactivation of LTBI (model 3). Com-
binations of these mechanisms yield models 4–7, which describe vaccines that are
able to halt two (models 4, 5 and 6), or all three routes to disease at once. Each
region of the Venn diagram corresponds to a value of the discrete index

i 2 f1,2, . . . ,7g. Beside the diagram, we show the compartmental descriptions of
each vaccine type. In each of the sevenmodels, a vaccine arm is included in parallel
to the placebo arm, that defines the disease dynamics of the vaccinated individuals
who are protected against developing disease through the corresponding routes.
B Maximum fraction of preventable cases by each vaccine, considering the
mechanisms of protection present in each case. Source data are provided as a
Source Data file.
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illustrate how it can be used to reduce arbitrariness from impact eva-
luations based on transmission models. A typical line of action for
prospective impact evaluation of a vaccine consists of three steps: (1)
implementing a transmission model accommodating a sensible vac-
cine description defined a priori. (2) Infer the vaccine parameter(s)
conditional on themodel structure that provide an optimal agreement
with trial data, and (3) produce model-based forecasts of vaccine
impact. A potential problemwith this approach is, of course, that there
exist many vaccine descriptions that can be adopted in the second
step, and that theymay lead to substantially different impact forecasts.

In order to illustrate this problem and quantify its importance, we
capitalize on the same transmission model used above to infer forces
of infection and fractions of fast vs. slowprogressors23. Thismodel was
later adapted to allow for the description of the effects of the intro-
duction of new vaccines16. Here, we have further adapted themodel to

accommodate vaccine descriptions compatible with each of the seven
models under analysis (see Methods & Supplementary text S1).

In Fig. 4A, we see the incidence reduction rate (IRR), evaluated in
2050, achieved by the introduction of a vaccine in 2025 on a vacci-
nation campaign targeting adolescents (16–20 years old), under each
of the seven types of models analyzed in this study in three high-
burden countries: India, Indonesia, and Ethiopia. Here, the intrinsic
efficacy modeled in each case corresponds to the expected value εh ii
conditional to the model architecture and the vaccine trial PoD read-
out VEdis observed in the trial. In this exercise, vaccine coverage is
ideally assumed to be 100%, and no efficacywaning has beenmodeled.
In turn, the vaccine only protects IGRA+ subjects to avoid extrapolat-
ing its efficacy estimates to unexposed individuals, where efficacy
evidence has not yet been gathered for this vaccine. According to each
model description (see Fig. 2, and Supplementary Fig. S2), only PoD

Fig. 3 | Bayesian analysis of possible modeling architectures underlying a trial-
derived observation of vaccine efficacy. A Absolute frequency density distribu-
tions of efficacy values VEdis obtained in sets of N = 2 × 106 clinical trial simulations
per model, uniformly distributed across the intrinsic vaccine efficacy parameter ε
(efficacy resolution: 0.005, with 10,000 realizations for each value of ε). Red hor-
izontal lines mark the PoD efficacy observed in the M72/AS01E trial VEdis =49:7%:
Along with each bi-dimensional density cloud, we represent its marginalized fre-
quencies over the vertical axis, obtained upon adding simulation results over all
possible values of ε for eachmodel. These density curves capture themarginalized

likelihoodsP VEdis ji
� �

. Reddashed lines capture their value at the observed efficacy,
that is P VEdis =49:7%ji

� �
. B Marginal posteriors P ijVEdis =49:7%

� �
, capturing the

relative compatibility of each model with respect to the efficacy observed in the
M72AS01E trial. C Distribution P εjVEdis =49:7%,i

� �
of the intrinsic vaccine efficacy

parameter ε in each model type, given the observed efficacy VEdis =49:7%, along
with mean and 95% confidence intervals associated to them. For M3, the CI was
omitted, for it spans the entire range ε 2 ½0,1�, as the model fails systematically to
produce simulation instances compatible with the observed VEdis =49:7%: Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-40976-6

Nature Communications |         (2023) 14:5312 6



effects (no PoI or PoR) are included in our models. These impacts
range from 2.2% of IRR in 2050 (95% CI: 1.2–4.0, as foreseen by model
model 2 in Ethiopia), to 10.6% of IRR (95% CI: 8.0–13.8) foreseen by
model 6 in Indonesia.

Then, we observed that many of the differences in vaccine impact
that emanate from different vaccine models within the same country
are statistically significant. In Fig. 4B we illustrate the relative

differences in IRR foreseen in each country by each vaccinemodel and
themodel with the highest posterior probability (model 5), describing
a vaccine that protects against endogenous reactivation of LTBI and
primary TB at once. These differences are statistically significant in 6
out of 18 cases (Bonferroni-adjusted p values < 0.05), and account for
as much as 69.3% of the impact foreseen by model 5 in the most
extreme case, IRR 2,hεi2

� ��
impact lower than IRRð5, εh i5Þ in Ethiopia).

Fig. 4 | Impact forecasts variation across model structures vs. mechanism-
agnostic Bayesian estimates of impact. A Vaccine impact forecasts obtained
through the comprehensive transmission model introduced in ref. 16,23, when the
vaccine is modeled according to each of the seven descriptions here discussed.
B Relative differences between the impacts foreseen by eachmodel and the model
with maximum Bayesian posteriors (model 5). C Combined, mechanism-agnostic
IRRh i estimates for the same impacts, in the same countries, where each of the
seven models contributes proportionally to its Bayesian posteriors. D Relative

differences between IRRh i and impacts foreseen by each individual model. In all
panels, bars capture the median impact, boxes represent the inter-quartile range
and error bars represent the 95% CI from sets of N = 500 impact simulations. P
values are obtained as the fraction of simulations yielding impact estimates
crossing zero, over a total set of N = 500 impact simulations (one-tailed empiric
test). P values are further adjusted for multiple testing using Bonferroni correction
with N = 63 tests. Black error bars correspond to significant statistics (Bonferroni-
adjusted p <0.05). Source data are provided as a Source Data file.
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These results evidence the importance of removing arbitrariness from
modeling choices of vaccine descriptions.

This can be achieved, at least within the family of models under
analysis, using our Bayesian approach. In short, we propose con-
sidering Bayesian estimates of expected vaccine impact IRRh i as a
mean of the impacts foreseen by each type of vaccine IRRði, εh iiÞ,
weighted by the marginal posteriors P ijVEdis =49:7%

� �
. The results of

this exercise are presented in Fig. 4C for India, Indonesia and Ethiopia.
In the impact forecasted in Fig. 4C, IRRs range from 13.35% in Ethiopia
vs 1.99% in India, in line with results provided in other recentmodeling
studies for vaccines of comparable profiles, in comparable vaccination
strategies24,25. As with comparisons across models, deviations of indi-
vidual vaccine descriptions with respect to IRRh i range between
+47.3% (IRRð6, εh i6Þ above IRRh i in Indonesia) and −65.4% (IRRð1, εh i1Þ
below IRRh i in Indonesia), and are statistically significant in 9 over 21
occasions (Bonferroni-adjusted p values < 0.05, Fig. 4D). This high-
lights again the risk of adopting a priori a givendynamical structure for
vaccine descriptions in transmission models, and the convenience of
adopting a Bayesian approach on this problem as we propose here.

Discussion
In a disease with a complex transmission chain, such as TB, vaccine
mechanisms can be modeled in many different ways, some of which
can be rendered compatible with clinical trial observations and yet
produce divergent results when plugged into transmission models for
their prospective evaluation. To solve this problem, we propose a
method that combines in-silico simulations with actual trial results to
quantify the relative compatibility of different vaccine descriptions
with trial-derived observations. These model-to-data compatibility
metrics arenothing but Bayesianposteriors whichwe use asweights to
retrieve expected vaccine impact forecasts where models that are
more compatiblewith trial observations contributemore than those in
conflict with data. By doing this, we provide a rationale that helps
circumventing the need to make arbitrary modeling decisions with
respect to vaccine mechanisms, which may bias their quantitative
conclusions.

The discussion addressed here is pertinent within the context of
TB vaccines development, since vaccines activating certain immune
pathways and responses may exert different effects on the risk of
developing TB associated to different routes to disease. As a case
example of the potential of our approach, we analyzed the phase 2b
efficacy trial of the promising vaccine candidate M72/AS01E, con-
ducted on individuals previously exposed to the pathogen (IGRA+).
Here, weproducedweighted averages for the impactof this vaccine, to
conclude that M72/AS01E is expected to lead to an IRR of 6.22%, CI
(4.85–7.52), 7.20% CI (5.88–8.82) and 5.44%, CI (4.30–7.02) evaluated
in 2050 in India, Indonesia and Ethiopia, respectively, for a vaccine
applied on adolescents starting on 2025, assuming perfect coverage
and no efficacy waning, and assuming that previous exposure is nee-
ded for protection. These impacts are modest, implying that wider
vaccination campaigns would be necessary to meet the End-TB strat-
egy goals if the efficacy profile of this vaccine is consolidated in fur-
ther, phase 3 studies and no better tool is at hand.

Using our method, we were able to assign different posterior
probabilities to each of the seven vaccine models proposed. The
magnitude of the posterior of each model depends on the margin-
alized likelihoods, integrated over all possible values of the vaccine
efficacy parameter. These essentially depend on whether the max-
imum amount of TB cases preventable by each vaccine model is
enough to explain the protection level observed in the trial, and, when
we compare models with large enough maximum preventable frac-
tions, on how frequently each model is able to generate simulated
trials compatible with the observed vaccine efficacy. Our analyses
showed thatmodels 1, 2, and 3, each of which tackling a single route to
disease, show lower posterior probabilities than models acting on

either two (models 4, 5, and 6) or all three routes to disease (model 7).
Furthermore, the vaccine model offering the highest posterior prob-
abilities given the trial result is model 5, where vaccine PoD leans on
protection against endogenous reactivation of LTBI and primary TB,
even though models 4, 6, and 7 show similarly high posterior prob-
abilities. In this sense, the potential of our approach to disentangle
specific vaccine mechanisms with better specificity than what is pre-
sented here could be further exploited if applied to the analysis of
multi-centric trials conducted on sites with divergent TB burden dis-
tributions across age strata and routes to disease, and, unlike the
example analyzed here, including participants distributed more
homogenously across sites. In the case that we analyze here, the esti-
mated distribution of TB cases across routes to disease is very similar
in the three countries in the study (South Africa, Kenya, and Zambia,
see Fig. 1), and a majority of trial participants come from the South
Africa site (>80%), discouraging disaggregating the analysis per site.
Should further efficacy data for this or other vaccines be collected,
based on trials where a minimum number of participants per site and
age strata is prioritized (additionally to prioritizing a minimum
aggregated number of participants) this type of Bayesian approach
could be stratified per site or age cohort, integrating more than just
one efficacy observation. This, in turn, would unlock the estimation of
more decisive Bayesian posteriors for the different vaccine models
proposed.

In spite of these precautions, the entire set of model posteriors
constitutes a meaningful resource that unlocks producing vaccine
impact forecasts that are mechanism-agnostic. Using these posteriors
as weights of the impact forecasts produced from each of the seven
proposed models we obtain a Bayesian impact estimate that does not
lean on any vaccine mechanism assumption. Importantly enough, our
Bayesian estimates for the M72/ASO1E vaccine impact are broadly
compatible with those produced by model 7 alone, which is an archi-
tecture that has recently been used to produce the first impact fore-
casts for vaccines similar to M72/ASO1E24,25. This suggests that the
analyses presented in these references would not be incurring relevant
bias in this particular case due to the implicit mechanistic assumptions
made in their vaccine modeling choices. However, it is equally
important to highlight that this does not guarantee thatmodel 7 could
be generally considered less prone to bias than other models, for the
situation could be different for other vaccines, or even for this same
vaccine after more evidence becomes available.

The approach here introduced fosters important limitations.
On the one hand, the implementation of the clinical trials simu-
lations requires estimating a series of epidemiological parameters
a priori, including the fraction of individuals in the fast vs. slow
progression reservoirs, rates of re-infection, and fast progression
to disease; all conditioned (at least) by age stratum and epidemic
setting in order to combine them, at a later stage, to describe the
global study population. This was done in this study by adapting
the coarse granularity of participants’ age groups reported in the
trial9,10 (participant numbers were reported for three broad
groups of 18–25, 25–30, and 30–50 years old) to the smaller age
groups used in the model (seven 5 years-wide age strata: from
15–20 to 45–50) after assuming unbiased representation of the
smaller age groups in each country in the wider cohorts reported
in the trial. Similarly, we assume that the overall epidemic risk in
the countries of the trial was representative of the overall situa-
tion in each specific setting in the year of the study. Admittedly,
exact age distributions of the participants (whenever available,
and possibly complemented with further information about risk
factors), and more relevant information on incidence levels at the
specific settings could be used in order to refine quantitative
conclusions. Specifically, it could be thought that forces of
infection used here are likely to underestimate the actual values
observed in the trial, since trial settings are chosen by their
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typically high transmission levels. If true, that may alter the
relative weight of different routes to disease in our analysis,
biasing our conclusions. Although it would be very valuable to
count with empiric estimates for the force of infection in the trial
sites, the estimates that we obtained, ranging between ~4% and
11% depending on the country and the age group, are broadly
compatible with expected values of the annual rate of infection in
high TB burden settings, according to a recent study by Dowdy
and Behr26. This study concludes that, unlike classical estimates
for this parameter, adult populations in contemporary high-
burden settings may present annual rates of infection between 5%
and 10%, or even higher; a range that is compatible with our
findings. Similarly, IGRA+ clinical trial designers should include
strategies to explicitly quantify the fraction of the participants
who underwent recent vs remote IGRA conversion before the
beginning of the trial, which would remove the need to estimate
the relative sizes of fast vs slow progression reservoir from
transmission models. This could be done directly (i.e. by includ-
ing an IGRA screening phase lasting circa one year before trial
starts, where individuals who are initially testing negative are re-
evaluated to capture a fraction of recent IGRA conversions before
the beginning of the study), or, perhaps more feasibly, by using
bio-markers of time since IGRA-conversion, a promising possibi-
lity that is technically available, as recently demonstrated in27. In
summary, including protocols to produce empiric estimates of F
vs. L relative weights in the trial sites, as well as forces of infec-
tion, instead of using model-based estimates as we do here,
would be extremely helpful however difficult the logistics of the
task may result in the practice.

On the other hand, it is important to highlight that our
method, as implemented here, only permits vaccine descriptions
where mechanisms are either absent, or present to the same
extent, but does not accommodate more general situations where
all vaccine mechanisms may be present with different intrinsic
efficacies. Generalizing the formalism to deal with leaky vaccines
-where different efficacy values are permitted, associated with
different routes to disease, in the same model-, would unlock
descriptions of more general vaccine behaviors. However, it is key
to acknowledge that the amount and quality of efficacy data
needed for generalizing our method in that direction is currently
unavailable, for example, for the M72/AS01E vaccine case. Again,
it would be necessary to count with enough participants dis-
tributed across locations in multi-centric studies, and/or age
groups, where baseline distributions of estimated cases asso-
ciated with each of the TB routes were divergent enough. Using
that information, vaccine efficacy could be analyzed indepen-
dently in different subgroups of data, producing more decisive
posterior estimates of the mechanisms at place and their relative
efficacy, also in a leaky vaccine scenario18,19.

The method proposed in this study can be used for interpreting
clinical trials for vaccine efficacy against active TB (PoD) conducted on
IGRA+ individuals, and it can be extended to other trial designs, even
for diseases obeying different transmission dynamics structures. For
example, it could be extended to the study of trials conducted with
IGRA- individuals, where PoD mediated by PoI would emerge as an
additional vaccine mechanism to integrate within the framework. It
can furthermore be used coupled with any transmission model of
choice (see ref. 17 for an exhaustive review of most recent modeling
tools described in recent literature for TB), as long as it accommodates
the description of the different routes to disease and mechanisms of
action here described.

By adapting our method to these situations, it will be possible to
produce less arbitrarymodel-based impact forecasts based on vaccine
descriptions where the knowledge about the vaccine behavior is
incomplete.

Methods
Basal model calibration
The basic model describing TB acquisition of participants in the pla-
cebo arm during the trial (Fig. 1A), can be expressed through the fol-
lowing system of ordinary differential equations:

_L= � rLL� βpqL
_F = � rF +βpqL

_D= rF + rLL

ð1Þ

where we consider an endogenous LTBI reactivation rate centered
around rL = 7.5 × 10−4 y−1 (95% CI 6.37 × 10−4–8.63 × 10−4) whereas fast
progression rate to TB is centered in r =0:9y�1 (95% C.I. 0.765–1.035).
These values,widely adopted in themodeling literature28–30, are in turn
broadly compatible with empirical estimates (reviewed in ref. 22 -r-,
and 31 -rL-). According to ref. 32, we consider that LTBI individuals have
a 79% less risk of progressing to TB upon re-infection, that is, q=0:21
(95% C.I. 0.14–0.30). Finally, the probability of fast progression is
centered around p=0:15 (95% C.I. 0.10–0.20)21,33,34. With these para-
meters fixed (drawn in each realization from distributions compatible
with expected values and C.I.s), the transmission rate β is initially
calibrated for each country, and within each age group (14 five years-
wide age groups, from 0–5 to 65–70, plus a last age group gathering
people above 70 years old: 15 groups in total). To do so, we resort to
the same detailed transmission model used to evaluate vaccines
impact (see sub-section on vaccine impacts below and Supplementary
text S1)- bound to fit the incidence and mortality burden reported by
the WHO between 2000 and 2018 (Fig. 1C, and Supplementary
Fig. S2)23. The samemodel is used to produce estimates of the fraction
of fast vs. slow progressors among IGRA+ populations in each country
and age group (see Fig. 1D, E for the fitted values of β and the fractions
of slow vs fast progressors per country and age group).

Using these dynamical parameters, the dynamics in the pla-
cebo arm of the trial are simulated, according to the system of
ODEs in Eq. (1), employing a version of the Gillespie algorithm
where the reservoir F is mirrored in order to allow for independent
tracking of the individuals undergoing primary TB who were
initially in F as well as the individuals following the re-infection
route to disease: L→F→D. As for individuals in the vaccine arms of
the cohort, each all-or-nothing vaccine model can bemapped onto
a combination of the epidemiological parameters (rL, r, or the
product βpq, see Supplementary text S1) being turned to zero for a
fraction ε of the vaccinated individuals. Through this approach we
produce different parametrizations for the eventual prevention-
of-disease (PoD) that is conferred by the vaccine under analysis. It
is important to highlight that we are modeling only PoD vaccines
whose action is not concomitant with neither prevention of
infection (PoI), nor prevention of recurrence (PoR). Each in-silico
trial comprehended the simulation of a fraction of individuals in
different age groups, ranging from 18–50 years old, in three dif-
ferent African countries, with each country-age group combina-
tion being characterized by specific epidemiological parameters.
We estimated these fractions from the reported participant dis-
tributions across age strata and country reported in ref. 9 (See
Supplementary text S1 for details). Once the result of each simu-
lation is obtained through the Gillespie algorithm, the PoD efficacy
is estimated as 1 minus the ratio of cases observed in the placebo
and intervention arms.

We simulated N = 10,000 trials for each model and value of the
intrinsic efficacy; with 200 values of the intrinsic efficacy ε uniformly
distributed in the range [0,1]. Each one of these instances involves the
simulation of the dynamics in both cohorts in three countries and
within seven age groups (16–20 to 46–50 years old, age group
width = 5 years), that are combined into a single efficacy readout per
instance. This yields a total number of trials simulated equal to4.2 × 107
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per model, (200 intrinsic efficacies × 10,000 instances × 7 age
groups × 3 countries); that is, 1.47 × 108 trials simulated in total for the
seven models analyzed.

Bayesian analyses
Let us consider the likelihood P VEdis =49:7%ji,ε

� �
that each of the

possible models defined by the combination of parameters fi,εg,
(where the integer index i 2 f1,2, . . . ,7g determines the specific vaccine
mechanism(s) at work (i.e., the vaccine model type), and the con-
tinuous parameter ε 2 ½0,1� captures its intrinsic efficacy) generates a
PoD efficacy estimate compatible with the one observed for M72/
AS01E. Using this likelihood term, we apply Bayes rule to define the
posterior probability associated with each particular model:

P i, εjVEdis =49:7%
� �

=
P VEdis =49:7%ji, ε
� ��P i,εð ÞP

i0

R
ε0 VEdis =49:7%ji0, ε0
� ��P i0, ε0

� ��dε0 ð2Þ

Andderive amodel-type posterior probability, by integratingover
all possible intrinsic efficacy values as follows:

P ijVEdis =49:7%
� �

=
Z

ε
P i,εjVEdis =49:7%
� ��

dε=

R
ε P VEdis =49:7%ji, ε

� ��P i, εð Þ �dεP
i0

R
ε0 VEdis =49:7%ji0, ε0
� ��P i0,ε0

� ��dε0
ð3Þ

If we consider uniform non-informative priors in Eq. (3) (that is
Pði, εÞ=Pði0, ε0Þ8ði, i0, ε, ε0Þ), the model-type posterior can be obtained
from the marginalized likelihoods:

P VEdis =49:7%ji
� �

=
Z

ε
P VEdis =49:7%ji, ε
� � �P i, εð Þ �dε ð4Þ

Which we estimate from the density distributions of the PoD
efficacy readouts VEdis obtained from each model using the value of
Kernel density estimators (R package KerSmooth) of the frequency of
trials evaluated at VEdis =49:7%. Plugging the numerical estimates of
P VEdis =49:7%ji
� �

into Eq. (3) allow us to quantify the relative support
in the data for the seven different vaccine descriptions provided.
Confidence intervals for these model posterior estimates represented
in Fig. 3B are obtained by bootstrapping the calculations N = 5000
times, each of which is obtained by sampling with replacement
N = 1,000,000 trial simulations.

Then, we also estimate the intrinsic efficacy values ε that aremost
compatible with the given observed efficacy against-disease readout
VEdis =49:7% under each of the model type descriptions, this time
applying the Bayes rule over each model type independently:

P εjVEdis =49:7%, i
� �

=
P VEdis =49:7%ji, ε
� ��P i, εð ÞR

ε0 P VEdis =49:7%ji, ε0
� ��P i, ε0ð Þ �dε0

Where likelihood terms P VEdis =49:7%ji,ε
� �

are estimated from the
simulations using Kernel density estimates obtained for each of the
N = 200 values of ε covered. The first momentum of these posterior
distributions corresponds to the expected values of the intrinsic effi-
cacy parameter under each model type, that is:

εh ii =
Z

ε
P εjVEdis =49:7%, i
� � � ε �dε=

R
ε P VEdis =49:7%ji, ε

� � �P i, εð Þ � ε �dεR
ε0 P VEdis =49:7%ji, ε0

� � �P i, ε0ð Þ �dε0

which is captured in Fig. 3C, along with its confidence intervals
obtained from the posterior distribution P εjVEdis =49:7%,i

� �
itself,

fitted to a normal distribution.

Finally, we build model-based Bayesian estimates of vaccine
impact as a weighted linear combination of the impacts foreseen by
each type of vaccine, expressed as incidence reduction rates, as fol-
lows:

IRRh i=
X
i

P i,j,VEdis =49:7%
� ��IRRði, εh iiÞ

where the seven incidence reduction rates IRRði, εh iiÞ are computed
using the same comprehensive transmission model used to estimate
transmission rates β and fractions of prevalent fast vs slow
progressors23.

Impact evaluations
In this study, we make use of the transmission model introduced in
ref. 23, and generalized to describe the introduction of novel vac-
cines in16. This model constitutes a conceptual extension of the
basic model sketched in Fig. 1A, where different types of disease are
considered, along with treatment outcome dynamics and eventual
relapses. The model integrates demographic data and empiric
mixing patterns among age strata along with epidemiological
parameters and TB burden trends (incidence and mortality), in
order to produce baseline incidence and mortality forecasts per
country, as well as vaccine impact evaluations. For further details on
the model, the reader is referred to the Supplementary text S1,
along with references16,23.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary text S1 and Source
Data, and from the corresponding author upon request. Data con-
cerning TB burden, as well as countries demographic structures is
available in open databases35,36. The data concerning the M72/AS01E
vaccine trial used here is publicly available at the original
source9,10. Source data are provided in this paper.

Code availability
Codewith the implementation of the novelmethods introduced in this
study is available at GitHub (https://github.com/MarioTovarCalonge/
Bayesian_Framework_TB_Vaccines) and at Zenodo (https://zenodo.
org/badge/latestdoi/596053638)37. Those codes include algorithms
written in C language (Gillepie algorithm-based implementation of
clinical trial simulations), and in R (tested in version 3.6.3), with
dependences, at different stages, to the following R packages: fanplot
(v4.0.0), ggplot2 (v3.4.0), gridExtra (v2.3), kdensity (v1.1.0), Ker-
nSmooth (v2.23-20), viridis (v0.6.2), truncnorm (v1.0-8), minpack.lm
(v1.2–2), nlsr (v2019.9.7), iterators (v1.0.14), for each (v1.5.2), doParallel
(v1.0.17), and dplyr (v1.0.10).
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